]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: Fix poll_stat for new size-based bucketing.
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47         int ddir, bytes, bucket;
48
49         ddir = blk_stat_rq_ddir(rq);
50         bytes = blk_rq_bytes(rq);
51
52         bucket = ddir + 2*(ilog2(bytes) - 9);
53
54         if (bucket < 0)
55                 return -1;
56         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59         return bucket;
60 }
61
62 /*
63  * Check if any of the ctx's have pending work in this hardware queue
64  */
65 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67         return sbitmap_any_bit_set(&hctx->ctx_map) ||
68                         !list_empty_careful(&hctx->dispatch) ||
69                         blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76                                      struct blk_mq_ctx *ctx)
77 {
78         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83                                       struct blk_mq_ctx *ctx)
84 {
85         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87
88 void blk_freeze_queue_start(struct request_queue *q)
89 {
90         int freeze_depth;
91
92         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
93         if (freeze_depth == 1) {
94                 percpu_ref_kill(&q->q_usage_counter);
95                 blk_mq_run_hw_queues(q, false);
96         }
97 }
98 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
99
100 void blk_mq_freeze_queue_wait(struct request_queue *q)
101 {
102         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
103 }
104 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
105
106 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
107                                      unsigned long timeout)
108 {
109         return wait_event_timeout(q->mq_freeze_wq,
110                                         percpu_ref_is_zero(&q->q_usage_counter),
111                                         timeout);
112 }
113 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
114
115 /*
116  * Guarantee no request is in use, so we can change any data structure of
117  * the queue afterward.
118  */
119 void blk_freeze_queue(struct request_queue *q)
120 {
121         /*
122          * In the !blk_mq case we are only calling this to kill the
123          * q_usage_counter, otherwise this increases the freeze depth
124          * and waits for it to return to zero.  For this reason there is
125          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
126          * exported to drivers as the only user for unfreeze is blk_mq.
127          */
128         blk_freeze_queue_start(q);
129         blk_mq_freeze_queue_wait(q);
130 }
131
132 void blk_mq_freeze_queue(struct request_queue *q)
133 {
134         /*
135          * ...just an alias to keep freeze and unfreeze actions balanced
136          * in the blk_mq_* namespace
137          */
138         blk_freeze_queue(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144         int freeze_depth;
145
146         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147         WARN_ON_ONCE(freeze_depth < 0);
148         if (!freeze_depth) {
149                 percpu_ref_reinit(&q->q_usage_counter);
150                 wake_up_all(&q->mq_freeze_wq);
151         }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 /**
156  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
157  * @q: request queue.
158  *
159  * Note: this function does not prevent that the struct request end_io()
160  * callback function is invoked. Additionally, it is not prevented that
161  * new queue_rq() calls occur unless the queue has been stopped first.
162  */
163 void blk_mq_quiesce_queue(struct request_queue *q)
164 {
165         struct blk_mq_hw_ctx *hctx;
166         unsigned int i;
167         bool rcu = false;
168
169         blk_mq_stop_hw_queues(q);
170
171         queue_for_each_hw_ctx(q, hctx, i) {
172                 if (hctx->flags & BLK_MQ_F_BLOCKING)
173                         synchronize_srcu(&hctx->queue_rq_srcu);
174                 else
175                         rcu = true;
176         }
177         if (rcu)
178                 synchronize_rcu();
179 }
180 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
181
182 void blk_mq_wake_waiters(struct request_queue *q)
183 {
184         struct blk_mq_hw_ctx *hctx;
185         unsigned int i;
186
187         queue_for_each_hw_ctx(q, hctx, i)
188                 if (blk_mq_hw_queue_mapped(hctx))
189                         blk_mq_tag_wakeup_all(hctx->tags, true);
190
191         /*
192          * If we are called because the queue has now been marked as
193          * dying, we need to ensure that processes currently waiting on
194          * the queue are notified as well.
195          */
196         wake_up_all(&q->mq_freeze_wq);
197 }
198
199 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
200 {
201         return blk_mq_has_free_tags(hctx->tags);
202 }
203 EXPORT_SYMBOL(blk_mq_can_queue);
204
205 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
206                         struct request *rq, unsigned int op)
207 {
208         INIT_LIST_HEAD(&rq->queuelist);
209         /* csd/requeue_work/fifo_time is initialized before use */
210         rq->q = q;
211         rq->mq_ctx = ctx;
212         rq->cmd_flags = op;
213         if (blk_queue_io_stat(q))
214                 rq->rq_flags |= RQF_IO_STAT;
215         /* do not touch atomic flags, it needs atomic ops against the timer */
216         rq->cpu = -1;
217         INIT_HLIST_NODE(&rq->hash);
218         RB_CLEAR_NODE(&rq->rb_node);
219         rq->rq_disk = NULL;
220         rq->part = NULL;
221         rq->start_time = jiffies;
222 #ifdef CONFIG_BLK_CGROUP
223         rq->rl = NULL;
224         set_start_time_ns(rq);
225         rq->io_start_time_ns = 0;
226 #endif
227         rq->nr_phys_segments = 0;
228 #if defined(CONFIG_BLK_DEV_INTEGRITY)
229         rq->nr_integrity_segments = 0;
230 #endif
231         rq->special = NULL;
232         /* tag was already set */
233         rq->extra_len = 0;
234
235         INIT_LIST_HEAD(&rq->timeout_list);
236         rq->timeout = 0;
237
238         rq->end_io = NULL;
239         rq->end_io_data = NULL;
240         rq->next_rq = NULL;
241
242         ctx->rq_dispatched[op_is_sync(op)]++;
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
245
246 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
247                                        unsigned int op)
248 {
249         struct request *rq;
250         unsigned int tag;
251
252         tag = blk_mq_get_tag(data);
253         if (tag != BLK_MQ_TAG_FAIL) {
254                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
255
256                 rq = tags->static_rqs[tag];
257
258                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
259                         rq->tag = -1;
260                         rq->internal_tag = tag;
261                 } else {
262                         if (blk_mq_tag_busy(data->hctx)) {
263                                 rq->rq_flags = RQF_MQ_INFLIGHT;
264                                 atomic_inc(&data->hctx->nr_active);
265                         }
266                         rq->tag = tag;
267                         rq->internal_tag = -1;
268                         data->hctx->tags->rqs[rq->tag] = rq;
269                 }
270
271                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
272                 return rq;
273         }
274
275         return NULL;
276 }
277 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
278
279 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
280                 unsigned int flags)
281 {
282         struct blk_mq_alloc_data alloc_data = { .flags = flags };
283         struct request *rq;
284         int ret;
285
286         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
287         if (ret)
288                 return ERR_PTR(ret);
289
290         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
291
292         blk_mq_put_ctx(alloc_data.ctx);
293         blk_queue_exit(q);
294
295         if (!rq)
296                 return ERR_PTR(-EWOULDBLOCK);
297
298         rq->__data_len = 0;
299         rq->__sector = (sector_t) -1;
300         rq->bio = rq->biotail = NULL;
301         return rq;
302 }
303 EXPORT_SYMBOL(blk_mq_alloc_request);
304
305 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
306                 unsigned int flags, unsigned int hctx_idx)
307 {
308         struct blk_mq_alloc_data alloc_data = { .flags = flags };
309         struct request *rq;
310         unsigned int cpu;
311         int ret;
312
313         /*
314          * If the tag allocator sleeps we could get an allocation for a
315          * different hardware context.  No need to complicate the low level
316          * allocator for this for the rare use case of a command tied to
317          * a specific queue.
318          */
319         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
320                 return ERR_PTR(-EINVAL);
321
322         if (hctx_idx >= q->nr_hw_queues)
323                 return ERR_PTR(-EIO);
324
325         ret = blk_queue_enter(q, true);
326         if (ret)
327                 return ERR_PTR(ret);
328
329         /*
330          * Check if the hardware context is actually mapped to anything.
331          * If not tell the caller that it should skip this queue.
332          */
333         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
334         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
335                 blk_queue_exit(q);
336                 return ERR_PTR(-EXDEV);
337         }
338         cpu = cpumask_first(alloc_data.hctx->cpumask);
339         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
340
341         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
342
343         blk_queue_exit(q);
344
345         if (!rq)
346                 return ERR_PTR(-EWOULDBLOCK);
347
348         return rq;
349 }
350 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
351
352 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
353                              struct request *rq)
354 {
355         const int sched_tag = rq->internal_tag;
356         struct request_queue *q = rq->q;
357
358         if (rq->rq_flags & RQF_MQ_INFLIGHT)
359                 atomic_dec(&hctx->nr_active);
360
361         wbt_done(q->rq_wb, &rq->issue_stat);
362         rq->rq_flags = 0;
363
364         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
365         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
366         if (rq->tag != -1)
367                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
368         if (sched_tag != -1)
369                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
370         blk_mq_sched_restart(hctx);
371         blk_queue_exit(q);
372 }
373
374 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
375                                      struct request *rq)
376 {
377         struct blk_mq_ctx *ctx = rq->mq_ctx;
378
379         ctx->rq_completed[rq_is_sync(rq)]++;
380         __blk_mq_finish_request(hctx, ctx, rq);
381 }
382
383 void blk_mq_finish_request(struct request *rq)
384 {
385         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
386 }
387 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
388
389 void blk_mq_free_request(struct request *rq)
390 {
391         blk_mq_sched_put_request(rq);
392 }
393 EXPORT_SYMBOL_GPL(blk_mq_free_request);
394
395 inline void __blk_mq_end_request(struct request *rq, int error)
396 {
397         blk_account_io_done(rq);
398
399         if (rq->end_io) {
400                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
401                 rq->end_io(rq, error);
402         } else {
403                 if (unlikely(blk_bidi_rq(rq)))
404                         blk_mq_free_request(rq->next_rq);
405                 blk_mq_free_request(rq);
406         }
407 }
408 EXPORT_SYMBOL(__blk_mq_end_request);
409
410 void blk_mq_end_request(struct request *rq, int error)
411 {
412         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
413                 BUG();
414         __blk_mq_end_request(rq, error);
415 }
416 EXPORT_SYMBOL(blk_mq_end_request);
417
418 static void __blk_mq_complete_request_remote(void *data)
419 {
420         struct request *rq = data;
421
422         rq->q->softirq_done_fn(rq);
423 }
424
425 static void __blk_mq_complete_request(struct request *rq)
426 {
427         struct blk_mq_ctx *ctx = rq->mq_ctx;
428         bool shared = false;
429         int cpu;
430
431         if (rq->internal_tag != -1)
432                 blk_mq_sched_completed_request(rq);
433         if (rq->rq_flags & RQF_STATS) {
434                 blk_mq_poll_stats_start(rq->q);
435                 blk_stat_add(rq);
436         }
437
438         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
439                 rq->q->softirq_done_fn(rq);
440                 return;
441         }
442
443         cpu = get_cpu();
444         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
445                 shared = cpus_share_cache(cpu, ctx->cpu);
446
447         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
448                 rq->csd.func = __blk_mq_complete_request_remote;
449                 rq->csd.info = rq;
450                 rq->csd.flags = 0;
451                 smp_call_function_single_async(ctx->cpu, &rq->csd);
452         } else {
453                 rq->q->softirq_done_fn(rq);
454         }
455         put_cpu();
456 }
457
458 /**
459  * blk_mq_complete_request - end I/O on a request
460  * @rq:         the request being processed
461  *
462  * Description:
463  *      Ends all I/O on a request. It does not handle partial completions.
464  *      The actual completion happens out-of-order, through a IPI handler.
465  **/
466 void blk_mq_complete_request(struct request *rq)
467 {
468         struct request_queue *q = rq->q;
469
470         if (unlikely(blk_should_fake_timeout(q)))
471                 return;
472         if (!blk_mark_rq_complete(rq))
473                 __blk_mq_complete_request(rq);
474 }
475 EXPORT_SYMBOL(blk_mq_complete_request);
476
477 int blk_mq_request_started(struct request *rq)
478 {
479         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
480 }
481 EXPORT_SYMBOL_GPL(blk_mq_request_started);
482
483 void blk_mq_start_request(struct request *rq)
484 {
485         struct request_queue *q = rq->q;
486
487         blk_mq_sched_started_request(rq);
488
489         trace_block_rq_issue(q, rq);
490
491         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
492                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
493                 rq->rq_flags |= RQF_STATS;
494                 wbt_issue(q->rq_wb, &rq->issue_stat);
495         }
496
497         blk_add_timer(rq);
498
499         /*
500          * Ensure that ->deadline is visible before set the started
501          * flag and clear the completed flag.
502          */
503         smp_mb__before_atomic();
504
505         /*
506          * Mark us as started and clear complete. Complete might have been
507          * set if requeue raced with timeout, which then marked it as
508          * complete. So be sure to clear complete again when we start
509          * the request, otherwise we'll ignore the completion event.
510          */
511         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
512                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
513         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
514                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
515
516         if (q->dma_drain_size && blk_rq_bytes(rq)) {
517                 /*
518                  * Make sure space for the drain appears.  We know we can do
519                  * this because max_hw_segments has been adjusted to be one
520                  * fewer than the device can handle.
521                  */
522                 rq->nr_phys_segments++;
523         }
524 }
525 EXPORT_SYMBOL(blk_mq_start_request);
526
527 /*
528  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
529  * flag isn't set yet, so there may be race with timeout handler,
530  * but given rq->deadline is just set in .queue_rq() under
531  * this situation, the race won't be possible in reality because
532  * rq->timeout should be set as big enough to cover the window
533  * between blk_mq_start_request() called from .queue_rq() and
534  * clearing REQ_ATOM_STARTED here.
535  */
536 static void __blk_mq_requeue_request(struct request *rq)
537 {
538         struct request_queue *q = rq->q;
539
540         trace_block_rq_requeue(q, rq);
541         wbt_requeue(q->rq_wb, &rq->issue_stat);
542         blk_mq_sched_requeue_request(rq);
543
544         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
545                 if (q->dma_drain_size && blk_rq_bytes(rq))
546                         rq->nr_phys_segments--;
547         }
548 }
549
550 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
551 {
552         __blk_mq_requeue_request(rq);
553
554         BUG_ON(blk_queued_rq(rq));
555         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
556 }
557 EXPORT_SYMBOL(blk_mq_requeue_request);
558
559 static void blk_mq_requeue_work(struct work_struct *work)
560 {
561         struct request_queue *q =
562                 container_of(work, struct request_queue, requeue_work.work);
563         LIST_HEAD(rq_list);
564         struct request *rq, *next;
565         unsigned long flags;
566
567         spin_lock_irqsave(&q->requeue_lock, flags);
568         list_splice_init(&q->requeue_list, &rq_list);
569         spin_unlock_irqrestore(&q->requeue_lock, flags);
570
571         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
572                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
573                         continue;
574
575                 rq->rq_flags &= ~RQF_SOFTBARRIER;
576                 list_del_init(&rq->queuelist);
577                 blk_mq_sched_insert_request(rq, true, false, false, true);
578         }
579
580         while (!list_empty(&rq_list)) {
581                 rq = list_entry(rq_list.next, struct request, queuelist);
582                 list_del_init(&rq->queuelist);
583                 blk_mq_sched_insert_request(rq, false, false, false, true);
584         }
585
586         blk_mq_run_hw_queues(q, false);
587 }
588
589 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
590                                 bool kick_requeue_list)
591 {
592         struct request_queue *q = rq->q;
593         unsigned long flags;
594
595         /*
596          * We abuse this flag that is otherwise used by the I/O scheduler to
597          * request head insertation from the workqueue.
598          */
599         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
600
601         spin_lock_irqsave(&q->requeue_lock, flags);
602         if (at_head) {
603                 rq->rq_flags |= RQF_SOFTBARRIER;
604                 list_add(&rq->queuelist, &q->requeue_list);
605         } else {
606                 list_add_tail(&rq->queuelist, &q->requeue_list);
607         }
608         spin_unlock_irqrestore(&q->requeue_lock, flags);
609
610         if (kick_requeue_list)
611                 blk_mq_kick_requeue_list(q);
612 }
613 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
614
615 void blk_mq_kick_requeue_list(struct request_queue *q)
616 {
617         kblockd_schedule_delayed_work(&q->requeue_work, 0);
618 }
619 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
620
621 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
622                                     unsigned long msecs)
623 {
624         kblockd_schedule_delayed_work(&q->requeue_work,
625                                       msecs_to_jiffies(msecs));
626 }
627 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
628
629 void blk_mq_abort_requeue_list(struct request_queue *q)
630 {
631         unsigned long flags;
632         LIST_HEAD(rq_list);
633
634         spin_lock_irqsave(&q->requeue_lock, flags);
635         list_splice_init(&q->requeue_list, &rq_list);
636         spin_unlock_irqrestore(&q->requeue_lock, flags);
637
638         while (!list_empty(&rq_list)) {
639                 struct request *rq;
640
641                 rq = list_first_entry(&rq_list, struct request, queuelist);
642                 list_del_init(&rq->queuelist);
643                 blk_mq_end_request(rq, -EIO);
644         }
645 }
646 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
648 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649 {
650         if (tag < tags->nr_tags) {
651                 prefetch(tags->rqs[tag]);
652                 return tags->rqs[tag];
653         }
654
655         return NULL;
656 }
657 EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
659 struct blk_mq_timeout_data {
660         unsigned long next;
661         unsigned int next_set;
662 };
663
664 void blk_mq_rq_timed_out(struct request *req, bool reserved)
665 {
666         const struct blk_mq_ops *ops = req->q->mq_ops;
667         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668
669         /*
670          * We know that complete is set at this point. If STARTED isn't set
671          * anymore, then the request isn't active and the "timeout" should
672          * just be ignored. This can happen due to the bitflag ordering.
673          * Timeout first checks if STARTED is set, and if it is, assumes
674          * the request is active. But if we race with completion, then
675          * both flags will get cleared. So check here again, and ignore
676          * a timeout event with a request that isn't active.
677          */
678         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679                 return;
680
681         if (ops->timeout)
682                 ret = ops->timeout(req, reserved);
683
684         switch (ret) {
685         case BLK_EH_HANDLED:
686                 __blk_mq_complete_request(req);
687                 break;
688         case BLK_EH_RESET_TIMER:
689                 blk_add_timer(req);
690                 blk_clear_rq_complete(req);
691                 break;
692         case BLK_EH_NOT_HANDLED:
693                 break;
694         default:
695                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696                 break;
697         }
698 }
699
700 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701                 struct request *rq, void *priv, bool reserved)
702 {
703         struct blk_mq_timeout_data *data = priv;
704
705         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706                 return;
707
708         /*
709          * The rq being checked may have been freed and reallocated
710          * out already here, we avoid this race by checking rq->deadline
711          * and REQ_ATOM_COMPLETE flag together:
712          *
713          * - if rq->deadline is observed as new value because of
714          *   reusing, the rq won't be timed out because of timing.
715          * - if rq->deadline is observed as previous value,
716          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717          *   because we put a barrier between setting rq->deadline
718          *   and clearing the flag in blk_mq_start_request(), so
719          *   this rq won't be timed out too.
720          */
721         if (time_after_eq(jiffies, rq->deadline)) {
722                 if (!blk_mark_rq_complete(rq))
723                         blk_mq_rq_timed_out(rq, reserved);
724         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725                 data->next = rq->deadline;
726                 data->next_set = 1;
727         }
728 }
729
730 static void blk_mq_timeout_work(struct work_struct *work)
731 {
732         struct request_queue *q =
733                 container_of(work, struct request_queue, timeout_work);
734         struct blk_mq_timeout_data data = {
735                 .next           = 0,
736                 .next_set       = 0,
737         };
738         int i;
739
740         /* A deadlock might occur if a request is stuck requiring a
741          * timeout at the same time a queue freeze is waiting
742          * completion, since the timeout code would not be able to
743          * acquire the queue reference here.
744          *
745          * That's why we don't use blk_queue_enter here; instead, we use
746          * percpu_ref_tryget directly, because we need to be able to
747          * obtain a reference even in the short window between the queue
748          * starting to freeze, by dropping the first reference in
749          * blk_freeze_queue_start, and the moment the last request is
750          * consumed, marked by the instant q_usage_counter reaches
751          * zero.
752          */
753         if (!percpu_ref_tryget(&q->q_usage_counter))
754                 return;
755
756         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757
758         if (data.next_set) {
759                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760                 mod_timer(&q->timeout, data.next);
761         } else {
762                 struct blk_mq_hw_ctx *hctx;
763
764                 queue_for_each_hw_ctx(q, hctx, i) {
765                         /* the hctx may be unmapped, so check it here */
766                         if (blk_mq_hw_queue_mapped(hctx))
767                                 blk_mq_tag_idle(hctx);
768                 }
769         }
770         blk_queue_exit(q);
771 }
772
773 /*
774  * Reverse check our software queue for entries that we could potentially
775  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776  * too much time checking for merges.
777  */
778 static bool blk_mq_attempt_merge(struct request_queue *q,
779                                  struct blk_mq_ctx *ctx, struct bio *bio)
780 {
781         struct request *rq;
782         int checked = 8;
783
784         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785                 bool merged = false;
786
787                 if (!checked--)
788                         break;
789
790                 if (!blk_rq_merge_ok(rq, bio))
791                         continue;
792
793                 switch (blk_try_merge(rq, bio)) {
794                 case ELEVATOR_BACK_MERGE:
795                         if (blk_mq_sched_allow_merge(q, rq, bio))
796                                 merged = bio_attempt_back_merge(q, rq, bio);
797                         break;
798                 case ELEVATOR_FRONT_MERGE:
799                         if (blk_mq_sched_allow_merge(q, rq, bio))
800                                 merged = bio_attempt_front_merge(q, rq, bio);
801                         break;
802                 case ELEVATOR_DISCARD_MERGE:
803                         merged = bio_attempt_discard_merge(q, rq, bio);
804                         break;
805                 default:
806                         continue;
807                 }
808
809                 if (merged)
810                         ctx->rq_merged++;
811                 return merged;
812         }
813
814         return false;
815 }
816
817 struct flush_busy_ctx_data {
818         struct blk_mq_hw_ctx *hctx;
819         struct list_head *list;
820 };
821
822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 {
824         struct flush_busy_ctx_data *flush_data = data;
825         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828         sbitmap_clear_bit(sb, bitnr);
829         spin_lock(&ctx->lock);
830         list_splice_tail_init(&ctx->rq_list, flush_data->list);
831         spin_unlock(&ctx->lock);
832         return true;
833 }
834
835 /*
836  * Process software queues that have been marked busy, splicing them
837  * to the for-dispatch
838  */
839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 {
841         struct flush_busy_ctx_data data = {
842                 .hctx = hctx,
843                 .list = list,
844         };
845
846         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 }
848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849
850 static inline unsigned int queued_to_index(unsigned int queued)
851 {
852         if (!queued)
853                 return 0;
854
855         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 }
857
858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859                            bool wait)
860 {
861         struct blk_mq_alloc_data data = {
862                 .q = rq->q,
863                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865         };
866
867         if (rq->tag != -1)
868                 goto done;
869
870         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
871                 data.flags |= BLK_MQ_REQ_RESERVED;
872
873         rq->tag = blk_mq_get_tag(&data);
874         if (rq->tag >= 0) {
875                 if (blk_mq_tag_busy(data.hctx)) {
876                         rq->rq_flags |= RQF_MQ_INFLIGHT;
877                         atomic_inc(&data.hctx->nr_active);
878                 }
879                 data.hctx->tags->rqs[rq->tag] = rq;
880         }
881
882 done:
883         if (hctx)
884                 *hctx = data.hctx;
885         return rq->tag != -1;
886 }
887
888 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
889                                     struct request *rq)
890 {
891         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
892         rq->tag = -1;
893
894         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
895                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
896                 atomic_dec(&hctx->nr_active);
897         }
898 }
899
900 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
901                                        struct request *rq)
902 {
903         if (rq->tag == -1 || rq->internal_tag == -1)
904                 return;
905
906         __blk_mq_put_driver_tag(hctx, rq);
907 }
908
909 static void blk_mq_put_driver_tag(struct request *rq)
910 {
911         struct blk_mq_hw_ctx *hctx;
912
913         if (rq->tag == -1 || rq->internal_tag == -1)
914                 return;
915
916         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
917         __blk_mq_put_driver_tag(hctx, rq);
918 }
919
920 /*
921  * If we fail getting a driver tag because all the driver tags are already
922  * assigned and on the dispatch list, BUT the first entry does not have a
923  * tag, then we could deadlock. For that case, move entries with assigned
924  * driver tags to the front, leaving the set of tagged requests in the
925  * same order, and the untagged set in the same order.
926  */
927 static bool reorder_tags_to_front(struct list_head *list)
928 {
929         struct request *rq, *tmp, *first = NULL;
930
931         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
932                 if (rq == first)
933                         break;
934                 if (rq->tag != -1) {
935                         list_move(&rq->queuelist, list);
936                         if (!first)
937                                 first = rq;
938                 }
939         }
940
941         return first != NULL;
942 }
943
944 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
945                                 void *key)
946 {
947         struct blk_mq_hw_ctx *hctx;
948
949         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
950
951         list_del(&wait->task_list);
952         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
953         blk_mq_run_hw_queue(hctx, true);
954         return 1;
955 }
956
957 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
958 {
959         struct sbq_wait_state *ws;
960
961         /*
962          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
963          * The thread which wins the race to grab this bit adds the hardware
964          * queue to the wait queue.
965          */
966         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
967             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
968                 return false;
969
970         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
971         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
972
973         /*
974          * As soon as this returns, it's no longer safe to fiddle with
975          * hctx->dispatch_wait, since a completion can wake up the wait queue
976          * and unlock the bit.
977          */
978         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
979         return true;
980 }
981
982 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
983 {
984         struct blk_mq_hw_ctx *hctx;
985         struct request *rq;
986         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
987
988         if (list_empty(list))
989                 return false;
990
991         /*
992          * Now process all the entries, sending them to the driver.
993          */
994         errors = queued = 0;
995         do {
996                 struct blk_mq_queue_data bd;
997
998                 rq = list_first_entry(list, struct request, queuelist);
999                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1000                         if (!queued && reorder_tags_to_front(list))
1001                                 continue;
1002
1003                         /*
1004                          * The initial allocation attempt failed, so we need to
1005                          * rerun the hardware queue when a tag is freed.
1006                          */
1007                         if (!blk_mq_dispatch_wait_add(hctx))
1008                                 break;
1009
1010                         /*
1011                          * It's possible that a tag was freed in the window
1012                          * between the allocation failure and adding the
1013                          * hardware queue to the wait queue.
1014                          */
1015                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1016                                 break;
1017                 }
1018
1019                 list_del_init(&rq->queuelist);
1020
1021                 bd.rq = rq;
1022
1023                 /*
1024                  * Flag last if we have no more requests, or if we have more
1025                  * but can't assign a driver tag to it.
1026                  */
1027                 if (list_empty(list))
1028                         bd.last = true;
1029                 else {
1030                         struct request *nxt;
1031
1032                         nxt = list_first_entry(list, struct request, queuelist);
1033                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034                 }
1035
1036                 ret = q->mq_ops->queue_rq(hctx, &bd);
1037                 switch (ret) {
1038                 case BLK_MQ_RQ_QUEUE_OK:
1039                         queued++;
1040                         break;
1041                 case BLK_MQ_RQ_QUEUE_BUSY:
1042                         blk_mq_put_driver_tag_hctx(hctx, rq);
1043                         list_add(&rq->queuelist, list);
1044                         __blk_mq_requeue_request(rq);
1045                         break;
1046                 default:
1047                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1048                 case BLK_MQ_RQ_QUEUE_ERROR:
1049                         errors++;
1050                         blk_mq_end_request(rq, -EIO);
1051                         break;
1052                 }
1053
1054                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1055                         break;
1056         } while (!list_empty(list));
1057
1058         hctx->dispatched[queued_to_index(queued)]++;
1059
1060         /*
1061          * Any items that need requeuing? Stuff them into hctx->dispatch,
1062          * that is where we will continue on next queue run.
1063          */
1064         if (!list_empty(list)) {
1065                 /*
1066                  * If an I/O scheduler has been configured and we got a driver
1067                  * tag for the next request already, free it again.
1068                  */
1069                 rq = list_first_entry(list, struct request, queuelist);
1070                 blk_mq_put_driver_tag(rq);
1071
1072                 spin_lock(&hctx->lock);
1073                 list_splice_init(list, &hctx->dispatch);
1074                 spin_unlock(&hctx->lock);
1075
1076                 /*
1077                  * If SCHED_RESTART was set by the caller of this function and
1078                  * it is no longer set that means that it was cleared by another
1079                  * thread and hence that a queue rerun is needed.
1080                  *
1081                  * If TAG_WAITING is set that means that an I/O scheduler has
1082                  * been configured and another thread is waiting for a driver
1083                  * tag. To guarantee fairness, do not rerun this hardware queue
1084                  * but let the other thread grab the driver tag.
1085                  *
1086                  * If no I/O scheduler has been configured it is possible that
1087                  * the hardware queue got stopped and restarted before requests
1088                  * were pushed back onto the dispatch list. Rerun the queue to
1089                  * avoid starvation. Notes:
1090                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1091                  *   been stopped before rerunning a queue.
1092                  * - Some but not all block drivers stop a queue before
1093                  *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1094                  *   and dm-rq.
1095                  */
1096                 if (!blk_mq_sched_needs_restart(hctx) &&
1097                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1098                         blk_mq_run_hw_queue(hctx, true);
1099         }
1100
1101         return (queued + errors) != 0;
1102 }
1103
1104 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1105 {
1106         int srcu_idx;
1107
1108         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1109                 cpu_online(hctx->next_cpu));
1110
1111         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1112                 rcu_read_lock();
1113                 blk_mq_sched_dispatch_requests(hctx);
1114                 rcu_read_unlock();
1115         } else {
1116                 might_sleep();
1117
1118                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1119                 blk_mq_sched_dispatch_requests(hctx);
1120                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1121         }
1122 }
1123
1124 /*
1125  * It'd be great if the workqueue API had a way to pass
1126  * in a mask and had some smarts for more clever placement.
1127  * For now we just round-robin here, switching for every
1128  * BLK_MQ_CPU_WORK_BATCH queued items.
1129  */
1130 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1131 {
1132         if (hctx->queue->nr_hw_queues == 1)
1133                 return WORK_CPU_UNBOUND;
1134
1135         if (--hctx->next_cpu_batch <= 0) {
1136                 int next_cpu;
1137
1138                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1139                 if (next_cpu >= nr_cpu_ids)
1140                         next_cpu = cpumask_first(hctx->cpumask);
1141
1142                 hctx->next_cpu = next_cpu;
1143                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1144         }
1145
1146         return hctx->next_cpu;
1147 }
1148
1149 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1150                                         unsigned long msecs)
1151 {
1152         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1153                      !blk_mq_hw_queue_mapped(hctx)))
1154                 return;
1155
1156         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1157                 int cpu = get_cpu();
1158                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1159                         __blk_mq_run_hw_queue(hctx);
1160                         put_cpu();
1161                         return;
1162                 }
1163
1164                 put_cpu();
1165         }
1166
1167         if (msecs == 0)
1168                 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1169                                          &hctx->run_work);
1170         else
1171                 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1172                                                  &hctx->delayed_run_work,
1173                                                  msecs_to_jiffies(msecs));
1174 }
1175
1176 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1177 {
1178         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1179 }
1180 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1181
1182 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1183 {
1184         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1185 }
1186 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1187
1188 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1189 {
1190         struct blk_mq_hw_ctx *hctx;
1191         int i;
1192
1193         queue_for_each_hw_ctx(q, hctx, i) {
1194                 if (!blk_mq_hctx_has_pending(hctx) ||
1195                     blk_mq_hctx_stopped(hctx))
1196                         continue;
1197
1198                 blk_mq_run_hw_queue(hctx, async);
1199         }
1200 }
1201 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1202
1203 /**
1204  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1205  * @q: request queue.
1206  *
1207  * The caller is responsible for serializing this function against
1208  * blk_mq_{start,stop}_hw_queue().
1209  */
1210 bool blk_mq_queue_stopped(struct request_queue *q)
1211 {
1212         struct blk_mq_hw_ctx *hctx;
1213         int i;
1214
1215         queue_for_each_hw_ctx(q, hctx, i)
1216                 if (blk_mq_hctx_stopped(hctx))
1217                         return true;
1218
1219         return false;
1220 }
1221 EXPORT_SYMBOL(blk_mq_queue_stopped);
1222
1223 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1224 {
1225         cancel_work(&hctx->run_work);
1226         cancel_delayed_work(&hctx->delay_work);
1227         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1228 }
1229 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1230
1231 void blk_mq_stop_hw_queues(struct request_queue *q)
1232 {
1233         struct blk_mq_hw_ctx *hctx;
1234         int i;
1235
1236         queue_for_each_hw_ctx(q, hctx, i)
1237                 blk_mq_stop_hw_queue(hctx);
1238 }
1239 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1240
1241 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1242 {
1243         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1244
1245         blk_mq_run_hw_queue(hctx, false);
1246 }
1247 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1248
1249 void blk_mq_start_hw_queues(struct request_queue *q)
1250 {
1251         struct blk_mq_hw_ctx *hctx;
1252         int i;
1253
1254         queue_for_each_hw_ctx(q, hctx, i)
1255                 blk_mq_start_hw_queue(hctx);
1256 }
1257 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1258
1259 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1260 {
1261         if (!blk_mq_hctx_stopped(hctx))
1262                 return;
1263
1264         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1265         blk_mq_run_hw_queue(hctx, async);
1266 }
1267 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1268
1269 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1270 {
1271         struct blk_mq_hw_ctx *hctx;
1272         int i;
1273
1274         queue_for_each_hw_ctx(q, hctx, i)
1275                 blk_mq_start_stopped_hw_queue(hctx, async);
1276 }
1277 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1278
1279 static void blk_mq_run_work_fn(struct work_struct *work)
1280 {
1281         struct blk_mq_hw_ctx *hctx;
1282
1283         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1284
1285         __blk_mq_run_hw_queue(hctx);
1286 }
1287
1288 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1289 {
1290         struct blk_mq_hw_ctx *hctx;
1291
1292         hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1293
1294         __blk_mq_run_hw_queue(hctx);
1295 }
1296
1297 static void blk_mq_delay_work_fn(struct work_struct *work)
1298 {
1299         struct blk_mq_hw_ctx *hctx;
1300
1301         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1302
1303         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1304                 __blk_mq_run_hw_queue(hctx);
1305 }
1306
1307 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1308 {
1309         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1310                 return;
1311
1312         blk_mq_stop_hw_queue(hctx);
1313         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1314                         &hctx->delay_work, msecs_to_jiffies(msecs));
1315 }
1316 EXPORT_SYMBOL(blk_mq_delay_queue);
1317
1318 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1319                                             struct request *rq,
1320                                             bool at_head)
1321 {
1322         struct blk_mq_ctx *ctx = rq->mq_ctx;
1323
1324         trace_block_rq_insert(hctx->queue, rq);
1325
1326         if (at_head)
1327                 list_add(&rq->queuelist, &ctx->rq_list);
1328         else
1329                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1330 }
1331
1332 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1333                              bool at_head)
1334 {
1335         struct blk_mq_ctx *ctx = rq->mq_ctx;
1336
1337         __blk_mq_insert_req_list(hctx, rq, at_head);
1338         blk_mq_hctx_mark_pending(hctx, ctx);
1339 }
1340
1341 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1342                             struct list_head *list)
1343
1344 {
1345         /*
1346          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1347          * offline now
1348          */
1349         spin_lock(&ctx->lock);
1350         while (!list_empty(list)) {
1351                 struct request *rq;
1352
1353                 rq = list_first_entry(list, struct request, queuelist);
1354                 BUG_ON(rq->mq_ctx != ctx);
1355                 list_del_init(&rq->queuelist);
1356                 __blk_mq_insert_req_list(hctx, rq, false);
1357         }
1358         blk_mq_hctx_mark_pending(hctx, ctx);
1359         spin_unlock(&ctx->lock);
1360 }
1361
1362 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1363 {
1364         struct request *rqa = container_of(a, struct request, queuelist);
1365         struct request *rqb = container_of(b, struct request, queuelist);
1366
1367         return !(rqa->mq_ctx < rqb->mq_ctx ||
1368                  (rqa->mq_ctx == rqb->mq_ctx &&
1369                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1370 }
1371
1372 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1373 {
1374         struct blk_mq_ctx *this_ctx;
1375         struct request_queue *this_q;
1376         struct request *rq;
1377         LIST_HEAD(list);
1378         LIST_HEAD(ctx_list);
1379         unsigned int depth;
1380
1381         list_splice_init(&plug->mq_list, &list);
1382
1383         list_sort(NULL, &list, plug_ctx_cmp);
1384
1385         this_q = NULL;
1386         this_ctx = NULL;
1387         depth = 0;
1388
1389         while (!list_empty(&list)) {
1390                 rq = list_entry_rq(list.next);
1391                 list_del_init(&rq->queuelist);
1392                 BUG_ON(!rq->q);
1393                 if (rq->mq_ctx != this_ctx) {
1394                         if (this_ctx) {
1395                                 trace_block_unplug(this_q, depth, from_schedule);
1396                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1397                                                                 &ctx_list,
1398                                                                 from_schedule);
1399                         }
1400
1401                         this_ctx = rq->mq_ctx;
1402                         this_q = rq->q;
1403                         depth = 0;
1404                 }
1405
1406                 depth++;
1407                 list_add_tail(&rq->queuelist, &ctx_list);
1408         }
1409
1410         /*
1411          * If 'this_ctx' is set, we know we have entries to complete
1412          * on 'ctx_list'. Do those.
1413          */
1414         if (this_ctx) {
1415                 trace_block_unplug(this_q, depth, from_schedule);
1416                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1417                                                 from_schedule);
1418         }
1419 }
1420
1421 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1422 {
1423         blk_init_request_from_bio(rq, bio);
1424
1425         blk_account_io_start(rq, true);
1426 }
1427
1428 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1429 {
1430         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1431                 !blk_queue_nomerges(hctx->queue);
1432 }
1433
1434 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1435                                          struct blk_mq_ctx *ctx,
1436                                          struct request *rq, struct bio *bio)
1437 {
1438         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1439                 blk_mq_bio_to_request(rq, bio);
1440                 spin_lock(&ctx->lock);
1441 insert_rq:
1442                 __blk_mq_insert_request(hctx, rq, false);
1443                 spin_unlock(&ctx->lock);
1444                 return false;
1445         } else {
1446                 struct request_queue *q = hctx->queue;
1447
1448                 spin_lock(&ctx->lock);
1449                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1450                         blk_mq_bio_to_request(rq, bio);
1451                         goto insert_rq;
1452                 }
1453
1454                 spin_unlock(&ctx->lock);
1455                 __blk_mq_finish_request(hctx, ctx, rq);
1456                 return true;
1457         }
1458 }
1459
1460 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1461 {
1462         if (rq->tag != -1)
1463                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1464
1465         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1466 }
1467
1468 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1469                                       bool may_sleep)
1470 {
1471         struct request_queue *q = rq->q;
1472         struct blk_mq_queue_data bd = {
1473                 .rq = rq,
1474                 .last = true,
1475         };
1476         struct blk_mq_hw_ctx *hctx;
1477         blk_qc_t new_cookie;
1478         int ret;
1479
1480         if (q->elevator)
1481                 goto insert;
1482
1483         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1484                 goto insert;
1485
1486         new_cookie = request_to_qc_t(hctx, rq);
1487
1488         /*
1489          * For OK queue, we are done. For error, kill it. Any other
1490          * error (busy), just add it to our list as we previously
1491          * would have done
1492          */
1493         ret = q->mq_ops->queue_rq(hctx, &bd);
1494         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1495                 *cookie = new_cookie;
1496                 return;
1497         }
1498
1499         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1500                 *cookie = BLK_QC_T_NONE;
1501                 blk_mq_end_request(rq, -EIO);
1502                 return;
1503         }
1504
1505         __blk_mq_requeue_request(rq);
1506 insert:
1507         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1508 }
1509
1510 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1511                 struct request *rq, blk_qc_t *cookie)
1512 {
1513         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1514                 rcu_read_lock();
1515                 __blk_mq_try_issue_directly(rq, cookie, false);
1516                 rcu_read_unlock();
1517         } else {
1518                 unsigned int srcu_idx;
1519
1520                 might_sleep();
1521
1522                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1523                 __blk_mq_try_issue_directly(rq, cookie, true);
1524                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1525         }
1526 }
1527
1528 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1529 {
1530         const int is_sync = op_is_sync(bio->bi_opf);
1531         const int is_flush_fua = op_is_flush(bio->bi_opf);
1532         struct blk_mq_alloc_data data = { .flags = 0 };
1533         struct request *rq;
1534         unsigned int request_count = 0;
1535         struct blk_plug *plug;
1536         struct request *same_queue_rq = NULL;
1537         blk_qc_t cookie;
1538         unsigned int wb_acct;
1539
1540         blk_queue_bounce(q, &bio);
1541
1542         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1543                 bio_io_error(bio);
1544                 return BLK_QC_T_NONE;
1545         }
1546
1547         blk_queue_split(q, &bio, q->bio_split);
1548
1549         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1550             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1551                 return BLK_QC_T_NONE;
1552
1553         if (blk_mq_sched_bio_merge(q, bio))
1554                 return BLK_QC_T_NONE;
1555
1556         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1557
1558         trace_block_getrq(q, bio, bio->bi_opf);
1559
1560         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1561         if (unlikely(!rq)) {
1562                 __wbt_done(q->rq_wb, wb_acct);
1563                 return BLK_QC_T_NONE;
1564         }
1565
1566         wbt_track(&rq->issue_stat, wb_acct);
1567
1568         cookie = request_to_qc_t(data.hctx, rq);
1569
1570         plug = current->plug;
1571         if (unlikely(is_flush_fua)) {
1572                 blk_mq_put_ctx(data.ctx);
1573                 blk_mq_bio_to_request(rq, bio);
1574                 if (q->elevator) {
1575                         blk_mq_sched_insert_request(rq, false, true, true,
1576                                         true);
1577                 } else {
1578                         blk_insert_flush(rq);
1579                         blk_mq_run_hw_queue(data.hctx, true);
1580                 }
1581         } else if (plug && q->nr_hw_queues == 1) {
1582                 struct request *last = NULL;
1583
1584                 blk_mq_put_ctx(data.ctx);
1585                 blk_mq_bio_to_request(rq, bio);
1586
1587                 /*
1588                  * @request_count may become stale because of schedule
1589                  * out, so check the list again.
1590                  */
1591                 if (list_empty(&plug->mq_list))
1592                         request_count = 0;
1593                 else if (blk_queue_nomerges(q))
1594                         request_count = blk_plug_queued_count(q);
1595
1596                 if (!request_count)
1597                         trace_block_plug(q);
1598                 else
1599                         last = list_entry_rq(plug->mq_list.prev);
1600
1601                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1602                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1603                         blk_flush_plug_list(plug, false);
1604                         trace_block_plug(q);
1605                 }
1606
1607                 list_add_tail(&rq->queuelist, &plug->mq_list);
1608         } else if (plug && !blk_queue_nomerges(q)) {
1609                 blk_mq_bio_to_request(rq, bio);
1610
1611                 /*
1612                  * We do limited plugging. If the bio can be merged, do that.
1613                  * Otherwise the existing request in the plug list will be
1614                  * issued. So the plug list will have one request at most
1615                  * The plug list might get flushed before this. If that happens,
1616                  * the plug list is empty, and same_queue_rq is invalid.
1617                  */
1618                 if (list_empty(&plug->mq_list))
1619                         same_queue_rq = NULL;
1620                 if (same_queue_rq)
1621                         list_del_init(&same_queue_rq->queuelist);
1622                 list_add_tail(&rq->queuelist, &plug->mq_list);
1623
1624                 blk_mq_put_ctx(data.ctx);
1625
1626                 if (same_queue_rq)
1627                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1628                                         &cookie);
1629         } else if (q->nr_hw_queues > 1 && is_sync) {
1630                 blk_mq_put_ctx(data.ctx);
1631                 blk_mq_bio_to_request(rq, bio);
1632                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1633         } else if (q->elevator) {
1634                 blk_mq_put_ctx(data.ctx);
1635                 blk_mq_bio_to_request(rq, bio);
1636                 blk_mq_sched_insert_request(rq, false, true, true, true);
1637         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1638                 blk_mq_put_ctx(data.ctx);
1639                 blk_mq_run_hw_queue(data.hctx, true);
1640         }
1641
1642         return cookie;
1643 }
1644
1645 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1646                      unsigned int hctx_idx)
1647 {
1648         struct page *page;
1649
1650         if (tags->rqs && set->ops->exit_request) {
1651                 int i;
1652
1653                 for (i = 0; i < tags->nr_tags; i++) {
1654                         struct request *rq = tags->static_rqs[i];
1655
1656                         if (!rq)
1657                                 continue;
1658                         set->ops->exit_request(set->driver_data, rq,
1659                                                 hctx_idx, i);
1660                         tags->static_rqs[i] = NULL;
1661                 }
1662         }
1663
1664         while (!list_empty(&tags->page_list)) {
1665                 page = list_first_entry(&tags->page_list, struct page, lru);
1666                 list_del_init(&page->lru);
1667                 /*
1668                  * Remove kmemleak object previously allocated in
1669                  * blk_mq_init_rq_map().
1670                  */
1671                 kmemleak_free(page_address(page));
1672                 __free_pages(page, page->private);
1673         }
1674 }
1675
1676 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1677 {
1678         kfree(tags->rqs);
1679         tags->rqs = NULL;
1680         kfree(tags->static_rqs);
1681         tags->static_rqs = NULL;
1682
1683         blk_mq_free_tags(tags);
1684 }
1685
1686 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1687                                         unsigned int hctx_idx,
1688                                         unsigned int nr_tags,
1689                                         unsigned int reserved_tags)
1690 {
1691         struct blk_mq_tags *tags;
1692         int node;
1693
1694         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1695         if (node == NUMA_NO_NODE)
1696                 node = set->numa_node;
1697
1698         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1699                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1700         if (!tags)
1701                 return NULL;
1702
1703         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1704                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705                                  node);
1706         if (!tags->rqs) {
1707                 blk_mq_free_tags(tags);
1708                 return NULL;
1709         }
1710
1711         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1712                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1713                                  node);
1714         if (!tags->static_rqs) {
1715                 kfree(tags->rqs);
1716                 blk_mq_free_tags(tags);
1717                 return NULL;
1718         }
1719
1720         return tags;
1721 }
1722
1723 static size_t order_to_size(unsigned int order)
1724 {
1725         return (size_t)PAGE_SIZE << order;
1726 }
1727
1728 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1729                      unsigned int hctx_idx, unsigned int depth)
1730 {
1731         unsigned int i, j, entries_per_page, max_order = 4;
1732         size_t rq_size, left;
1733         int node;
1734
1735         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1736         if (node == NUMA_NO_NODE)
1737                 node = set->numa_node;
1738
1739         INIT_LIST_HEAD(&tags->page_list);
1740
1741         /*
1742          * rq_size is the size of the request plus driver payload, rounded
1743          * to the cacheline size
1744          */
1745         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1746                                 cache_line_size());
1747         left = rq_size * depth;
1748
1749         for (i = 0; i < depth; ) {
1750                 int this_order = max_order;
1751                 struct page *page;
1752                 int to_do;
1753                 void *p;
1754
1755                 while (this_order && left < order_to_size(this_order - 1))
1756                         this_order--;
1757
1758                 do {
1759                         page = alloc_pages_node(node,
1760                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1761                                 this_order);
1762                         if (page)
1763                                 break;
1764                         if (!this_order--)
1765                                 break;
1766                         if (order_to_size(this_order) < rq_size)
1767                                 break;
1768                 } while (1);
1769
1770                 if (!page)
1771                         goto fail;
1772
1773                 page->private = this_order;
1774                 list_add_tail(&page->lru, &tags->page_list);
1775
1776                 p = page_address(page);
1777                 /*
1778                  * Allow kmemleak to scan these pages as they contain pointers
1779                  * to additional allocations like via ops->init_request().
1780                  */
1781                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1782                 entries_per_page = order_to_size(this_order) / rq_size;
1783                 to_do = min(entries_per_page, depth - i);
1784                 left -= to_do * rq_size;
1785                 for (j = 0; j < to_do; j++) {
1786                         struct request *rq = p;
1787
1788                         tags->static_rqs[i] = rq;
1789                         if (set->ops->init_request) {
1790                                 if (set->ops->init_request(set->driver_data,
1791                                                 rq, hctx_idx, i,
1792                                                 node)) {
1793                                         tags->static_rqs[i] = NULL;
1794                                         goto fail;
1795                                 }
1796                         }
1797
1798                         p += rq_size;
1799                         i++;
1800                 }
1801         }
1802         return 0;
1803
1804 fail:
1805         blk_mq_free_rqs(set, tags, hctx_idx);
1806         return -ENOMEM;
1807 }
1808
1809 /*
1810  * 'cpu' is going away. splice any existing rq_list entries from this
1811  * software queue to the hw queue dispatch list, and ensure that it
1812  * gets run.
1813  */
1814 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1815 {
1816         struct blk_mq_hw_ctx *hctx;
1817         struct blk_mq_ctx *ctx;
1818         LIST_HEAD(tmp);
1819
1820         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1821         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1822
1823         spin_lock(&ctx->lock);
1824         if (!list_empty(&ctx->rq_list)) {
1825                 list_splice_init(&ctx->rq_list, &tmp);
1826                 blk_mq_hctx_clear_pending(hctx, ctx);
1827         }
1828         spin_unlock(&ctx->lock);
1829
1830         if (list_empty(&tmp))
1831                 return 0;
1832
1833         spin_lock(&hctx->lock);
1834         list_splice_tail_init(&tmp, &hctx->dispatch);
1835         spin_unlock(&hctx->lock);
1836
1837         blk_mq_run_hw_queue(hctx, true);
1838         return 0;
1839 }
1840
1841 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1842 {
1843         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1844                                             &hctx->cpuhp_dead);
1845 }
1846
1847 /* hctx->ctxs will be freed in queue's release handler */
1848 static void blk_mq_exit_hctx(struct request_queue *q,
1849                 struct blk_mq_tag_set *set,
1850                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1851 {
1852         unsigned flush_start_tag = set->queue_depth;
1853
1854         blk_mq_tag_idle(hctx);
1855
1856         if (set->ops->exit_request)
1857                 set->ops->exit_request(set->driver_data,
1858                                        hctx->fq->flush_rq, hctx_idx,
1859                                        flush_start_tag + hctx_idx);
1860
1861         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1862
1863         if (set->ops->exit_hctx)
1864                 set->ops->exit_hctx(hctx, hctx_idx);
1865
1866         if (hctx->flags & BLK_MQ_F_BLOCKING)
1867                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1868
1869         blk_mq_remove_cpuhp(hctx);
1870         blk_free_flush_queue(hctx->fq);
1871         sbitmap_free(&hctx->ctx_map);
1872 }
1873
1874 static void blk_mq_exit_hw_queues(struct request_queue *q,
1875                 struct blk_mq_tag_set *set, int nr_queue)
1876 {
1877         struct blk_mq_hw_ctx *hctx;
1878         unsigned int i;
1879
1880         queue_for_each_hw_ctx(q, hctx, i) {
1881                 if (i == nr_queue)
1882                         break;
1883                 blk_mq_exit_hctx(q, set, hctx, i);
1884         }
1885 }
1886
1887 static int blk_mq_init_hctx(struct request_queue *q,
1888                 struct blk_mq_tag_set *set,
1889                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1890 {
1891         int node;
1892         unsigned flush_start_tag = set->queue_depth;
1893
1894         node = hctx->numa_node;
1895         if (node == NUMA_NO_NODE)
1896                 node = hctx->numa_node = set->numa_node;
1897
1898         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1899         INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1900         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1901         spin_lock_init(&hctx->lock);
1902         INIT_LIST_HEAD(&hctx->dispatch);
1903         hctx->queue = q;
1904         hctx->queue_num = hctx_idx;
1905         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1906
1907         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1908
1909         hctx->tags = set->tags[hctx_idx];
1910
1911         /*
1912          * Allocate space for all possible cpus to avoid allocation at
1913          * runtime
1914          */
1915         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1916                                         GFP_KERNEL, node);
1917         if (!hctx->ctxs)
1918                 goto unregister_cpu_notifier;
1919
1920         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1921                               node))
1922                 goto free_ctxs;
1923
1924         hctx->nr_ctx = 0;
1925
1926         if (set->ops->init_hctx &&
1927             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1928                 goto free_bitmap;
1929
1930         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1931                 goto exit_hctx;
1932
1933         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1934         if (!hctx->fq)
1935                 goto sched_exit_hctx;
1936
1937         if (set->ops->init_request &&
1938             set->ops->init_request(set->driver_data,
1939                                    hctx->fq->flush_rq, hctx_idx,
1940                                    flush_start_tag + hctx_idx, node))
1941                 goto free_fq;
1942
1943         if (hctx->flags & BLK_MQ_F_BLOCKING)
1944                 init_srcu_struct(&hctx->queue_rq_srcu);
1945
1946         return 0;
1947
1948  free_fq:
1949         kfree(hctx->fq);
1950  sched_exit_hctx:
1951         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1952  exit_hctx:
1953         if (set->ops->exit_hctx)
1954                 set->ops->exit_hctx(hctx, hctx_idx);
1955  free_bitmap:
1956         sbitmap_free(&hctx->ctx_map);
1957  free_ctxs:
1958         kfree(hctx->ctxs);
1959  unregister_cpu_notifier:
1960         blk_mq_remove_cpuhp(hctx);
1961         return -1;
1962 }
1963
1964 static void blk_mq_init_cpu_queues(struct request_queue *q,
1965                                    unsigned int nr_hw_queues)
1966 {
1967         unsigned int i;
1968
1969         for_each_possible_cpu(i) {
1970                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1971                 struct blk_mq_hw_ctx *hctx;
1972
1973                 __ctx->cpu = i;
1974                 spin_lock_init(&__ctx->lock);
1975                 INIT_LIST_HEAD(&__ctx->rq_list);
1976                 __ctx->queue = q;
1977
1978                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1979                 if (!cpu_online(i))
1980                         continue;
1981
1982                 hctx = blk_mq_map_queue(q, i);
1983
1984                 /*
1985                  * Set local node, IFF we have more than one hw queue. If
1986                  * not, we remain on the home node of the device
1987                  */
1988                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1989                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1990         }
1991 }
1992
1993 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1994 {
1995         int ret = 0;
1996
1997         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1998                                         set->queue_depth, set->reserved_tags);
1999         if (!set->tags[hctx_idx])
2000                 return false;
2001
2002         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2003                                 set->queue_depth);
2004         if (!ret)
2005                 return true;
2006
2007         blk_mq_free_rq_map(set->tags[hctx_idx]);
2008         set->tags[hctx_idx] = NULL;
2009         return false;
2010 }
2011
2012 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2013                                          unsigned int hctx_idx)
2014 {
2015         if (set->tags[hctx_idx]) {
2016                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2017                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2018                 set->tags[hctx_idx] = NULL;
2019         }
2020 }
2021
2022 static void blk_mq_map_swqueue(struct request_queue *q,
2023                                const struct cpumask *online_mask)
2024 {
2025         unsigned int i, hctx_idx;
2026         struct blk_mq_hw_ctx *hctx;
2027         struct blk_mq_ctx *ctx;
2028         struct blk_mq_tag_set *set = q->tag_set;
2029
2030         /*
2031          * Avoid others reading imcomplete hctx->cpumask through sysfs
2032          */
2033         mutex_lock(&q->sysfs_lock);
2034
2035         queue_for_each_hw_ctx(q, hctx, i) {
2036                 cpumask_clear(hctx->cpumask);
2037                 hctx->nr_ctx = 0;
2038         }
2039
2040         /*
2041          * Map software to hardware queues
2042          */
2043         for_each_possible_cpu(i) {
2044                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2045                 if (!cpumask_test_cpu(i, online_mask))
2046                         continue;
2047
2048                 hctx_idx = q->mq_map[i];
2049                 /* unmapped hw queue can be remapped after CPU topo changed */
2050                 if (!set->tags[hctx_idx] &&
2051                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2052                         /*
2053                          * If tags initialization fail for some hctx,
2054                          * that hctx won't be brought online.  In this
2055                          * case, remap the current ctx to hctx[0] which
2056                          * is guaranteed to always have tags allocated
2057                          */
2058                         q->mq_map[i] = 0;
2059                 }
2060
2061                 ctx = per_cpu_ptr(q->queue_ctx, i);
2062                 hctx = blk_mq_map_queue(q, i);
2063
2064                 cpumask_set_cpu(i, hctx->cpumask);
2065                 ctx->index_hw = hctx->nr_ctx;
2066                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2067         }
2068
2069         mutex_unlock(&q->sysfs_lock);
2070
2071         queue_for_each_hw_ctx(q, hctx, i) {
2072                 /*
2073                  * If no software queues are mapped to this hardware queue,
2074                  * disable it and free the request entries.
2075                  */
2076                 if (!hctx->nr_ctx) {
2077                         /* Never unmap queue 0.  We need it as a
2078                          * fallback in case of a new remap fails
2079                          * allocation
2080                          */
2081                         if (i && set->tags[i])
2082                                 blk_mq_free_map_and_requests(set, i);
2083
2084                         hctx->tags = NULL;
2085                         continue;
2086                 }
2087
2088                 hctx->tags = set->tags[i];
2089                 WARN_ON(!hctx->tags);
2090
2091                 /*
2092                  * Set the map size to the number of mapped software queues.
2093                  * This is more accurate and more efficient than looping
2094                  * over all possibly mapped software queues.
2095                  */
2096                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2097
2098                 /*
2099                  * Initialize batch roundrobin counts
2100                  */
2101                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2102                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2103         }
2104 }
2105
2106 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2107 {
2108         struct blk_mq_hw_ctx *hctx;
2109         int i;
2110
2111         queue_for_each_hw_ctx(q, hctx, i) {
2112                 if (shared)
2113                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2114                 else
2115                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2116         }
2117 }
2118
2119 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2120 {
2121         struct request_queue *q;
2122
2123         lockdep_assert_held(&set->tag_list_lock);
2124
2125         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2126                 blk_mq_freeze_queue(q);
2127                 queue_set_hctx_shared(q, shared);
2128                 blk_mq_unfreeze_queue(q);
2129         }
2130 }
2131
2132 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2133 {
2134         struct blk_mq_tag_set *set = q->tag_set;
2135
2136         mutex_lock(&set->tag_list_lock);
2137         list_del_rcu(&q->tag_set_list);
2138         INIT_LIST_HEAD(&q->tag_set_list);
2139         if (list_is_singular(&set->tag_list)) {
2140                 /* just transitioned to unshared */
2141                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2142                 /* update existing queue */
2143                 blk_mq_update_tag_set_depth(set, false);
2144         }
2145         mutex_unlock(&set->tag_list_lock);
2146
2147         synchronize_rcu();
2148 }
2149
2150 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2151                                      struct request_queue *q)
2152 {
2153         q->tag_set = set;
2154
2155         mutex_lock(&set->tag_list_lock);
2156
2157         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2158         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2159                 set->flags |= BLK_MQ_F_TAG_SHARED;
2160                 /* update existing queue */
2161                 blk_mq_update_tag_set_depth(set, true);
2162         }
2163         if (set->flags & BLK_MQ_F_TAG_SHARED)
2164                 queue_set_hctx_shared(q, true);
2165         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2166
2167         mutex_unlock(&set->tag_list_lock);
2168 }
2169
2170 /*
2171  * It is the actual release handler for mq, but we do it from
2172  * request queue's release handler for avoiding use-after-free
2173  * and headache because q->mq_kobj shouldn't have been introduced,
2174  * but we can't group ctx/kctx kobj without it.
2175  */
2176 void blk_mq_release(struct request_queue *q)
2177 {
2178         struct blk_mq_hw_ctx *hctx;
2179         unsigned int i;
2180
2181         /* hctx kobj stays in hctx */
2182         queue_for_each_hw_ctx(q, hctx, i) {
2183                 if (!hctx)
2184                         continue;
2185                 kobject_put(&hctx->kobj);
2186         }
2187
2188         q->mq_map = NULL;
2189
2190         kfree(q->queue_hw_ctx);
2191
2192         /*
2193          * release .mq_kobj and sw queue's kobject now because
2194          * both share lifetime with request queue.
2195          */
2196         blk_mq_sysfs_deinit(q);
2197
2198         free_percpu(q->queue_ctx);
2199 }
2200
2201 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2202 {
2203         struct request_queue *uninit_q, *q;
2204
2205         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2206         if (!uninit_q)
2207                 return ERR_PTR(-ENOMEM);
2208
2209         q = blk_mq_init_allocated_queue(set, uninit_q);
2210         if (IS_ERR(q))
2211                 blk_cleanup_queue(uninit_q);
2212
2213         return q;
2214 }
2215 EXPORT_SYMBOL(blk_mq_init_queue);
2216
2217 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2218                                                 struct request_queue *q)
2219 {
2220         int i, j;
2221         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2222
2223         blk_mq_sysfs_unregister(q);
2224         for (i = 0; i < set->nr_hw_queues; i++) {
2225                 int node;
2226
2227                 if (hctxs[i])
2228                         continue;
2229
2230                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2231                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2232                                         GFP_KERNEL, node);
2233                 if (!hctxs[i])
2234                         break;
2235
2236                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2237                                                 node)) {
2238                         kfree(hctxs[i]);
2239                         hctxs[i] = NULL;
2240                         break;
2241                 }
2242
2243                 atomic_set(&hctxs[i]->nr_active, 0);
2244                 hctxs[i]->numa_node = node;
2245                 hctxs[i]->queue_num = i;
2246
2247                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2248                         free_cpumask_var(hctxs[i]->cpumask);
2249                         kfree(hctxs[i]);
2250                         hctxs[i] = NULL;
2251                         break;
2252                 }
2253                 blk_mq_hctx_kobj_init(hctxs[i]);
2254         }
2255         for (j = i; j < q->nr_hw_queues; j++) {
2256                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2257
2258                 if (hctx) {
2259                         if (hctx->tags)
2260                                 blk_mq_free_map_and_requests(set, j);
2261                         blk_mq_exit_hctx(q, set, hctx, j);
2262                         kobject_put(&hctx->kobj);
2263                         hctxs[j] = NULL;
2264
2265                 }
2266         }
2267         q->nr_hw_queues = i;
2268         blk_mq_sysfs_register(q);
2269 }
2270
2271 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2272                                                   struct request_queue *q)
2273 {
2274         /* mark the queue as mq asap */
2275         q->mq_ops = set->ops;
2276
2277         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2278                                              blk_mq_poll_stats_bkt,
2279                                              BLK_MQ_POLL_STATS_BKTS, q);
2280         if (!q->poll_cb)
2281                 goto err_exit;
2282
2283         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2284         if (!q->queue_ctx)
2285                 goto err_exit;
2286
2287         /* init q->mq_kobj and sw queues' kobjects */
2288         blk_mq_sysfs_init(q);
2289
2290         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2291                                                 GFP_KERNEL, set->numa_node);
2292         if (!q->queue_hw_ctx)
2293                 goto err_percpu;
2294
2295         q->mq_map = set->mq_map;
2296
2297         blk_mq_realloc_hw_ctxs(set, q);
2298         if (!q->nr_hw_queues)
2299                 goto err_hctxs;
2300
2301         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2302         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2303
2304         q->nr_queues = nr_cpu_ids;
2305
2306         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2307
2308         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2309                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2310
2311         q->sg_reserved_size = INT_MAX;
2312
2313         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2314         INIT_LIST_HEAD(&q->requeue_list);
2315         spin_lock_init(&q->requeue_lock);
2316
2317         blk_queue_make_request(q, blk_mq_make_request);
2318
2319         /*
2320          * Do this after blk_queue_make_request() overrides it...
2321          */
2322         q->nr_requests = set->queue_depth;
2323
2324         /*
2325          * Default to classic polling
2326          */
2327         q->poll_nsec = -1;
2328
2329         if (set->ops->complete)
2330                 blk_queue_softirq_done(q, set->ops->complete);
2331
2332         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2333
2334         get_online_cpus();
2335         mutex_lock(&all_q_mutex);
2336
2337         list_add_tail(&q->all_q_node, &all_q_list);
2338         blk_mq_add_queue_tag_set(set, q);
2339         blk_mq_map_swqueue(q, cpu_online_mask);
2340
2341         mutex_unlock(&all_q_mutex);
2342         put_online_cpus();
2343
2344         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2345                 int ret;
2346
2347                 ret = blk_mq_sched_init(q);
2348                 if (ret)
2349                         return ERR_PTR(ret);
2350         }
2351
2352         return q;
2353
2354 err_hctxs:
2355         kfree(q->queue_hw_ctx);
2356 err_percpu:
2357         free_percpu(q->queue_ctx);
2358 err_exit:
2359         q->mq_ops = NULL;
2360         return ERR_PTR(-ENOMEM);
2361 }
2362 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2363
2364 void blk_mq_free_queue(struct request_queue *q)
2365 {
2366         struct blk_mq_tag_set   *set = q->tag_set;
2367
2368         mutex_lock(&all_q_mutex);
2369         list_del_init(&q->all_q_node);
2370         mutex_unlock(&all_q_mutex);
2371
2372         blk_mq_del_queue_tag_set(q);
2373
2374         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2375 }
2376
2377 /* Basically redo blk_mq_init_queue with queue frozen */
2378 static void blk_mq_queue_reinit(struct request_queue *q,
2379                                 const struct cpumask *online_mask)
2380 {
2381         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2382
2383         blk_mq_sysfs_unregister(q);
2384
2385         /*
2386          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2387          * we should change hctx numa_node according to new topology (this
2388          * involves free and re-allocate memory, worthy doing?)
2389          */
2390
2391         blk_mq_map_swqueue(q, online_mask);
2392
2393         blk_mq_sysfs_register(q);
2394 }
2395
2396 /*
2397  * New online cpumask which is going to be set in this hotplug event.
2398  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2399  * one-by-one and dynamically allocating this could result in a failure.
2400  */
2401 static struct cpumask cpuhp_online_new;
2402
2403 static void blk_mq_queue_reinit_work(void)
2404 {
2405         struct request_queue *q;
2406
2407         mutex_lock(&all_q_mutex);
2408         /*
2409          * We need to freeze and reinit all existing queues.  Freezing
2410          * involves synchronous wait for an RCU grace period and doing it
2411          * one by one may take a long time.  Start freezing all queues in
2412          * one swoop and then wait for the completions so that freezing can
2413          * take place in parallel.
2414          */
2415         list_for_each_entry(q, &all_q_list, all_q_node)
2416                 blk_freeze_queue_start(q);
2417         list_for_each_entry(q, &all_q_list, all_q_node)
2418                 blk_mq_freeze_queue_wait(q);
2419
2420         list_for_each_entry(q, &all_q_list, all_q_node)
2421                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2422
2423         list_for_each_entry(q, &all_q_list, all_q_node)
2424                 blk_mq_unfreeze_queue(q);
2425
2426         mutex_unlock(&all_q_mutex);
2427 }
2428
2429 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2430 {
2431         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2432         blk_mq_queue_reinit_work();
2433         return 0;
2434 }
2435
2436 /*
2437  * Before hotadded cpu starts handling requests, new mappings must be
2438  * established.  Otherwise, these requests in hw queue might never be
2439  * dispatched.
2440  *
2441  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2442  * for CPU0, and ctx1 for CPU1).
2443  *
2444  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2445  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2446  *
2447  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2448  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2449  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2450  * ignored.
2451  */
2452 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2453 {
2454         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2455         cpumask_set_cpu(cpu, &cpuhp_online_new);
2456         blk_mq_queue_reinit_work();
2457         return 0;
2458 }
2459
2460 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2461 {
2462         int i;
2463
2464         for (i = 0; i < set->nr_hw_queues; i++)
2465                 if (!__blk_mq_alloc_rq_map(set, i))
2466                         goto out_unwind;
2467
2468         return 0;
2469
2470 out_unwind:
2471         while (--i >= 0)
2472                 blk_mq_free_rq_map(set->tags[i]);
2473
2474         return -ENOMEM;
2475 }
2476
2477 /*
2478  * Allocate the request maps associated with this tag_set. Note that this
2479  * may reduce the depth asked for, if memory is tight. set->queue_depth
2480  * will be updated to reflect the allocated depth.
2481  */
2482 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2483 {
2484         unsigned int depth;
2485         int err;
2486
2487         depth = set->queue_depth;
2488         do {
2489                 err = __blk_mq_alloc_rq_maps(set);
2490                 if (!err)
2491                         break;
2492
2493                 set->queue_depth >>= 1;
2494                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2495                         err = -ENOMEM;
2496                         break;
2497                 }
2498         } while (set->queue_depth);
2499
2500         if (!set->queue_depth || err) {
2501                 pr_err("blk-mq: failed to allocate request map\n");
2502                 return -ENOMEM;
2503         }
2504
2505         if (depth != set->queue_depth)
2506                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2507                                                 depth, set->queue_depth);
2508
2509         return 0;
2510 }
2511
2512 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2513 {
2514         if (set->ops->map_queues)
2515                 return set->ops->map_queues(set);
2516         else
2517                 return blk_mq_map_queues(set);
2518 }
2519
2520 /*
2521  * Alloc a tag set to be associated with one or more request queues.
2522  * May fail with EINVAL for various error conditions. May adjust the
2523  * requested depth down, if if it too large. In that case, the set
2524  * value will be stored in set->queue_depth.
2525  */
2526 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2527 {
2528         int ret;
2529
2530         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2531
2532         if (!set->nr_hw_queues)
2533                 return -EINVAL;
2534         if (!set->queue_depth)
2535                 return -EINVAL;
2536         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2537                 return -EINVAL;
2538
2539         if (!set->ops->queue_rq)
2540                 return -EINVAL;
2541
2542         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2543                 pr_info("blk-mq: reduced tag depth to %u\n",
2544                         BLK_MQ_MAX_DEPTH);
2545                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2546         }
2547
2548         /*
2549          * If a crashdump is active, then we are potentially in a very
2550          * memory constrained environment. Limit us to 1 queue and
2551          * 64 tags to prevent using too much memory.
2552          */
2553         if (is_kdump_kernel()) {
2554                 set->nr_hw_queues = 1;
2555                 set->queue_depth = min(64U, set->queue_depth);
2556         }
2557         /*
2558          * There is no use for more h/w queues than cpus.
2559          */
2560         if (set->nr_hw_queues > nr_cpu_ids)
2561                 set->nr_hw_queues = nr_cpu_ids;
2562
2563         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2564                                  GFP_KERNEL, set->numa_node);
2565         if (!set->tags)
2566                 return -ENOMEM;
2567
2568         ret = -ENOMEM;
2569         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2570                         GFP_KERNEL, set->numa_node);
2571         if (!set->mq_map)
2572                 goto out_free_tags;
2573
2574         ret = blk_mq_update_queue_map(set);
2575         if (ret)
2576                 goto out_free_mq_map;
2577
2578         ret = blk_mq_alloc_rq_maps(set);
2579         if (ret)
2580                 goto out_free_mq_map;
2581
2582         mutex_init(&set->tag_list_lock);
2583         INIT_LIST_HEAD(&set->tag_list);
2584
2585         return 0;
2586
2587 out_free_mq_map:
2588         kfree(set->mq_map);
2589         set->mq_map = NULL;
2590 out_free_tags:
2591         kfree(set->tags);
2592         set->tags = NULL;
2593         return ret;
2594 }
2595 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2596
2597 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2598 {
2599         int i;
2600
2601         for (i = 0; i < nr_cpu_ids; i++)
2602                 blk_mq_free_map_and_requests(set, i);
2603
2604         kfree(set->mq_map);
2605         set->mq_map = NULL;
2606
2607         kfree(set->tags);
2608         set->tags = NULL;
2609 }
2610 EXPORT_SYMBOL(blk_mq_free_tag_set);
2611
2612 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2613 {
2614         struct blk_mq_tag_set *set = q->tag_set;
2615         struct blk_mq_hw_ctx *hctx;
2616         int i, ret;
2617
2618         if (!set)
2619                 return -EINVAL;
2620
2621         blk_mq_freeze_queue(q);
2622         blk_mq_quiesce_queue(q);
2623
2624         ret = 0;
2625         queue_for_each_hw_ctx(q, hctx, i) {
2626                 if (!hctx->tags)
2627                         continue;
2628                 /*
2629                  * If we're using an MQ scheduler, just update the scheduler
2630                  * queue depth. This is similar to what the old code would do.
2631                  */
2632                 if (!hctx->sched_tags) {
2633                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2634                                                         min(nr, set->queue_depth),
2635                                                         false);
2636                 } else {
2637                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2638                                                         nr, true);
2639                 }
2640                 if (ret)
2641                         break;
2642         }
2643
2644         if (!ret)
2645                 q->nr_requests = nr;
2646
2647         blk_mq_unfreeze_queue(q);
2648         blk_mq_start_stopped_hw_queues(q, true);
2649
2650         return ret;
2651 }
2652
2653 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2654 {
2655         struct request_queue *q;
2656
2657         lockdep_assert_held(&set->tag_list_lock);
2658
2659         if (nr_hw_queues > nr_cpu_ids)
2660                 nr_hw_queues = nr_cpu_ids;
2661         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2662                 return;
2663
2664         list_for_each_entry(q, &set->tag_list, tag_set_list)
2665                 blk_mq_freeze_queue(q);
2666
2667         set->nr_hw_queues = nr_hw_queues;
2668         blk_mq_update_queue_map(set);
2669         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2670                 blk_mq_realloc_hw_ctxs(set, q);
2671                 blk_mq_queue_reinit(q, cpu_online_mask);
2672         }
2673
2674         list_for_each_entry(q, &set->tag_list, tag_set_list)
2675                 blk_mq_unfreeze_queue(q);
2676 }
2677 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2678
2679 /* Enable polling stats and return whether they were already enabled. */
2680 static bool blk_poll_stats_enable(struct request_queue *q)
2681 {
2682         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2683             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2684                 return true;
2685         blk_stat_add_callback(q, q->poll_cb);
2686         return false;
2687 }
2688
2689 static void blk_mq_poll_stats_start(struct request_queue *q)
2690 {
2691         /*
2692          * We don't arm the callback if polling stats are not enabled or the
2693          * callback is already active.
2694          */
2695         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2696             blk_stat_is_active(q->poll_cb))
2697                 return;
2698
2699         blk_stat_activate_msecs(q->poll_cb, 100);
2700 }
2701
2702 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2703 {
2704         struct request_queue *q = cb->data;
2705         int bucket;
2706
2707         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
2708                 if (cb->stat[bucket].nr_samples)
2709                         q->poll_stat[bucket] = cb->stat[bucket];
2710         }
2711 }
2712
2713 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2714                                        struct blk_mq_hw_ctx *hctx,
2715                                        struct request *rq)
2716 {
2717         unsigned long ret = 0;
2718         int bucket;
2719
2720         /*
2721          * If stats collection isn't on, don't sleep but turn it on for
2722          * future users
2723          */
2724         if (!blk_poll_stats_enable(q))
2725                 return 0;
2726
2727         /*
2728          * As an optimistic guess, use half of the mean service time
2729          * for this type of request. We can (and should) make this smarter.
2730          * For instance, if the completion latencies are tight, we can
2731          * get closer than just half the mean. This is especially
2732          * important on devices where the completion latencies are longer
2733          * than ~10 usec. We do use the stats for the relevant IO size
2734          * if available which does lead to better estimates.
2735          */
2736         bucket = blk_mq_poll_stats_bkt(rq);
2737         if (bucket < 0)
2738                 return ret;
2739
2740         if (q->poll_stat[bucket].nr_samples)
2741                 ret = (q->poll_stat[bucket].mean + 1) / 2;
2742
2743         return ret;
2744 }
2745
2746 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2747                                      struct blk_mq_hw_ctx *hctx,
2748                                      struct request *rq)
2749 {
2750         struct hrtimer_sleeper hs;
2751         enum hrtimer_mode mode;
2752         unsigned int nsecs;
2753         ktime_t kt;
2754
2755         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2756                 return false;
2757
2758         /*
2759          * poll_nsec can be:
2760          *
2761          * -1:  don't ever hybrid sleep
2762          *  0:  use half of prev avg
2763          * >0:  use this specific value
2764          */
2765         if (q->poll_nsec == -1)
2766                 return false;
2767         else if (q->poll_nsec > 0)
2768                 nsecs = q->poll_nsec;
2769         else
2770                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2771
2772         if (!nsecs)
2773                 return false;
2774
2775         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2776
2777         /*
2778          * This will be replaced with the stats tracking code, using
2779          * 'avg_completion_time / 2' as the pre-sleep target.
2780          */
2781         kt = nsecs;
2782
2783         mode = HRTIMER_MODE_REL;
2784         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2785         hrtimer_set_expires(&hs.timer, kt);
2786
2787         hrtimer_init_sleeper(&hs, current);
2788         do {
2789                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2790                         break;
2791                 set_current_state(TASK_UNINTERRUPTIBLE);
2792                 hrtimer_start_expires(&hs.timer, mode);
2793                 if (hs.task)
2794                         io_schedule();
2795                 hrtimer_cancel(&hs.timer);
2796                 mode = HRTIMER_MODE_ABS;
2797         } while (hs.task && !signal_pending(current));
2798
2799         __set_current_state(TASK_RUNNING);
2800         destroy_hrtimer_on_stack(&hs.timer);
2801         return true;
2802 }
2803
2804 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2805 {
2806         struct request_queue *q = hctx->queue;
2807         long state;
2808
2809         /*
2810          * If we sleep, have the caller restart the poll loop to reset
2811          * the state. Like for the other success return cases, the
2812          * caller is responsible for checking if the IO completed. If
2813          * the IO isn't complete, we'll get called again and will go
2814          * straight to the busy poll loop.
2815          */
2816         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2817                 return true;
2818
2819         hctx->poll_considered++;
2820
2821         state = current->state;
2822         while (!need_resched()) {
2823                 int ret;
2824
2825                 hctx->poll_invoked++;
2826
2827                 ret = q->mq_ops->poll(hctx, rq->tag);
2828                 if (ret > 0) {
2829                         hctx->poll_success++;
2830                         set_current_state(TASK_RUNNING);
2831                         return true;
2832                 }
2833
2834                 if (signal_pending_state(state, current))
2835                         set_current_state(TASK_RUNNING);
2836
2837                 if (current->state == TASK_RUNNING)
2838                         return true;
2839                 if (ret < 0)
2840                         break;
2841                 cpu_relax();
2842         }
2843
2844         return false;
2845 }
2846
2847 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2848 {
2849         struct blk_mq_hw_ctx *hctx;
2850         struct blk_plug *plug;
2851         struct request *rq;
2852
2853         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2854             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2855                 return false;
2856
2857         plug = current->plug;
2858         if (plug)
2859                 blk_flush_plug_list(plug, false);
2860
2861         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2862         if (!blk_qc_t_is_internal(cookie))
2863                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2864         else
2865                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2866
2867         return __blk_mq_poll(hctx, rq);
2868 }
2869 EXPORT_SYMBOL_GPL(blk_mq_poll);
2870
2871 void blk_mq_disable_hotplug(void)
2872 {
2873         mutex_lock(&all_q_mutex);
2874 }
2875
2876 void blk_mq_enable_hotplug(void)
2877 {
2878         mutex_unlock(&all_q_mutex);
2879 }
2880
2881 static int __init blk_mq_init(void)
2882 {
2883         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2884                                 blk_mq_hctx_notify_dead);
2885
2886         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2887                                   blk_mq_queue_reinit_prepare,
2888                                   blk_mq_queue_reinit_dead);
2889         return 0;
2890 }
2891 subsys_initcall(blk_mq_init);