]> git.karo-electronics.de Git - linux-beck.git/blob - block/blk-mq.c
block: add queue flag for disabling SG merging
[linux-beck.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
37                                            unsigned int cpu)
38 {
39         return per_cpu_ptr(q->queue_ctx, cpu);
40 }
41
42 /*
43  * This assumes per-cpu software queueing queues. They could be per-node
44  * as well, for instance. For now this is hardcoded as-is. Note that we don't
45  * care about preemption, since we know the ctx's are persistent. This does
46  * mean that we can't rely on ctx always matching the currently running CPU.
47  */
48 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
49 {
50         return __blk_mq_get_ctx(q, get_cpu());
51 }
52
53 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
54 {
55         put_cpu();
56 }
57
58 /*
59  * Check if any of the ctx's have pending work in this hardware queue
60  */
61 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
62 {
63         unsigned int i;
64
65         for (i = 0; i < hctx->ctx_map.map_size; i++)
66                 if (hctx->ctx_map.map[i].word)
67                         return true;
68
69         return false;
70 }
71
72 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
73                                               struct blk_mq_ctx *ctx)
74 {
75         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
76 }
77
78 #define CTX_TO_BIT(hctx, ctx)   \
79         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
80
81 /*
82  * Mark this ctx as having pending work in this hardware queue
83  */
84 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
85                                      struct blk_mq_ctx *ctx)
86 {
87         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
88
89         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
90                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
91 }
92
93 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
94                                       struct blk_mq_ctx *ctx)
95 {
96         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
97
98         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
99 }
100
101 static int blk_mq_queue_enter(struct request_queue *q)
102 {
103         int ret;
104
105         __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
106         smp_wmb();
107         /* we have problems to freeze the queue if it's initializing */
108         if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
109                 return 0;
110
111         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
112
113         spin_lock_irq(q->queue_lock);
114         ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
115                 !blk_queue_bypass(q) || blk_queue_dying(q),
116                 *q->queue_lock);
117         /* inc usage with lock hold to avoid freeze_queue runs here */
118         if (!ret && !blk_queue_dying(q))
119                 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
120         else if (blk_queue_dying(q))
121                 ret = -ENODEV;
122         spin_unlock_irq(q->queue_lock);
123
124         return ret;
125 }
126
127 static void blk_mq_queue_exit(struct request_queue *q)
128 {
129         __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
130 }
131
132 static void __blk_mq_drain_queue(struct request_queue *q)
133 {
134         while (true) {
135                 s64 count;
136
137                 spin_lock_irq(q->queue_lock);
138                 count = percpu_counter_sum(&q->mq_usage_counter);
139                 spin_unlock_irq(q->queue_lock);
140
141                 if (count == 0)
142                         break;
143                 blk_mq_run_queues(q, false);
144                 msleep(10);
145         }
146 }
147
148 /*
149  * Guarantee no request is in use, so we can change any data structure of
150  * the queue afterward.
151  */
152 static void blk_mq_freeze_queue(struct request_queue *q)
153 {
154         bool drain;
155
156         spin_lock_irq(q->queue_lock);
157         drain = !q->bypass_depth++;
158         queue_flag_set(QUEUE_FLAG_BYPASS, q);
159         spin_unlock_irq(q->queue_lock);
160
161         if (drain)
162                 __blk_mq_drain_queue(q);
163 }
164
165 void blk_mq_drain_queue(struct request_queue *q)
166 {
167         __blk_mq_drain_queue(q);
168 }
169
170 static void blk_mq_unfreeze_queue(struct request_queue *q)
171 {
172         bool wake = false;
173
174         spin_lock_irq(q->queue_lock);
175         if (!--q->bypass_depth) {
176                 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
177                 wake = true;
178         }
179         WARN_ON_ONCE(q->bypass_depth < 0);
180         spin_unlock_irq(q->queue_lock);
181         if (wake)
182                 wake_up_all(&q->mq_freeze_wq);
183 }
184
185 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
186 {
187         return blk_mq_has_free_tags(hctx->tags);
188 }
189 EXPORT_SYMBOL(blk_mq_can_queue);
190
191 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
192                                struct request *rq, unsigned int rw_flags)
193 {
194         if (blk_queue_io_stat(q))
195                 rw_flags |= REQ_IO_STAT;
196
197         INIT_LIST_HEAD(&rq->queuelist);
198         /* csd/requeue_work/fifo_time is initialized before use */
199         rq->q = q;
200         rq->mq_ctx = ctx;
201         rq->cmd_flags |= rw_flags;
202         rq->cmd_type = 0;
203         /* do not touch atomic flags, it needs atomic ops against the timer */
204         rq->cpu = -1;
205         rq->__data_len = 0;
206         rq->__sector = (sector_t) -1;
207         rq->bio = NULL;
208         rq->biotail = NULL;
209         INIT_HLIST_NODE(&rq->hash);
210         RB_CLEAR_NODE(&rq->rb_node);
211         memset(&rq->flush, 0, max(sizeof(rq->flush), sizeof(rq->elv)));
212         rq->rq_disk = NULL;
213         rq->part = NULL;
214         rq->start_time = jiffies;
215 #ifdef CONFIG_BLK_CGROUP
216         rq->rl = NULL;
217         set_start_time_ns(rq);
218         rq->io_start_time_ns = 0;
219 #endif
220         rq->nr_phys_segments = 0;
221 #if defined(CONFIG_BLK_DEV_INTEGRITY)
222         rq->nr_integrity_segments = 0;
223 #endif
224         rq->ioprio = 0;
225         rq->special = NULL;
226         /* tag was already set */
227         rq->errors = 0;
228         memset(rq->__cmd, 0, sizeof(rq->__cmd));
229         rq->cmd = rq->__cmd;
230         rq->cmd_len = BLK_MAX_CDB;
231
232         rq->extra_len = 0;
233         rq->sense_len = 0;
234         rq->resid_len = 0;
235         rq->sense = NULL;
236
237         rq->deadline = 0;
238         INIT_LIST_HEAD(&rq->timeout_list);
239         rq->timeout = 0;
240         rq->retries = 0;
241         rq->end_io = NULL;
242         rq->end_io_data = NULL;
243         rq->next_rq = NULL;
244
245         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
246 }
247
248 static struct request *
249 __blk_mq_alloc_request(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
250                 struct blk_mq_ctx *ctx, int rw, gfp_t gfp, bool reserved)
251 {
252         struct request *rq;
253         unsigned int tag;
254
255         tag = blk_mq_get_tag(hctx, &ctx->last_tag, gfp, reserved);
256         if (tag != BLK_MQ_TAG_FAIL) {
257                 rq = hctx->tags->rqs[tag];
258
259                 rq->cmd_flags = 0;
260                 if (blk_mq_tag_busy(hctx)) {
261                         rq->cmd_flags = REQ_MQ_INFLIGHT;
262                         atomic_inc(&hctx->nr_active);
263                 }
264
265                 rq->tag = tag;
266                 blk_mq_rq_ctx_init(q, ctx, rq, rw);
267                 return rq;
268         }
269
270         return NULL;
271 }
272
273 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
274                 bool reserved)
275 {
276         struct blk_mq_ctx *ctx;
277         struct blk_mq_hw_ctx *hctx;
278         struct request *rq;
279
280         if (blk_mq_queue_enter(q))
281                 return NULL;
282
283         ctx = blk_mq_get_ctx(q);
284         hctx = q->mq_ops->map_queue(q, ctx->cpu);
285
286         rq = __blk_mq_alloc_request(q, hctx, ctx, rw, gfp & ~__GFP_WAIT,
287                                     reserved);
288         if (!rq && (gfp & __GFP_WAIT)) {
289                 __blk_mq_run_hw_queue(hctx);
290                 blk_mq_put_ctx(ctx);
291
292                 ctx = blk_mq_get_ctx(q);
293                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
294                 rq =  __blk_mq_alloc_request(q, hctx, ctx, rw, gfp, reserved);
295         }
296         blk_mq_put_ctx(ctx);
297         return rq;
298 }
299 EXPORT_SYMBOL(blk_mq_alloc_request);
300
301 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
302                                   struct blk_mq_ctx *ctx, struct request *rq)
303 {
304         const int tag = rq->tag;
305         struct request_queue *q = rq->q;
306
307         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
308                 atomic_dec(&hctx->nr_active);
309
310         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
311         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
312         blk_mq_queue_exit(q);
313 }
314
315 void blk_mq_free_request(struct request *rq)
316 {
317         struct blk_mq_ctx *ctx = rq->mq_ctx;
318         struct blk_mq_hw_ctx *hctx;
319         struct request_queue *q = rq->q;
320
321         ctx->rq_completed[rq_is_sync(rq)]++;
322
323         hctx = q->mq_ops->map_queue(q, ctx->cpu);
324         __blk_mq_free_request(hctx, ctx, rq);
325 }
326
327 /*
328  * Clone all relevant state from a request that has been put on hold in
329  * the flush state machine into the preallocated flush request that hangs
330  * off the request queue.
331  *
332  * For a driver the flush request should be invisible, that's why we are
333  * impersonating the original request here.
334  */
335 void blk_mq_clone_flush_request(struct request *flush_rq,
336                 struct request *orig_rq)
337 {
338         struct blk_mq_hw_ctx *hctx =
339                 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
340
341         flush_rq->mq_ctx = orig_rq->mq_ctx;
342         flush_rq->tag = orig_rq->tag;
343         memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
344                 hctx->cmd_size);
345 }
346
347 inline void __blk_mq_end_io(struct request *rq, int error)
348 {
349         blk_account_io_done(rq);
350
351         if (rq->end_io) {
352                 rq->end_io(rq, error);
353         } else {
354                 if (unlikely(blk_bidi_rq(rq)))
355                         blk_mq_free_request(rq->next_rq);
356                 blk_mq_free_request(rq);
357         }
358 }
359 EXPORT_SYMBOL(__blk_mq_end_io);
360
361 void blk_mq_end_io(struct request *rq, int error)
362 {
363         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
364                 BUG();
365         __blk_mq_end_io(rq, error);
366 }
367 EXPORT_SYMBOL(blk_mq_end_io);
368
369 static void __blk_mq_complete_request_remote(void *data)
370 {
371         struct request *rq = data;
372
373         rq->q->softirq_done_fn(rq);
374 }
375
376 void __blk_mq_complete_request(struct request *rq)
377 {
378         struct blk_mq_ctx *ctx = rq->mq_ctx;
379         bool shared = false;
380         int cpu;
381
382         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
383                 rq->q->softirq_done_fn(rq);
384                 return;
385         }
386
387         cpu = get_cpu();
388         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
389                 shared = cpus_share_cache(cpu, ctx->cpu);
390
391         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
392                 rq->csd.func = __blk_mq_complete_request_remote;
393                 rq->csd.info = rq;
394                 rq->csd.flags = 0;
395                 smp_call_function_single_async(ctx->cpu, &rq->csd);
396         } else {
397                 rq->q->softirq_done_fn(rq);
398         }
399         put_cpu();
400 }
401
402 /**
403  * blk_mq_complete_request - end I/O on a request
404  * @rq:         the request being processed
405  *
406  * Description:
407  *      Ends all I/O on a request. It does not handle partial completions.
408  *      The actual completion happens out-of-order, through a IPI handler.
409  **/
410 void blk_mq_complete_request(struct request *rq)
411 {
412         struct request_queue *q = rq->q;
413
414         if (unlikely(blk_should_fake_timeout(q)))
415                 return;
416         if (!blk_mark_rq_complete(rq)) {
417                 if (q->softirq_done_fn)
418                         __blk_mq_complete_request(rq);
419                 else
420                         blk_mq_end_io(rq, rq->errors);
421         }
422 }
423 EXPORT_SYMBOL(blk_mq_complete_request);
424
425 static void blk_mq_start_request(struct request *rq, bool last)
426 {
427         struct request_queue *q = rq->q;
428
429         trace_block_rq_issue(q, rq);
430
431         rq->resid_len = blk_rq_bytes(rq);
432         if (unlikely(blk_bidi_rq(rq)))
433                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
434
435         /*
436          * Just mark start time and set the started bit. Due to memory
437          * ordering, we know we'll see the correct deadline as long as
438          * REQ_ATOMIC_STARTED is seen. Use the default queue timeout,
439          * unless one has been set in the request.
440          */
441         if (!rq->timeout)
442                 rq->deadline = jiffies + q->rq_timeout;
443         else
444                 rq->deadline = jiffies + rq->timeout;
445
446         /*
447          * Mark us as started and clear complete. Complete might have been
448          * set if requeue raced with timeout, which then marked it as
449          * complete. So be sure to clear complete again when we start
450          * the request, otherwise we'll ignore the completion event.
451          */
452         set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
453         clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
454
455         if (q->dma_drain_size && blk_rq_bytes(rq)) {
456                 /*
457                  * Make sure space for the drain appears.  We know we can do
458                  * this because max_hw_segments has been adjusted to be one
459                  * fewer than the device can handle.
460                  */
461                 rq->nr_phys_segments++;
462         }
463
464         /*
465          * Flag the last request in the series so that drivers know when IO
466          * should be kicked off, if they don't do it on a per-request basis.
467          *
468          * Note: the flag isn't the only condition drivers should do kick off.
469          * If drive is busy, the last request might not have the bit set.
470          */
471         if (last)
472                 rq->cmd_flags |= REQ_END;
473 }
474
475 static void __blk_mq_requeue_request(struct request *rq)
476 {
477         struct request_queue *q = rq->q;
478
479         trace_block_rq_requeue(q, rq);
480         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
481
482         rq->cmd_flags &= ~REQ_END;
483
484         if (q->dma_drain_size && blk_rq_bytes(rq))
485                 rq->nr_phys_segments--;
486 }
487
488 void blk_mq_requeue_request(struct request *rq)
489 {
490         __blk_mq_requeue_request(rq);
491         blk_clear_rq_complete(rq);
492
493         BUG_ON(blk_queued_rq(rq));
494         blk_mq_add_to_requeue_list(rq, true);
495 }
496 EXPORT_SYMBOL(blk_mq_requeue_request);
497
498 static void blk_mq_requeue_work(struct work_struct *work)
499 {
500         struct request_queue *q =
501                 container_of(work, struct request_queue, requeue_work);
502         LIST_HEAD(rq_list);
503         struct request *rq, *next;
504         unsigned long flags;
505
506         spin_lock_irqsave(&q->requeue_lock, flags);
507         list_splice_init(&q->requeue_list, &rq_list);
508         spin_unlock_irqrestore(&q->requeue_lock, flags);
509
510         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
511                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
512                         continue;
513
514                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
515                 list_del_init(&rq->queuelist);
516                 blk_mq_insert_request(rq, true, false, false);
517         }
518
519         while (!list_empty(&rq_list)) {
520                 rq = list_entry(rq_list.next, struct request, queuelist);
521                 list_del_init(&rq->queuelist);
522                 blk_mq_insert_request(rq, false, false, false);
523         }
524
525         blk_mq_run_queues(q, false);
526 }
527
528 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
529 {
530         struct request_queue *q = rq->q;
531         unsigned long flags;
532
533         /*
534          * We abuse this flag that is otherwise used by the I/O scheduler to
535          * request head insertation from the workqueue.
536          */
537         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
538
539         spin_lock_irqsave(&q->requeue_lock, flags);
540         if (at_head) {
541                 rq->cmd_flags |= REQ_SOFTBARRIER;
542                 list_add(&rq->queuelist, &q->requeue_list);
543         } else {
544                 list_add_tail(&rq->queuelist, &q->requeue_list);
545         }
546         spin_unlock_irqrestore(&q->requeue_lock, flags);
547 }
548 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
549
550 void blk_mq_kick_requeue_list(struct request_queue *q)
551 {
552         kblockd_schedule_work(&q->requeue_work);
553 }
554 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
555
556 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
557 {
558         return tags->rqs[tag];
559 }
560 EXPORT_SYMBOL(blk_mq_tag_to_rq);
561
562 struct blk_mq_timeout_data {
563         struct blk_mq_hw_ctx *hctx;
564         unsigned long *next;
565         unsigned int *next_set;
566 };
567
568 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
569 {
570         struct blk_mq_timeout_data *data = __data;
571         struct blk_mq_hw_ctx *hctx = data->hctx;
572         unsigned int tag;
573
574          /* It may not be in flight yet (this is where
575          * the REQ_ATOMIC_STARTED flag comes in). The requests are
576          * statically allocated, so we know it's always safe to access the
577          * memory associated with a bit offset into ->rqs[].
578          */
579         tag = 0;
580         do {
581                 struct request *rq;
582
583                 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
584                 if (tag >= hctx->tags->nr_tags)
585                         break;
586
587                 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
588                 if (rq->q != hctx->queue)
589                         continue;
590                 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
591                         continue;
592
593                 blk_rq_check_expired(rq, data->next, data->next_set);
594         } while (1);
595 }
596
597 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
598                                         unsigned long *next,
599                                         unsigned int *next_set)
600 {
601         struct blk_mq_timeout_data data = {
602                 .hctx           = hctx,
603                 .next           = next,
604                 .next_set       = next_set,
605         };
606
607         /*
608          * Ask the tagging code to iterate busy requests, so we can
609          * check them for timeout.
610          */
611         blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
612 }
613
614 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
615 {
616         struct request_queue *q = rq->q;
617
618         /*
619          * We know that complete is set at this point. If STARTED isn't set
620          * anymore, then the request isn't active and the "timeout" should
621          * just be ignored. This can happen due to the bitflag ordering.
622          * Timeout first checks if STARTED is set, and if it is, assumes
623          * the request is active. But if we race with completion, then
624          * we both flags will get cleared. So check here again, and ignore
625          * a timeout event with a request that isn't active.
626          */
627         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
628                 return BLK_EH_NOT_HANDLED;
629
630         if (!q->mq_ops->timeout)
631                 return BLK_EH_RESET_TIMER;
632
633         return q->mq_ops->timeout(rq);
634 }
635
636 static void blk_mq_rq_timer(unsigned long data)
637 {
638         struct request_queue *q = (struct request_queue *) data;
639         struct blk_mq_hw_ctx *hctx;
640         unsigned long next = 0;
641         int i, next_set = 0;
642
643         queue_for_each_hw_ctx(q, hctx, i) {
644                 /*
645                  * If not software queues are currently mapped to this
646                  * hardware queue, there's nothing to check
647                  */
648                 if (!hctx->nr_ctx || !hctx->tags)
649                         continue;
650
651                 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
652         }
653
654         if (next_set) {
655                 next = blk_rq_timeout(round_jiffies_up(next));
656                 mod_timer(&q->timeout, next);
657         } else {
658                 queue_for_each_hw_ctx(q, hctx, i)
659                         blk_mq_tag_idle(hctx);
660         }
661 }
662
663 /*
664  * Reverse check our software queue for entries that we could potentially
665  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
666  * too much time checking for merges.
667  */
668 static bool blk_mq_attempt_merge(struct request_queue *q,
669                                  struct blk_mq_ctx *ctx, struct bio *bio)
670 {
671         struct request *rq;
672         int checked = 8;
673
674         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
675                 int el_ret;
676
677                 if (!checked--)
678                         break;
679
680                 if (!blk_rq_merge_ok(rq, bio))
681                         continue;
682
683                 el_ret = blk_try_merge(rq, bio);
684                 if (el_ret == ELEVATOR_BACK_MERGE) {
685                         if (bio_attempt_back_merge(q, rq, bio)) {
686                                 ctx->rq_merged++;
687                                 return true;
688                         }
689                         break;
690                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
691                         if (bio_attempt_front_merge(q, rq, bio)) {
692                                 ctx->rq_merged++;
693                                 return true;
694                         }
695                         break;
696                 }
697         }
698
699         return false;
700 }
701
702 /*
703  * Process software queues that have been marked busy, splicing them
704  * to the for-dispatch
705  */
706 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
707 {
708         struct blk_mq_ctx *ctx;
709         int i;
710
711         for (i = 0; i < hctx->ctx_map.map_size; i++) {
712                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
713                 unsigned int off, bit;
714
715                 if (!bm->word)
716                         continue;
717
718                 bit = 0;
719                 off = i * hctx->ctx_map.bits_per_word;
720                 do {
721                         bit = find_next_bit(&bm->word, bm->depth, bit);
722                         if (bit >= bm->depth)
723                                 break;
724
725                         ctx = hctx->ctxs[bit + off];
726                         clear_bit(bit, &bm->word);
727                         spin_lock(&ctx->lock);
728                         list_splice_tail_init(&ctx->rq_list, list);
729                         spin_unlock(&ctx->lock);
730
731                         bit++;
732                 } while (1);
733         }
734 }
735
736 /*
737  * Run this hardware queue, pulling any software queues mapped to it in.
738  * Note that this function currently has various problems around ordering
739  * of IO. In particular, we'd like FIFO behaviour on handling existing
740  * items on the hctx->dispatch list. Ignore that for now.
741  */
742 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
743 {
744         struct request_queue *q = hctx->queue;
745         struct request *rq;
746         LIST_HEAD(rq_list);
747         int queued;
748
749         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
750
751         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
752                 return;
753
754         hctx->run++;
755
756         /*
757          * Touch any software queue that has pending entries.
758          */
759         flush_busy_ctxs(hctx, &rq_list);
760
761         /*
762          * If we have previous entries on our dispatch list, grab them
763          * and stuff them at the front for more fair dispatch.
764          */
765         if (!list_empty_careful(&hctx->dispatch)) {
766                 spin_lock(&hctx->lock);
767                 if (!list_empty(&hctx->dispatch))
768                         list_splice_init(&hctx->dispatch, &rq_list);
769                 spin_unlock(&hctx->lock);
770         }
771
772         /*
773          * Now process all the entries, sending them to the driver.
774          */
775         queued = 0;
776         while (!list_empty(&rq_list)) {
777                 int ret;
778
779                 rq = list_first_entry(&rq_list, struct request, queuelist);
780                 list_del_init(&rq->queuelist);
781
782                 blk_mq_start_request(rq, list_empty(&rq_list));
783
784                 ret = q->mq_ops->queue_rq(hctx, rq);
785                 switch (ret) {
786                 case BLK_MQ_RQ_QUEUE_OK:
787                         queued++;
788                         continue;
789                 case BLK_MQ_RQ_QUEUE_BUSY:
790                         list_add(&rq->queuelist, &rq_list);
791                         __blk_mq_requeue_request(rq);
792                         break;
793                 default:
794                         pr_err("blk-mq: bad return on queue: %d\n", ret);
795                 case BLK_MQ_RQ_QUEUE_ERROR:
796                         rq->errors = -EIO;
797                         blk_mq_end_io(rq, rq->errors);
798                         break;
799                 }
800
801                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
802                         break;
803         }
804
805         if (!queued)
806                 hctx->dispatched[0]++;
807         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
808                 hctx->dispatched[ilog2(queued) + 1]++;
809
810         /*
811          * Any items that need requeuing? Stuff them into hctx->dispatch,
812          * that is where we will continue on next queue run.
813          */
814         if (!list_empty(&rq_list)) {
815                 spin_lock(&hctx->lock);
816                 list_splice(&rq_list, &hctx->dispatch);
817                 spin_unlock(&hctx->lock);
818         }
819 }
820
821 /*
822  * It'd be great if the workqueue API had a way to pass
823  * in a mask and had some smarts for more clever placement.
824  * For now we just round-robin here, switching for every
825  * BLK_MQ_CPU_WORK_BATCH queued items.
826  */
827 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
828 {
829         int cpu = hctx->next_cpu;
830
831         if (--hctx->next_cpu_batch <= 0) {
832                 int next_cpu;
833
834                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
835                 if (next_cpu >= nr_cpu_ids)
836                         next_cpu = cpumask_first(hctx->cpumask);
837
838                 hctx->next_cpu = next_cpu;
839                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
840         }
841
842         return cpu;
843 }
844
845 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
846 {
847         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
848                 return;
849
850         if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
851                 __blk_mq_run_hw_queue(hctx);
852         else if (hctx->queue->nr_hw_queues == 1)
853                 kblockd_schedule_delayed_work(&hctx->run_work, 0);
854         else {
855                 unsigned int cpu;
856
857                 cpu = blk_mq_hctx_next_cpu(hctx);
858                 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
859         }
860 }
861
862 void blk_mq_run_queues(struct request_queue *q, bool async)
863 {
864         struct blk_mq_hw_ctx *hctx;
865         int i;
866
867         queue_for_each_hw_ctx(q, hctx, i) {
868                 if ((!blk_mq_hctx_has_pending(hctx) &&
869                     list_empty_careful(&hctx->dispatch)) ||
870                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
871                         continue;
872
873                 preempt_disable();
874                 blk_mq_run_hw_queue(hctx, async);
875                 preempt_enable();
876         }
877 }
878 EXPORT_SYMBOL(blk_mq_run_queues);
879
880 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
881 {
882         cancel_delayed_work(&hctx->run_work);
883         cancel_delayed_work(&hctx->delay_work);
884         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
885 }
886 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
887
888 void blk_mq_stop_hw_queues(struct request_queue *q)
889 {
890         struct blk_mq_hw_ctx *hctx;
891         int i;
892
893         queue_for_each_hw_ctx(q, hctx, i)
894                 blk_mq_stop_hw_queue(hctx);
895 }
896 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
897
898 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
899 {
900         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
901
902         preempt_disable();
903         __blk_mq_run_hw_queue(hctx);
904         preempt_enable();
905 }
906 EXPORT_SYMBOL(blk_mq_start_hw_queue);
907
908 void blk_mq_start_hw_queues(struct request_queue *q)
909 {
910         struct blk_mq_hw_ctx *hctx;
911         int i;
912
913         queue_for_each_hw_ctx(q, hctx, i)
914                 blk_mq_start_hw_queue(hctx);
915 }
916 EXPORT_SYMBOL(blk_mq_start_hw_queues);
917
918
919 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
920 {
921         struct blk_mq_hw_ctx *hctx;
922         int i;
923
924         queue_for_each_hw_ctx(q, hctx, i) {
925                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
926                         continue;
927
928                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
929                 preempt_disable();
930                 blk_mq_run_hw_queue(hctx, async);
931                 preempt_enable();
932         }
933 }
934 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
935
936 static void blk_mq_run_work_fn(struct work_struct *work)
937 {
938         struct blk_mq_hw_ctx *hctx;
939
940         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
941
942         __blk_mq_run_hw_queue(hctx);
943 }
944
945 static void blk_mq_delay_work_fn(struct work_struct *work)
946 {
947         struct blk_mq_hw_ctx *hctx;
948
949         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
950
951         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
952                 __blk_mq_run_hw_queue(hctx);
953 }
954
955 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
956 {
957         unsigned long tmo = msecs_to_jiffies(msecs);
958
959         if (hctx->queue->nr_hw_queues == 1)
960                 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
961         else {
962                 unsigned int cpu;
963
964                 cpu = blk_mq_hctx_next_cpu(hctx);
965                 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
966         }
967 }
968 EXPORT_SYMBOL(blk_mq_delay_queue);
969
970 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
971                                     struct request *rq, bool at_head)
972 {
973         struct blk_mq_ctx *ctx = rq->mq_ctx;
974
975         trace_block_rq_insert(hctx->queue, rq);
976
977         if (at_head)
978                 list_add(&rq->queuelist, &ctx->rq_list);
979         else
980                 list_add_tail(&rq->queuelist, &ctx->rq_list);
981
982         blk_mq_hctx_mark_pending(hctx, ctx);
983
984         /*
985          * We do this early, to ensure we are on the right CPU.
986          */
987         blk_add_timer(rq);
988 }
989
990 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
991                 bool async)
992 {
993         struct request_queue *q = rq->q;
994         struct blk_mq_hw_ctx *hctx;
995         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
996
997         current_ctx = blk_mq_get_ctx(q);
998         if (!cpu_online(ctx->cpu))
999                 rq->mq_ctx = ctx = current_ctx;
1000
1001         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1002
1003         if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
1004             !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
1005                 blk_insert_flush(rq);
1006         } else {
1007                 spin_lock(&ctx->lock);
1008                 __blk_mq_insert_request(hctx, rq, at_head);
1009                 spin_unlock(&ctx->lock);
1010         }
1011
1012         if (run_queue)
1013                 blk_mq_run_hw_queue(hctx, async);
1014
1015         blk_mq_put_ctx(current_ctx);
1016 }
1017
1018 static void blk_mq_insert_requests(struct request_queue *q,
1019                                      struct blk_mq_ctx *ctx,
1020                                      struct list_head *list,
1021                                      int depth,
1022                                      bool from_schedule)
1023
1024 {
1025         struct blk_mq_hw_ctx *hctx;
1026         struct blk_mq_ctx *current_ctx;
1027
1028         trace_block_unplug(q, depth, !from_schedule);
1029
1030         current_ctx = blk_mq_get_ctx(q);
1031
1032         if (!cpu_online(ctx->cpu))
1033                 ctx = current_ctx;
1034         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1035
1036         /*
1037          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1038          * offline now
1039          */
1040         spin_lock(&ctx->lock);
1041         while (!list_empty(list)) {
1042                 struct request *rq;
1043
1044                 rq = list_first_entry(list, struct request, queuelist);
1045                 list_del_init(&rq->queuelist);
1046                 rq->mq_ctx = ctx;
1047                 __blk_mq_insert_request(hctx, rq, false);
1048         }
1049         spin_unlock(&ctx->lock);
1050
1051         blk_mq_run_hw_queue(hctx, from_schedule);
1052         blk_mq_put_ctx(current_ctx);
1053 }
1054
1055 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1056 {
1057         struct request *rqa = container_of(a, struct request, queuelist);
1058         struct request *rqb = container_of(b, struct request, queuelist);
1059
1060         return !(rqa->mq_ctx < rqb->mq_ctx ||
1061                  (rqa->mq_ctx == rqb->mq_ctx &&
1062                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1063 }
1064
1065 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1066 {
1067         struct blk_mq_ctx *this_ctx;
1068         struct request_queue *this_q;
1069         struct request *rq;
1070         LIST_HEAD(list);
1071         LIST_HEAD(ctx_list);
1072         unsigned int depth;
1073
1074         list_splice_init(&plug->mq_list, &list);
1075
1076         list_sort(NULL, &list, plug_ctx_cmp);
1077
1078         this_q = NULL;
1079         this_ctx = NULL;
1080         depth = 0;
1081
1082         while (!list_empty(&list)) {
1083                 rq = list_entry_rq(list.next);
1084                 list_del_init(&rq->queuelist);
1085                 BUG_ON(!rq->q);
1086                 if (rq->mq_ctx != this_ctx) {
1087                         if (this_ctx) {
1088                                 blk_mq_insert_requests(this_q, this_ctx,
1089                                                         &ctx_list, depth,
1090                                                         from_schedule);
1091                         }
1092
1093                         this_ctx = rq->mq_ctx;
1094                         this_q = rq->q;
1095                         depth = 0;
1096                 }
1097
1098                 depth++;
1099                 list_add_tail(&rq->queuelist, &ctx_list);
1100         }
1101
1102         /*
1103          * If 'this_ctx' is set, we know we have entries to complete
1104          * on 'ctx_list'. Do those.
1105          */
1106         if (this_ctx) {
1107                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1108                                        from_schedule);
1109         }
1110 }
1111
1112 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1113 {
1114         init_request_from_bio(rq, bio);
1115         blk_account_io_start(rq, 1);
1116 }
1117
1118 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1119                                          struct blk_mq_ctx *ctx,
1120                                          struct request *rq, struct bio *bio)
1121 {
1122         struct request_queue *q = hctx->queue;
1123
1124         if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1125                 blk_mq_bio_to_request(rq, bio);
1126                 spin_lock(&ctx->lock);
1127 insert_rq:
1128                 __blk_mq_insert_request(hctx, rq, false);
1129                 spin_unlock(&ctx->lock);
1130                 return false;
1131         } else {
1132                 spin_lock(&ctx->lock);
1133                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1134                         blk_mq_bio_to_request(rq, bio);
1135                         goto insert_rq;
1136                 }
1137
1138                 spin_unlock(&ctx->lock);
1139                 __blk_mq_free_request(hctx, ctx, rq);
1140                 return true;
1141         }
1142 }
1143
1144 struct blk_map_ctx {
1145         struct blk_mq_hw_ctx *hctx;
1146         struct blk_mq_ctx *ctx;
1147 };
1148
1149 static struct request *blk_mq_map_request(struct request_queue *q,
1150                                           struct bio *bio,
1151                                           struct blk_map_ctx *data)
1152 {
1153         struct blk_mq_hw_ctx *hctx;
1154         struct blk_mq_ctx *ctx;
1155         struct request *rq;
1156         int rw = bio_data_dir(bio);
1157
1158         if (unlikely(blk_mq_queue_enter(q))) {
1159                 bio_endio(bio, -EIO);
1160                 return NULL;
1161         }
1162
1163         ctx = blk_mq_get_ctx(q);
1164         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1165
1166         if (rw_is_sync(bio->bi_rw))
1167                 rw |= REQ_SYNC;
1168
1169         trace_block_getrq(q, bio, rw);
1170         rq = __blk_mq_alloc_request(q, hctx, ctx, rw, GFP_ATOMIC, false);
1171         if (unlikely(!rq)) {
1172                 __blk_mq_run_hw_queue(hctx);
1173                 blk_mq_put_ctx(ctx);
1174                 trace_block_sleeprq(q, bio, rw);
1175
1176                 ctx = blk_mq_get_ctx(q);
1177                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1178                 rq = __blk_mq_alloc_request(q, hctx, ctx, rw,
1179                                             __GFP_WAIT|GFP_ATOMIC, false);
1180         }
1181
1182         hctx->queued++;
1183         data->hctx = hctx;
1184         data->ctx = ctx;
1185         return rq;
1186 }
1187
1188 /*
1189  * Multiple hardware queue variant. This will not use per-process plugs,
1190  * but will attempt to bypass the hctx queueing if we can go straight to
1191  * hardware for SYNC IO.
1192  */
1193 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1194 {
1195         const int is_sync = rw_is_sync(bio->bi_rw);
1196         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1197         struct blk_map_ctx data;
1198         struct request *rq;
1199
1200         blk_queue_bounce(q, &bio);
1201
1202         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1203                 bio_endio(bio, -EIO);
1204                 return;
1205         }
1206
1207         rq = blk_mq_map_request(q, bio, &data);
1208         if (unlikely(!rq))
1209                 return;
1210
1211         if (unlikely(is_flush_fua)) {
1212                 blk_mq_bio_to_request(rq, bio);
1213                 blk_insert_flush(rq);
1214                 goto run_queue;
1215         }
1216
1217         if (is_sync) {
1218                 int ret;
1219
1220                 blk_mq_bio_to_request(rq, bio);
1221                 blk_mq_start_request(rq, true);
1222
1223                 /*
1224                  * For OK queue, we are done. For error, kill it. Any other
1225                  * error (busy), just add it to our list as we previously
1226                  * would have done
1227                  */
1228                 ret = q->mq_ops->queue_rq(data.hctx, rq);
1229                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1230                         goto done;
1231                 else {
1232                         __blk_mq_requeue_request(rq);
1233
1234                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1235                                 rq->errors = -EIO;
1236                                 blk_mq_end_io(rq, rq->errors);
1237                                 goto done;
1238                         }
1239                 }
1240         }
1241
1242         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1243                 /*
1244                  * For a SYNC request, send it to the hardware immediately. For
1245                  * an ASYNC request, just ensure that we run it later on. The
1246                  * latter allows for merging opportunities and more efficient
1247                  * dispatching.
1248                  */
1249 run_queue:
1250                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1251         }
1252 done:
1253         blk_mq_put_ctx(data.ctx);
1254 }
1255
1256 /*
1257  * Single hardware queue variant. This will attempt to use any per-process
1258  * plug for merging and IO deferral.
1259  */
1260 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1261 {
1262         const int is_sync = rw_is_sync(bio->bi_rw);
1263         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1264         unsigned int use_plug, request_count = 0;
1265         struct blk_map_ctx data;
1266         struct request *rq;
1267
1268         /*
1269          * If we have multiple hardware queues, just go directly to
1270          * one of those for sync IO.
1271          */
1272         use_plug = !is_flush_fua && !is_sync;
1273
1274         blk_queue_bounce(q, &bio);
1275
1276         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1277                 bio_endio(bio, -EIO);
1278                 return;
1279         }
1280
1281         if (use_plug && !blk_queue_nomerges(q) &&
1282             blk_attempt_plug_merge(q, bio, &request_count))
1283                 return;
1284
1285         rq = blk_mq_map_request(q, bio, &data);
1286
1287         if (unlikely(is_flush_fua)) {
1288                 blk_mq_bio_to_request(rq, bio);
1289                 blk_insert_flush(rq);
1290                 goto run_queue;
1291         }
1292
1293         /*
1294          * A task plug currently exists. Since this is completely lockless,
1295          * utilize that to temporarily store requests until the task is
1296          * either done or scheduled away.
1297          */
1298         if (use_plug) {
1299                 struct blk_plug *plug = current->plug;
1300
1301                 if (plug) {
1302                         blk_mq_bio_to_request(rq, bio);
1303                         if (list_empty(&plug->mq_list))
1304                                 trace_block_plug(q);
1305                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1306                                 blk_flush_plug_list(plug, false);
1307                                 trace_block_plug(q);
1308                         }
1309                         list_add_tail(&rq->queuelist, &plug->mq_list);
1310                         blk_mq_put_ctx(data.ctx);
1311                         return;
1312                 }
1313         }
1314
1315         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1316                 /*
1317                  * For a SYNC request, send it to the hardware immediately. For
1318                  * an ASYNC request, just ensure that we run it later on. The
1319                  * latter allows for merging opportunities and more efficient
1320                  * dispatching.
1321                  */
1322 run_queue:
1323                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1324         }
1325
1326         blk_mq_put_ctx(data.ctx);
1327 }
1328
1329 /*
1330  * Default mapping to a software queue, since we use one per CPU.
1331  */
1332 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1333 {
1334         return q->queue_hw_ctx[q->mq_map[cpu]];
1335 }
1336 EXPORT_SYMBOL(blk_mq_map_queue);
1337
1338 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1339                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1340 {
1341         struct page *page;
1342
1343         if (tags->rqs && set->ops->exit_request) {
1344                 int i;
1345
1346                 for (i = 0; i < tags->nr_tags; i++) {
1347                         if (!tags->rqs[i])
1348                                 continue;
1349                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1350                                                 hctx_idx, i);
1351                 }
1352         }
1353
1354         while (!list_empty(&tags->page_list)) {
1355                 page = list_first_entry(&tags->page_list, struct page, lru);
1356                 list_del_init(&page->lru);
1357                 __free_pages(page, page->private);
1358         }
1359
1360         kfree(tags->rqs);
1361
1362         blk_mq_free_tags(tags);
1363 }
1364
1365 static size_t order_to_size(unsigned int order)
1366 {
1367         return (size_t)PAGE_SIZE << order;
1368 }
1369
1370 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1371                 unsigned int hctx_idx)
1372 {
1373         struct blk_mq_tags *tags;
1374         unsigned int i, j, entries_per_page, max_order = 4;
1375         size_t rq_size, left;
1376
1377         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1378                                 set->numa_node);
1379         if (!tags)
1380                 return NULL;
1381
1382         INIT_LIST_HEAD(&tags->page_list);
1383
1384         tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1385                                         GFP_KERNEL, set->numa_node);
1386         if (!tags->rqs) {
1387                 blk_mq_free_tags(tags);
1388                 return NULL;
1389         }
1390
1391         /*
1392          * rq_size is the size of the request plus driver payload, rounded
1393          * to the cacheline size
1394          */
1395         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1396                                 cache_line_size());
1397         left = rq_size * set->queue_depth;
1398
1399         for (i = 0; i < set->queue_depth; ) {
1400                 int this_order = max_order;
1401                 struct page *page;
1402                 int to_do;
1403                 void *p;
1404
1405                 while (left < order_to_size(this_order - 1) && this_order)
1406                         this_order--;
1407
1408                 do {
1409                         page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1410                                                 this_order);
1411                         if (page)
1412                                 break;
1413                         if (!this_order--)
1414                                 break;
1415                         if (order_to_size(this_order) < rq_size)
1416                                 break;
1417                 } while (1);
1418
1419                 if (!page)
1420                         goto fail;
1421
1422                 page->private = this_order;
1423                 list_add_tail(&page->lru, &tags->page_list);
1424
1425                 p = page_address(page);
1426                 entries_per_page = order_to_size(this_order) / rq_size;
1427                 to_do = min(entries_per_page, set->queue_depth - i);
1428                 left -= to_do * rq_size;
1429                 for (j = 0; j < to_do; j++) {
1430                         tags->rqs[i] = p;
1431                         if (set->ops->init_request) {
1432                                 if (set->ops->init_request(set->driver_data,
1433                                                 tags->rqs[i], hctx_idx, i,
1434                                                 set->numa_node))
1435                                         goto fail;
1436                         }
1437
1438                         p += rq_size;
1439                         i++;
1440                 }
1441         }
1442
1443         return tags;
1444
1445 fail:
1446         pr_warn("%s: failed to allocate requests\n", __func__);
1447         blk_mq_free_rq_map(set, tags, hctx_idx);
1448         return NULL;
1449 }
1450
1451 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1452 {
1453         kfree(bitmap->map);
1454 }
1455
1456 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1457 {
1458         unsigned int bpw = 8, total, num_maps, i;
1459
1460         bitmap->bits_per_word = bpw;
1461
1462         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1463         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1464                                         GFP_KERNEL, node);
1465         if (!bitmap->map)
1466                 return -ENOMEM;
1467
1468         bitmap->map_size = num_maps;
1469
1470         total = nr_cpu_ids;
1471         for (i = 0; i < num_maps; i++) {
1472                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1473                 total -= bitmap->map[i].depth;
1474         }
1475
1476         return 0;
1477 }
1478
1479 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1480 {
1481         struct request_queue *q = hctx->queue;
1482         struct blk_mq_ctx *ctx;
1483         LIST_HEAD(tmp);
1484
1485         /*
1486          * Move ctx entries to new CPU, if this one is going away.
1487          */
1488         ctx = __blk_mq_get_ctx(q, cpu);
1489
1490         spin_lock(&ctx->lock);
1491         if (!list_empty(&ctx->rq_list)) {
1492                 list_splice_init(&ctx->rq_list, &tmp);
1493                 blk_mq_hctx_clear_pending(hctx, ctx);
1494         }
1495         spin_unlock(&ctx->lock);
1496
1497         if (list_empty(&tmp))
1498                 return NOTIFY_OK;
1499
1500         ctx = blk_mq_get_ctx(q);
1501         spin_lock(&ctx->lock);
1502
1503         while (!list_empty(&tmp)) {
1504                 struct request *rq;
1505
1506                 rq = list_first_entry(&tmp, struct request, queuelist);
1507                 rq->mq_ctx = ctx;
1508                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1509         }
1510
1511         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1512         blk_mq_hctx_mark_pending(hctx, ctx);
1513
1514         spin_unlock(&ctx->lock);
1515
1516         blk_mq_run_hw_queue(hctx, true);
1517         blk_mq_put_ctx(ctx);
1518         return NOTIFY_OK;
1519 }
1520
1521 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1522 {
1523         struct request_queue *q = hctx->queue;
1524         struct blk_mq_tag_set *set = q->tag_set;
1525
1526         if (set->tags[hctx->queue_num])
1527                 return NOTIFY_OK;
1528
1529         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1530         if (!set->tags[hctx->queue_num])
1531                 return NOTIFY_STOP;
1532
1533         hctx->tags = set->tags[hctx->queue_num];
1534         return NOTIFY_OK;
1535 }
1536
1537 static int blk_mq_hctx_notify(void *data, unsigned long action,
1538                               unsigned int cpu)
1539 {
1540         struct blk_mq_hw_ctx *hctx = data;
1541
1542         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1543                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1544         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1545                 return blk_mq_hctx_cpu_online(hctx, cpu);
1546
1547         return NOTIFY_OK;
1548 }
1549
1550 static void blk_mq_exit_hw_queues(struct request_queue *q,
1551                 struct blk_mq_tag_set *set, int nr_queue)
1552 {
1553         struct blk_mq_hw_ctx *hctx;
1554         unsigned int i;
1555
1556         queue_for_each_hw_ctx(q, hctx, i) {
1557                 if (i == nr_queue)
1558                         break;
1559
1560                 if (set->ops->exit_hctx)
1561                         set->ops->exit_hctx(hctx, i);
1562
1563                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1564                 kfree(hctx->ctxs);
1565                 blk_mq_free_bitmap(&hctx->ctx_map);
1566         }
1567
1568 }
1569
1570 static void blk_mq_free_hw_queues(struct request_queue *q,
1571                 struct blk_mq_tag_set *set)
1572 {
1573         struct blk_mq_hw_ctx *hctx;
1574         unsigned int i;
1575
1576         queue_for_each_hw_ctx(q, hctx, i) {
1577                 free_cpumask_var(hctx->cpumask);
1578                 kfree(hctx);
1579         }
1580 }
1581
1582 static int blk_mq_init_hw_queues(struct request_queue *q,
1583                 struct blk_mq_tag_set *set)
1584 {
1585         struct blk_mq_hw_ctx *hctx;
1586         unsigned int i;
1587
1588         /*
1589          * Initialize hardware queues
1590          */
1591         queue_for_each_hw_ctx(q, hctx, i) {
1592                 int node;
1593
1594                 node = hctx->numa_node;
1595                 if (node == NUMA_NO_NODE)
1596                         node = hctx->numa_node = set->numa_node;
1597
1598                 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1599                 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1600                 spin_lock_init(&hctx->lock);
1601                 INIT_LIST_HEAD(&hctx->dispatch);
1602                 hctx->queue = q;
1603                 hctx->queue_num = i;
1604                 hctx->flags = set->flags;
1605                 hctx->cmd_size = set->cmd_size;
1606
1607                 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1608                                                 blk_mq_hctx_notify, hctx);
1609                 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1610
1611                 hctx->tags = set->tags[i];
1612
1613                 /*
1614                  * Allocate space for all possible cpus to avoid allocation in
1615                  * runtime
1616                  */
1617                 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1618                                                 GFP_KERNEL, node);
1619                 if (!hctx->ctxs)
1620                         break;
1621
1622                 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1623                         break;
1624
1625                 hctx->nr_ctx = 0;
1626
1627                 if (set->ops->init_hctx &&
1628                     set->ops->init_hctx(hctx, set->driver_data, i))
1629                         break;
1630         }
1631
1632         if (i == q->nr_hw_queues)
1633                 return 0;
1634
1635         /*
1636          * Init failed
1637          */
1638         blk_mq_exit_hw_queues(q, set, i);
1639
1640         return 1;
1641 }
1642
1643 static void blk_mq_init_cpu_queues(struct request_queue *q,
1644                                    unsigned int nr_hw_queues)
1645 {
1646         unsigned int i;
1647
1648         for_each_possible_cpu(i) {
1649                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1650                 struct blk_mq_hw_ctx *hctx;
1651
1652                 memset(__ctx, 0, sizeof(*__ctx));
1653                 __ctx->cpu = i;
1654                 spin_lock_init(&__ctx->lock);
1655                 INIT_LIST_HEAD(&__ctx->rq_list);
1656                 __ctx->queue = q;
1657
1658                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1659                 if (!cpu_online(i))
1660                         continue;
1661
1662                 hctx = q->mq_ops->map_queue(q, i);
1663                 cpumask_set_cpu(i, hctx->cpumask);
1664                 hctx->nr_ctx++;
1665
1666                 /*
1667                  * Set local node, IFF we have more than one hw queue. If
1668                  * not, we remain on the home node of the device
1669                  */
1670                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1671                         hctx->numa_node = cpu_to_node(i);
1672         }
1673 }
1674
1675 static void blk_mq_map_swqueue(struct request_queue *q)
1676 {
1677         unsigned int i;
1678         struct blk_mq_hw_ctx *hctx;
1679         struct blk_mq_ctx *ctx;
1680
1681         queue_for_each_hw_ctx(q, hctx, i) {
1682                 cpumask_clear(hctx->cpumask);
1683                 hctx->nr_ctx = 0;
1684         }
1685
1686         /*
1687          * Map software to hardware queues
1688          */
1689         queue_for_each_ctx(q, ctx, i) {
1690                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1691                 if (!cpu_online(i))
1692                         continue;
1693
1694                 hctx = q->mq_ops->map_queue(q, i);
1695                 cpumask_set_cpu(i, hctx->cpumask);
1696                 ctx->index_hw = hctx->nr_ctx;
1697                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1698         }
1699
1700         queue_for_each_hw_ctx(q, hctx, i) {
1701                 /*
1702                  * If not software queues are mapped to this hardware queue,
1703                  * disable it and free the request entries
1704                  */
1705                 if (!hctx->nr_ctx) {
1706                         struct blk_mq_tag_set *set = q->tag_set;
1707
1708                         if (set->tags[i]) {
1709                                 blk_mq_free_rq_map(set, set->tags[i], i);
1710                                 set->tags[i] = NULL;
1711                                 hctx->tags = NULL;
1712                         }
1713                         continue;
1714                 }
1715
1716                 /*
1717                  * Initialize batch roundrobin counts
1718                  */
1719                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1720                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1721         }
1722 }
1723
1724 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1725 {
1726         struct blk_mq_hw_ctx *hctx;
1727         struct request_queue *q;
1728         bool shared;
1729         int i;
1730
1731         if (set->tag_list.next == set->tag_list.prev)
1732                 shared = false;
1733         else
1734                 shared = true;
1735
1736         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1737                 blk_mq_freeze_queue(q);
1738
1739                 queue_for_each_hw_ctx(q, hctx, i) {
1740                         if (shared)
1741                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1742                         else
1743                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1744                 }
1745                 blk_mq_unfreeze_queue(q);
1746         }
1747 }
1748
1749 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1750 {
1751         struct blk_mq_tag_set *set = q->tag_set;
1752
1753         blk_mq_freeze_queue(q);
1754
1755         mutex_lock(&set->tag_list_lock);
1756         list_del_init(&q->tag_set_list);
1757         blk_mq_update_tag_set_depth(set);
1758         mutex_unlock(&set->tag_list_lock);
1759
1760         blk_mq_unfreeze_queue(q);
1761 }
1762
1763 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1764                                      struct request_queue *q)
1765 {
1766         q->tag_set = set;
1767
1768         mutex_lock(&set->tag_list_lock);
1769         list_add_tail(&q->tag_set_list, &set->tag_list);
1770         blk_mq_update_tag_set_depth(set);
1771         mutex_unlock(&set->tag_list_lock);
1772 }
1773
1774 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1775 {
1776         struct blk_mq_hw_ctx **hctxs;
1777         struct blk_mq_ctx *ctx;
1778         struct request_queue *q;
1779         unsigned int *map;
1780         int i;
1781
1782         ctx = alloc_percpu(struct blk_mq_ctx);
1783         if (!ctx)
1784                 return ERR_PTR(-ENOMEM);
1785
1786         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1787                         set->numa_node);
1788
1789         if (!hctxs)
1790                 goto err_percpu;
1791
1792         map = blk_mq_make_queue_map(set);
1793         if (!map)
1794                 goto err_map;
1795
1796         for (i = 0; i < set->nr_hw_queues; i++) {
1797                 int node = blk_mq_hw_queue_to_node(map, i);
1798
1799                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1800                                         GFP_KERNEL, node);
1801                 if (!hctxs[i])
1802                         goto err_hctxs;
1803
1804                 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1805                         goto err_hctxs;
1806
1807                 atomic_set(&hctxs[i]->nr_active, 0);
1808                 hctxs[i]->numa_node = node;
1809                 hctxs[i]->queue_num = i;
1810         }
1811
1812         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1813         if (!q)
1814                 goto err_hctxs;
1815
1816         if (percpu_counter_init(&q->mq_usage_counter, 0))
1817                 goto err_map;
1818
1819         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1820         blk_queue_rq_timeout(q, 30000);
1821
1822         q->nr_queues = nr_cpu_ids;
1823         q->nr_hw_queues = set->nr_hw_queues;
1824         q->mq_map = map;
1825
1826         q->queue_ctx = ctx;
1827         q->queue_hw_ctx = hctxs;
1828
1829         q->mq_ops = set->ops;
1830         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1831
1832         if (!(set->flags & BLK_MQ_F_SG_MERGE))
1833                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1834
1835         q->sg_reserved_size = INT_MAX;
1836
1837         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1838         INIT_LIST_HEAD(&q->requeue_list);
1839         spin_lock_init(&q->requeue_lock);
1840
1841         if (q->nr_hw_queues > 1)
1842                 blk_queue_make_request(q, blk_mq_make_request);
1843         else
1844                 blk_queue_make_request(q, blk_sq_make_request);
1845
1846         blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1847         if (set->timeout)
1848                 blk_queue_rq_timeout(q, set->timeout);
1849
1850         /*
1851          * Do this after blk_queue_make_request() overrides it...
1852          */
1853         q->nr_requests = set->queue_depth;
1854
1855         if (set->ops->complete)
1856                 blk_queue_softirq_done(q, set->ops->complete);
1857
1858         blk_mq_init_flush(q);
1859         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1860
1861         q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1862                                 set->cmd_size, cache_line_size()),
1863                                 GFP_KERNEL);
1864         if (!q->flush_rq)
1865                 goto err_hw;
1866
1867         if (blk_mq_init_hw_queues(q, set))
1868                 goto err_flush_rq;
1869
1870         mutex_lock(&all_q_mutex);
1871         list_add_tail(&q->all_q_node, &all_q_list);
1872         mutex_unlock(&all_q_mutex);
1873
1874         blk_mq_add_queue_tag_set(set, q);
1875
1876         blk_mq_map_swqueue(q);
1877
1878         return q;
1879
1880 err_flush_rq:
1881         kfree(q->flush_rq);
1882 err_hw:
1883         blk_cleanup_queue(q);
1884 err_hctxs:
1885         kfree(map);
1886         for (i = 0; i < set->nr_hw_queues; i++) {
1887                 if (!hctxs[i])
1888                         break;
1889                 free_cpumask_var(hctxs[i]->cpumask);
1890                 kfree(hctxs[i]);
1891         }
1892 err_map:
1893         kfree(hctxs);
1894 err_percpu:
1895         free_percpu(ctx);
1896         return ERR_PTR(-ENOMEM);
1897 }
1898 EXPORT_SYMBOL(blk_mq_init_queue);
1899
1900 void blk_mq_free_queue(struct request_queue *q)
1901 {
1902         struct blk_mq_tag_set   *set = q->tag_set;
1903
1904         blk_mq_del_queue_tag_set(q);
1905
1906         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1907         blk_mq_free_hw_queues(q, set);
1908
1909         percpu_counter_destroy(&q->mq_usage_counter);
1910
1911         free_percpu(q->queue_ctx);
1912         kfree(q->queue_hw_ctx);
1913         kfree(q->mq_map);
1914
1915         q->queue_ctx = NULL;
1916         q->queue_hw_ctx = NULL;
1917         q->mq_map = NULL;
1918
1919         mutex_lock(&all_q_mutex);
1920         list_del_init(&q->all_q_node);
1921         mutex_unlock(&all_q_mutex);
1922 }
1923
1924 /* Basically redo blk_mq_init_queue with queue frozen */
1925 static void blk_mq_queue_reinit(struct request_queue *q)
1926 {
1927         blk_mq_freeze_queue(q);
1928
1929         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1930
1931         /*
1932          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1933          * we should change hctx numa_node according to new topology (this
1934          * involves free and re-allocate memory, worthy doing?)
1935          */
1936
1937         blk_mq_map_swqueue(q);
1938
1939         blk_mq_unfreeze_queue(q);
1940 }
1941
1942 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1943                                       unsigned long action, void *hcpu)
1944 {
1945         struct request_queue *q;
1946
1947         /*
1948          * Before new mappings are established, hotadded cpu might already
1949          * start handling requests. This doesn't break anything as we map
1950          * offline CPUs to first hardware queue. We will re-init the queue
1951          * below to get optimal settings.
1952          */
1953         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1954             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1955                 return NOTIFY_OK;
1956
1957         mutex_lock(&all_q_mutex);
1958         list_for_each_entry(q, &all_q_list, all_q_node)
1959                 blk_mq_queue_reinit(q);
1960         mutex_unlock(&all_q_mutex);
1961         return NOTIFY_OK;
1962 }
1963
1964 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1965 {
1966         int i;
1967
1968         if (!set->nr_hw_queues)
1969                 return -EINVAL;
1970         if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1971                 return -EINVAL;
1972         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1973                 return -EINVAL;
1974
1975         if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1976                 return -EINVAL;
1977
1978
1979         set->tags = kmalloc_node(set->nr_hw_queues *
1980                                  sizeof(struct blk_mq_tags *),
1981                                  GFP_KERNEL, set->numa_node);
1982         if (!set->tags)
1983                 goto out;
1984
1985         for (i = 0; i < set->nr_hw_queues; i++) {
1986                 set->tags[i] = blk_mq_init_rq_map(set, i);
1987                 if (!set->tags[i])
1988                         goto out_unwind;
1989         }
1990
1991         mutex_init(&set->tag_list_lock);
1992         INIT_LIST_HEAD(&set->tag_list);
1993
1994         return 0;
1995
1996 out_unwind:
1997         while (--i >= 0)
1998                 blk_mq_free_rq_map(set, set->tags[i], i);
1999 out:
2000         return -ENOMEM;
2001 }
2002 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2003
2004 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2005 {
2006         int i;
2007
2008         for (i = 0; i < set->nr_hw_queues; i++) {
2009                 if (set->tags[i])
2010                         blk_mq_free_rq_map(set, set->tags[i], i);
2011         }
2012
2013         kfree(set->tags);
2014 }
2015 EXPORT_SYMBOL(blk_mq_free_tag_set);
2016
2017 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2018 {
2019         struct blk_mq_tag_set *set = q->tag_set;
2020         struct blk_mq_hw_ctx *hctx;
2021         int i, ret;
2022
2023         if (!set || nr > set->queue_depth)
2024                 return -EINVAL;
2025
2026         ret = 0;
2027         queue_for_each_hw_ctx(q, hctx, i) {
2028                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2029                 if (ret)
2030                         break;
2031         }
2032
2033         if (!ret)
2034                 q->nr_requests = nr;
2035
2036         return ret;
2037 }
2038
2039 void blk_mq_disable_hotplug(void)
2040 {
2041         mutex_lock(&all_q_mutex);
2042 }
2043
2044 void blk_mq_enable_hotplug(void)
2045 {
2046         mutex_unlock(&all_q_mutex);
2047 }
2048
2049 static int __init blk_mq_init(void)
2050 {
2051         blk_mq_cpu_init();
2052
2053         /* Must be called after percpu_counter_hotcpu_callback() */
2054         hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2055
2056         return 0;
2057 }
2058 subsys_initcall(blk_mq_init);