]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
RDMA/qedr: Add 64KB PAGE_SIZE support to user-space queues
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-wbt.h"
38 #include "blk-mq-sched.h"
39
40 static DEFINE_MUTEX(all_q_mutex);
41 static LIST_HEAD(all_q_list);
42
43 static void blk_mq_poll_stats_start(struct request_queue *q);
44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync);
46
47 static int blk_mq_poll_stats_bkt(const struct request *rq)
48 {
49         int ddir, bytes, bucket;
50
51         ddir = rq_data_dir(rq);
52         bytes = blk_rq_bytes(rq);
53
54         bucket = ddir + 2*(ilog2(bytes) - 9);
55
56         if (bucket < 0)
57                 return -1;
58         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
59                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
60
61         return bucket;
62 }
63
64 /*
65  * Check if any of the ctx's have pending work in this hardware queue
66  */
67 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
68 {
69         return sbitmap_any_bit_set(&hctx->ctx_map) ||
70                         !list_empty_careful(&hctx->dispatch) ||
71                         blk_mq_sched_has_work(hctx);
72 }
73
74 /*
75  * Mark this ctx as having pending work in this hardware queue
76  */
77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78                                      struct blk_mq_ctx *ctx)
79 {
80         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
81                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 }
83
84 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
85                                       struct blk_mq_ctx *ctx)
86 {
87         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
88 }
89
90 void blk_freeze_queue_start(struct request_queue *q)
91 {
92         int freeze_depth;
93
94         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
95         if (freeze_depth == 1) {
96                 percpu_ref_kill(&q->q_usage_counter);
97                 blk_mq_run_hw_queues(q, false);
98         }
99 }
100 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
101
102 void blk_mq_freeze_queue_wait(struct request_queue *q)
103 {
104         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
105 }
106 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
107
108 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
109                                      unsigned long timeout)
110 {
111         return wait_event_timeout(q->mq_freeze_wq,
112                                         percpu_ref_is_zero(&q->q_usage_counter),
113                                         timeout);
114 }
115 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
116
117 /*
118  * Guarantee no request is in use, so we can change any data structure of
119  * the queue afterward.
120  */
121 void blk_freeze_queue(struct request_queue *q)
122 {
123         /*
124          * In the !blk_mq case we are only calling this to kill the
125          * q_usage_counter, otherwise this increases the freeze depth
126          * and waits for it to return to zero.  For this reason there is
127          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
128          * exported to drivers as the only user for unfreeze is blk_mq.
129          */
130         blk_freeze_queue_start(q);
131         blk_mq_freeze_queue_wait(q);
132 }
133
134 void blk_mq_freeze_queue(struct request_queue *q)
135 {
136         /*
137          * ...just an alias to keep freeze and unfreeze actions balanced
138          * in the blk_mq_* namespace
139          */
140         blk_freeze_queue(q);
141 }
142 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
143
144 void blk_mq_unfreeze_queue(struct request_queue *q)
145 {
146         int freeze_depth;
147
148         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
149         WARN_ON_ONCE(freeze_depth < 0);
150         if (!freeze_depth) {
151                 percpu_ref_reinit(&q->q_usage_counter);
152                 wake_up_all(&q->mq_freeze_wq);
153         }
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
156
157 /**
158  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
159  * @q: request queue.
160  *
161  * Note: this function does not prevent that the struct request end_io()
162  * callback function is invoked. Additionally, it is not prevented that
163  * new queue_rq() calls occur unless the queue has been stopped first.
164  */
165 void blk_mq_quiesce_queue(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169         bool rcu = false;
170
171         __blk_mq_stop_hw_queues(q, true);
172
173         queue_for_each_hw_ctx(q, hctx, i) {
174                 if (hctx->flags & BLK_MQ_F_BLOCKING)
175                         synchronize_srcu(&hctx->queue_rq_srcu);
176                 else
177                         rcu = true;
178         }
179         if (rcu)
180                 synchronize_rcu();
181 }
182 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
183
184 void blk_mq_wake_waiters(struct request_queue *q)
185 {
186         struct blk_mq_hw_ctx *hctx;
187         unsigned int i;
188
189         queue_for_each_hw_ctx(q, hctx, i)
190                 if (blk_mq_hw_queue_mapped(hctx))
191                         blk_mq_tag_wakeup_all(hctx->tags, true);
192
193         /*
194          * If we are called because the queue has now been marked as
195          * dying, we need to ensure that processes currently waiting on
196          * the queue are notified as well.
197          */
198         wake_up_all(&q->mq_freeze_wq);
199 }
200
201 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
202 {
203         return blk_mq_has_free_tags(hctx->tags);
204 }
205 EXPORT_SYMBOL(blk_mq_can_queue);
206
207 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
208                         struct request *rq, unsigned int op)
209 {
210         INIT_LIST_HEAD(&rq->queuelist);
211         /* csd/requeue_work/fifo_time is initialized before use */
212         rq->q = q;
213         rq->mq_ctx = ctx;
214         rq->cmd_flags = op;
215         if (blk_queue_io_stat(q))
216                 rq->rq_flags |= RQF_IO_STAT;
217         /* do not touch atomic flags, it needs atomic ops against the timer */
218         rq->cpu = -1;
219         INIT_HLIST_NODE(&rq->hash);
220         RB_CLEAR_NODE(&rq->rb_node);
221         rq->rq_disk = NULL;
222         rq->part = NULL;
223         rq->start_time = jiffies;
224 #ifdef CONFIG_BLK_CGROUP
225         rq->rl = NULL;
226         set_start_time_ns(rq);
227         rq->io_start_time_ns = 0;
228 #endif
229         rq->nr_phys_segments = 0;
230 #if defined(CONFIG_BLK_DEV_INTEGRITY)
231         rq->nr_integrity_segments = 0;
232 #endif
233         rq->special = NULL;
234         /* tag was already set */
235         rq->extra_len = 0;
236
237         INIT_LIST_HEAD(&rq->timeout_list);
238         rq->timeout = 0;
239
240         rq->end_io = NULL;
241         rq->end_io_data = NULL;
242         rq->next_rq = NULL;
243
244         ctx->rq_dispatched[op_is_sync(op)]++;
245 }
246 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
247
248 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
249                                        unsigned int op)
250 {
251         struct request *rq;
252         unsigned int tag;
253
254         tag = blk_mq_get_tag(data);
255         if (tag != BLK_MQ_TAG_FAIL) {
256                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
257
258                 rq = tags->static_rqs[tag];
259
260                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
261                         rq->tag = -1;
262                         rq->internal_tag = tag;
263                 } else {
264                         if (blk_mq_tag_busy(data->hctx)) {
265                                 rq->rq_flags = RQF_MQ_INFLIGHT;
266                                 atomic_inc(&data->hctx->nr_active);
267                         }
268                         rq->tag = tag;
269                         rq->internal_tag = -1;
270                         data->hctx->tags->rqs[rq->tag] = rq;
271                 }
272
273                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
274                 return rq;
275         }
276
277         return NULL;
278 }
279 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
280
281 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
282                 unsigned int flags)
283 {
284         struct blk_mq_alloc_data alloc_data = { .flags = flags };
285         struct request *rq;
286         int ret;
287
288         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
289         if (ret)
290                 return ERR_PTR(ret);
291
292         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
293
294         blk_mq_put_ctx(alloc_data.ctx);
295         blk_queue_exit(q);
296
297         if (!rq)
298                 return ERR_PTR(-EWOULDBLOCK);
299
300         rq->__data_len = 0;
301         rq->__sector = (sector_t) -1;
302         rq->bio = rq->biotail = NULL;
303         return rq;
304 }
305 EXPORT_SYMBOL(blk_mq_alloc_request);
306
307 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
308                 unsigned int flags, unsigned int hctx_idx)
309 {
310         struct blk_mq_alloc_data alloc_data = { .flags = flags };
311         struct request *rq;
312         unsigned int cpu;
313         int ret;
314
315         /*
316          * If the tag allocator sleeps we could get an allocation for a
317          * different hardware context.  No need to complicate the low level
318          * allocator for this for the rare use case of a command tied to
319          * a specific queue.
320          */
321         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
322                 return ERR_PTR(-EINVAL);
323
324         if (hctx_idx >= q->nr_hw_queues)
325                 return ERR_PTR(-EIO);
326
327         ret = blk_queue_enter(q, true);
328         if (ret)
329                 return ERR_PTR(ret);
330
331         /*
332          * Check if the hardware context is actually mapped to anything.
333          * If not tell the caller that it should skip this queue.
334          */
335         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
336         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
337                 blk_queue_exit(q);
338                 return ERR_PTR(-EXDEV);
339         }
340         cpu = cpumask_first(alloc_data.hctx->cpumask);
341         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
342
343         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
344
345         blk_queue_exit(q);
346
347         if (!rq)
348                 return ERR_PTR(-EWOULDBLOCK);
349
350         return rq;
351 }
352 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
353
354 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
355                              struct request *rq)
356 {
357         const int sched_tag = rq->internal_tag;
358         struct request_queue *q = rq->q;
359
360         if (rq->rq_flags & RQF_MQ_INFLIGHT)
361                 atomic_dec(&hctx->nr_active);
362
363         wbt_done(q->rq_wb, &rq->issue_stat);
364         rq->rq_flags = 0;
365
366         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
367         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
368         if (rq->tag != -1)
369                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
370         if (sched_tag != -1)
371                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
372         blk_mq_sched_restart(hctx);
373         blk_queue_exit(q);
374 }
375
376 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
377                                      struct request *rq)
378 {
379         struct blk_mq_ctx *ctx = rq->mq_ctx;
380
381         ctx->rq_completed[rq_is_sync(rq)]++;
382         __blk_mq_finish_request(hctx, ctx, rq);
383 }
384
385 void blk_mq_finish_request(struct request *rq)
386 {
387         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
388 }
389 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
390
391 void blk_mq_free_request(struct request *rq)
392 {
393         blk_mq_sched_put_request(rq);
394 }
395 EXPORT_SYMBOL_GPL(blk_mq_free_request);
396
397 inline void __blk_mq_end_request(struct request *rq, int error)
398 {
399         blk_account_io_done(rq);
400
401         if (rq->end_io) {
402                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
403                 rq->end_io(rq, error);
404         } else {
405                 if (unlikely(blk_bidi_rq(rq)))
406                         blk_mq_free_request(rq->next_rq);
407                 blk_mq_free_request(rq);
408         }
409 }
410 EXPORT_SYMBOL(__blk_mq_end_request);
411
412 void blk_mq_end_request(struct request *rq, int error)
413 {
414         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
415                 BUG();
416         __blk_mq_end_request(rq, error);
417 }
418 EXPORT_SYMBOL(blk_mq_end_request);
419
420 static void __blk_mq_complete_request_remote(void *data)
421 {
422         struct request *rq = data;
423
424         rq->q->softirq_done_fn(rq);
425 }
426
427 static void __blk_mq_complete_request(struct request *rq)
428 {
429         struct blk_mq_ctx *ctx = rq->mq_ctx;
430         bool shared = false;
431         int cpu;
432
433         if (rq->internal_tag != -1)
434                 blk_mq_sched_completed_request(rq);
435         if (rq->rq_flags & RQF_STATS) {
436                 blk_mq_poll_stats_start(rq->q);
437                 blk_stat_add(rq);
438         }
439
440         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
441                 rq->q->softirq_done_fn(rq);
442                 return;
443         }
444
445         cpu = get_cpu();
446         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
447                 shared = cpus_share_cache(cpu, ctx->cpu);
448
449         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
450                 rq->csd.func = __blk_mq_complete_request_remote;
451                 rq->csd.info = rq;
452                 rq->csd.flags = 0;
453                 smp_call_function_single_async(ctx->cpu, &rq->csd);
454         } else {
455                 rq->q->softirq_done_fn(rq);
456         }
457         put_cpu();
458 }
459
460 /**
461  * blk_mq_complete_request - end I/O on a request
462  * @rq:         the request being processed
463  *
464  * Description:
465  *      Ends all I/O on a request. It does not handle partial completions.
466  *      The actual completion happens out-of-order, through a IPI handler.
467  **/
468 void blk_mq_complete_request(struct request *rq)
469 {
470         struct request_queue *q = rq->q;
471
472         if (unlikely(blk_should_fake_timeout(q)))
473                 return;
474         if (!blk_mark_rq_complete(rq))
475                 __blk_mq_complete_request(rq);
476 }
477 EXPORT_SYMBOL(blk_mq_complete_request);
478
479 int blk_mq_request_started(struct request *rq)
480 {
481         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
482 }
483 EXPORT_SYMBOL_GPL(blk_mq_request_started);
484
485 void blk_mq_start_request(struct request *rq)
486 {
487         struct request_queue *q = rq->q;
488
489         blk_mq_sched_started_request(rq);
490
491         trace_block_rq_issue(q, rq);
492
493         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
494                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
495                 rq->rq_flags |= RQF_STATS;
496                 wbt_issue(q->rq_wb, &rq->issue_stat);
497         }
498
499         blk_add_timer(rq);
500
501         /*
502          * Ensure that ->deadline is visible before set the started
503          * flag and clear the completed flag.
504          */
505         smp_mb__before_atomic();
506
507         /*
508          * Mark us as started and clear complete. Complete might have been
509          * set if requeue raced with timeout, which then marked it as
510          * complete. So be sure to clear complete again when we start
511          * the request, otherwise we'll ignore the completion event.
512          */
513         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
514                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
515         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
516                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517
518         if (q->dma_drain_size && blk_rq_bytes(rq)) {
519                 /*
520                  * Make sure space for the drain appears.  We know we can do
521                  * this because max_hw_segments has been adjusted to be one
522                  * fewer than the device can handle.
523                  */
524                 rq->nr_phys_segments++;
525         }
526 }
527 EXPORT_SYMBOL(blk_mq_start_request);
528
529 /*
530  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
531  * flag isn't set yet, so there may be race with timeout handler,
532  * but given rq->deadline is just set in .queue_rq() under
533  * this situation, the race won't be possible in reality because
534  * rq->timeout should be set as big enough to cover the window
535  * between blk_mq_start_request() called from .queue_rq() and
536  * clearing REQ_ATOM_STARTED here.
537  */
538 static void __blk_mq_requeue_request(struct request *rq)
539 {
540         struct request_queue *q = rq->q;
541
542         trace_block_rq_requeue(q, rq);
543         wbt_requeue(q->rq_wb, &rq->issue_stat);
544         blk_mq_sched_requeue_request(rq);
545
546         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
547                 if (q->dma_drain_size && blk_rq_bytes(rq))
548                         rq->nr_phys_segments--;
549         }
550 }
551
552 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
553 {
554         __blk_mq_requeue_request(rq);
555
556         BUG_ON(blk_queued_rq(rq));
557         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
558 }
559 EXPORT_SYMBOL(blk_mq_requeue_request);
560
561 static void blk_mq_requeue_work(struct work_struct *work)
562 {
563         struct request_queue *q =
564                 container_of(work, struct request_queue, requeue_work.work);
565         LIST_HEAD(rq_list);
566         struct request *rq, *next;
567         unsigned long flags;
568
569         spin_lock_irqsave(&q->requeue_lock, flags);
570         list_splice_init(&q->requeue_list, &rq_list);
571         spin_unlock_irqrestore(&q->requeue_lock, flags);
572
573         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
574                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
575                         continue;
576
577                 rq->rq_flags &= ~RQF_SOFTBARRIER;
578                 list_del_init(&rq->queuelist);
579                 blk_mq_sched_insert_request(rq, true, false, false, true);
580         }
581
582         while (!list_empty(&rq_list)) {
583                 rq = list_entry(rq_list.next, struct request, queuelist);
584                 list_del_init(&rq->queuelist);
585                 blk_mq_sched_insert_request(rq, false, false, false, true);
586         }
587
588         blk_mq_run_hw_queues(q, false);
589 }
590
591 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
592                                 bool kick_requeue_list)
593 {
594         struct request_queue *q = rq->q;
595         unsigned long flags;
596
597         /*
598          * We abuse this flag that is otherwise used by the I/O scheduler to
599          * request head insertation from the workqueue.
600          */
601         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
602
603         spin_lock_irqsave(&q->requeue_lock, flags);
604         if (at_head) {
605                 rq->rq_flags |= RQF_SOFTBARRIER;
606                 list_add(&rq->queuelist, &q->requeue_list);
607         } else {
608                 list_add_tail(&rq->queuelist, &q->requeue_list);
609         }
610         spin_unlock_irqrestore(&q->requeue_lock, flags);
611
612         if (kick_requeue_list)
613                 blk_mq_kick_requeue_list(q);
614 }
615 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
616
617 void blk_mq_kick_requeue_list(struct request_queue *q)
618 {
619         kblockd_schedule_delayed_work(&q->requeue_work, 0);
620 }
621 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
622
623 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
624                                     unsigned long msecs)
625 {
626         kblockd_schedule_delayed_work(&q->requeue_work,
627                                       msecs_to_jiffies(msecs));
628 }
629 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
630
631 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
632 {
633         if (tag < tags->nr_tags) {
634                 prefetch(tags->rqs[tag]);
635                 return tags->rqs[tag];
636         }
637
638         return NULL;
639 }
640 EXPORT_SYMBOL(blk_mq_tag_to_rq);
641
642 struct blk_mq_timeout_data {
643         unsigned long next;
644         unsigned int next_set;
645 };
646
647 void blk_mq_rq_timed_out(struct request *req, bool reserved)
648 {
649         const struct blk_mq_ops *ops = req->q->mq_ops;
650         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
651
652         /*
653          * We know that complete is set at this point. If STARTED isn't set
654          * anymore, then the request isn't active and the "timeout" should
655          * just be ignored. This can happen due to the bitflag ordering.
656          * Timeout first checks if STARTED is set, and if it is, assumes
657          * the request is active. But if we race with completion, then
658          * both flags will get cleared. So check here again, and ignore
659          * a timeout event with a request that isn't active.
660          */
661         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
662                 return;
663
664         if (ops->timeout)
665                 ret = ops->timeout(req, reserved);
666
667         switch (ret) {
668         case BLK_EH_HANDLED:
669                 __blk_mq_complete_request(req);
670                 break;
671         case BLK_EH_RESET_TIMER:
672                 blk_add_timer(req);
673                 blk_clear_rq_complete(req);
674                 break;
675         case BLK_EH_NOT_HANDLED:
676                 break;
677         default:
678                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
679                 break;
680         }
681 }
682
683 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
684                 struct request *rq, void *priv, bool reserved)
685 {
686         struct blk_mq_timeout_data *data = priv;
687
688         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
689                 return;
690
691         /*
692          * The rq being checked may have been freed and reallocated
693          * out already here, we avoid this race by checking rq->deadline
694          * and REQ_ATOM_COMPLETE flag together:
695          *
696          * - if rq->deadline is observed as new value because of
697          *   reusing, the rq won't be timed out because of timing.
698          * - if rq->deadline is observed as previous value,
699          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
700          *   because we put a barrier between setting rq->deadline
701          *   and clearing the flag in blk_mq_start_request(), so
702          *   this rq won't be timed out too.
703          */
704         if (time_after_eq(jiffies, rq->deadline)) {
705                 if (!blk_mark_rq_complete(rq))
706                         blk_mq_rq_timed_out(rq, reserved);
707         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
708                 data->next = rq->deadline;
709                 data->next_set = 1;
710         }
711 }
712
713 static void blk_mq_timeout_work(struct work_struct *work)
714 {
715         struct request_queue *q =
716                 container_of(work, struct request_queue, timeout_work);
717         struct blk_mq_timeout_data data = {
718                 .next           = 0,
719                 .next_set       = 0,
720         };
721         int i;
722
723         /* A deadlock might occur if a request is stuck requiring a
724          * timeout at the same time a queue freeze is waiting
725          * completion, since the timeout code would not be able to
726          * acquire the queue reference here.
727          *
728          * That's why we don't use blk_queue_enter here; instead, we use
729          * percpu_ref_tryget directly, because we need to be able to
730          * obtain a reference even in the short window between the queue
731          * starting to freeze, by dropping the first reference in
732          * blk_freeze_queue_start, and the moment the last request is
733          * consumed, marked by the instant q_usage_counter reaches
734          * zero.
735          */
736         if (!percpu_ref_tryget(&q->q_usage_counter))
737                 return;
738
739         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
740
741         if (data.next_set) {
742                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
743                 mod_timer(&q->timeout, data.next);
744         } else {
745                 struct blk_mq_hw_ctx *hctx;
746
747                 queue_for_each_hw_ctx(q, hctx, i) {
748                         /* the hctx may be unmapped, so check it here */
749                         if (blk_mq_hw_queue_mapped(hctx))
750                                 blk_mq_tag_idle(hctx);
751                 }
752         }
753         blk_queue_exit(q);
754 }
755
756 /*
757  * Reverse check our software queue for entries that we could potentially
758  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
759  * too much time checking for merges.
760  */
761 static bool blk_mq_attempt_merge(struct request_queue *q,
762                                  struct blk_mq_ctx *ctx, struct bio *bio)
763 {
764         struct request *rq;
765         int checked = 8;
766
767         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
768                 bool merged = false;
769
770                 if (!checked--)
771                         break;
772
773                 if (!blk_rq_merge_ok(rq, bio))
774                         continue;
775
776                 switch (blk_try_merge(rq, bio)) {
777                 case ELEVATOR_BACK_MERGE:
778                         if (blk_mq_sched_allow_merge(q, rq, bio))
779                                 merged = bio_attempt_back_merge(q, rq, bio);
780                         break;
781                 case ELEVATOR_FRONT_MERGE:
782                         if (blk_mq_sched_allow_merge(q, rq, bio))
783                                 merged = bio_attempt_front_merge(q, rq, bio);
784                         break;
785                 case ELEVATOR_DISCARD_MERGE:
786                         merged = bio_attempt_discard_merge(q, rq, bio);
787                         break;
788                 default:
789                         continue;
790                 }
791
792                 if (merged)
793                         ctx->rq_merged++;
794                 return merged;
795         }
796
797         return false;
798 }
799
800 struct flush_busy_ctx_data {
801         struct blk_mq_hw_ctx *hctx;
802         struct list_head *list;
803 };
804
805 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
806 {
807         struct flush_busy_ctx_data *flush_data = data;
808         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
809         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
810
811         sbitmap_clear_bit(sb, bitnr);
812         spin_lock(&ctx->lock);
813         list_splice_tail_init(&ctx->rq_list, flush_data->list);
814         spin_unlock(&ctx->lock);
815         return true;
816 }
817
818 /*
819  * Process software queues that have been marked busy, splicing them
820  * to the for-dispatch
821  */
822 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
823 {
824         struct flush_busy_ctx_data data = {
825                 .hctx = hctx,
826                 .list = list,
827         };
828
829         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
830 }
831 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
832
833 static inline unsigned int queued_to_index(unsigned int queued)
834 {
835         if (!queued)
836                 return 0;
837
838         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
839 }
840
841 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
842                            bool wait)
843 {
844         struct blk_mq_alloc_data data = {
845                 .q = rq->q,
846                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
847                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
848         };
849
850         might_sleep_if(wait);
851
852         if (rq->tag != -1)
853                 goto done;
854
855         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
856                 data.flags |= BLK_MQ_REQ_RESERVED;
857
858         rq->tag = blk_mq_get_tag(&data);
859         if (rq->tag >= 0) {
860                 if (blk_mq_tag_busy(data.hctx)) {
861                         rq->rq_flags |= RQF_MQ_INFLIGHT;
862                         atomic_inc(&data.hctx->nr_active);
863                 }
864                 data.hctx->tags->rqs[rq->tag] = rq;
865         }
866
867 done:
868         if (hctx)
869                 *hctx = data.hctx;
870         return rq->tag != -1;
871 }
872
873 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
874                                     struct request *rq)
875 {
876         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
877         rq->tag = -1;
878
879         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
880                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
881                 atomic_dec(&hctx->nr_active);
882         }
883 }
884
885 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
886                                        struct request *rq)
887 {
888         if (rq->tag == -1 || rq->internal_tag == -1)
889                 return;
890
891         __blk_mq_put_driver_tag(hctx, rq);
892 }
893
894 static void blk_mq_put_driver_tag(struct request *rq)
895 {
896         struct blk_mq_hw_ctx *hctx;
897
898         if (rq->tag == -1 || rq->internal_tag == -1)
899                 return;
900
901         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
902         __blk_mq_put_driver_tag(hctx, rq);
903 }
904
905 /*
906  * If we fail getting a driver tag because all the driver tags are already
907  * assigned and on the dispatch list, BUT the first entry does not have a
908  * tag, then we could deadlock. For that case, move entries with assigned
909  * driver tags to the front, leaving the set of tagged requests in the
910  * same order, and the untagged set in the same order.
911  */
912 static bool reorder_tags_to_front(struct list_head *list)
913 {
914         struct request *rq, *tmp, *first = NULL;
915
916         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
917                 if (rq == first)
918                         break;
919                 if (rq->tag != -1) {
920                         list_move(&rq->queuelist, list);
921                         if (!first)
922                                 first = rq;
923                 }
924         }
925
926         return first != NULL;
927 }
928
929 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
930                                 void *key)
931 {
932         struct blk_mq_hw_ctx *hctx;
933
934         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
935
936         list_del(&wait->task_list);
937         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
938         blk_mq_run_hw_queue(hctx, true);
939         return 1;
940 }
941
942 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
943 {
944         struct sbq_wait_state *ws;
945
946         /*
947          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
948          * The thread which wins the race to grab this bit adds the hardware
949          * queue to the wait queue.
950          */
951         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
952             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
953                 return false;
954
955         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
956         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
957
958         /*
959          * As soon as this returns, it's no longer safe to fiddle with
960          * hctx->dispatch_wait, since a completion can wake up the wait queue
961          * and unlock the bit.
962          */
963         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
964         return true;
965 }
966
967 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
968 {
969         struct blk_mq_hw_ctx *hctx;
970         struct request *rq;
971         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
972
973         if (list_empty(list))
974                 return false;
975
976         /*
977          * Now process all the entries, sending them to the driver.
978          */
979         errors = queued = 0;
980         do {
981                 struct blk_mq_queue_data bd;
982
983                 rq = list_first_entry(list, struct request, queuelist);
984                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
985                         if (!queued && reorder_tags_to_front(list))
986                                 continue;
987
988                         /*
989                          * The initial allocation attempt failed, so we need to
990                          * rerun the hardware queue when a tag is freed.
991                          */
992                         if (!blk_mq_dispatch_wait_add(hctx))
993                                 break;
994
995                         /*
996                          * It's possible that a tag was freed in the window
997                          * between the allocation failure and adding the
998                          * hardware queue to the wait queue.
999                          */
1000                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1001                                 break;
1002                 }
1003
1004                 list_del_init(&rq->queuelist);
1005
1006                 bd.rq = rq;
1007
1008                 /*
1009                  * Flag last if we have no more requests, or if we have more
1010                  * but can't assign a driver tag to it.
1011                  */
1012                 if (list_empty(list))
1013                         bd.last = true;
1014                 else {
1015                         struct request *nxt;
1016
1017                         nxt = list_first_entry(list, struct request, queuelist);
1018                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1019                 }
1020
1021                 ret = q->mq_ops->queue_rq(hctx, &bd);
1022                 switch (ret) {
1023                 case BLK_MQ_RQ_QUEUE_OK:
1024                         queued++;
1025                         break;
1026                 case BLK_MQ_RQ_QUEUE_BUSY:
1027                         blk_mq_put_driver_tag_hctx(hctx, rq);
1028                         list_add(&rq->queuelist, list);
1029                         __blk_mq_requeue_request(rq);
1030                         break;
1031                 default:
1032                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1033                 case BLK_MQ_RQ_QUEUE_ERROR:
1034                         errors++;
1035                         blk_mq_end_request(rq, -EIO);
1036                         break;
1037                 }
1038
1039                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1040                         break;
1041         } while (!list_empty(list));
1042
1043         hctx->dispatched[queued_to_index(queued)]++;
1044
1045         /*
1046          * Any items that need requeuing? Stuff them into hctx->dispatch,
1047          * that is where we will continue on next queue run.
1048          */
1049         if (!list_empty(list)) {
1050                 /*
1051                  * If an I/O scheduler has been configured and we got a driver
1052                  * tag for the next request already, free it again.
1053                  */
1054                 rq = list_first_entry(list, struct request, queuelist);
1055                 blk_mq_put_driver_tag(rq);
1056
1057                 spin_lock(&hctx->lock);
1058                 list_splice_init(list, &hctx->dispatch);
1059                 spin_unlock(&hctx->lock);
1060
1061                 /*
1062                  * If SCHED_RESTART was set by the caller of this function and
1063                  * it is no longer set that means that it was cleared by another
1064                  * thread and hence that a queue rerun is needed.
1065                  *
1066                  * If TAG_WAITING is set that means that an I/O scheduler has
1067                  * been configured and another thread is waiting for a driver
1068                  * tag. To guarantee fairness, do not rerun this hardware queue
1069                  * but let the other thread grab the driver tag.
1070                  *
1071                  * If no I/O scheduler has been configured it is possible that
1072                  * the hardware queue got stopped and restarted before requests
1073                  * were pushed back onto the dispatch list. Rerun the queue to
1074                  * avoid starvation. Notes:
1075                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1076                  *   been stopped before rerunning a queue.
1077                  * - Some but not all block drivers stop a queue before
1078                  *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1079                  *   and dm-rq.
1080                  */
1081                 if (!blk_mq_sched_needs_restart(hctx) &&
1082                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1083                         blk_mq_run_hw_queue(hctx, true);
1084         }
1085
1086         return (queued + errors) != 0;
1087 }
1088
1089 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1090 {
1091         int srcu_idx;
1092
1093         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1094                 cpu_online(hctx->next_cpu));
1095
1096         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1097                 rcu_read_lock();
1098                 blk_mq_sched_dispatch_requests(hctx);
1099                 rcu_read_unlock();
1100         } else {
1101                 might_sleep();
1102
1103                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1104                 blk_mq_sched_dispatch_requests(hctx);
1105                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1106         }
1107 }
1108
1109 /*
1110  * It'd be great if the workqueue API had a way to pass
1111  * in a mask and had some smarts for more clever placement.
1112  * For now we just round-robin here, switching for every
1113  * BLK_MQ_CPU_WORK_BATCH queued items.
1114  */
1115 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1116 {
1117         if (hctx->queue->nr_hw_queues == 1)
1118                 return WORK_CPU_UNBOUND;
1119
1120         if (--hctx->next_cpu_batch <= 0) {
1121                 int next_cpu;
1122
1123                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1124                 if (next_cpu >= nr_cpu_ids)
1125                         next_cpu = cpumask_first(hctx->cpumask);
1126
1127                 hctx->next_cpu = next_cpu;
1128                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1129         }
1130
1131         return hctx->next_cpu;
1132 }
1133
1134 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1135                                         unsigned long msecs)
1136 {
1137         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1138                      !blk_mq_hw_queue_mapped(hctx)))
1139                 return;
1140
1141         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1142                 int cpu = get_cpu();
1143                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1144                         __blk_mq_run_hw_queue(hctx);
1145                         put_cpu();
1146                         return;
1147                 }
1148
1149                 put_cpu();
1150         }
1151
1152         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1153                                          &hctx->run_work,
1154                                          msecs_to_jiffies(msecs));
1155 }
1156
1157 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1158 {
1159         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1160 }
1161 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1162
1163 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1164 {
1165         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1166 }
1167 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1168
1169 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1170 {
1171         struct blk_mq_hw_ctx *hctx;
1172         int i;
1173
1174         queue_for_each_hw_ctx(q, hctx, i) {
1175                 if (!blk_mq_hctx_has_pending(hctx) ||
1176                     blk_mq_hctx_stopped(hctx))
1177                         continue;
1178
1179                 blk_mq_run_hw_queue(hctx, async);
1180         }
1181 }
1182 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1183
1184 /**
1185  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1186  * @q: request queue.
1187  *
1188  * The caller is responsible for serializing this function against
1189  * blk_mq_{start,stop}_hw_queue().
1190  */
1191 bool blk_mq_queue_stopped(struct request_queue *q)
1192 {
1193         struct blk_mq_hw_ctx *hctx;
1194         int i;
1195
1196         queue_for_each_hw_ctx(q, hctx, i)
1197                 if (blk_mq_hctx_stopped(hctx))
1198                         return true;
1199
1200         return false;
1201 }
1202 EXPORT_SYMBOL(blk_mq_queue_stopped);
1203
1204 static void __blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx, bool sync)
1205 {
1206         if (sync)
1207                 cancel_delayed_work_sync(&hctx->run_work);
1208         else
1209                 cancel_delayed_work(&hctx->run_work);
1210
1211         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1212 }
1213
1214 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1215 {
1216         __blk_mq_stop_hw_queue(hctx, false);
1217 }
1218 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1219
1220 static void __blk_mq_stop_hw_queues(struct request_queue *q, bool sync)
1221 {
1222         struct blk_mq_hw_ctx *hctx;
1223         int i;
1224
1225         queue_for_each_hw_ctx(q, hctx, i)
1226                 __blk_mq_stop_hw_queue(hctx, sync);
1227 }
1228
1229 void blk_mq_stop_hw_queues(struct request_queue *q)
1230 {
1231         __blk_mq_stop_hw_queues(q, false);
1232 }
1233 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1234
1235 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1236 {
1237         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1238
1239         blk_mq_run_hw_queue(hctx, false);
1240 }
1241 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1242
1243 void blk_mq_start_hw_queues(struct request_queue *q)
1244 {
1245         struct blk_mq_hw_ctx *hctx;
1246         int i;
1247
1248         queue_for_each_hw_ctx(q, hctx, i)
1249                 blk_mq_start_hw_queue(hctx);
1250 }
1251 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1252
1253 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1254 {
1255         if (!blk_mq_hctx_stopped(hctx))
1256                 return;
1257
1258         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1259         blk_mq_run_hw_queue(hctx, async);
1260 }
1261 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1262
1263 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1264 {
1265         struct blk_mq_hw_ctx *hctx;
1266         int i;
1267
1268         queue_for_each_hw_ctx(q, hctx, i)
1269                 blk_mq_start_stopped_hw_queue(hctx, async);
1270 }
1271 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1272
1273 static void blk_mq_run_work_fn(struct work_struct *work)
1274 {
1275         struct blk_mq_hw_ctx *hctx;
1276
1277         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1278
1279         /*
1280          * If we are stopped, don't run the queue. The exception is if
1281          * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
1282          * the STOPPED bit and run it.
1283          */
1284         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
1285                 if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
1286                         return;
1287
1288                 clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1289                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1290         }
1291
1292         __blk_mq_run_hw_queue(hctx);
1293 }
1294
1295
1296 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1297 {
1298         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1299                 return;
1300
1301         /*
1302          * Stop the hw queue, then modify currently delayed work.
1303          * This should prevent us from running the queue prematurely.
1304          * Mark the queue as auto-clearing STOPPED when it runs.
1305          */
1306         blk_mq_stop_hw_queue(hctx);
1307         set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
1308         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1309                                         &hctx->run_work,
1310                                         msecs_to_jiffies(msecs));
1311 }
1312 EXPORT_SYMBOL(blk_mq_delay_queue);
1313
1314 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1315                                             struct request *rq,
1316                                             bool at_head)
1317 {
1318         struct blk_mq_ctx *ctx = rq->mq_ctx;
1319
1320         trace_block_rq_insert(hctx->queue, rq);
1321
1322         if (at_head)
1323                 list_add(&rq->queuelist, &ctx->rq_list);
1324         else
1325                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1326 }
1327
1328 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1329                              bool at_head)
1330 {
1331         struct blk_mq_ctx *ctx = rq->mq_ctx;
1332
1333         __blk_mq_insert_req_list(hctx, rq, at_head);
1334         blk_mq_hctx_mark_pending(hctx, ctx);
1335 }
1336
1337 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1338                             struct list_head *list)
1339
1340 {
1341         /*
1342          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1343          * offline now
1344          */
1345         spin_lock(&ctx->lock);
1346         while (!list_empty(list)) {
1347                 struct request *rq;
1348
1349                 rq = list_first_entry(list, struct request, queuelist);
1350                 BUG_ON(rq->mq_ctx != ctx);
1351                 list_del_init(&rq->queuelist);
1352                 __blk_mq_insert_req_list(hctx, rq, false);
1353         }
1354         blk_mq_hctx_mark_pending(hctx, ctx);
1355         spin_unlock(&ctx->lock);
1356 }
1357
1358 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1359 {
1360         struct request *rqa = container_of(a, struct request, queuelist);
1361         struct request *rqb = container_of(b, struct request, queuelist);
1362
1363         return !(rqa->mq_ctx < rqb->mq_ctx ||
1364                  (rqa->mq_ctx == rqb->mq_ctx &&
1365                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1366 }
1367
1368 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1369 {
1370         struct blk_mq_ctx *this_ctx;
1371         struct request_queue *this_q;
1372         struct request *rq;
1373         LIST_HEAD(list);
1374         LIST_HEAD(ctx_list);
1375         unsigned int depth;
1376
1377         list_splice_init(&plug->mq_list, &list);
1378
1379         list_sort(NULL, &list, plug_ctx_cmp);
1380
1381         this_q = NULL;
1382         this_ctx = NULL;
1383         depth = 0;
1384
1385         while (!list_empty(&list)) {
1386                 rq = list_entry_rq(list.next);
1387                 list_del_init(&rq->queuelist);
1388                 BUG_ON(!rq->q);
1389                 if (rq->mq_ctx != this_ctx) {
1390                         if (this_ctx) {
1391                                 trace_block_unplug(this_q, depth, from_schedule);
1392                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1393                                                                 &ctx_list,
1394                                                                 from_schedule);
1395                         }
1396
1397                         this_ctx = rq->mq_ctx;
1398                         this_q = rq->q;
1399                         depth = 0;
1400                 }
1401
1402                 depth++;
1403                 list_add_tail(&rq->queuelist, &ctx_list);
1404         }
1405
1406         /*
1407          * If 'this_ctx' is set, we know we have entries to complete
1408          * on 'ctx_list'. Do those.
1409          */
1410         if (this_ctx) {
1411                 trace_block_unplug(this_q, depth, from_schedule);
1412                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1413                                                 from_schedule);
1414         }
1415 }
1416
1417 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1418 {
1419         blk_init_request_from_bio(rq, bio);
1420
1421         blk_account_io_start(rq, true);
1422 }
1423
1424 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1425 {
1426         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1427                 !blk_queue_nomerges(hctx->queue);
1428 }
1429
1430 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1431                                          struct blk_mq_ctx *ctx,
1432                                          struct request *rq, struct bio *bio)
1433 {
1434         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1435                 blk_mq_bio_to_request(rq, bio);
1436                 spin_lock(&ctx->lock);
1437 insert_rq:
1438                 __blk_mq_insert_request(hctx, rq, false);
1439                 spin_unlock(&ctx->lock);
1440                 return false;
1441         } else {
1442                 struct request_queue *q = hctx->queue;
1443
1444                 spin_lock(&ctx->lock);
1445                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1446                         blk_mq_bio_to_request(rq, bio);
1447                         goto insert_rq;
1448                 }
1449
1450                 spin_unlock(&ctx->lock);
1451                 __blk_mq_finish_request(hctx, ctx, rq);
1452                 return true;
1453         }
1454 }
1455
1456 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1457 {
1458         if (rq->tag != -1)
1459                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1460
1461         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1462 }
1463
1464 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1465                                       bool may_sleep)
1466 {
1467         struct request_queue *q = rq->q;
1468         struct blk_mq_queue_data bd = {
1469                 .rq = rq,
1470                 .last = true,
1471         };
1472         struct blk_mq_hw_ctx *hctx;
1473         blk_qc_t new_cookie;
1474         int ret;
1475
1476         if (q->elevator)
1477                 goto insert;
1478
1479         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1480                 goto insert;
1481
1482         new_cookie = request_to_qc_t(hctx, rq);
1483
1484         /*
1485          * For OK queue, we are done. For error, kill it. Any other
1486          * error (busy), just add it to our list as we previously
1487          * would have done
1488          */
1489         ret = q->mq_ops->queue_rq(hctx, &bd);
1490         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1491                 *cookie = new_cookie;
1492                 return;
1493         }
1494
1495         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1496                 *cookie = BLK_QC_T_NONE;
1497                 blk_mq_end_request(rq, -EIO);
1498                 return;
1499         }
1500
1501         __blk_mq_requeue_request(rq);
1502 insert:
1503         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1504 }
1505
1506 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1507                 struct request *rq, blk_qc_t *cookie)
1508 {
1509         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1510                 rcu_read_lock();
1511                 __blk_mq_try_issue_directly(rq, cookie, false);
1512                 rcu_read_unlock();
1513         } else {
1514                 unsigned int srcu_idx;
1515
1516                 might_sleep();
1517
1518                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1519                 __blk_mq_try_issue_directly(rq, cookie, true);
1520                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1521         }
1522 }
1523
1524 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1525 {
1526         const int is_sync = op_is_sync(bio->bi_opf);
1527         const int is_flush_fua = op_is_flush(bio->bi_opf);
1528         struct blk_mq_alloc_data data = { .flags = 0 };
1529         struct request *rq;
1530         unsigned int request_count = 0;
1531         struct blk_plug *plug;
1532         struct request *same_queue_rq = NULL;
1533         blk_qc_t cookie;
1534         unsigned int wb_acct;
1535
1536         blk_queue_bounce(q, &bio);
1537
1538         blk_queue_split(q, &bio, q->bio_split);
1539
1540         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1541                 bio_io_error(bio);
1542                 return BLK_QC_T_NONE;
1543         }
1544
1545         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1546             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1547                 return BLK_QC_T_NONE;
1548
1549         if (blk_mq_sched_bio_merge(q, bio))
1550                 return BLK_QC_T_NONE;
1551
1552         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1553
1554         trace_block_getrq(q, bio, bio->bi_opf);
1555
1556         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1557         if (unlikely(!rq)) {
1558                 __wbt_done(q->rq_wb, wb_acct);
1559                 return BLK_QC_T_NONE;
1560         }
1561
1562         wbt_track(&rq->issue_stat, wb_acct);
1563
1564         cookie = request_to_qc_t(data.hctx, rq);
1565
1566         plug = current->plug;
1567         if (unlikely(is_flush_fua)) {
1568                 blk_mq_put_ctx(data.ctx);
1569                 blk_mq_bio_to_request(rq, bio);
1570                 if (q->elevator) {
1571                         blk_mq_sched_insert_request(rq, false, true, true,
1572                                         true);
1573                 } else {
1574                         blk_insert_flush(rq);
1575                         blk_mq_run_hw_queue(data.hctx, true);
1576                 }
1577         } else if (plug && q->nr_hw_queues == 1) {
1578                 struct request *last = NULL;
1579
1580                 blk_mq_put_ctx(data.ctx);
1581                 blk_mq_bio_to_request(rq, bio);
1582
1583                 /*
1584                  * @request_count may become stale because of schedule
1585                  * out, so check the list again.
1586                  */
1587                 if (list_empty(&plug->mq_list))
1588                         request_count = 0;
1589                 else if (blk_queue_nomerges(q))
1590                         request_count = blk_plug_queued_count(q);
1591
1592                 if (!request_count)
1593                         trace_block_plug(q);
1594                 else
1595                         last = list_entry_rq(plug->mq_list.prev);
1596
1597                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1598                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1599                         blk_flush_plug_list(plug, false);
1600                         trace_block_plug(q);
1601                 }
1602
1603                 list_add_tail(&rq->queuelist, &plug->mq_list);
1604         } else if (plug && !blk_queue_nomerges(q)) {
1605                 blk_mq_bio_to_request(rq, bio);
1606
1607                 /*
1608                  * We do limited plugging. If the bio can be merged, do that.
1609                  * Otherwise the existing request in the plug list will be
1610                  * issued. So the plug list will have one request at most
1611                  * The plug list might get flushed before this. If that happens,
1612                  * the plug list is empty, and same_queue_rq is invalid.
1613                  */
1614                 if (list_empty(&plug->mq_list))
1615                         same_queue_rq = NULL;
1616                 if (same_queue_rq)
1617                         list_del_init(&same_queue_rq->queuelist);
1618                 list_add_tail(&rq->queuelist, &plug->mq_list);
1619
1620                 blk_mq_put_ctx(data.ctx);
1621
1622                 if (same_queue_rq)
1623                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1624                                         &cookie);
1625         } else if (q->nr_hw_queues > 1 && is_sync) {
1626                 blk_mq_put_ctx(data.ctx);
1627                 blk_mq_bio_to_request(rq, bio);
1628                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1629         } else if (q->elevator) {
1630                 blk_mq_put_ctx(data.ctx);
1631                 blk_mq_bio_to_request(rq, bio);
1632                 blk_mq_sched_insert_request(rq, false, true, true, true);
1633         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1634                 blk_mq_put_ctx(data.ctx);
1635                 blk_mq_run_hw_queue(data.hctx, true);
1636         } else
1637                 blk_mq_put_ctx(data.ctx);
1638
1639         return cookie;
1640 }
1641
1642 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1643                      unsigned int hctx_idx)
1644 {
1645         struct page *page;
1646
1647         if (tags->rqs && set->ops->exit_request) {
1648                 int i;
1649
1650                 for (i = 0; i < tags->nr_tags; i++) {
1651                         struct request *rq = tags->static_rqs[i];
1652
1653                         if (!rq)
1654                                 continue;
1655                         set->ops->exit_request(set, rq, hctx_idx);
1656                         tags->static_rqs[i] = NULL;
1657                 }
1658         }
1659
1660         while (!list_empty(&tags->page_list)) {
1661                 page = list_first_entry(&tags->page_list, struct page, lru);
1662                 list_del_init(&page->lru);
1663                 /*
1664                  * Remove kmemleak object previously allocated in
1665                  * blk_mq_init_rq_map().
1666                  */
1667                 kmemleak_free(page_address(page));
1668                 __free_pages(page, page->private);
1669         }
1670 }
1671
1672 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1673 {
1674         kfree(tags->rqs);
1675         tags->rqs = NULL;
1676         kfree(tags->static_rqs);
1677         tags->static_rqs = NULL;
1678
1679         blk_mq_free_tags(tags);
1680 }
1681
1682 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1683                                         unsigned int hctx_idx,
1684                                         unsigned int nr_tags,
1685                                         unsigned int reserved_tags)
1686 {
1687         struct blk_mq_tags *tags;
1688         int node;
1689
1690         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1691         if (node == NUMA_NO_NODE)
1692                 node = set->numa_node;
1693
1694         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1695                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1696         if (!tags)
1697                 return NULL;
1698
1699         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1700                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1701                                  node);
1702         if (!tags->rqs) {
1703                 blk_mq_free_tags(tags);
1704                 return NULL;
1705         }
1706
1707         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1708                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1709                                  node);
1710         if (!tags->static_rqs) {
1711                 kfree(tags->rqs);
1712                 blk_mq_free_tags(tags);
1713                 return NULL;
1714         }
1715
1716         return tags;
1717 }
1718
1719 static size_t order_to_size(unsigned int order)
1720 {
1721         return (size_t)PAGE_SIZE << order;
1722 }
1723
1724 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1725                      unsigned int hctx_idx, unsigned int depth)
1726 {
1727         unsigned int i, j, entries_per_page, max_order = 4;
1728         size_t rq_size, left;
1729         int node;
1730
1731         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1732         if (node == NUMA_NO_NODE)
1733                 node = set->numa_node;
1734
1735         INIT_LIST_HEAD(&tags->page_list);
1736
1737         /*
1738          * rq_size is the size of the request plus driver payload, rounded
1739          * to the cacheline size
1740          */
1741         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1742                                 cache_line_size());
1743         left = rq_size * depth;
1744
1745         for (i = 0; i < depth; ) {
1746                 int this_order = max_order;
1747                 struct page *page;
1748                 int to_do;
1749                 void *p;
1750
1751                 while (this_order && left < order_to_size(this_order - 1))
1752                         this_order--;
1753
1754                 do {
1755                         page = alloc_pages_node(node,
1756                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1757                                 this_order);
1758                         if (page)
1759                                 break;
1760                         if (!this_order--)
1761                                 break;
1762                         if (order_to_size(this_order) < rq_size)
1763                                 break;
1764                 } while (1);
1765
1766                 if (!page)
1767                         goto fail;
1768
1769                 page->private = this_order;
1770                 list_add_tail(&page->lru, &tags->page_list);
1771
1772                 p = page_address(page);
1773                 /*
1774                  * Allow kmemleak to scan these pages as they contain pointers
1775                  * to additional allocations like via ops->init_request().
1776                  */
1777                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1778                 entries_per_page = order_to_size(this_order) / rq_size;
1779                 to_do = min(entries_per_page, depth - i);
1780                 left -= to_do * rq_size;
1781                 for (j = 0; j < to_do; j++) {
1782                         struct request *rq = p;
1783
1784                         tags->static_rqs[i] = rq;
1785                         if (set->ops->init_request) {
1786                                 if (set->ops->init_request(set, rq, hctx_idx,
1787                                                 node)) {
1788                                         tags->static_rqs[i] = NULL;
1789                                         goto fail;
1790                                 }
1791                         }
1792
1793                         p += rq_size;
1794                         i++;
1795                 }
1796         }
1797         return 0;
1798
1799 fail:
1800         blk_mq_free_rqs(set, tags, hctx_idx);
1801         return -ENOMEM;
1802 }
1803
1804 /*
1805  * 'cpu' is going away. splice any existing rq_list entries from this
1806  * software queue to the hw queue dispatch list, and ensure that it
1807  * gets run.
1808  */
1809 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1810 {
1811         struct blk_mq_hw_ctx *hctx;
1812         struct blk_mq_ctx *ctx;
1813         LIST_HEAD(tmp);
1814
1815         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1816         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1817
1818         spin_lock(&ctx->lock);
1819         if (!list_empty(&ctx->rq_list)) {
1820                 list_splice_init(&ctx->rq_list, &tmp);
1821                 blk_mq_hctx_clear_pending(hctx, ctx);
1822         }
1823         spin_unlock(&ctx->lock);
1824
1825         if (list_empty(&tmp))
1826                 return 0;
1827
1828         spin_lock(&hctx->lock);
1829         list_splice_tail_init(&tmp, &hctx->dispatch);
1830         spin_unlock(&hctx->lock);
1831
1832         blk_mq_run_hw_queue(hctx, true);
1833         return 0;
1834 }
1835
1836 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1837 {
1838         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1839                                             &hctx->cpuhp_dead);
1840 }
1841
1842 /* hctx->ctxs will be freed in queue's release handler */
1843 static void blk_mq_exit_hctx(struct request_queue *q,
1844                 struct blk_mq_tag_set *set,
1845                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1846 {
1847         blk_mq_debugfs_unregister_hctx(hctx);
1848
1849         blk_mq_tag_idle(hctx);
1850
1851         if (set->ops->exit_request)
1852                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1853
1854         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1855
1856         if (set->ops->exit_hctx)
1857                 set->ops->exit_hctx(hctx, hctx_idx);
1858
1859         if (hctx->flags & BLK_MQ_F_BLOCKING)
1860                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1861
1862         blk_mq_remove_cpuhp(hctx);
1863         blk_free_flush_queue(hctx->fq);
1864         sbitmap_free(&hctx->ctx_map);
1865 }
1866
1867 static void blk_mq_exit_hw_queues(struct request_queue *q,
1868                 struct blk_mq_tag_set *set, int nr_queue)
1869 {
1870         struct blk_mq_hw_ctx *hctx;
1871         unsigned int i;
1872
1873         queue_for_each_hw_ctx(q, hctx, i) {
1874                 if (i == nr_queue)
1875                         break;
1876                 blk_mq_exit_hctx(q, set, hctx, i);
1877         }
1878 }
1879
1880 static int blk_mq_init_hctx(struct request_queue *q,
1881                 struct blk_mq_tag_set *set,
1882                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1883 {
1884         int node;
1885
1886         node = hctx->numa_node;
1887         if (node == NUMA_NO_NODE)
1888                 node = hctx->numa_node = set->numa_node;
1889
1890         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1891         spin_lock_init(&hctx->lock);
1892         INIT_LIST_HEAD(&hctx->dispatch);
1893         hctx->queue = q;
1894         hctx->queue_num = hctx_idx;
1895         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1896
1897         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1898
1899         hctx->tags = set->tags[hctx_idx];
1900
1901         /*
1902          * Allocate space for all possible cpus to avoid allocation at
1903          * runtime
1904          */
1905         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1906                                         GFP_KERNEL, node);
1907         if (!hctx->ctxs)
1908                 goto unregister_cpu_notifier;
1909
1910         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1911                               node))
1912                 goto free_ctxs;
1913
1914         hctx->nr_ctx = 0;
1915
1916         if (set->ops->init_hctx &&
1917             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1918                 goto free_bitmap;
1919
1920         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1921                 goto exit_hctx;
1922
1923         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1924         if (!hctx->fq)
1925                 goto sched_exit_hctx;
1926
1927         if (set->ops->init_request &&
1928             set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
1929                                    node))
1930                 goto free_fq;
1931
1932         if (hctx->flags & BLK_MQ_F_BLOCKING)
1933                 init_srcu_struct(&hctx->queue_rq_srcu);
1934
1935         blk_mq_debugfs_register_hctx(q, hctx);
1936
1937         return 0;
1938
1939  free_fq:
1940         kfree(hctx->fq);
1941  sched_exit_hctx:
1942         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1943  exit_hctx:
1944         if (set->ops->exit_hctx)
1945                 set->ops->exit_hctx(hctx, hctx_idx);
1946  free_bitmap:
1947         sbitmap_free(&hctx->ctx_map);
1948  free_ctxs:
1949         kfree(hctx->ctxs);
1950  unregister_cpu_notifier:
1951         blk_mq_remove_cpuhp(hctx);
1952         return -1;
1953 }
1954
1955 static void blk_mq_init_cpu_queues(struct request_queue *q,
1956                                    unsigned int nr_hw_queues)
1957 {
1958         unsigned int i;
1959
1960         for_each_possible_cpu(i) {
1961                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1962                 struct blk_mq_hw_ctx *hctx;
1963
1964                 __ctx->cpu = i;
1965                 spin_lock_init(&__ctx->lock);
1966                 INIT_LIST_HEAD(&__ctx->rq_list);
1967                 __ctx->queue = q;
1968
1969                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1970                 if (!cpu_online(i))
1971                         continue;
1972
1973                 hctx = blk_mq_map_queue(q, i);
1974
1975                 /*
1976                  * Set local node, IFF we have more than one hw queue. If
1977                  * not, we remain on the home node of the device
1978                  */
1979                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1980                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1981         }
1982 }
1983
1984 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1985 {
1986         int ret = 0;
1987
1988         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1989                                         set->queue_depth, set->reserved_tags);
1990         if (!set->tags[hctx_idx])
1991                 return false;
1992
1993         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1994                                 set->queue_depth);
1995         if (!ret)
1996                 return true;
1997
1998         blk_mq_free_rq_map(set->tags[hctx_idx]);
1999         set->tags[hctx_idx] = NULL;
2000         return false;
2001 }
2002
2003 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2004                                          unsigned int hctx_idx)
2005 {
2006         if (set->tags[hctx_idx]) {
2007                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2008                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2009                 set->tags[hctx_idx] = NULL;
2010         }
2011 }
2012
2013 static void blk_mq_map_swqueue(struct request_queue *q,
2014                                const struct cpumask *online_mask)
2015 {
2016         unsigned int i, hctx_idx;
2017         struct blk_mq_hw_ctx *hctx;
2018         struct blk_mq_ctx *ctx;
2019         struct blk_mq_tag_set *set = q->tag_set;
2020
2021         /*
2022          * Avoid others reading imcomplete hctx->cpumask through sysfs
2023          */
2024         mutex_lock(&q->sysfs_lock);
2025
2026         queue_for_each_hw_ctx(q, hctx, i) {
2027                 cpumask_clear(hctx->cpumask);
2028                 hctx->nr_ctx = 0;
2029         }
2030
2031         /*
2032          * Map software to hardware queues
2033          */
2034         for_each_possible_cpu(i) {
2035                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2036                 if (!cpumask_test_cpu(i, online_mask))
2037                         continue;
2038
2039                 hctx_idx = q->mq_map[i];
2040                 /* unmapped hw queue can be remapped after CPU topo changed */
2041                 if (!set->tags[hctx_idx] &&
2042                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2043                         /*
2044                          * If tags initialization fail for some hctx,
2045                          * that hctx won't be brought online.  In this
2046                          * case, remap the current ctx to hctx[0] which
2047                          * is guaranteed to always have tags allocated
2048                          */
2049                         q->mq_map[i] = 0;
2050                 }
2051
2052                 ctx = per_cpu_ptr(q->queue_ctx, i);
2053                 hctx = blk_mq_map_queue(q, i);
2054
2055                 cpumask_set_cpu(i, hctx->cpumask);
2056                 ctx->index_hw = hctx->nr_ctx;
2057                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2058         }
2059
2060         mutex_unlock(&q->sysfs_lock);
2061
2062         queue_for_each_hw_ctx(q, hctx, i) {
2063                 /*
2064                  * If no software queues are mapped to this hardware queue,
2065                  * disable it and free the request entries.
2066                  */
2067                 if (!hctx->nr_ctx) {
2068                         /* Never unmap queue 0.  We need it as a
2069                          * fallback in case of a new remap fails
2070                          * allocation
2071                          */
2072                         if (i && set->tags[i])
2073                                 blk_mq_free_map_and_requests(set, i);
2074
2075                         hctx->tags = NULL;
2076                         continue;
2077                 }
2078
2079                 hctx->tags = set->tags[i];
2080                 WARN_ON(!hctx->tags);
2081
2082                 /*
2083                  * Set the map size to the number of mapped software queues.
2084                  * This is more accurate and more efficient than looping
2085                  * over all possibly mapped software queues.
2086                  */
2087                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2088
2089                 /*
2090                  * Initialize batch roundrobin counts
2091                  */
2092                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2093                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2094         }
2095 }
2096
2097 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2098 {
2099         struct blk_mq_hw_ctx *hctx;
2100         int i;
2101
2102         queue_for_each_hw_ctx(q, hctx, i) {
2103                 if (shared)
2104                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2105                 else
2106                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2107         }
2108 }
2109
2110 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2111 {
2112         struct request_queue *q;
2113
2114         lockdep_assert_held(&set->tag_list_lock);
2115
2116         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2117                 blk_mq_freeze_queue(q);
2118                 queue_set_hctx_shared(q, shared);
2119                 blk_mq_unfreeze_queue(q);
2120         }
2121 }
2122
2123 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2124 {
2125         struct blk_mq_tag_set *set = q->tag_set;
2126
2127         mutex_lock(&set->tag_list_lock);
2128         list_del_rcu(&q->tag_set_list);
2129         INIT_LIST_HEAD(&q->tag_set_list);
2130         if (list_is_singular(&set->tag_list)) {
2131                 /* just transitioned to unshared */
2132                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2133                 /* update existing queue */
2134                 blk_mq_update_tag_set_depth(set, false);
2135         }
2136         mutex_unlock(&set->tag_list_lock);
2137
2138         synchronize_rcu();
2139 }
2140
2141 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2142                                      struct request_queue *q)
2143 {
2144         q->tag_set = set;
2145
2146         mutex_lock(&set->tag_list_lock);
2147
2148         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2149         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2150                 set->flags |= BLK_MQ_F_TAG_SHARED;
2151                 /* update existing queue */
2152                 blk_mq_update_tag_set_depth(set, true);
2153         }
2154         if (set->flags & BLK_MQ_F_TAG_SHARED)
2155                 queue_set_hctx_shared(q, true);
2156         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2157
2158         mutex_unlock(&set->tag_list_lock);
2159 }
2160
2161 /*
2162  * It is the actual release handler for mq, but we do it from
2163  * request queue's release handler for avoiding use-after-free
2164  * and headache because q->mq_kobj shouldn't have been introduced,
2165  * but we can't group ctx/kctx kobj without it.
2166  */
2167 void blk_mq_release(struct request_queue *q)
2168 {
2169         struct blk_mq_hw_ctx *hctx;
2170         unsigned int i;
2171
2172         /* hctx kobj stays in hctx */
2173         queue_for_each_hw_ctx(q, hctx, i) {
2174                 if (!hctx)
2175                         continue;
2176                 kobject_put(&hctx->kobj);
2177         }
2178
2179         q->mq_map = NULL;
2180
2181         kfree(q->queue_hw_ctx);
2182
2183         /*
2184          * release .mq_kobj and sw queue's kobject now because
2185          * both share lifetime with request queue.
2186          */
2187         blk_mq_sysfs_deinit(q);
2188
2189         free_percpu(q->queue_ctx);
2190 }
2191
2192 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2193 {
2194         struct request_queue *uninit_q, *q;
2195
2196         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2197         if (!uninit_q)
2198                 return ERR_PTR(-ENOMEM);
2199
2200         q = blk_mq_init_allocated_queue(set, uninit_q);
2201         if (IS_ERR(q))
2202                 blk_cleanup_queue(uninit_q);
2203
2204         return q;
2205 }
2206 EXPORT_SYMBOL(blk_mq_init_queue);
2207
2208 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2209                                                 struct request_queue *q)
2210 {
2211         int i, j;
2212         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2213
2214         blk_mq_sysfs_unregister(q);
2215         for (i = 0; i < set->nr_hw_queues; i++) {
2216                 int node;
2217
2218                 if (hctxs[i])
2219                         continue;
2220
2221                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2222                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2223                                         GFP_KERNEL, node);
2224                 if (!hctxs[i])
2225                         break;
2226
2227                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2228                                                 node)) {
2229                         kfree(hctxs[i]);
2230                         hctxs[i] = NULL;
2231                         break;
2232                 }
2233
2234                 atomic_set(&hctxs[i]->nr_active, 0);
2235                 hctxs[i]->numa_node = node;
2236                 hctxs[i]->queue_num = i;
2237
2238                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2239                         free_cpumask_var(hctxs[i]->cpumask);
2240                         kfree(hctxs[i]);
2241                         hctxs[i] = NULL;
2242                         break;
2243                 }
2244                 blk_mq_hctx_kobj_init(hctxs[i]);
2245         }
2246         for (j = i; j < q->nr_hw_queues; j++) {
2247                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2248
2249                 if (hctx) {
2250                         if (hctx->tags)
2251                                 blk_mq_free_map_and_requests(set, j);
2252                         blk_mq_exit_hctx(q, set, hctx, j);
2253                         kobject_put(&hctx->kobj);
2254                         hctxs[j] = NULL;
2255
2256                 }
2257         }
2258         q->nr_hw_queues = i;
2259         blk_mq_sysfs_register(q);
2260 }
2261
2262 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2263                                                   struct request_queue *q)
2264 {
2265         /* mark the queue as mq asap */
2266         q->mq_ops = set->ops;
2267
2268         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2269                                              blk_mq_poll_stats_bkt,
2270                                              BLK_MQ_POLL_STATS_BKTS, q);
2271         if (!q->poll_cb)
2272                 goto err_exit;
2273
2274         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2275         if (!q->queue_ctx)
2276                 goto err_exit;
2277
2278         /* init q->mq_kobj and sw queues' kobjects */
2279         blk_mq_sysfs_init(q);
2280
2281         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2282                                                 GFP_KERNEL, set->numa_node);
2283         if (!q->queue_hw_ctx)
2284                 goto err_percpu;
2285
2286         q->mq_map = set->mq_map;
2287
2288         blk_mq_realloc_hw_ctxs(set, q);
2289         if (!q->nr_hw_queues)
2290                 goto err_hctxs;
2291
2292         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2293         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2294
2295         q->nr_queues = nr_cpu_ids;
2296
2297         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2298
2299         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2300                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2301
2302         q->sg_reserved_size = INT_MAX;
2303
2304         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2305         INIT_LIST_HEAD(&q->requeue_list);
2306         spin_lock_init(&q->requeue_lock);
2307
2308         blk_queue_make_request(q, blk_mq_make_request);
2309
2310         /*
2311          * Do this after blk_queue_make_request() overrides it...
2312          */
2313         q->nr_requests = set->queue_depth;
2314
2315         /*
2316          * Default to classic polling
2317          */
2318         q->poll_nsec = -1;
2319
2320         if (set->ops->complete)
2321                 blk_queue_softirq_done(q, set->ops->complete);
2322
2323         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2324
2325         get_online_cpus();
2326         mutex_lock(&all_q_mutex);
2327
2328         list_add_tail(&q->all_q_node, &all_q_list);
2329         blk_mq_add_queue_tag_set(set, q);
2330         blk_mq_map_swqueue(q, cpu_online_mask);
2331
2332         mutex_unlock(&all_q_mutex);
2333         put_online_cpus();
2334
2335         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2336                 int ret;
2337
2338                 ret = blk_mq_sched_init(q);
2339                 if (ret)
2340                         return ERR_PTR(ret);
2341         }
2342
2343         return q;
2344
2345 err_hctxs:
2346         kfree(q->queue_hw_ctx);
2347 err_percpu:
2348         free_percpu(q->queue_ctx);
2349 err_exit:
2350         q->mq_ops = NULL;
2351         return ERR_PTR(-ENOMEM);
2352 }
2353 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2354
2355 void blk_mq_free_queue(struct request_queue *q)
2356 {
2357         struct blk_mq_tag_set   *set = q->tag_set;
2358
2359         mutex_lock(&all_q_mutex);
2360         list_del_init(&q->all_q_node);
2361         mutex_unlock(&all_q_mutex);
2362
2363         blk_mq_del_queue_tag_set(q);
2364
2365         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2366 }
2367
2368 /* Basically redo blk_mq_init_queue with queue frozen */
2369 static void blk_mq_queue_reinit(struct request_queue *q,
2370                                 const struct cpumask *online_mask)
2371 {
2372         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2373
2374         blk_mq_debugfs_unregister_hctxs(q);
2375         blk_mq_sysfs_unregister(q);
2376
2377         /*
2378          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2379          * we should change hctx numa_node according to new topology (this
2380          * involves free and re-allocate memory, worthy doing?)
2381          */
2382
2383         blk_mq_map_swqueue(q, online_mask);
2384
2385         blk_mq_sysfs_register(q);
2386         blk_mq_debugfs_register_hctxs(q);
2387 }
2388
2389 /*
2390  * New online cpumask which is going to be set in this hotplug event.
2391  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2392  * one-by-one and dynamically allocating this could result in a failure.
2393  */
2394 static struct cpumask cpuhp_online_new;
2395
2396 static void blk_mq_queue_reinit_work(void)
2397 {
2398         struct request_queue *q;
2399
2400         mutex_lock(&all_q_mutex);
2401         /*
2402          * We need to freeze and reinit all existing queues.  Freezing
2403          * involves synchronous wait for an RCU grace period and doing it
2404          * one by one may take a long time.  Start freezing all queues in
2405          * one swoop and then wait for the completions so that freezing can
2406          * take place in parallel.
2407          */
2408         list_for_each_entry(q, &all_q_list, all_q_node)
2409                 blk_freeze_queue_start(q);
2410         list_for_each_entry(q, &all_q_list, all_q_node)
2411                 blk_mq_freeze_queue_wait(q);
2412
2413         list_for_each_entry(q, &all_q_list, all_q_node)
2414                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2415
2416         list_for_each_entry(q, &all_q_list, all_q_node)
2417                 blk_mq_unfreeze_queue(q);
2418
2419         mutex_unlock(&all_q_mutex);
2420 }
2421
2422 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2423 {
2424         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2425         blk_mq_queue_reinit_work();
2426         return 0;
2427 }
2428
2429 /*
2430  * Before hotadded cpu starts handling requests, new mappings must be
2431  * established.  Otherwise, these requests in hw queue might never be
2432  * dispatched.
2433  *
2434  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2435  * for CPU0, and ctx1 for CPU1).
2436  *
2437  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2438  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2439  *
2440  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2441  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2442  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2443  * ignored.
2444  */
2445 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2446 {
2447         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2448         cpumask_set_cpu(cpu, &cpuhp_online_new);
2449         blk_mq_queue_reinit_work();
2450         return 0;
2451 }
2452
2453 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2454 {
2455         int i;
2456
2457         for (i = 0; i < set->nr_hw_queues; i++)
2458                 if (!__blk_mq_alloc_rq_map(set, i))
2459                         goto out_unwind;
2460
2461         return 0;
2462
2463 out_unwind:
2464         while (--i >= 0)
2465                 blk_mq_free_rq_map(set->tags[i]);
2466
2467         return -ENOMEM;
2468 }
2469
2470 /*
2471  * Allocate the request maps associated with this tag_set. Note that this
2472  * may reduce the depth asked for, if memory is tight. set->queue_depth
2473  * will be updated to reflect the allocated depth.
2474  */
2475 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2476 {
2477         unsigned int depth;
2478         int err;
2479
2480         depth = set->queue_depth;
2481         do {
2482                 err = __blk_mq_alloc_rq_maps(set);
2483                 if (!err)
2484                         break;
2485
2486                 set->queue_depth >>= 1;
2487                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2488                         err = -ENOMEM;
2489                         break;
2490                 }
2491         } while (set->queue_depth);
2492
2493         if (!set->queue_depth || err) {
2494                 pr_err("blk-mq: failed to allocate request map\n");
2495                 return -ENOMEM;
2496         }
2497
2498         if (depth != set->queue_depth)
2499                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2500                                                 depth, set->queue_depth);
2501
2502         return 0;
2503 }
2504
2505 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2506 {
2507         if (set->ops->map_queues)
2508                 return set->ops->map_queues(set);
2509         else
2510                 return blk_mq_map_queues(set);
2511 }
2512
2513 /*
2514  * Alloc a tag set to be associated with one or more request queues.
2515  * May fail with EINVAL for various error conditions. May adjust the
2516  * requested depth down, if if it too large. In that case, the set
2517  * value will be stored in set->queue_depth.
2518  */
2519 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2520 {
2521         int ret;
2522
2523         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2524
2525         if (!set->nr_hw_queues)
2526                 return -EINVAL;
2527         if (!set->queue_depth)
2528                 return -EINVAL;
2529         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2530                 return -EINVAL;
2531
2532         if (!set->ops->queue_rq)
2533                 return -EINVAL;
2534
2535         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2536                 pr_info("blk-mq: reduced tag depth to %u\n",
2537                         BLK_MQ_MAX_DEPTH);
2538                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2539         }
2540
2541         /*
2542          * If a crashdump is active, then we are potentially in a very
2543          * memory constrained environment. Limit us to 1 queue and
2544          * 64 tags to prevent using too much memory.
2545          */
2546         if (is_kdump_kernel()) {
2547                 set->nr_hw_queues = 1;
2548                 set->queue_depth = min(64U, set->queue_depth);
2549         }
2550         /*
2551          * There is no use for more h/w queues than cpus.
2552          */
2553         if (set->nr_hw_queues > nr_cpu_ids)
2554                 set->nr_hw_queues = nr_cpu_ids;
2555
2556         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2557                                  GFP_KERNEL, set->numa_node);
2558         if (!set->tags)
2559                 return -ENOMEM;
2560
2561         ret = -ENOMEM;
2562         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2563                         GFP_KERNEL, set->numa_node);
2564         if (!set->mq_map)
2565                 goto out_free_tags;
2566
2567         ret = blk_mq_update_queue_map(set);
2568         if (ret)
2569                 goto out_free_mq_map;
2570
2571         ret = blk_mq_alloc_rq_maps(set);
2572         if (ret)
2573                 goto out_free_mq_map;
2574
2575         mutex_init(&set->tag_list_lock);
2576         INIT_LIST_HEAD(&set->tag_list);
2577
2578         return 0;
2579
2580 out_free_mq_map:
2581         kfree(set->mq_map);
2582         set->mq_map = NULL;
2583 out_free_tags:
2584         kfree(set->tags);
2585         set->tags = NULL;
2586         return ret;
2587 }
2588 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2589
2590 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2591 {
2592         int i;
2593
2594         for (i = 0; i < nr_cpu_ids; i++)
2595                 blk_mq_free_map_and_requests(set, i);
2596
2597         kfree(set->mq_map);
2598         set->mq_map = NULL;
2599
2600         kfree(set->tags);
2601         set->tags = NULL;
2602 }
2603 EXPORT_SYMBOL(blk_mq_free_tag_set);
2604
2605 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2606 {
2607         struct blk_mq_tag_set *set = q->tag_set;
2608         struct blk_mq_hw_ctx *hctx;
2609         int i, ret;
2610
2611         if (!set)
2612                 return -EINVAL;
2613
2614         blk_mq_freeze_queue(q);
2615
2616         ret = 0;
2617         queue_for_each_hw_ctx(q, hctx, i) {
2618                 if (!hctx->tags)
2619                         continue;
2620                 /*
2621                  * If we're using an MQ scheduler, just update the scheduler
2622                  * queue depth. This is similar to what the old code would do.
2623                  */
2624                 if (!hctx->sched_tags) {
2625                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2626                                                         min(nr, set->queue_depth),
2627                                                         false);
2628                 } else {
2629                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2630                                                         nr, true);
2631                 }
2632                 if (ret)
2633                         break;
2634         }
2635
2636         if (!ret)
2637                 q->nr_requests = nr;
2638
2639         blk_mq_unfreeze_queue(q);
2640
2641         return ret;
2642 }
2643
2644 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2645 {
2646         struct request_queue *q;
2647
2648         lockdep_assert_held(&set->tag_list_lock);
2649
2650         if (nr_hw_queues > nr_cpu_ids)
2651                 nr_hw_queues = nr_cpu_ids;
2652         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2653                 return;
2654
2655         list_for_each_entry(q, &set->tag_list, tag_set_list)
2656                 blk_mq_freeze_queue(q);
2657
2658         set->nr_hw_queues = nr_hw_queues;
2659         blk_mq_update_queue_map(set);
2660         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2661                 blk_mq_realloc_hw_ctxs(set, q);
2662                 blk_mq_queue_reinit(q, cpu_online_mask);
2663         }
2664
2665         list_for_each_entry(q, &set->tag_list, tag_set_list)
2666                 blk_mq_unfreeze_queue(q);
2667 }
2668 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2669
2670 /* Enable polling stats and return whether they were already enabled. */
2671 static bool blk_poll_stats_enable(struct request_queue *q)
2672 {
2673         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2674             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2675                 return true;
2676         blk_stat_add_callback(q, q->poll_cb);
2677         return false;
2678 }
2679
2680 static void blk_mq_poll_stats_start(struct request_queue *q)
2681 {
2682         /*
2683          * We don't arm the callback if polling stats are not enabled or the
2684          * callback is already active.
2685          */
2686         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2687             blk_stat_is_active(q->poll_cb))
2688                 return;
2689
2690         blk_stat_activate_msecs(q->poll_cb, 100);
2691 }
2692
2693 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2694 {
2695         struct request_queue *q = cb->data;
2696         int bucket;
2697
2698         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2699                 if (cb->stat[bucket].nr_samples)
2700                         q->poll_stat[bucket] = cb->stat[bucket];
2701         }
2702 }
2703
2704 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2705                                        struct blk_mq_hw_ctx *hctx,
2706                                        struct request *rq)
2707 {
2708         unsigned long ret = 0;
2709         int bucket;
2710
2711         /*
2712          * If stats collection isn't on, don't sleep but turn it on for
2713          * future users
2714          */
2715         if (!blk_poll_stats_enable(q))
2716                 return 0;
2717
2718         /*
2719          * As an optimistic guess, use half of the mean service time
2720          * for this type of request. We can (and should) make this smarter.
2721          * For instance, if the completion latencies are tight, we can
2722          * get closer than just half the mean. This is especially
2723          * important on devices where the completion latencies are longer
2724          * than ~10 usec. We do use the stats for the relevant IO size
2725          * if available which does lead to better estimates.
2726          */
2727         bucket = blk_mq_poll_stats_bkt(rq);
2728         if (bucket < 0)
2729                 return ret;
2730
2731         if (q->poll_stat[bucket].nr_samples)
2732                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2733
2734         return ret;
2735 }
2736
2737 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2738                                      struct blk_mq_hw_ctx *hctx,
2739                                      struct request *rq)
2740 {
2741         struct hrtimer_sleeper hs;
2742         enum hrtimer_mode mode;
2743         unsigned int nsecs;
2744         ktime_t kt;
2745
2746         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2747                 return false;
2748
2749         /*
2750          * poll_nsec can be:
2751          *
2752          * -1:  don't ever hybrid sleep
2753          *  0:  use half of prev avg
2754          * >0:  use this specific value
2755          */
2756         if (q->poll_nsec == -1)
2757                 return false;
2758         else if (q->poll_nsec > 0)
2759                 nsecs = q->poll_nsec;
2760         else
2761                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2762
2763         if (!nsecs)
2764                 return false;
2765
2766         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2767
2768         /*
2769          * This will be replaced with the stats tracking code, using
2770          * 'avg_completion_time / 2' as the pre-sleep target.
2771          */
2772         kt = nsecs;
2773
2774         mode = HRTIMER_MODE_REL;
2775         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2776         hrtimer_set_expires(&hs.timer, kt);
2777
2778         hrtimer_init_sleeper(&hs, current);
2779         do {
2780                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2781                         break;
2782                 set_current_state(TASK_UNINTERRUPTIBLE);
2783                 hrtimer_start_expires(&hs.timer, mode);
2784                 if (hs.task)
2785                         io_schedule();
2786                 hrtimer_cancel(&hs.timer);
2787                 mode = HRTIMER_MODE_ABS;
2788         } while (hs.task && !signal_pending(current));
2789
2790         __set_current_state(TASK_RUNNING);
2791         destroy_hrtimer_on_stack(&hs.timer);
2792         return true;
2793 }
2794
2795 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2796 {
2797         struct request_queue *q = hctx->queue;
2798         long state;
2799
2800         /*
2801          * If we sleep, have the caller restart the poll loop to reset
2802          * the state. Like for the other success return cases, the
2803          * caller is responsible for checking if the IO completed. If
2804          * the IO isn't complete, we'll get called again and will go
2805          * straight to the busy poll loop.
2806          */
2807         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2808                 return true;
2809
2810         hctx->poll_considered++;
2811
2812         state = current->state;
2813         while (!need_resched()) {
2814                 int ret;
2815
2816                 hctx->poll_invoked++;
2817
2818                 ret = q->mq_ops->poll(hctx, rq->tag);
2819                 if (ret > 0) {
2820                         hctx->poll_success++;
2821                         set_current_state(TASK_RUNNING);
2822                         return true;
2823                 }
2824
2825                 if (signal_pending_state(state, current))
2826                         set_current_state(TASK_RUNNING);
2827
2828                 if (current->state == TASK_RUNNING)
2829                         return true;
2830                 if (ret < 0)
2831                         break;
2832                 cpu_relax();
2833         }
2834
2835         return false;
2836 }
2837
2838 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2839 {
2840         struct blk_mq_hw_ctx *hctx;
2841         struct blk_plug *plug;
2842         struct request *rq;
2843
2844         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2845             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2846                 return false;
2847
2848         plug = current->plug;
2849         if (plug)
2850                 blk_flush_plug_list(plug, false);
2851
2852         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2853         if (!blk_qc_t_is_internal(cookie))
2854                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2855         else {
2856                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2857                 /*
2858                  * With scheduling, if the request has completed, we'll
2859                  * get a NULL return here, as we clear the sched tag when
2860                  * that happens. The request still remains valid, like always,
2861                  * so we should be safe with just the NULL check.
2862                  */
2863                 if (!rq)
2864                         return false;
2865         }
2866
2867         return __blk_mq_poll(hctx, rq);
2868 }
2869 EXPORT_SYMBOL_GPL(blk_mq_poll);
2870
2871 void blk_mq_disable_hotplug(void)
2872 {
2873         mutex_lock(&all_q_mutex);
2874 }
2875
2876 void blk_mq_enable_hotplug(void)
2877 {
2878         mutex_unlock(&all_q_mutex);
2879 }
2880
2881 static int __init blk_mq_init(void)
2882 {
2883         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2884                                 blk_mq_hctx_notify_dead);
2885
2886         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2887                                   blk_mq_queue_reinit_prepare,
2888                                   blk_mq_queue_reinit_dead);
2889         return 0;
2890 }
2891 subsys_initcall(blk_mq_init);