]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
blk-mq: export helpers
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46  * Check if any of the ctx's have pending work in this hardware queue
47  */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50         return sbitmap_any_bit_set(&hctx->ctx_map) ||
51                         !list_empty_careful(&hctx->dispatch) ||
52                         blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56  * Mark this ctx as having pending work in this hardware queue
57  */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59                                      struct blk_mq_ctx *ctx)
60 {
61         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66                                       struct blk_mq_ctx *ctx)
67 {
68         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_freeze_queue_start(struct request_queue *q)
72 {
73         int freeze_depth;
74
75         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76         if (freeze_depth == 1) {
77                 percpu_ref_kill(&q->q_usage_counter);
78                 blk_mq_run_hw_queues(q, false);
79         }
80 }
81 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90                                      unsigned long timeout)
91 {
92         return wait_event_timeout(q->mq_freeze_wq,
93                                         percpu_ref_is_zero(&q->q_usage_counter),
94                                         timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104         /*
105          * In the !blk_mq case we are only calling this to kill the
106          * q_usage_counter, otherwise this increases the freeze depth
107          * and waits for it to return to zero.  For this reason there is
108          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109          * exported to drivers as the only user for unfreeze is blk_mq.
110          */
111         blk_freeze_queue_start(q);
112         blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117         /*
118          * ...just an alias to keep freeze and unfreeze actions balanced
119          * in the blk_mq_* namespace
120          */
121         blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127         int freeze_depth;
128
129         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130         WARN_ON_ONCE(freeze_depth < 0);
131         if (!freeze_depth) {
132                 percpu_ref_reinit(&q->q_usage_counter);
133                 wake_up_all(&q->mq_freeze_wq);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140  * @q: request queue.
141  *
142  * Note: this function does not prevent that the struct request end_io()
143  * callback function is invoked. Additionally, it is not prevented that
144  * new queue_rq() calls occur unless the queue has been stopped first.
145  */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148         struct blk_mq_hw_ctx *hctx;
149         unsigned int i;
150         bool rcu = false;
151
152         blk_mq_stop_hw_queues(q);
153
154         queue_for_each_hw_ctx(q, hctx, i) {
155                 if (hctx->flags & BLK_MQ_F_BLOCKING)
156                         synchronize_srcu(&hctx->queue_rq_srcu);
157                 else
158                         rcu = true;
159         }
160         if (rcu)
161                 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169
170         queue_for_each_hw_ctx(q, hctx, i)
171                 if (blk_mq_hw_queue_mapped(hctx))
172                         blk_mq_tag_wakeup_all(hctx->tags, true);
173
174         /*
175          * If we are called because the queue has now been marked as
176          * dying, we need to ensure that processes currently waiting on
177          * the queue are notified as well.
178          */
179         wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184         return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189                         struct request *rq, unsigned int op)
190 {
191         INIT_LIST_HEAD(&rq->queuelist);
192         /* csd/requeue_work/fifo_time is initialized before use */
193         rq->q = q;
194         rq->mq_ctx = ctx;
195         rq->cmd_flags = op;
196         if (blk_queue_io_stat(q))
197                 rq->rq_flags |= RQF_IO_STAT;
198         /* do not touch atomic flags, it needs atomic ops against the timer */
199         rq->cpu = -1;
200         INIT_HLIST_NODE(&rq->hash);
201         RB_CLEAR_NODE(&rq->rb_node);
202         rq->rq_disk = NULL;
203         rq->part = NULL;
204         rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206         rq->rl = NULL;
207         set_start_time_ns(rq);
208         rq->io_start_time_ns = 0;
209 #endif
210         rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212         rq->nr_integrity_segments = 0;
213 #endif
214         rq->special = NULL;
215         /* tag was already set */
216         rq->errors = 0;
217         rq->extra_len = 0;
218
219         INIT_LIST_HEAD(&rq->timeout_list);
220         rq->timeout = 0;
221
222         rq->end_io = NULL;
223         rq->end_io_data = NULL;
224         rq->next_rq = NULL;
225
226         ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231                                        unsigned int op)
232 {
233         struct request *rq;
234         unsigned int tag;
235
236         tag = blk_mq_get_tag(data);
237         if (tag != BLK_MQ_TAG_FAIL) {
238                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240                 rq = tags->static_rqs[tag];
241
242                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243                         rq->tag = -1;
244                         rq->internal_tag = tag;
245                 } else {
246                         if (blk_mq_tag_busy(data->hctx)) {
247                                 rq->rq_flags = RQF_MQ_INFLIGHT;
248                                 atomic_inc(&data->hctx->nr_active);
249                         }
250                         rq->tag = tag;
251                         rq->internal_tag = -1;
252                         data->hctx->tags->rqs[rq->tag] = rq;
253                 }
254
255                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256                 return rq;
257         }
258
259         return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264                 unsigned int flags)
265 {
266         struct blk_mq_alloc_data alloc_data = { .flags = flags };
267         struct request *rq;
268         int ret;
269
270         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271         if (ret)
272                 return ERR_PTR(ret);
273
274         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276         blk_mq_put_ctx(alloc_data.ctx);
277         blk_queue_exit(q);
278
279         if (!rq)
280                 return ERR_PTR(-EWOULDBLOCK);
281
282         rq->__data_len = 0;
283         rq->__sector = (sector_t) -1;
284         rq->bio = rq->biotail = NULL;
285         return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290                 unsigned int flags, unsigned int hctx_idx)
291 {
292         struct blk_mq_alloc_data alloc_data = { .flags = flags };
293         struct request *rq;
294         unsigned int cpu;
295         int ret;
296
297         /*
298          * If the tag allocator sleeps we could get an allocation for a
299          * different hardware context.  No need to complicate the low level
300          * allocator for this for the rare use case of a command tied to
301          * a specific queue.
302          */
303         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304                 return ERR_PTR(-EINVAL);
305
306         if (hctx_idx >= q->nr_hw_queues)
307                 return ERR_PTR(-EIO);
308
309         ret = blk_queue_enter(q, true);
310         if (ret)
311                 return ERR_PTR(ret);
312
313         /*
314          * Check if the hardware context is actually mapped to anything.
315          * If not tell the caller that it should skip this queue.
316          */
317         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319                 blk_queue_exit(q);
320                 return ERR_PTR(-EXDEV);
321         }
322         cpu = cpumask_first(alloc_data.hctx->cpumask);
323         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327         blk_queue_exit(q);
328
329         if (!rq)
330                 return ERR_PTR(-EWOULDBLOCK);
331
332         return rq;
333 }
334 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
336 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337                              struct request *rq)
338 {
339         const int sched_tag = rq->internal_tag;
340         struct request_queue *q = rq->q;
341
342         if (rq->rq_flags & RQF_MQ_INFLIGHT)
343                 atomic_dec(&hctx->nr_active);
344
345         wbt_done(q->rq_wb, &rq->issue_stat);
346         rq->rq_flags = 0;
347
348         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350         if (rq->tag != -1)
351                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352         if (sched_tag != -1)
353                 blk_mq_sched_completed_request(hctx, rq);
354         blk_mq_sched_restart(hctx);
355         blk_queue_exit(q);
356 }
357
358 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359                                      struct request *rq)
360 {
361         struct blk_mq_ctx *ctx = rq->mq_ctx;
362
363         ctx->rq_completed[rq_is_sync(rq)]++;
364         __blk_mq_finish_request(hctx, ctx, rq);
365 }
366
367 void blk_mq_finish_request(struct request *rq)
368 {
369         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 }
371 EXPORT_SYMBOL_GPL(blk_mq_finish_request);
372
373 void blk_mq_free_request(struct request *rq)
374 {
375         blk_mq_sched_put_request(rq);
376 }
377 EXPORT_SYMBOL_GPL(blk_mq_free_request);
378
379 inline void __blk_mq_end_request(struct request *rq, int error)
380 {
381         blk_account_io_done(rq);
382
383         if (rq->end_io) {
384                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
385                 rq->end_io(rq, error);
386         } else {
387                 if (unlikely(blk_bidi_rq(rq)))
388                         blk_mq_free_request(rq->next_rq);
389                 blk_mq_free_request(rq);
390         }
391 }
392 EXPORT_SYMBOL(__blk_mq_end_request);
393
394 void blk_mq_end_request(struct request *rq, int error)
395 {
396         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
397                 BUG();
398         __blk_mq_end_request(rq, error);
399 }
400 EXPORT_SYMBOL(blk_mq_end_request);
401
402 static void __blk_mq_complete_request_remote(void *data)
403 {
404         struct request *rq = data;
405
406         rq->q->softirq_done_fn(rq);
407 }
408
409 static void blk_mq_ipi_complete_request(struct request *rq)
410 {
411         struct blk_mq_ctx *ctx = rq->mq_ctx;
412         bool shared = false;
413         int cpu;
414
415         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
416                 rq->q->softirq_done_fn(rq);
417                 return;
418         }
419
420         cpu = get_cpu();
421         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
422                 shared = cpus_share_cache(cpu, ctx->cpu);
423
424         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
425                 rq->csd.func = __blk_mq_complete_request_remote;
426                 rq->csd.info = rq;
427                 rq->csd.flags = 0;
428                 smp_call_function_single_async(ctx->cpu, &rq->csd);
429         } else {
430                 rq->q->softirq_done_fn(rq);
431         }
432         put_cpu();
433 }
434
435 static void blk_mq_stat_add(struct request *rq)
436 {
437         if (rq->rq_flags & RQF_STATS) {
438                 blk_mq_poll_stats_start(rq->q);
439                 blk_stat_add(rq);
440         }
441 }
442
443 static void __blk_mq_complete_request(struct request *rq)
444 {
445         struct request_queue *q = rq->q;
446
447         blk_mq_stat_add(rq);
448
449         if (!q->softirq_done_fn)
450                 blk_mq_end_request(rq, rq->errors);
451         else
452                 blk_mq_ipi_complete_request(rq);
453 }
454
455 /**
456  * blk_mq_complete_request - end I/O on a request
457  * @rq:         the request being processed
458  *
459  * Description:
460  *      Ends all I/O on a request. It does not handle partial completions.
461  *      The actual completion happens out-of-order, through a IPI handler.
462  **/
463 void blk_mq_complete_request(struct request *rq, int error)
464 {
465         struct request_queue *q = rq->q;
466
467         if (unlikely(blk_should_fake_timeout(q)))
468                 return;
469         if (!blk_mark_rq_complete(rq)) {
470                 rq->errors = error;
471                 __blk_mq_complete_request(rq);
472         }
473 }
474 EXPORT_SYMBOL(blk_mq_complete_request);
475
476 int blk_mq_request_started(struct request *rq)
477 {
478         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
479 }
480 EXPORT_SYMBOL_GPL(blk_mq_request_started);
481
482 void blk_mq_start_request(struct request *rq)
483 {
484         struct request_queue *q = rq->q;
485
486         blk_mq_sched_started_request(rq);
487
488         trace_block_rq_issue(q, rq);
489
490         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
491                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
492                 rq->rq_flags |= RQF_STATS;
493                 wbt_issue(q->rq_wb, &rq->issue_stat);
494         }
495
496         blk_add_timer(rq);
497
498         /*
499          * Ensure that ->deadline is visible before set the started
500          * flag and clear the completed flag.
501          */
502         smp_mb__before_atomic();
503
504         /*
505          * Mark us as started and clear complete. Complete might have been
506          * set if requeue raced with timeout, which then marked it as
507          * complete. So be sure to clear complete again when we start
508          * the request, otherwise we'll ignore the completion event.
509          */
510         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
511                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
512         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
513                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
514
515         if (q->dma_drain_size && blk_rq_bytes(rq)) {
516                 /*
517                  * Make sure space for the drain appears.  We know we can do
518                  * this because max_hw_segments has been adjusted to be one
519                  * fewer than the device can handle.
520                  */
521                 rq->nr_phys_segments++;
522         }
523 }
524 EXPORT_SYMBOL(blk_mq_start_request);
525
526 /*
527  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
528  * flag isn't set yet, so there may be race with timeout handler,
529  * but given rq->deadline is just set in .queue_rq() under
530  * this situation, the race won't be possible in reality because
531  * rq->timeout should be set as big enough to cover the window
532  * between blk_mq_start_request() called from .queue_rq() and
533  * clearing REQ_ATOM_STARTED here.
534  */
535 static void __blk_mq_requeue_request(struct request *rq)
536 {
537         struct request_queue *q = rq->q;
538
539         trace_block_rq_requeue(q, rq);
540         wbt_requeue(q->rq_wb, &rq->issue_stat);
541         blk_mq_sched_requeue_request(rq);
542
543         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
544                 if (q->dma_drain_size && blk_rq_bytes(rq))
545                         rq->nr_phys_segments--;
546         }
547 }
548
549 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
550 {
551         __blk_mq_requeue_request(rq);
552
553         BUG_ON(blk_queued_rq(rq));
554         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
555 }
556 EXPORT_SYMBOL(blk_mq_requeue_request);
557
558 static void blk_mq_requeue_work(struct work_struct *work)
559 {
560         struct request_queue *q =
561                 container_of(work, struct request_queue, requeue_work.work);
562         LIST_HEAD(rq_list);
563         struct request *rq, *next;
564         unsigned long flags;
565
566         spin_lock_irqsave(&q->requeue_lock, flags);
567         list_splice_init(&q->requeue_list, &rq_list);
568         spin_unlock_irqrestore(&q->requeue_lock, flags);
569
570         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
571                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
572                         continue;
573
574                 rq->rq_flags &= ~RQF_SOFTBARRIER;
575                 list_del_init(&rq->queuelist);
576                 blk_mq_sched_insert_request(rq, true, false, false, true);
577         }
578
579         while (!list_empty(&rq_list)) {
580                 rq = list_entry(rq_list.next, struct request, queuelist);
581                 list_del_init(&rq->queuelist);
582                 blk_mq_sched_insert_request(rq, false, false, false, true);
583         }
584
585         blk_mq_run_hw_queues(q, false);
586 }
587
588 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
589                                 bool kick_requeue_list)
590 {
591         struct request_queue *q = rq->q;
592         unsigned long flags;
593
594         /*
595          * We abuse this flag that is otherwise used by the I/O scheduler to
596          * request head insertation from the workqueue.
597          */
598         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
599
600         spin_lock_irqsave(&q->requeue_lock, flags);
601         if (at_head) {
602                 rq->rq_flags |= RQF_SOFTBARRIER;
603                 list_add(&rq->queuelist, &q->requeue_list);
604         } else {
605                 list_add_tail(&rq->queuelist, &q->requeue_list);
606         }
607         spin_unlock_irqrestore(&q->requeue_lock, flags);
608
609         if (kick_requeue_list)
610                 blk_mq_kick_requeue_list(q);
611 }
612 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
613
614 void blk_mq_kick_requeue_list(struct request_queue *q)
615 {
616         kblockd_schedule_delayed_work(&q->requeue_work, 0);
617 }
618 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
619
620 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
621                                     unsigned long msecs)
622 {
623         kblockd_schedule_delayed_work(&q->requeue_work,
624                                       msecs_to_jiffies(msecs));
625 }
626 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
627
628 void blk_mq_abort_requeue_list(struct request_queue *q)
629 {
630         unsigned long flags;
631         LIST_HEAD(rq_list);
632
633         spin_lock_irqsave(&q->requeue_lock, flags);
634         list_splice_init(&q->requeue_list, &rq_list);
635         spin_unlock_irqrestore(&q->requeue_lock, flags);
636
637         while (!list_empty(&rq_list)) {
638                 struct request *rq;
639
640                 rq = list_first_entry(&rq_list, struct request, queuelist);
641                 list_del_init(&rq->queuelist);
642                 rq->errors = -EIO;
643                 blk_mq_end_request(rq, rq->errors);
644         }
645 }
646 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
647
648 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
649 {
650         if (tag < tags->nr_tags) {
651                 prefetch(tags->rqs[tag]);
652                 return tags->rqs[tag];
653         }
654
655         return NULL;
656 }
657 EXPORT_SYMBOL(blk_mq_tag_to_rq);
658
659 struct blk_mq_timeout_data {
660         unsigned long next;
661         unsigned int next_set;
662 };
663
664 void blk_mq_rq_timed_out(struct request *req, bool reserved)
665 {
666         const struct blk_mq_ops *ops = req->q->mq_ops;
667         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
668
669         /*
670          * We know that complete is set at this point. If STARTED isn't set
671          * anymore, then the request isn't active and the "timeout" should
672          * just be ignored. This can happen due to the bitflag ordering.
673          * Timeout first checks if STARTED is set, and if it is, assumes
674          * the request is active. But if we race with completion, then
675          * both flags will get cleared. So check here again, and ignore
676          * a timeout event with a request that isn't active.
677          */
678         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
679                 return;
680
681         if (ops->timeout)
682                 ret = ops->timeout(req, reserved);
683
684         switch (ret) {
685         case BLK_EH_HANDLED:
686                 __blk_mq_complete_request(req);
687                 break;
688         case BLK_EH_RESET_TIMER:
689                 blk_add_timer(req);
690                 blk_clear_rq_complete(req);
691                 break;
692         case BLK_EH_NOT_HANDLED:
693                 break;
694         default:
695                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
696                 break;
697         }
698 }
699
700 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
701                 struct request *rq, void *priv, bool reserved)
702 {
703         struct blk_mq_timeout_data *data = priv;
704
705         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
706                 return;
707
708         /*
709          * The rq being checked may have been freed and reallocated
710          * out already here, we avoid this race by checking rq->deadline
711          * and REQ_ATOM_COMPLETE flag together:
712          *
713          * - if rq->deadline is observed as new value because of
714          *   reusing, the rq won't be timed out because of timing.
715          * - if rq->deadline is observed as previous value,
716          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
717          *   because we put a barrier between setting rq->deadline
718          *   and clearing the flag in blk_mq_start_request(), so
719          *   this rq won't be timed out too.
720          */
721         if (time_after_eq(jiffies, rq->deadline)) {
722                 if (!blk_mark_rq_complete(rq))
723                         blk_mq_rq_timed_out(rq, reserved);
724         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
725                 data->next = rq->deadline;
726                 data->next_set = 1;
727         }
728 }
729
730 static void blk_mq_timeout_work(struct work_struct *work)
731 {
732         struct request_queue *q =
733                 container_of(work, struct request_queue, timeout_work);
734         struct blk_mq_timeout_data data = {
735                 .next           = 0,
736                 .next_set       = 0,
737         };
738         int i;
739
740         /* A deadlock might occur if a request is stuck requiring a
741          * timeout at the same time a queue freeze is waiting
742          * completion, since the timeout code would not be able to
743          * acquire the queue reference here.
744          *
745          * That's why we don't use blk_queue_enter here; instead, we use
746          * percpu_ref_tryget directly, because we need to be able to
747          * obtain a reference even in the short window between the queue
748          * starting to freeze, by dropping the first reference in
749          * blk_freeze_queue_start, and the moment the last request is
750          * consumed, marked by the instant q_usage_counter reaches
751          * zero.
752          */
753         if (!percpu_ref_tryget(&q->q_usage_counter))
754                 return;
755
756         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
757
758         if (data.next_set) {
759                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
760                 mod_timer(&q->timeout, data.next);
761         } else {
762                 struct blk_mq_hw_ctx *hctx;
763
764                 queue_for_each_hw_ctx(q, hctx, i) {
765                         /* the hctx may be unmapped, so check it here */
766                         if (blk_mq_hw_queue_mapped(hctx))
767                                 blk_mq_tag_idle(hctx);
768                 }
769         }
770         blk_queue_exit(q);
771 }
772
773 /*
774  * Reverse check our software queue for entries that we could potentially
775  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
776  * too much time checking for merges.
777  */
778 static bool blk_mq_attempt_merge(struct request_queue *q,
779                                  struct blk_mq_ctx *ctx, struct bio *bio)
780 {
781         struct request *rq;
782         int checked = 8;
783
784         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
785                 bool merged = false;
786
787                 if (!checked--)
788                         break;
789
790                 if (!blk_rq_merge_ok(rq, bio))
791                         continue;
792
793                 switch (blk_try_merge(rq, bio)) {
794                 case ELEVATOR_BACK_MERGE:
795                         if (blk_mq_sched_allow_merge(q, rq, bio))
796                                 merged = bio_attempt_back_merge(q, rq, bio);
797                         break;
798                 case ELEVATOR_FRONT_MERGE:
799                         if (blk_mq_sched_allow_merge(q, rq, bio))
800                                 merged = bio_attempt_front_merge(q, rq, bio);
801                         break;
802                 case ELEVATOR_DISCARD_MERGE:
803                         merged = bio_attempt_discard_merge(q, rq, bio);
804                         break;
805                 default:
806                         continue;
807                 }
808
809                 if (merged)
810                         ctx->rq_merged++;
811                 return merged;
812         }
813
814         return false;
815 }
816
817 struct flush_busy_ctx_data {
818         struct blk_mq_hw_ctx *hctx;
819         struct list_head *list;
820 };
821
822 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
823 {
824         struct flush_busy_ctx_data *flush_data = data;
825         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
826         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
827
828         sbitmap_clear_bit(sb, bitnr);
829         spin_lock(&ctx->lock);
830         list_splice_tail_init(&ctx->rq_list, flush_data->list);
831         spin_unlock(&ctx->lock);
832         return true;
833 }
834
835 /*
836  * Process software queues that have been marked busy, splicing them
837  * to the for-dispatch
838  */
839 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
840 {
841         struct flush_busy_ctx_data data = {
842                 .hctx = hctx,
843                 .list = list,
844         };
845
846         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
847 }
848 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
849
850 static inline unsigned int queued_to_index(unsigned int queued)
851 {
852         if (!queued)
853                 return 0;
854
855         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
856 }
857
858 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
859                            bool wait)
860 {
861         struct blk_mq_alloc_data data = {
862                 .q = rq->q,
863                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
864                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
865         };
866
867         if (rq->tag != -1)
868                 goto done;
869
870         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
871                 data.flags |= BLK_MQ_REQ_RESERVED;
872
873         rq->tag = blk_mq_get_tag(&data);
874         if (rq->tag >= 0) {
875                 if (blk_mq_tag_busy(data.hctx)) {
876                         rq->rq_flags |= RQF_MQ_INFLIGHT;
877                         atomic_inc(&data.hctx->nr_active);
878                 }
879                 data.hctx->tags->rqs[rq->tag] = rq;
880         }
881
882 done:
883         if (hctx)
884                 *hctx = data.hctx;
885         return rq->tag != -1;
886 }
887
888 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
889                                     struct request *rq)
890 {
891         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
892         rq->tag = -1;
893
894         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
895                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
896                 atomic_dec(&hctx->nr_active);
897         }
898 }
899
900 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
901                                        struct request *rq)
902 {
903         if (rq->tag == -1 || rq->internal_tag == -1)
904                 return;
905
906         __blk_mq_put_driver_tag(hctx, rq);
907 }
908
909 static void blk_mq_put_driver_tag(struct request *rq)
910 {
911         struct blk_mq_hw_ctx *hctx;
912
913         if (rq->tag == -1 || rq->internal_tag == -1)
914                 return;
915
916         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
917         __blk_mq_put_driver_tag(hctx, rq);
918 }
919
920 /*
921  * If we fail getting a driver tag because all the driver tags are already
922  * assigned and on the dispatch list, BUT the first entry does not have a
923  * tag, then we could deadlock. For that case, move entries with assigned
924  * driver tags to the front, leaving the set of tagged requests in the
925  * same order, and the untagged set in the same order.
926  */
927 static bool reorder_tags_to_front(struct list_head *list)
928 {
929         struct request *rq, *tmp, *first = NULL;
930
931         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
932                 if (rq == first)
933                         break;
934                 if (rq->tag != -1) {
935                         list_move(&rq->queuelist, list);
936                         if (!first)
937                                 first = rq;
938                 }
939         }
940
941         return first != NULL;
942 }
943
944 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
945                                 void *key)
946 {
947         struct blk_mq_hw_ctx *hctx;
948
949         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
950
951         list_del(&wait->task_list);
952         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
953         blk_mq_run_hw_queue(hctx, true);
954         return 1;
955 }
956
957 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
958 {
959         struct sbq_wait_state *ws;
960
961         /*
962          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
963          * The thread which wins the race to grab this bit adds the hardware
964          * queue to the wait queue.
965          */
966         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
967             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
968                 return false;
969
970         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
971         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
972
973         /*
974          * As soon as this returns, it's no longer safe to fiddle with
975          * hctx->dispatch_wait, since a completion can wake up the wait queue
976          * and unlock the bit.
977          */
978         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
979         return true;
980 }
981
982 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
983 {
984         struct blk_mq_hw_ctx *hctx;
985         struct request *rq;
986         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
987
988         if (list_empty(list))
989                 return false;
990
991         /*
992          * Now process all the entries, sending them to the driver.
993          */
994         errors = queued = 0;
995         do {
996                 struct blk_mq_queue_data bd;
997
998                 rq = list_first_entry(list, struct request, queuelist);
999                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1000                         if (!queued && reorder_tags_to_front(list))
1001                                 continue;
1002
1003                         /*
1004                          * The initial allocation attempt failed, so we need to
1005                          * rerun the hardware queue when a tag is freed.
1006                          */
1007                         if (!blk_mq_dispatch_wait_add(hctx))
1008                                 break;
1009
1010                         /*
1011                          * It's possible that a tag was freed in the window
1012                          * between the allocation failure and adding the
1013                          * hardware queue to the wait queue.
1014                          */
1015                         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1016                                 break;
1017                 }
1018
1019                 list_del_init(&rq->queuelist);
1020
1021                 bd.rq = rq;
1022
1023                 /*
1024                  * Flag last if we have no more requests, or if we have more
1025                  * but can't assign a driver tag to it.
1026                  */
1027                 if (list_empty(list))
1028                         bd.last = true;
1029                 else {
1030                         struct request *nxt;
1031
1032                         nxt = list_first_entry(list, struct request, queuelist);
1033                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034                 }
1035
1036                 ret = q->mq_ops->queue_rq(hctx, &bd);
1037                 switch (ret) {
1038                 case BLK_MQ_RQ_QUEUE_OK:
1039                         queued++;
1040                         break;
1041                 case BLK_MQ_RQ_QUEUE_BUSY:
1042                         blk_mq_put_driver_tag_hctx(hctx, rq);
1043                         list_add(&rq->queuelist, list);
1044                         __blk_mq_requeue_request(rq);
1045                         break;
1046                 default:
1047                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1048                 case BLK_MQ_RQ_QUEUE_ERROR:
1049                         errors++;
1050                         rq->errors = -EIO;
1051                         blk_mq_end_request(rq, rq->errors);
1052                         break;
1053                 }
1054
1055                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1056                         break;
1057         } while (!list_empty(list));
1058
1059         hctx->dispatched[queued_to_index(queued)]++;
1060
1061         /*
1062          * Any items that need requeuing? Stuff them into hctx->dispatch,
1063          * that is where we will continue on next queue run.
1064          */
1065         if (!list_empty(list)) {
1066                 /*
1067                  * If an I/O scheduler has been configured and we got a driver
1068                  * tag for the next request already, free it again.
1069                  */
1070                 rq = list_first_entry(list, struct request, queuelist);
1071                 blk_mq_put_driver_tag(rq);
1072
1073                 spin_lock(&hctx->lock);
1074                 list_splice_init(list, &hctx->dispatch);
1075                 spin_unlock(&hctx->lock);
1076
1077                 /*
1078                  * If SCHED_RESTART was set by the caller of this function and
1079                  * it is no longer set that means that it was cleared by another
1080                  * thread and hence that a queue rerun is needed.
1081                  *
1082                  * If TAG_WAITING is set that means that an I/O scheduler has
1083                  * been configured and another thread is waiting for a driver
1084                  * tag. To guarantee fairness, do not rerun this hardware queue
1085                  * but let the other thread grab the driver tag.
1086                  *
1087                  * If no I/O scheduler has been configured it is possible that
1088                  * the hardware queue got stopped and restarted before requests
1089                  * were pushed back onto the dispatch list. Rerun the queue to
1090                  * avoid starvation. Notes:
1091                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1092                  *   been stopped before rerunning a queue.
1093                  * - Some but not all block drivers stop a queue before
1094                  *   returning BLK_MQ_RQ_QUEUE_BUSY. Two exceptions are scsi-mq
1095                  *   and dm-rq.
1096                  */
1097                 if (!blk_mq_sched_needs_restart(hctx) &&
1098                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1099                         blk_mq_run_hw_queue(hctx, true);
1100         }
1101
1102         return (queued + errors) != 0;
1103 }
1104
1105 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1106 {
1107         int srcu_idx;
1108
1109         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1110                 cpu_online(hctx->next_cpu));
1111
1112         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1113                 rcu_read_lock();
1114                 blk_mq_sched_dispatch_requests(hctx);
1115                 rcu_read_unlock();
1116         } else {
1117                 might_sleep();
1118
1119                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1120                 blk_mq_sched_dispatch_requests(hctx);
1121                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1122         }
1123 }
1124
1125 /*
1126  * It'd be great if the workqueue API had a way to pass
1127  * in a mask and had some smarts for more clever placement.
1128  * For now we just round-robin here, switching for every
1129  * BLK_MQ_CPU_WORK_BATCH queued items.
1130  */
1131 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1132 {
1133         if (hctx->queue->nr_hw_queues == 1)
1134                 return WORK_CPU_UNBOUND;
1135
1136         if (--hctx->next_cpu_batch <= 0) {
1137                 int next_cpu;
1138
1139                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1140                 if (next_cpu >= nr_cpu_ids)
1141                         next_cpu = cpumask_first(hctx->cpumask);
1142
1143                 hctx->next_cpu = next_cpu;
1144                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1145         }
1146
1147         return hctx->next_cpu;
1148 }
1149
1150 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1151                                         unsigned long msecs)
1152 {
1153         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1154                      !blk_mq_hw_queue_mapped(hctx)))
1155                 return;
1156
1157         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1158                 int cpu = get_cpu();
1159                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1160                         __blk_mq_run_hw_queue(hctx);
1161                         put_cpu();
1162                         return;
1163                 }
1164
1165                 put_cpu();
1166         }
1167
1168         if (msecs == 0)
1169                 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1170                                          &hctx->run_work);
1171         else
1172                 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1173                                                  &hctx->delayed_run_work,
1174                                                  msecs_to_jiffies(msecs));
1175 }
1176
1177 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1178 {
1179         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1180 }
1181 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1182
1183 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1184 {
1185         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1186 }
1187 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1188
1189 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1190 {
1191         struct blk_mq_hw_ctx *hctx;
1192         int i;
1193
1194         queue_for_each_hw_ctx(q, hctx, i) {
1195                 if (!blk_mq_hctx_has_pending(hctx) ||
1196                     blk_mq_hctx_stopped(hctx))
1197                         continue;
1198
1199                 blk_mq_run_hw_queue(hctx, async);
1200         }
1201 }
1202 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1203
1204 /**
1205  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1206  * @q: request queue.
1207  *
1208  * The caller is responsible for serializing this function against
1209  * blk_mq_{start,stop}_hw_queue().
1210  */
1211 bool blk_mq_queue_stopped(struct request_queue *q)
1212 {
1213         struct blk_mq_hw_ctx *hctx;
1214         int i;
1215
1216         queue_for_each_hw_ctx(q, hctx, i)
1217                 if (blk_mq_hctx_stopped(hctx))
1218                         return true;
1219
1220         return false;
1221 }
1222 EXPORT_SYMBOL(blk_mq_queue_stopped);
1223
1224 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1225 {
1226         cancel_work(&hctx->run_work);
1227         cancel_delayed_work(&hctx->delay_work);
1228         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1229 }
1230 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1231
1232 void blk_mq_stop_hw_queues(struct request_queue *q)
1233 {
1234         struct blk_mq_hw_ctx *hctx;
1235         int i;
1236
1237         queue_for_each_hw_ctx(q, hctx, i)
1238                 blk_mq_stop_hw_queue(hctx);
1239 }
1240 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1241
1242 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1243 {
1244         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1245
1246         blk_mq_run_hw_queue(hctx, false);
1247 }
1248 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1249
1250 void blk_mq_start_hw_queues(struct request_queue *q)
1251 {
1252         struct blk_mq_hw_ctx *hctx;
1253         int i;
1254
1255         queue_for_each_hw_ctx(q, hctx, i)
1256                 blk_mq_start_hw_queue(hctx);
1257 }
1258 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1259
1260 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1261 {
1262         if (!blk_mq_hctx_stopped(hctx))
1263                 return;
1264
1265         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1266         blk_mq_run_hw_queue(hctx, async);
1267 }
1268 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1269
1270 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1271 {
1272         struct blk_mq_hw_ctx *hctx;
1273         int i;
1274
1275         queue_for_each_hw_ctx(q, hctx, i)
1276                 blk_mq_start_stopped_hw_queue(hctx, async);
1277 }
1278 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1279
1280 static void blk_mq_run_work_fn(struct work_struct *work)
1281 {
1282         struct blk_mq_hw_ctx *hctx;
1283
1284         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1285
1286         __blk_mq_run_hw_queue(hctx);
1287 }
1288
1289 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1290 {
1291         struct blk_mq_hw_ctx *hctx;
1292
1293         hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1294
1295         __blk_mq_run_hw_queue(hctx);
1296 }
1297
1298 static void blk_mq_delay_work_fn(struct work_struct *work)
1299 {
1300         struct blk_mq_hw_ctx *hctx;
1301
1302         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1303
1304         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1305                 __blk_mq_run_hw_queue(hctx);
1306 }
1307
1308 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1309 {
1310         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1311                 return;
1312
1313         blk_mq_stop_hw_queue(hctx);
1314         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1315                         &hctx->delay_work, msecs_to_jiffies(msecs));
1316 }
1317 EXPORT_SYMBOL(blk_mq_delay_queue);
1318
1319 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1320                                             struct request *rq,
1321                                             bool at_head)
1322 {
1323         struct blk_mq_ctx *ctx = rq->mq_ctx;
1324
1325         trace_block_rq_insert(hctx->queue, rq);
1326
1327         if (at_head)
1328                 list_add(&rq->queuelist, &ctx->rq_list);
1329         else
1330                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1331 }
1332
1333 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1334                              bool at_head)
1335 {
1336         struct blk_mq_ctx *ctx = rq->mq_ctx;
1337
1338         __blk_mq_insert_req_list(hctx, rq, at_head);
1339         blk_mq_hctx_mark_pending(hctx, ctx);
1340 }
1341
1342 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1343                             struct list_head *list)
1344
1345 {
1346         /*
1347          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1348          * offline now
1349          */
1350         spin_lock(&ctx->lock);
1351         while (!list_empty(list)) {
1352                 struct request *rq;
1353
1354                 rq = list_first_entry(list, struct request, queuelist);
1355                 BUG_ON(rq->mq_ctx != ctx);
1356                 list_del_init(&rq->queuelist);
1357                 __blk_mq_insert_req_list(hctx, rq, false);
1358         }
1359         blk_mq_hctx_mark_pending(hctx, ctx);
1360         spin_unlock(&ctx->lock);
1361 }
1362
1363 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1364 {
1365         struct request *rqa = container_of(a, struct request, queuelist);
1366         struct request *rqb = container_of(b, struct request, queuelist);
1367
1368         return !(rqa->mq_ctx < rqb->mq_ctx ||
1369                  (rqa->mq_ctx == rqb->mq_ctx &&
1370                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1371 }
1372
1373 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1374 {
1375         struct blk_mq_ctx *this_ctx;
1376         struct request_queue *this_q;
1377         struct request *rq;
1378         LIST_HEAD(list);
1379         LIST_HEAD(ctx_list);
1380         unsigned int depth;
1381
1382         list_splice_init(&plug->mq_list, &list);
1383
1384         list_sort(NULL, &list, plug_ctx_cmp);
1385
1386         this_q = NULL;
1387         this_ctx = NULL;
1388         depth = 0;
1389
1390         while (!list_empty(&list)) {
1391                 rq = list_entry_rq(list.next);
1392                 list_del_init(&rq->queuelist);
1393                 BUG_ON(!rq->q);
1394                 if (rq->mq_ctx != this_ctx) {
1395                         if (this_ctx) {
1396                                 trace_block_unplug(this_q, depth, from_schedule);
1397                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1398                                                                 &ctx_list,
1399                                                                 from_schedule);
1400                         }
1401
1402                         this_ctx = rq->mq_ctx;
1403                         this_q = rq->q;
1404                         depth = 0;
1405                 }
1406
1407                 depth++;
1408                 list_add_tail(&rq->queuelist, &ctx_list);
1409         }
1410
1411         /*
1412          * If 'this_ctx' is set, we know we have entries to complete
1413          * on 'ctx_list'. Do those.
1414          */
1415         if (this_ctx) {
1416                 trace_block_unplug(this_q, depth, from_schedule);
1417                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1418                                                 from_schedule);
1419         }
1420 }
1421
1422 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1423 {
1424         init_request_from_bio(rq, bio);
1425
1426         blk_account_io_start(rq, true);
1427 }
1428
1429 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1430 {
1431         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1432                 !blk_queue_nomerges(hctx->queue);
1433 }
1434
1435 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1436                                          struct blk_mq_ctx *ctx,
1437                                          struct request *rq, struct bio *bio)
1438 {
1439         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1440                 blk_mq_bio_to_request(rq, bio);
1441                 spin_lock(&ctx->lock);
1442 insert_rq:
1443                 __blk_mq_insert_request(hctx, rq, false);
1444                 spin_unlock(&ctx->lock);
1445                 return false;
1446         } else {
1447                 struct request_queue *q = hctx->queue;
1448
1449                 spin_lock(&ctx->lock);
1450                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1451                         blk_mq_bio_to_request(rq, bio);
1452                         goto insert_rq;
1453                 }
1454
1455                 spin_unlock(&ctx->lock);
1456                 __blk_mq_finish_request(hctx, ctx, rq);
1457                 return true;
1458         }
1459 }
1460
1461 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1462 {
1463         if (rq->tag != -1)
1464                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1465
1466         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1467 }
1468
1469 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1470                                       bool may_sleep)
1471 {
1472         struct request_queue *q = rq->q;
1473         struct blk_mq_queue_data bd = {
1474                 .rq = rq,
1475                 .last = true,
1476         };
1477         struct blk_mq_hw_ctx *hctx;
1478         blk_qc_t new_cookie;
1479         int ret;
1480
1481         if (q->elevator)
1482                 goto insert;
1483
1484         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1485                 goto insert;
1486
1487         new_cookie = request_to_qc_t(hctx, rq);
1488
1489         /*
1490          * For OK queue, we are done. For error, kill it. Any other
1491          * error (busy), just add it to our list as we previously
1492          * would have done
1493          */
1494         ret = q->mq_ops->queue_rq(hctx, &bd);
1495         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1496                 *cookie = new_cookie;
1497                 return;
1498         }
1499
1500         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1501                 *cookie = BLK_QC_T_NONE;
1502                 rq->errors = -EIO;
1503                 blk_mq_end_request(rq, rq->errors);
1504                 return;
1505         }
1506
1507         __blk_mq_requeue_request(rq);
1508 insert:
1509         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1510 }
1511
1512 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1513                 struct request *rq, blk_qc_t *cookie)
1514 {
1515         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1516                 rcu_read_lock();
1517                 __blk_mq_try_issue_directly(rq, cookie, false);
1518                 rcu_read_unlock();
1519         } else {
1520                 unsigned int srcu_idx;
1521
1522                 might_sleep();
1523
1524                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1525                 __blk_mq_try_issue_directly(rq, cookie, true);
1526                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1527         }
1528 }
1529
1530 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1531 {
1532         const int is_sync = op_is_sync(bio->bi_opf);
1533         const int is_flush_fua = op_is_flush(bio->bi_opf);
1534         struct blk_mq_alloc_data data = { .flags = 0 };
1535         struct request *rq;
1536         unsigned int request_count = 0;
1537         struct blk_plug *plug;
1538         struct request *same_queue_rq = NULL;
1539         blk_qc_t cookie;
1540         unsigned int wb_acct;
1541
1542         blk_queue_bounce(q, &bio);
1543
1544         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1545                 bio_io_error(bio);
1546                 return BLK_QC_T_NONE;
1547         }
1548
1549         blk_queue_split(q, &bio, q->bio_split);
1550
1551         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1552             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1553                 return BLK_QC_T_NONE;
1554
1555         if (blk_mq_sched_bio_merge(q, bio))
1556                 return BLK_QC_T_NONE;
1557
1558         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1559
1560         trace_block_getrq(q, bio, bio->bi_opf);
1561
1562         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1563         if (unlikely(!rq)) {
1564                 __wbt_done(q->rq_wb, wb_acct);
1565                 return BLK_QC_T_NONE;
1566         }
1567
1568         wbt_track(&rq->issue_stat, wb_acct);
1569
1570         cookie = request_to_qc_t(data.hctx, rq);
1571
1572         plug = current->plug;
1573         if (unlikely(is_flush_fua)) {
1574                 blk_mq_bio_to_request(rq, bio);
1575                 if (q->elevator) {
1576                         blk_mq_sched_insert_request(rq, false, true, true,
1577                                         true);
1578                 } else {
1579                         blk_insert_flush(rq);
1580                         blk_mq_run_hw_queue(data.hctx, true);
1581                 }
1582         } else if (plug && q->nr_hw_queues == 1) {
1583                 struct request *last = NULL;
1584
1585                 blk_mq_bio_to_request(rq, bio);
1586
1587                 /*
1588                  * @request_count may become stale because of schedule
1589                  * out, so check the list again.
1590                  */
1591                 if (list_empty(&plug->mq_list))
1592                         request_count = 0;
1593                 else if (blk_queue_nomerges(q))
1594                         request_count = blk_plug_queued_count(q);
1595
1596                 if (!request_count)
1597                         trace_block_plug(q);
1598                 else
1599                         last = list_entry_rq(plug->mq_list.prev);
1600
1601                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1602                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1603                         blk_flush_plug_list(plug, false);
1604                         trace_block_plug(q);
1605                 }
1606
1607                 list_add_tail(&rq->queuelist, &plug->mq_list);
1608         } else if (plug && !blk_queue_nomerges(q)) {
1609                 blk_mq_bio_to_request(rq, bio);
1610
1611                 /*
1612                  * We do limited plugging. If the bio can be merged, do that.
1613                  * Otherwise the existing request in the plug list will be
1614                  * issued. So the plug list will have one request at most
1615                  * The plug list might get flushed before this. If that happens,
1616                  * the plug list is empty, and same_queue_rq is invalid.
1617                  */
1618                 if (list_empty(&plug->mq_list))
1619                         same_queue_rq = NULL;
1620                 if (same_queue_rq)
1621                         list_del_init(&same_queue_rq->queuelist);
1622                 list_add_tail(&rq->queuelist, &plug->mq_list);
1623
1624                 blk_mq_put_ctx(data.ctx);
1625
1626                 if (same_queue_rq)
1627                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1628                                         &cookie);
1629
1630                 return cookie;
1631         } else if (q->nr_hw_queues > 1 && is_sync) {
1632                 blk_mq_put_ctx(data.ctx);
1633                 blk_mq_bio_to_request(rq, bio);
1634                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1635                 return cookie;
1636         } else if (q->elevator) {
1637                 blk_mq_bio_to_request(rq, bio);
1638                 blk_mq_sched_insert_request(rq, false, true, true, true);
1639         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1640                 blk_mq_run_hw_queue(data.hctx, true);
1641
1642         blk_mq_put_ctx(data.ctx);
1643         return cookie;
1644 }
1645
1646 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1647                      unsigned int hctx_idx)
1648 {
1649         struct page *page;
1650
1651         if (tags->rqs && set->ops->exit_request) {
1652                 int i;
1653
1654                 for (i = 0; i < tags->nr_tags; i++) {
1655                         struct request *rq = tags->static_rqs[i];
1656
1657                         if (!rq)
1658                                 continue;
1659                         set->ops->exit_request(set->driver_data, rq,
1660                                                 hctx_idx, i);
1661                         tags->static_rqs[i] = NULL;
1662                 }
1663         }
1664
1665         while (!list_empty(&tags->page_list)) {
1666                 page = list_first_entry(&tags->page_list, struct page, lru);
1667                 list_del_init(&page->lru);
1668                 /*
1669                  * Remove kmemleak object previously allocated in
1670                  * blk_mq_init_rq_map().
1671                  */
1672                 kmemleak_free(page_address(page));
1673                 __free_pages(page, page->private);
1674         }
1675 }
1676
1677 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1678 {
1679         kfree(tags->rqs);
1680         tags->rqs = NULL;
1681         kfree(tags->static_rqs);
1682         tags->static_rqs = NULL;
1683
1684         blk_mq_free_tags(tags);
1685 }
1686
1687 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1688                                         unsigned int hctx_idx,
1689                                         unsigned int nr_tags,
1690                                         unsigned int reserved_tags)
1691 {
1692         struct blk_mq_tags *tags;
1693         int node;
1694
1695         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1696         if (node == NUMA_NO_NODE)
1697                 node = set->numa_node;
1698
1699         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1700                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1701         if (!tags)
1702                 return NULL;
1703
1704         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1705                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1706                                  node);
1707         if (!tags->rqs) {
1708                 blk_mq_free_tags(tags);
1709                 return NULL;
1710         }
1711
1712         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1713                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1714                                  node);
1715         if (!tags->static_rqs) {
1716                 kfree(tags->rqs);
1717                 blk_mq_free_tags(tags);
1718                 return NULL;
1719         }
1720
1721         return tags;
1722 }
1723
1724 static size_t order_to_size(unsigned int order)
1725 {
1726         return (size_t)PAGE_SIZE << order;
1727 }
1728
1729 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1730                      unsigned int hctx_idx, unsigned int depth)
1731 {
1732         unsigned int i, j, entries_per_page, max_order = 4;
1733         size_t rq_size, left;
1734         int node;
1735
1736         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1737         if (node == NUMA_NO_NODE)
1738                 node = set->numa_node;
1739
1740         INIT_LIST_HEAD(&tags->page_list);
1741
1742         /*
1743          * rq_size is the size of the request plus driver payload, rounded
1744          * to the cacheline size
1745          */
1746         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1747                                 cache_line_size());
1748         left = rq_size * depth;
1749
1750         for (i = 0; i < depth; ) {
1751                 int this_order = max_order;
1752                 struct page *page;
1753                 int to_do;
1754                 void *p;
1755
1756                 while (this_order && left < order_to_size(this_order - 1))
1757                         this_order--;
1758
1759                 do {
1760                         page = alloc_pages_node(node,
1761                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1762                                 this_order);
1763                         if (page)
1764                                 break;
1765                         if (!this_order--)
1766                                 break;
1767                         if (order_to_size(this_order) < rq_size)
1768                                 break;
1769                 } while (1);
1770
1771                 if (!page)
1772                         goto fail;
1773
1774                 page->private = this_order;
1775                 list_add_tail(&page->lru, &tags->page_list);
1776
1777                 p = page_address(page);
1778                 /*
1779                  * Allow kmemleak to scan these pages as they contain pointers
1780                  * to additional allocations like via ops->init_request().
1781                  */
1782                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1783                 entries_per_page = order_to_size(this_order) / rq_size;
1784                 to_do = min(entries_per_page, depth - i);
1785                 left -= to_do * rq_size;
1786                 for (j = 0; j < to_do; j++) {
1787                         struct request *rq = p;
1788
1789                         tags->static_rqs[i] = rq;
1790                         if (set->ops->init_request) {
1791                                 if (set->ops->init_request(set->driver_data,
1792                                                 rq, hctx_idx, i,
1793                                                 node)) {
1794                                         tags->static_rqs[i] = NULL;
1795                                         goto fail;
1796                                 }
1797                         }
1798
1799                         p += rq_size;
1800                         i++;
1801                 }
1802         }
1803         return 0;
1804
1805 fail:
1806         blk_mq_free_rqs(set, tags, hctx_idx);
1807         return -ENOMEM;
1808 }
1809
1810 /*
1811  * 'cpu' is going away. splice any existing rq_list entries from this
1812  * software queue to the hw queue dispatch list, and ensure that it
1813  * gets run.
1814  */
1815 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1816 {
1817         struct blk_mq_hw_ctx *hctx;
1818         struct blk_mq_ctx *ctx;
1819         LIST_HEAD(tmp);
1820
1821         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1822         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1823
1824         spin_lock(&ctx->lock);
1825         if (!list_empty(&ctx->rq_list)) {
1826                 list_splice_init(&ctx->rq_list, &tmp);
1827                 blk_mq_hctx_clear_pending(hctx, ctx);
1828         }
1829         spin_unlock(&ctx->lock);
1830
1831         if (list_empty(&tmp))
1832                 return 0;
1833
1834         spin_lock(&hctx->lock);
1835         list_splice_tail_init(&tmp, &hctx->dispatch);
1836         spin_unlock(&hctx->lock);
1837
1838         blk_mq_run_hw_queue(hctx, true);
1839         return 0;
1840 }
1841
1842 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1843 {
1844         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1845                                             &hctx->cpuhp_dead);
1846 }
1847
1848 /* hctx->ctxs will be freed in queue's release handler */
1849 static void blk_mq_exit_hctx(struct request_queue *q,
1850                 struct blk_mq_tag_set *set,
1851                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1852 {
1853         unsigned flush_start_tag = set->queue_depth;
1854
1855         blk_mq_tag_idle(hctx);
1856
1857         if (set->ops->exit_request)
1858                 set->ops->exit_request(set->driver_data,
1859                                        hctx->fq->flush_rq, hctx_idx,
1860                                        flush_start_tag + hctx_idx);
1861
1862         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1863
1864         if (set->ops->exit_hctx)
1865                 set->ops->exit_hctx(hctx, hctx_idx);
1866
1867         if (hctx->flags & BLK_MQ_F_BLOCKING)
1868                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1869
1870         blk_mq_remove_cpuhp(hctx);
1871         blk_free_flush_queue(hctx->fq);
1872         sbitmap_free(&hctx->ctx_map);
1873 }
1874
1875 static void blk_mq_exit_hw_queues(struct request_queue *q,
1876                 struct blk_mq_tag_set *set, int nr_queue)
1877 {
1878         struct blk_mq_hw_ctx *hctx;
1879         unsigned int i;
1880
1881         queue_for_each_hw_ctx(q, hctx, i) {
1882                 if (i == nr_queue)
1883                         break;
1884                 blk_mq_exit_hctx(q, set, hctx, i);
1885         }
1886 }
1887
1888 static int blk_mq_init_hctx(struct request_queue *q,
1889                 struct blk_mq_tag_set *set,
1890                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1891 {
1892         int node;
1893         unsigned flush_start_tag = set->queue_depth;
1894
1895         node = hctx->numa_node;
1896         if (node == NUMA_NO_NODE)
1897                 node = hctx->numa_node = set->numa_node;
1898
1899         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1900         INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1901         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1902         spin_lock_init(&hctx->lock);
1903         INIT_LIST_HEAD(&hctx->dispatch);
1904         hctx->queue = q;
1905         hctx->queue_num = hctx_idx;
1906         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1907
1908         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1909
1910         hctx->tags = set->tags[hctx_idx];
1911
1912         /*
1913          * Allocate space for all possible cpus to avoid allocation at
1914          * runtime
1915          */
1916         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1917                                         GFP_KERNEL, node);
1918         if (!hctx->ctxs)
1919                 goto unregister_cpu_notifier;
1920
1921         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1922                               node))
1923                 goto free_ctxs;
1924
1925         hctx->nr_ctx = 0;
1926
1927         if (set->ops->init_hctx &&
1928             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1929                 goto free_bitmap;
1930
1931         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1932                 goto exit_hctx;
1933
1934         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1935         if (!hctx->fq)
1936                 goto sched_exit_hctx;
1937
1938         if (set->ops->init_request &&
1939             set->ops->init_request(set->driver_data,
1940                                    hctx->fq->flush_rq, hctx_idx,
1941                                    flush_start_tag + hctx_idx, node))
1942                 goto free_fq;
1943
1944         if (hctx->flags & BLK_MQ_F_BLOCKING)
1945                 init_srcu_struct(&hctx->queue_rq_srcu);
1946
1947         return 0;
1948
1949  free_fq:
1950         kfree(hctx->fq);
1951  sched_exit_hctx:
1952         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1953  exit_hctx:
1954         if (set->ops->exit_hctx)
1955                 set->ops->exit_hctx(hctx, hctx_idx);
1956  free_bitmap:
1957         sbitmap_free(&hctx->ctx_map);
1958  free_ctxs:
1959         kfree(hctx->ctxs);
1960  unregister_cpu_notifier:
1961         blk_mq_remove_cpuhp(hctx);
1962         return -1;
1963 }
1964
1965 static void blk_mq_init_cpu_queues(struct request_queue *q,
1966                                    unsigned int nr_hw_queues)
1967 {
1968         unsigned int i;
1969
1970         for_each_possible_cpu(i) {
1971                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1972                 struct blk_mq_hw_ctx *hctx;
1973
1974                 __ctx->cpu = i;
1975                 spin_lock_init(&__ctx->lock);
1976                 INIT_LIST_HEAD(&__ctx->rq_list);
1977                 __ctx->queue = q;
1978
1979                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1980                 if (!cpu_online(i))
1981                         continue;
1982
1983                 hctx = blk_mq_map_queue(q, i);
1984
1985                 /*
1986                  * Set local node, IFF we have more than one hw queue. If
1987                  * not, we remain on the home node of the device
1988                  */
1989                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1990                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1991         }
1992 }
1993
1994 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1995 {
1996         int ret = 0;
1997
1998         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1999                                         set->queue_depth, set->reserved_tags);
2000         if (!set->tags[hctx_idx])
2001                 return false;
2002
2003         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2004                                 set->queue_depth);
2005         if (!ret)
2006                 return true;
2007
2008         blk_mq_free_rq_map(set->tags[hctx_idx]);
2009         set->tags[hctx_idx] = NULL;
2010         return false;
2011 }
2012
2013 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2014                                          unsigned int hctx_idx)
2015 {
2016         if (set->tags[hctx_idx]) {
2017                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2018                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2019                 set->tags[hctx_idx] = NULL;
2020         }
2021 }
2022
2023 static void blk_mq_map_swqueue(struct request_queue *q,
2024                                const struct cpumask *online_mask)
2025 {
2026         unsigned int i, hctx_idx;
2027         struct blk_mq_hw_ctx *hctx;
2028         struct blk_mq_ctx *ctx;
2029         struct blk_mq_tag_set *set = q->tag_set;
2030
2031         /*
2032          * Avoid others reading imcomplete hctx->cpumask through sysfs
2033          */
2034         mutex_lock(&q->sysfs_lock);
2035
2036         queue_for_each_hw_ctx(q, hctx, i) {
2037                 cpumask_clear(hctx->cpumask);
2038                 hctx->nr_ctx = 0;
2039         }
2040
2041         /*
2042          * Map software to hardware queues
2043          */
2044         for_each_possible_cpu(i) {
2045                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2046                 if (!cpumask_test_cpu(i, online_mask))
2047                         continue;
2048
2049                 hctx_idx = q->mq_map[i];
2050                 /* unmapped hw queue can be remapped after CPU topo changed */
2051                 if (!set->tags[hctx_idx] &&
2052                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2053                         /*
2054                          * If tags initialization fail for some hctx,
2055                          * that hctx won't be brought online.  In this
2056                          * case, remap the current ctx to hctx[0] which
2057                          * is guaranteed to always have tags allocated
2058                          */
2059                         q->mq_map[i] = 0;
2060                 }
2061
2062                 ctx = per_cpu_ptr(q->queue_ctx, i);
2063                 hctx = blk_mq_map_queue(q, i);
2064
2065                 cpumask_set_cpu(i, hctx->cpumask);
2066                 ctx->index_hw = hctx->nr_ctx;
2067                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2068         }
2069
2070         mutex_unlock(&q->sysfs_lock);
2071
2072         queue_for_each_hw_ctx(q, hctx, i) {
2073                 /*
2074                  * If no software queues are mapped to this hardware queue,
2075                  * disable it and free the request entries.
2076                  */
2077                 if (!hctx->nr_ctx) {
2078                         /* Never unmap queue 0.  We need it as a
2079                          * fallback in case of a new remap fails
2080                          * allocation
2081                          */
2082                         if (i && set->tags[i])
2083                                 blk_mq_free_map_and_requests(set, i);
2084
2085                         hctx->tags = NULL;
2086                         continue;
2087                 }
2088
2089                 hctx->tags = set->tags[i];
2090                 WARN_ON(!hctx->tags);
2091
2092                 /*
2093                  * Set the map size to the number of mapped software queues.
2094                  * This is more accurate and more efficient than looping
2095                  * over all possibly mapped software queues.
2096                  */
2097                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2098
2099                 /*
2100                  * Initialize batch roundrobin counts
2101                  */
2102                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2103                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2104         }
2105 }
2106
2107 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2108 {
2109         struct blk_mq_hw_ctx *hctx;
2110         int i;
2111
2112         queue_for_each_hw_ctx(q, hctx, i) {
2113                 if (shared)
2114                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2115                 else
2116                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2117         }
2118 }
2119
2120 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2121 {
2122         struct request_queue *q;
2123
2124         lockdep_assert_held(&set->tag_list_lock);
2125
2126         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2127                 blk_mq_freeze_queue(q);
2128                 queue_set_hctx_shared(q, shared);
2129                 blk_mq_unfreeze_queue(q);
2130         }
2131 }
2132
2133 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2134 {
2135         struct blk_mq_tag_set *set = q->tag_set;
2136
2137         mutex_lock(&set->tag_list_lock);
2138         list_del_rcu(&q->tag_set_list);
2139         INIT_LIST_HEAD(&q->tag_set_list);
2140         if (list_is_singular(&set->tag_list)) {
2141                 /* just transitioned to unshared */
2142                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2143                 /* update existing queue */
2144                 blk_mq_update_tag_set_depth(set, false);
2145         }
2146         mutex_unlock(&set->tag_list_lock);
2147
2148         synchronize_rcu();
2149 }
2150
2151 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2152                                      struct request_queue *q)
2153 {
2154         q->tag_set = set;
2155
2156         mutex_lock(&set->tag_list_lock);
2157
2158         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2159         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2160                 set->flags |= BLK_MQ_F_TAG_SHARED;
2161                 /* update existing queue */
2162                 blk_mq_update_tag_set_depth(set, true);
2163         }
2164         if (set->flags & BLK_MQ_F_TAG_SHARED)
2165                 queue_set_hctx_shared(q, true);
2166         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2167
2168         mutex_unlock(&set->tag_list_lock);
2169 }
2170
2171 /*
2172  * It is the actual release handler for mq, but we do it from
2173  * request queue's release handler for avoiding use-after-free
2174  * and headache because q->mq_kobj shouldn't have been introduced,
2175  * but we can't group ctx/kctx kobj without it.
2176  */
2177 void blk_mq_release(struct request_queue *q)
2178 {
2179         struct blk_mq_hw_ctx *hctx;
2180         unsigned int i;
2181
2182         /* hctx kobj stays in hctx */
2183         queue_for_each_hw_ctx(q, hctx, i) {
2184                 if (!hctx)
2185                         continue;
2186                 kobject_put(&hctx->kobj);
2187         }
2188
2189         q->mq_map = NULL;
2190
2191         kfree(q->queue_hw_ctx);
2192
2193         /*
2194          * release .mq_kobj and sw queue's kobject now because
2195          * both share lifetime with request queue.
2196          */
2197         blk_mq_sysfs_deinit(q);
2198
2199         free_percpu(q->queue_ctx);
2200 }
2201
2202 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2203 {
2204         struct request_queue *uninit_q, *q;
2205
2206         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2207         if (!uninit_q)
2208                 return ERR_PTR(-ENOMEM);
2209
2210         q = blk_mq_init_allocated_queue(set, uninit_q);
2211         if (IS_ERR(q))
2212                 blk_cleanup_queue(uninit_q);
2213
2214         return q;
2215 }
2216 EXPORT_SYMBOL(blk_mq_init_queue);
2217
2218 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2219                                                 struct request_queue *q)
2220 {
2221         int i, j;
2222         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2223
2224         blk_mq_sysfs_unregister(q);
2225         for (i = 0; i < set->nr_hw_queues; i++) {
2226                 int node;
2227
2228                 if (hctxs[i])
2229                         continue;
2230
2231                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2232                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2233                                         GFP_KERNEL, node);
2234                 if (!hctxs[i])
2235                         break;
2236
2237                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2238                                                 node)) {
2239                         kfree(hctxs[i]);
2240                         hctxs[i] = NULL;
2241                         break;
2242                 }
2243
2244                 atomic_set(&hctxs[i]->nr_active, 0);
2245                 hctxs[i]->numa_node = node;
2246                 hctxs[i]->queue_num = i;
2247
2248                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2249                         free_cpumask_var(hctxs[i]->cpumask);
2250                         kfree(hctxs[i]);
2251                         hctxs[i] = NULL;
2252                         break;
2253                 }
2254                 blk_mq_hctx_kobj_init(hctxs[i]);
2255         }
2256         for (j = i; j < q->nr_hw_queues; j++) {
2257                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2258
2259                 if (hctx) {
2260                         if (hctx->tags)
2261                                 blk_mq_free_map_and_requests(set, j);
2262                         blk_mq_exit_hctx(q, set, hctx, j);
2263                         kobject_put(&hctx->kobj);
2264                         hctxs[j] = NULL;
2265
2266                 }
2267         }
2268         q->nr_hw_queues = i;
2269         blk_mq_sysfs_register(q);
2270 }
2271
2272 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2273                                                   struct request_queue *q)
2274 {
2275         /* mark the queue as mq asap */
2276         q->mq_ops = set->ops;
2277
2278         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2279                                              blk_stat_rq_ddir, 2, q);
2280         if (!q->poll_cb)
2281                 goto err_exit;
2282
2283         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2284         if (!q->queue_ctx)
2285                 goto err_exit;
2286
2287         /* init q->mq_kobj and sw queues' kobjects */
2288         blk_mq_sysfs_init(q);
2289
2290         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2291                                                 GFP_KERNEL, set->numa_node);
2292         if (!q->queue_hw_ctx)
2293                 goto err_percpu;
2294
2295         q->mq_map = set->mq_map;
2296
2297         blk_mq_realloc_hw_ctxs(set, q);
2298         if (!q->nr_hw_queues)
2299                 goto err_hctxs;
2300
2301         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2302         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2303
2304         q->nr_queues = nr_cpu_ids;
2305
2306         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2307
2308         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2309                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2310
2311         q->sg_reserved_size = INT_MAX;
2312
2313         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2314         INIT_LIST_HEAD(&q->requeue_list);
2315         spin_lock_init(&q->requeue_lock);
2316
2317         blk_queue_make_request(q, blk_mq_make_request);
2318
2319         /*
2320          * Do this after blk_queue_make_request() overrides it...
2321          */
2322         q->nr_requests = set->queue_depth;
2323
2324         /*
2325          * Default to classic polling
2326          */
2327         q->poll_nsec = -1;
2328
2329         if (set->ops->complete)
2330                 blk_queue_softirq_done(q, set->ops->complete);
2331
2332         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2333
2334         get_online_cpus();
2335         mutex_lock(&all_q_mutex);
2336
2337         list_add_tail(&q->all_q_node, &all_q_list);
2338         blk_mq_add_queue_tag_set(set, q);
2339         blk_mq_map_swqueue(q, cpu_online_mask);
2340
2341         mutex_unlock(&all_q_mutex);
2342         put_online_cpus();
2343
2344         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2345                 int ret;
2346
2347                 ret = blk_mq_sched_init(q);
2348                 if (ret)
2349                         return ERR_PTR(ret);
2350         }
2351
2352         return q;
2353
2354 err_hctxs:
2355         kfree(q->queue_hw_ctx);
2356 err_percpu:
2357         free_percpu(q->queue_ctx);
2358 err_exit:
2359         q->mq_ops = NULL;
2360         return ERR_PTR(-ENOMEM);
2361 }
2362 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2363
2364 void blk_mq_free_queue(struct request_queue *q)
2365 {
2366         struct blk_mq_tag_set   *set = q->tag_set;
2367
2368         mutex_lock(&all_q_mutex);
2369         list_del_init(&q->all_q_node);
2370         mutex_unlock(&all_q_mutex);
2371
2372         blk_mq_del_queue_tag_set(q);
2373
2374         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2375 }
2376
2377 /* Basically redo blk_mq_init_queue with queue frozen */
2378 static void blk_mq_queue_reinit(struct request_queue *q,
2379                                 const struct cpumask *online_mask)
2380 {
2381         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2382
2383         blk_mq_sysfs_unregister(q);
2384
2385         /*
2386          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2387          * we should change hctx numa_node according to new topology (this
2388          * involves free and re-allocate memory, worthy doing?)
2389          */
2390
2391         blk_mq_map_swqueue(q, online_mask);
2392
2393         blk_mq_sysfs_register(q);
2394 }
2395
2396 /*
2397  * New online cpumask which is going to be set in this hotplug event.
2398  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2399  * one-by-one and dynamically allocating this could result in a failure.
2400  */
2401 static struct cpumask cpuhp_online_new;
2402
2403 static void blk_mq_queue_reinit_work(void)
2404 {
2405         struct request_queue *q;
2406
2407         mutex_lock(&all_q_mutex);
2408         /*
2409          * We need to freeze and reinit all existing queues.  Freezing
2410          * involves synchronous wait for an RCU grace period and doing it
2411          * one by one may take a long time.  Start freezing all queues in
2412          * one swoop and then wait for the completions so that freezing can
2413          * take place in parallel.
2414          */
2415         list_for_each_entry(q, &all_q_list, all_q_node)
2416                 blk_freeze_queue_start(q);
2417         list_for_each_entry(q, &all_q_list, all_q_node)
2418                 blk_mq_freeze_queue_wait(q);
2419
2420         list_for_each_entry(q, &all_q_list, all_q_node)
2421                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2422
2423         list_for_each_entry(q, &all_q_list, all_q_node)
2424                 blk_mq_unfreeze_queue(q);
2425
2426         mutex_unlock(&all_q_mutex);
2427 }
2428
2429 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2430 {
2431         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2432         blk_mq_queue_reinit_work();
2433         return 0;
2434 }
2435
2436 /*
2437  * Before hotadded cpu starts handling requests, new mappings must be
2438  * established.  Otherwise, these requests in hw queue might never be
2439  * dispatched.
2440  *
2441  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2442  * for CPU0, and ctx1 for CPU1).
2443  *
2444  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2445  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2446  *
2447  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2448  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2449  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2450  * ignored.
2451  */
2452 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2453 {
2454         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2455         cpumask_set_cpu(cpu, &cpuhp_online_new);
2456         blk_mq_queue_reinit_work();
2457         return 0;
2458 }
2459
2460 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2461 {
2462         int i;
2463
2464         for (i = 0; i < set->nr_hw_queues; i++)
2465                 if (!__blk_mq_alloc_rq_map(set, i))
2466                         goto out_unwind;
2467
2468         return 0;
2469
2470 out_unwind:
2471         while (--i >= 0)
2472                 blk_mq_free_rq_map(set->tags[i]);
2473
2474         return -ENOMEM;
2475 }
2476
2477 /*
2478  * Allocate the request maps associated with this tag_set. Note that this
2479  * may reduce the depth asked for, if memory is tight. set->queue_depth
2480  * will be updated to reflect the allocated depth.
2481  */
2482 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2483 {
2484         unsigned int depth;
2485         int err;
2486
2487         depth = set->queue_depth;
2488         do {
2489                 err = __blk_mq_alloc_rq_maps(set);
2490                 if (!err)
2491                         break;
2492
2493                 set->queue_depth >>= 1;
2494                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2495                         err = -ENOMEM;
2496                         break;
2497                 }
2498         } while (set->queue_depth);
2499
2500         if (!set->queue_depth || err) {
2501                 pr_err("blk-mq: failed to allocate request map\n");
2502                 return -ENOMEM;
2503         }
2504
2505         if (depth != set->queue_depth)
2506                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2507                                                 depth, set->queue_depth);
2508
2509         return 0;
2510 }
2511
2512 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2513 {
2514         if (set->ops->map_queues)
2515                 return set->ops->map_queues(set);
2516         else
2517                 return blk_mq_map_queues(set);
2518 }
2519
2520 /*
2521  * Alloc a tag set to be associated with one or more request queues.
2522  * May fail with EINVAL for various error conditions. May adjust the
2523  * requested depth down, if if it too large. In that case, the set
2524  * value will be stored in set->queue_depth.
2525  */
2526 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2527 {
2528         int ret;
2529
2530         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2531
2532         if (!set->nr_hw_queues)
2533                 return -EINVAL;
2534         if (!set->queue_depth)
2535                 return -EINVAL;
2536         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2537                 return -EINVAL;
2538
2539         if (!set->ops->queue_rq)
2540                 return -EINVAL;
2541
2542         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2543                 pr_info("blk-mq: reduced tag depth to %u\n",
2544                         BLK_MQ_MAX_DEPTH);
2545                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2546         }
2547
2548         /*
2549          * If a crashdump is active, then we are potentially in a very
2550          * memory constrained environment. Limit us to 1 queue and
2551          * 64 tags to prevent using too much memory.
2552          */
2553         if (is_kdump_kernel()) {
2554                 set->nr_hw_queues = 1;
2555                 set->queue_depth = min(64U, set->queue_depth);
2556         }
2557         /*
2558          * There is no use for more h/w queues than cpus.
2559          */
2560         if (set->nr_hw_queues > nr_cpu_ids)
2561                 set->nr_hw_queues = nr_cpu_ids;
2562
2563         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2564                                  GFP_KERNEL, set->numa_node);
2565         if (!set->tags)
2566                 return -ENOMEM;
2567
2568         ret = -ENOMEM;
2569         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2570                         GFP_KERNEL, set->numa_node);
2571         if (!set->mq_map)
2572                 goto out_free_tags;
2573
2574         ret = blk_mq_update_queue_map(set);
2575         if (ret)
2576                 goto out_free_mq_map;
2577
2578         ret = blk_mq_alloc_rq_maps(set);
2579         if (ret)
2580                 goto out_free_mq_map;
2581
2582         mutex_init(&set->tag_list_lock);
2583         INIT_LIST_HEAD(&set->tag_list);
2584
2585         return 0;
2586
2587 out_free_mq_map:
2588         kfree(set->mq_map);
2589         set->mq_map = NULL;
2590 out_free_tags:
2591         kfree(set->tags);
2592         set->tags = NULL;
2593         return ret;
2594 }
2595 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2596
2597 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2598 {
2599         int i;
2600
2601         for (i = 0; i < nr_cpu_ids; i++)
2602                 blk_mq_free_map_and_requests(set, i);
2603
2604         kfree(set->mq_map);
2605         set->mq_map = NULL;
2606
2607         kfree(set->tags);
2608         set->tags = NULL;
2609 }
2610 EXPORT_SYMBOL(blk_mq_free_tag_set);
2611
2612 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2613 {
2614         struct blk_mq_tag_set *set = q->tag_set;
2615         struct blk_mq_hw_ctx *hctx;
2616         int i, ret;
2617
2618         if (!set)
2619                 return -EINVAL;
2620
2621         blk_mq_freeze_queue(q);
2622         blk_mq_quiesce_queue(q);
2623
2624         ret = 0;
2625         queue_for_each_hw_ctx(q, hctx, i) {
2626                 if (!hctx->tags)
2627                         continue;
2628                 /*
2629                  * If we're using an MQ scheduler, just update the scheduler
2630                  * queue depth. This is similar to what the old code would do.
2631                  */
2632                 if (!hctx->sched_tags) {
2633                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2634                                                         min(nr, set->queue_depth),
2635                                                         false);
2636                 } else {
2637                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2638                                                         nr, true);
2639                 }
2640                 if (ret)
2641                         break;
2642         }
2643
2644         if (!ret)
2645                 q->nr_requests = nr;
2646
2647         blk_mq_unfreeze_queue(q);
2648         blk_mq_start_stopped_hw_queues(q, true);
2649
2650         return ret;
2651 }
2652
2653 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2654 {
2655         struct request_queue *q;
2656
2657         lockdep_assert_held(&set->tag_list_lock);
2658
2659         if (nr_hw_queues > nr_cpu_ids)
2660                 nr_hw_queues = nr_cpu_ids;
2661         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2662                 return;
2663
2664         list_for_each_entry(q, &set->tag_list, tag_set_list)
2665                 blk_mq_freeze_queue(q);
2666
2667         set->nr_hw_queues = nr_hw_queues;
2668         blk_mq_update_queue_map(set);
2669         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2670                 blk_mq_realloc_hw_ctxs(set, q);
2671                 blk_mq_queue_reinit(q, cpu_online_mask);
2672         }
2673
2674         list_for_each_entry(q, &set->tag_list, tag_set_list)
2675                 blk_mq_unfreeze_queue(q);
2676 }
2677 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2678
2679 /* Enable polling stats and return whether they were already enabled. */
2680 static bool blk_poll_stats_enable(struct request_queue *q)
2681 {
2682         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2683             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2684                 return true;
2685         blk_stat_add_callback(q, q->poll_cb);
2686         return false;
2687 }
2688
2689 static void blk_mq_poll_stats_start(struct request_queue *q)
2690 {
2691         /*
2692          * We don't arm the callback if polling stats are not enabled or the
2693          * callback is already active.
2694          */
2695         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2696             blk_stat_is_active(q->poll_cb))
2697                 return;
2698
2699         blk_stat_activate_msecs(q->poll_cb, 100);
2700 }
2701
2702 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2703 {
2704         struct request_queue *q = cb->data;
2705
2706         if (cb->stat[READ].nr_samples)
2707                 q->poll_stat[READ] = cb->stat[READ];
2708         if (cb->stat[WRITE].nr_samples)
2709                 q->poll_stat[WRITE] = cb->stat[WRITE];
2710 }
2711
2712 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2713                                        struct blk_mq_hw_ctx *hctx,
2714                                        struct request *rq)
2715 {
2716         unsigned long ret = 0;
2717
2718         /*
2719          * If stats collection isn't on, don't sleep but turn it on for
2720          * future users
2721          */
2722         if (!blk_poll_stats_enable(q))
2723                 return 0;
2724
2725         /*
2726          * As an optimistic guess, use half of the mean service time
2727          * for this type of request. We can (and should) make this smarter.
2728          * For instance, if the completion latencies are tight, we can
2729          * get closer than just half the mean. This is especially
2730          * important on devices where the completion latencies are longer
2731          * than ~10 usec.
2732          */
2733         if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2734                 ret = (q->poll_stat[READ].mean + 1) / 2;
2735         else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2736                 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2737
2738         return ret;
2739 }
2740
2741 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2742                                      struct blk_mq_hw_ctx *hctx,
2743                                      struct request *rq)
2744 {
2745         struct hrtimer_sleeper hs;
2746         enum hrtimer_mode mode;
2747         unsigned int nsecs;
2748         ktime_t kt;
2749
2750         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2751                 return false;
2752
2753         /*
2754          * poll_nsec can be:
2755          *
2756          * -1:  don't ever hybrid sleep
2757          *  0:  use half of prev avg
2758          * >0:  use this specific value
2759          */
2760         if (q->poll_nsec == -1)
2761                 return false;
2762         else if (q->poll_nsec > 0)
2763                 nsecs = q->poll_nsec;
2764         else
2765                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2766
2767         if (!nsecs)
2768                 return false;
2769
2770         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2771
2772         /*
2773          * This will be replaced with the stats tracking code, using
2774          * 'avg_completion_time / 2' as the pre-sleep target.
2775          */
2776         kt = nsecs;
2777
2778         mode = HRTIMER_MODE_REL;
2779         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2780         hrtimer_set_expires(&hs.timer, kt);
2781
2782         hrtimer_init_sleeper(&hs, current);
2783         do {
2784                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2785                         break;
2786                 set_current_state(TASK_UNINTERRUPTIBLE);
2787                 hrtimer_start_expires(&hs.timer, mode);
2788                 if (hs.task)
2789                         io_schedule();
2790                 hrtimer_cancel(&hs.timer);
2791                 mode = HRTIMER_MODE_ABS;
2792         } while (hs.task && !signal_pending(current));
2793
2794         __set_current_state(TASK_RUNNING);
2795         destroy_hrtimer_on_stack(&hs.timer);
2796         return true;
2797 }
2798
2799 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2800 {
2801         struct request_queue *q = hctx->queue;
2802         long state;
2803
2804         /*
2805          * If we sleep, have the caller restart the poll loop to reset
2806          * the state. Like for the other success return cases, the
2807          * caller is responsible for checking if the IO completed. If
2808          * the IO isn't complete, we'll get called again and will go
2809          * straight to the busy poll loop.
2810          */
2811         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2812                 return true;
2813
2814         hctx->poll_considered++;
2815
2816         state = current->state;
2817         while (!need_resched()) {
2818                 int ret;
2819
2820                 hctx->poll_invoked++;
2821
2822                 ret = q->mq_ops->poll(hctx, rq->tag);
2823                 if (ret > 0) {
2824                         hctx->poll_success++;
2825                         set_current_state(TASK_RUNNING);
2826                         return true;
2827                 }
2828
2829                 if (signal_pending_state(state, current))
2830                         set_current_state(TASK_RUNNING);
2831
2832                 if (current->state == TASK_RUNNING)
2833                         return true;
2834                 if (ret < 0)
2835                         break;
2836                 cpu_relax();
2837         }
2838
2839         return false;
2840 }
2841
2842 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2843 {
2844         struct blk_mq_hw_ctx *hctx;
2845         struct blk_plug *plug;
2846         struct request *rq;
2847
2848         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2849             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2850                 return false;
2851
2852         plug = current->plug;
2853         if (plug)
2854                 blk_flush_plug_list(plug, false);
2855
2856         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2857         if (!blk_qc_t_is_internal(cookie))
2858                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2859         else
2860                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2861
2862         return __blk_mq_poll(hctx, rq);
2863 }
2864 EXPORT_SYMBOL_GPL(blk_mq_poll);
2865
2866 void blk_mq_disable_hotplug(void)
2867 {
2868         mutex_lock(&all_q_mutex);
2869 }
2870
2871 void blk_mq_enable_hotplug(void)
2872 {
2873         mutex_unlock(&all_q_mutex);
2874 }
2875
2876 static int __init blk_mq_init(void)
2877 {
2878         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2879                                 blk_mq_hctx_notify_dead);
2880
2881         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2882                                   blk_mq_queue_reinit_prepare,
2883                                   blk_mq_queue_reinit_dead);
2884         return 0;
2885 }
2886 subsys_initcall(blk_mq_init);