]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-mq.c
Merge branch 'for-linus' into for-4.12/block
[karo-tx-linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-tag.h"
35 #include "blk-stat.h"
36 #include "blk-wbt.h"
37 #include "blk-mq-sched.h"
38
39 static DEFINE_MUTEX(all_q_mutex);
40 static LIST_HEAD(all_q_list);
41
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 /*
46  * Check if any of the ctx's have pending work in this hardware queue
47  */
48 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
49 {
50         return sbitmap_any_bit_set(&hctx->ctx_map) ||
51                         !list_empty_careful(&hctx->dispatch) ||
52                         blk_mq_sched_has_work(hctx);
53 }
54
55 /*
56  * Mark this ctx as having pending work in this hardware queue
57  */
58 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
59                                      struct blk_mq_ctx *ctx)
60 {
61         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
62                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
63 }
64
65 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
66                                       struct blk_mq_ctx *ctx)
67 {
68         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
69 }
70
71 void blk_freeze_queue_start(struct request_queue *q)
72 {
73         int freeze_depth;
74
75         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
76         if (freeze_depth == 1) {
77                 percpu_ref_kill(&q->q_usage_counter);
78                 blk_mq_run_hw_queues(q, false);
79         }
80 }
81 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
82
83 void blk_mq_freeze_queue_wait(struct request_queue *q)
84 {
85         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
86 }
87 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
88
89 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
90                                      unsigned long timeout)
91 {
92         return wait_event_timeout(q->mq_freeze_wq,
93                                         percpu_ref_is_zero(&q->q_usage_counter),
94                                         timeout);
95 }
96 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
97
98 /*
99  * Guarantee no request is in use, so we can change any data structure of
100  * the queue afterward.
101  */
102 void blk_freeze_queue(struct request_queue *q)
103 {
104         /*
105          * In the !blk_mq case we are only calling this to kill the
106          * q_usage_counter, otherwise this increases the freeze depth
107          * and waits for it to return to zero.  For this reason there is
108          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109          * exported to drivers as the only user for unfreeze is blk_mq.
110          */
111         blk_freeze_queue_start(q);
112         blk_mq_freeze_queue_wait(q);
113 }
114
115 void blk_mq_freeze_queue(struct request_queue *q)
116 {
117         /*
118          * ...just an alias to keep freeze and unfreeze actions balanced
119          * in the blk_mq_* namespace
120          */
121         blk_freeze_queue(q);
122 }
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
124
125 void blk_mq_unfreeze_queue(struct request_queue *q)
126 {
127         int freeze_depth;
128
129         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130         WARN_ON_ONCE(freeze_depth < 0);
131         if (!freeze_depth) {
132                 percpu_ref_reinit(&q->q_usage_counter);
133                 wake_up_all(&q->mq_freeze_wq);
134         }
135 }
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
137
138 /**
139  * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
140  * @q: request queue.
141  *
142  * Note: this function does not prevent that the struct request end_io()
143  * callback function is invoked. Additionally, it is not prevented that
144  * new queue_rq() calls occur unless the queue has been stopped first.
145  */
146 void blk_mq_quiesce_queue(struct request_queue *q)
147 {
148         struct blk_mq_hw_ctx *hctx;
149         unsigned int i;
150         bool rcu = false;
151
152         blk_mq_stop_hw_queues(q);
153
154         queue_for_each_hw_ctx(q, hctx, i) {
155                 if (hctx->flags & BLK_MQ_F_BLOCKING)
156                         synchronize_srcu(&hctx->queue_rq_srcu);
157                 else
158                         rcu = true;
159         }
160         if (rcu)
161                 synchronize_rcu();
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
164
165 void blk_mq_wake_waiters(struct request_queue *q)
166 {
167         struct blk_mq_hw_ctx *hctx;
168         unsigned int i;
169
170         queue_for_each_hw_ctx(q, hctx, i)
171                 if (blk_mq_hw_queue_mapped(hctx))
172                         blk_mq_tag_wakeup_all(hctx->tags, true);
173
174         /*
175          * If we are called because the queue has now been marked as
176          * dying, we need to ensure that processes currently waiting on
177          * the queue are notified as well.
178          */
179         wake_up_all(&q->mq_freeze_wq);
180 }
181
182 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
183 {
184         return blk_mq_has_free_tags(hctx->tags);
185 }
186 EXPORT_SYMBOL(blk_mq_can_queue);
187
188 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
189                         struct request *rq, unsigned int op)
190 {
191         INIT_LIST_HEAD(&rq->queuelist);
192         /* csd/requeue_work/fifo_time is initialized before use */
193         rq->q = q;
194         rq->mq_ctx = ctx;
195         rq->cmd_flags = op;
196         if (blk_queue_io_stat(q))
197                 rq->rq_flags |= RQF_IO_STAT;
198         /* do not touch atomic flags, it needs atomic ops against the timer */
199         rq->cpu = -1;
200         INIT_HLIST_NODE(&rq->hash);
201         RB_CLEAR_NODE(&rq->rb_node);
202         rq->rq_disk = NULL;
203         rq->part = NULL;
204         rq->start_time = jiffies;
205 #ifdef CONFIG_BLK_CGROUP
206         rq->rl = NULL;
207         set_start_time_ns(rq);
208         rq->io_start_time_ns = 0;
209 #endif
210         rq->nr_phys_segments = 0;
211 #if defined(CONFIG_BLK_DEV_INTEGRITY)
212         rq->nr_integrity_segments = 0;
213 #endif
214         rq->special = NULL;
215         /* tag was already set */
216         rq->errors = 0;
217         rq->extra_len = 0;
218
219         INIT_LIST_HEAD(&rq->timeout_list);
220         rq->timeout = 0;
221
222         rq->end_io = NULL;
223         rq->end_io_data = NULL;
224         rq->next_rq = NULL;
225
226         ctx->rq_dispatched[op_is_sync(op)]++;
227 }
228 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
229
230 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
231                                        unsigned int op)
232 {
233         struct request *rq;
234         unsigned int tag;
235
236         tag = blk_mq_get_tag(data);
237         if (tag != BLK_MQ_TAG_FAIL) {
238                 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
239
240                 rq = tags->static_rqs[tag];
241
242                 if (data->flags & BLK_MQ_REQ_INTERNAL) {
243                         rq->tag = -1;
244                         rq->internal_tag = tag;
245                 } else {
246                         if (blk_mq_tag_busy(data->hctx)) {
247                                 rq->rq_flags = RQF_MQ_INFLIGHT;
248                                 atomic_inc(&data->hctx->nr_active);
249                         }
250                         rq->tag = tag;
251                         rq->internal_tag = -1;
252                         data->hctx->tags->rqs[rq->tag] = rq;
253                 }
254
255                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
256                 return rq;
257         }
258
259         return NULL;
260 }
261 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
262
263 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
264                 unsigned int flags)
265 {
266         struct blk_mq_alloc_data alloc_data = { .flags = flags };
267         struct request *rq;
268         int ret;
269
270         ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
271         if (ret)
272                 return ERR_PTR(ret);
273
274         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
275
276         blk_mq_put_ctx(alloc_data.ctx);
277         blk_queue_exit(q);
278
279         if (!rq)
280                 return ERR_PTR(-EWOULDBLOCK);
281
282         rq->__data_len = 0;
283         rq->__sector = (sector_t) -1;
284         rq->bio = rq->biotail = NULL;
285         return rq;
286 }
287 EXPORT_SYMBOL(blk_mq_alloc_request);
288
289 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
290                 unsigned int flags, unsigned int hctx_idx)
291 {
292         struct blk_mq_alloc_data alloc_data = { .flags = flags };
293         struct request *rq;
294         unsigned int cpu;
295         int ret;
296
297         /*
298          * If the tag allocator sleeps we could get an allocation for a
299          * different hardware context.  No need to complicate the low level
300          * allocator for this for the rare use case of a command tied to
301          * a specific queue.
302          */
303         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
304                 return ERR_PTR(-EINVAL);
305
306         if (hctx_idx >= q->nr_hw_queues)
307                 return ERR_PTR(-EIO);
308
309         ret = blk_queue_enter(q, true);
310         if (ret)
311                 return ERR_PTR(ret);
312
313         /*
314          * Check if the hardware context is actually mapped to anything.
315          * If not tell the caller that it should skip this queue.
316          */
317         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
318         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
319                 blk_queue_exit(q);
320                 return ERR_PTR(-EXDEV);
321         }
322         cpu = cpumask_first(alloc_data.hctx->cpumask);
323         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
324
325         rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
326
327         blk_queue_exit(q);
328
329         if (!rq)
330                 return ERR_PTR(-EWOULDBLOCK);
331
332         return rq;
333 }
334 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
335
336 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
337                              struct request *rq)
338 {
339         const int sched_tag = rq->internal_tag;
340         struct request_queue *q = rq->q;
341
342         if (rq->rq_flags & RQF_MQ_INFLIGHT)
343                 atomic_dec(&hctx->nr_active);
344
345         wbt_done(q->rq_wb, &rq->issue_stat);
346         rq->rq_flags = 0;
347
348         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
349         clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
350         if (rq->tag != -1)
351                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
352         if (sched_tag != -1)
353                 blk_mq_sched_completed_request(hctx, rq);
354         blk_mq_sched_restart(hctx);
355         blk_queue_exit(q);
356 }
357
358 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
359                                      struct request *rq)
360 {
361         struct blk_mq_ctx *ctx = rq->mq_ctx;
362
363         ctx->rq_completed[rq_is_sync(rq)]++;
364         __blk_mq_finish_request(hctx, ctx, rq);
365 }
366
367 void blk_mq_finish_request(struct request *rq)
368 {
369         blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
370 }
371
372 void blk_mq_free_request(struct request *rq)
373 {
374         blk_mq_sched_put_request(rq);
375 }
376 EXPORT_SYMBOL_GPL(blk_mq_free_request);
377
378 inline void __blk_mq_end_request(struct request *rq, int error)
379 {
380         blk_account_io_done(rq);
381
382         if (rq->end_io) {
383                 wbt_done(rq->q->rq_wb, &rq->issue_stat);
384                 rq->end_io(rq, error);
385         } else {
386                 if (unlikely(blk_bidi_rq(rq)))
387                         blk_mq_free_request(rq->next_rq);
388                 blk_mq_free_request(rq);
389         }
390 }
391 EXPORT_SYMBOL(__blk_mq_end_request);
392
393 void blk_mq_end_request(struct request *rq, int error)
394 {
395         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
396                 BUG();
397         __blk_mq_end_request(rq, error);
398 }
399 EXPORT_SYMBOL(blk_mq_end_request);
400
401 static void __blk_mq_complete_request_remote(void *data)
402 {
403         struct request *rq = data;
404
405         rq->q->softirq_done_fn(rq);
406 }
407
408 static void blk_mq_ipi_complete_request(struct request *rq)
409 {
410         struct blk_mq_ctx *ctx = rq->mq_ctx;
411         bool shared = false;
412         int cpu;
413
414         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
415                 rq->q->softirq_done_fn(rq);
416                 return;
417         }
418
419         cpu = get_cpu();
420         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
421                 shared = cpus_share_cache(cpu, ctx->cpu);
422
423         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
424                 rq->csd.func = __blk_mq_complete_request_remote;
425                 rq->csd.info = rq;
426                 rq->csd.flags = 0;
427                 smp_call_function_single_async(ctx->cpu, &rq->csd);
428         } else {
429                 rq->q->softirq_done_fn(rq);
430         }
431         put_cpu();
432 }
433
434 static void blk_mq_stat_add(struct request *rq)
435 {
436         if (rq->rq_flags & RQF_STATS) {
437                 blk_mq_poll_stats_start(rq->q);
438                 blk_stat_add(rq);
439         }
440 }
441
442 static void __blk_mq_complete_request(struct request *rq)
443 {
444         struct request_queue *q = rq->q;
445
446         blk_mq_stat_add(rq);
447
448         if (!q->softirq_done_fn)
449                 blk_mq_end_request(rq, rq->errors);
450         else
451                 blk_mq_ipi_complete_request(rq);
452 }
453
454 /**
455  * blk_mq_complete_request - end I/O on a request
456  * @rq:         the request being processed
457  *
458  * Description:
459  *      Ends all I/O on a request. It does not handle partial completions.
460  *      The actual completion happens out-of-order, through a IPI handler.
461  **/
462 void blk_mq_complete_request(struct request *rq, int error)
463 {
464         struct request_queue *q = rq->q;
465
466         if (unlikely(blk_should_fake_timeout(q)))
467                 return;
468         if (!blk_mark_rq_complete(rq)) {
469                 rq->errors = error;
470                 __blk_mq_complete_request(rq);
471         }
472 }
473 EXPORT_SYMBOL(blk_mq_complete_request);
474
475 int blk_mq_request_started(struct request *rq)
476 {
477         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
478 }
479 EXPORT_SYMBOL_GPL(blk_mq_request_started);
480
481 void blk_mq_start_request(struct request *rq)
482 {
483         struct request_queue *q = rq->q;
484
485         blk_mq_sched_started_request(rq);
486
487         trace_block_rq_issue(q, rq);
488
489         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
490                 blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
491                 rq->rq_flags |= RQF_STATS;
492                 wbt_issue(q->rq_wb, &rq->issue_stat);
493         }
494
495         blk_add_timer(rq);
496
497         /*
498          * Ensure that ->deadline is visible before set the started
499          * flag and clear the completed flag.
500          */
501         smp_mb__before_atomic();
502
503         /*
504          * Mark us as started and clear complete. Complete might have been
505          * set if requeue raced with timeout, which then marked it as
506          * complete. So be sure to clear complete again when we start
507          * the request, otherwise we'll ignore the completion event.
508          */
509         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
510                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
511         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
512                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
513
514         if (q->dma_drain_size && blk_rq_bytes(rq)) {
515                 /*
516                  * Make sure space for the drain appears.  We know we can do
517                  * this because max_hw_segments has been adjusted to be one
518                  * fewer than the device can handle.
519                  */
520                 rq->nr_phys_segments++;
521         }
522 }
523 EXPORT_SYMBOL(blk_mq_start_request);
524
525 /*
526  * When we reach here because queue is busy, REQ_ATOM_COMPLETE
527  * flag isn't set yet, so there may be race with timeout handler,
528  * but given rq->deadline is just set in .queue_rq() under
529  * this situation, the race won't be possible in reality because
530  * rq->timeout should be set as big enough to cover the window
531  * between blk_mq_start_request() called from .queue_rq() and
532  * clearing REQ_ATOM_STARTED here.
533  */
534 static void __blk_mq_requeue_request(struct request *rq)
535 {
536         struct request_queue *q = rq->q;
537
538         trace_block_rq_requeue(q, rq);
539         wbt_requeue(q->rq_wb, &rq->issue_stat);
540         blk_mq_sched_requeue_request(rq);
541
542         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
543                 if (q->dma_drain_size && blk_rq_bytes(rq))
544                         rq->nr_phys_segments--;
545         }
546 }
547
548 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
549 {
550         __blk_mq_requeue_request(rq);
551
552         BUG_ON(blk_queued_rq(rq));
553         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
554 }
555 EXPORT_SYMBOL(blk_mq_requeue_request);
556
557 static void blk_mq_requeue_work(struct work_struct *work)
558 {
559         struct request_queue *q =
560                 container_of(work, struct request_queue, requeue_work.work);
561         LIST_HEAD(rq_list);
562         struct request *rq, *next;
563         unsigned long flags;
564
565         spin_lock_irqsave(&q->requeue_lock, flags);
566         list_splice_init(&q->requeue_list, &rq_list);
567         spin_unlock_irqrestore(&q->requeue_lock, flags);
568
569         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
570                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
571                         continue;
572
573                 rq->rq_flags &= ~RQF_SOFTBARRIER;
574                 list_del_init(&rq->queuelist);
575                 blk_mq_sched_insert_request(rq, true, false, false, true);
576         }
577
578         while (!list_empty(&rq_list)) {
579                 rq = list_entry(rq_list.next, struct request, queuelist);
580                 list_del_init(&rq->queuelist);
581                 blk_mq_sched_insert_request(rq, false, false, false, true);
582         }
583
584         blk_mq_run_hw_queues(q, false);
585 }
586
587 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
588                                 bool kick_requeue_list)
589 {
590         struct request_queue *q = rq->q;
591         unsigned long flags;
592
593         /*
594          * We abuse this flag that is otherwise used by the I/O scheduler to
595          * request head insertation from the workqueue.
596          */
597         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
598
599         spin_lock_irqsave(&q->requeue_lock, flags);
600         if (at_head) {
601                 rq->rq_flags |= RQF_SOFTBARRIER;
602                 list_add(&rq->queuelist, &q->requeue_list);
603         } else {
604                 list_add_tail(&rq->queuelist, &q->requeue_list);
605         }
606         spin_unlock_irqrestore(&q->requeue_lock, flags);
607
608         if (kick_requeue_list)
609                 blk_mq_kick_requeue_list(q);
610 }
611 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
612
613 void blk_mq_kick_requeue_list(struct request_queue *q)
614 {
615         kblockd_schedule_delayed_work(&q->requeue_work, 0);
616 }
617 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
618
619 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
620                                     unsigned long msecs)
621 {
622         kblockd_schedule_delayed_work(&q->requeue_work,
623                                       msecs_to_jiffies(msecs));
624 }
625 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
626
627 void blk_mq_abort_requeue_list(struct request_queue *q)
628 {
629         unsigned long flags;
630         LIST_HEAD(rq_list);
631
632         spin_lock_irqsave(&q->requeue_lock, flags);
633         list_splice_init(&q->requeue_list, &rq_list);
634         spin_unlock_irqrestore(&q->requeue_lock, flags);
635
636         while (!list_empty(&rq_list)) {
637                 struct request *rq;
638
639                 rq = list_first_entry(&rq_list, struct request, queuelist);
640                 list_del_init(&rq->queuelist);
641                 rq->errors = -EIO;
642                 blk_mq_end_request(rq, rq->errors);
643         }
644 }
645 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
646
647 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
648 {
649         if (tag < tags->nr_tags) {
650                 prefetch(tags->rqs[tag]);
651                 return tags->rqs[tag];
652         }
653
654         return NULL;
655 }
656 EXPORT_SYMBOL(blk_mq_tag_to_rq);
657
658 struct blk_mq_timeout_data {
659         unsigned long next;
660         unsigned int next_set;
661 };
662
663 void blk_mq_rq_timed_out(struct request *req, bool reserved)
664 {
665         const struct blk_mq_ops *ops = req->q->mq_ops;
666         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
667
668         /*
669          * We know that complete is set at this point. If STARTED isn't set
670          * anymore, then the request isn't active and the "timeout" should
671          * just be ignored. This can happen due to the bitflag ordering.
672          * Timeout first checks if STARTED is set, and if it is, assumes
673          * the request is active. But if we race with completion, then
674          * both flags will get cleared. So check here again, and ignore
675          * a timeout event with a request that isn't active.
676          */
677         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
678                 return;
679
680         if (ops->timeout)
681                 ret = ops->timeout(req, reserved);
682
683         switch (ret) {
684         case BLK_EH_HANDLED:
685                 __blk_mq_complete_request(req);
686                 break;
687         case BLK_EH_RESET_TIMER:
688                 blk_add_timer(req);
689                 blk_clear_rq_complete(req);
690                 break;
691         case BLK_EH_NOT_HANDLED:
692                 break;
693         default:
694                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
695                 break;
696         }
697 }
698
699 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
700                 struct request *rq, void *priv, bool reserved)
701 {
702         struct blk_mq_timeout_data *data = priv;
703
704         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
705                 return;
706
707         /*
708          * The rq being checked may have been freed and reallocated
709          * out already here, we avoid this race by checking rq->deadline
710          * and REQ_ATOM_COMPLETE flag together:
711          *
712          * - if rq->deadline is observed as new value because of
713          *   reusing, the rq won't be timed out because of timing.
714          * - if rq->deadline is observed as previous value,
715          *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
716          *   because we put a barrier between setting rq->deadline
717          *   and clearing the flag in blk_mq_start_request(), so
718          *   this rq won't be timed out too.
719          */
720         if (time_after_eq(jiffies, rq->deadline)) {
721                 if (!blk_mark_rq_complete(rq))
722                         blk_mq_rq_timed_out(rq, reserved);
723         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
724                 data->next = rq->deadline;
725                 data->next_set = 1;
726         }
727 }
728
729 static void blk_mq_timeout_work(struct work_struct *work)
730 {
731         struct request_queue *q =
732                 container_of(work, struct request_queue, timeout_work);
733         struct blk_mq_timeout_data data = {
734                 .next           = 0,
735                 .next_set       = 0,
736         };
737         int i;
738
739         /* A deadlock might occur if a request is stuck requiring a
740          * timeout at the same time a queue freeze is waiting
741          * completion, since the timeout code would not be able to
742          * acquire the queue reference here.
743          *
744          * That's why we don't use blk_queue_enter here; instead, we use
745          * percpu_ref_tryget directly, because we need to be able to
746          * obtain a reference even in the short window between the queue
747          * starting to freeze, by dropping the first reference in
748          * blk_freeze_queue_start, and the moment the last request is
749          * consumed, marked by the instant q_usage_counter reaches
750          * zero.
751          */
752         if (!percpu_ref_tryget(&q->q_usage_counter))
753                 return;
754
755         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
756
757         if (data.next_set) {
758                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
759                 mod_timer(&q->timeout, data.next);
760         } else {
761                 struct blk_mq_hw_ctx *hctx;
762
763                 queue_for_each_hw_ctx(q, hctx, i) {
764                         /* the hctx may be unmapped, so check it here */
765                         if (blk_mq_hw_queue_mapped(hctx))
766                                 blk_mq_tag_idle(hctx);
767                 }
768         }
769         blk_queue_exit(q);
770 }
771
772 /*
773  * Reverse check our software queue for entries that we could potentially
774  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
775  * too much time checking for merges.
776  */
777 static bool blk_mq_attempt_merge(struct request_queue *q,
778                                  struct blk_mq_ctx *ctx, struct bio *bio)
779 {
780         struct request *rq;
781         int checked = 8;
782
783         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
784                 bool merged = false;
785
786                 if (!checked--)
787                         break;
788
789                 if (!blk_rq_merge_ok(rq, bio))
790                         continue;
791
792                 switch (blk_try_merge(rq, bio)) {
793                 case ELEVATOR_BACK_MERGE:
794                         if (blk_mq_sched_allow_merge(q, rq, bio))
795                                 merged = bio_attempt_back_merge(q, rq, bio);
796                         break;
797                 case ELEVATOR_FRONT_MERGE:
798                         if (blk_mq_sched_allow_merge(q, rq, bio))
799                                 merged = bio_attempt_front_merge(q, rq, bio);
800                         break;
801                 case ELEVATOR_DISCARD_MERGE:
802                         merged = bio_attempt_discard_merge(q, rq, bio);
803                         break;
804                 default:
805                         continue;
806                 }
807
808                 if (merged)
809                         ctx->rq_merged++;
810                 return merged;
811         }
812
813         return false;
814 }
815
816 struct flush_busy_ctx_data {
817         struct blk_mq_hw_ctx *hctx;
818         struct list_head *list;
819 };
820
821 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
822 {
823         struct flush_busy_ctx_data *flush_data = data;
824         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
825         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
826
827         sbitmap_clear_bit(sb, bitnr);
828         spin_lock(&ctx->lock);
829         list_splice_tail_init(&ctx->rq_list, flush_data->list);
830         spin_unlock(&ctx->lock);
831         return true;
832 }
833
834 /*
835  * Process software queues that have been marked busy, splicing them
836  * to the for-dispatch
837  */
838 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
839 {
840         struct flush_busy_ctx_data data = {
841                 .hctx = hctx,
842                 .list = list,
843         };
844
845         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
846 }
847 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
848
849 static inline unsigned int queued_to_index(unsigned int queued)
850 {
851         if (!queued)
852                 return 0;
853
854         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
855 }
856
857 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
858                            bool wait)
859 {
860         struct blk_mq_alloc_data data = {
861                 .q = rq->q,
862                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
863                 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
864         };
865
866         if (rq->tag != -1)
867                 goto done;
868
869         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
870                 data.flags |= BLK_MQ_REQ_RESERVED;
871
872         rq->tag = blk_mq_get_tag(&data);
873         if (rq->tag >= 0) {
874                 if (blk_mq_tag_busy(data.hctx)) {
875                         rq->rq_flags |= RQF_MQ_INFLIGHT;
876                         atomic_inc(&data.hctx->nr_active);
877                 }
878                 data.hctx->tags->rqs[rq->tag] = rq;
879         }
880
881 done:
882         if (hctx)
883                 *hctx = data.hctx;
884         return rq->tag != -1;
885 }
886
887 static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
888                                     struct request *rq)
889 {
890         blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
891         rq->tag = -1;
892
893         if (rq->rq_flags & RQF_MQ_INFLIGHT) {
894                 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
895                 atomic_dec(&hctx->nr_active);
896         }
897 }
898
899 static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
900                                        struct request *rq)
901 {
902         if (rq->tag == -1 || rq->internal_tag == -1)
903                 return;
904
905         __blk_mq_put_driver_tag(hctx, rq);
906 }
907
908 static void blk_mq_put_driver_tag(struct request *rq)
909 {
910         struct blk_mq_hw_ctx *hctx;
911
912         if (rq->tag == -1 || rq->internal_tag == -1)
913                 return;
914
915         hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
916         __blk_mq_put_driver_tag(hctx, rq);
917 }
918
919 /*
920  * If we fail getting a driver tag because all the driver tags are already
921  * assigned and on the dispatch list, BUT the first entry does not have a
922  * tag, then we could deadlock. For that case, move entries with assigned
923  * driver tags to the front, leaving the set of tagged requests in the
924  * same order, and the untagged set in the same order.
925  */
926 static bool reorder_tags_to_front(struct list_head *list)
927 {
928         struct request *rq, *tmp, *first = NULL;
929
930         list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
931                 if (rq == first)
932                         break;
933                 if (rq->tag != -1) {
934                         list_move(&rq->queuelist, list);
935                         if (!first)
936                                 first = rq;
937                 }
938         }
939
940         return first != NULL;
941 }
942
943 static int blk_mq_dispatch_wake(wait_queue_t *wait, unsigned mode, int flags,
944                                 void *key)
945 {
946         struct blk_mq_hw_ctx *hctx;
947
948         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
949
950         list_del(&wait->task_list);
951         clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
952         blk_mq_run_hw_queue(hctx, true);
953         return 1;
954 }
955
956 static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
957 {
958         struct sbq_wait_state *ws;
959
960         /*
961          * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
962          * The thread which wins the race to grab this bit adds the hardware
963          * queue to the wait queue.
964          */
965         if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
966             test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
967                 return false;
968
969         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
970         ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);
971
972         /*
973          * As soon as this returns, it's no longer safe to fiddle with
974          * hctx->dispatch_wait, since a completion can wake up the wait queue
975          * and unlock the bit.
976          */
977         add_wait_queue(&ws->wait, &hctx->dispatch_wait);
978         return true;
979 }
980
981 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list)
982 {
983         struct blk_mq_hw_ctx *hctx;
984         struct request *rq;
985         int errors, queued, ret = BLK_MQ_RQ_QUEUE_OK;
986
987         if (list_empty(list))
988                 return false;
989
990         /*
991          * Now process all the entries, sending them to the driver.
992          */
993         errors = queued = 0;
994         do {
995                 struct blk_mq_queue_data bd;
996
997                 rq = list_first_entry(list, struct request, queuelist);
998                 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
999                         if (!queued && reorder_tags_to_front(list))
1000                                 continue;
1001
1002                         /*
1003                          * The initial allocation attempt failed, so we need to
1004                          * rerun the hardware queue when a tag is freed.
1005                          */
1006                         if (blk_mq_dispatch_wait_add(hctx)) {
1007                                 /*
1008                                  * It's possible that a tag was freed in the
1009                                  * window between the allocation failure and
1010                                  * adding the hardware queue to the wait queue.
1011                                  */
1012                                 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1013                                         break;
1014                         } else {
1015                                 break;
1016                         }
1017                 }
1018
1019                 list_del_init(&rq->queuelist);
1020
1021                 bd.rq = rq;
1022
1023                 /*
1024                  * Flag last if we have no more requests, or if we have more
1025                  * but can't assign a driver tag to it.
1026                  */
1027                 if (list_empty(list))
1028                         bd.last = true;
1029                 else {
1030                         struct request *nxt;
1031
1032                         nxt = list_first_entry(list, struct request, queuelist);
1033                         bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
1034                 }
1035
1036                 ret = q->mq_ops->queue_rq(hctx, &bd);
1037                 switch (ret) {
1038                 case BLK_MQ_RQ_QUEUE_OK:
1039                         queued++;
1040                         break;
1041                 case BLK_MQ_RQ_QUEUE_BUSY:
1042                         blk_mq_put_driver_tag_hctx(hctx, rq);
1043                         list_add(&rq->queuelist, list);
1044                         __blk_mq_requeue_request(rq);
1045                         break;
1046                 default:
1047                         pr_err("blk-mq: bad return on queue: %d\n", ret);
1048                 case BLK_MQ_RQ_QUEUE_ERROR:
1049                         errors++;
1050                         rq->errors = -EIO;
1051                         blk_mq_end_request(rq, rq->errors);
1052                         break;
1053                 }
1054
1055                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
1056                         break;
1057         } while (!list_empty(list));
1058
1059         hctx->dispatched[queued_to_index(queued)]++;
1060
1061         /*
1062          * Any items that need requeuing? Stuff them into hctx->dispatch,
1063          * that is where we will continue on next queue run.
1064          */
1065         if (!list_empty(list)) {
1066                 /*
1067                  * If we got a driver tag for the next request already,
1068                  * free it again.
1069                  */
1070                 rq = list_first_entry(list, struct request, queuelist);
1071                 blk_mq_put_driver_tag(rq);
1072
1073                 spin_lock(&hctx->lock);
1074                 list_splice_init(list, &hctx->dispatch);
1075                 spin_unlock(&hctx->lock);
1076
1077                 /*
1078                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
1079                  * it's possible the queue is stopped and restarted again
1080                  * before this. Queue restart will dispatch requests. And since
1081                  * requests in rq_list aren't added into hctx->dispatch yet,
1082                  * the requests in rq_list might get lost.
1083                  *
1084                  * blk_mq_run_hw_queue() already checks the STOPPED bit
1085                  *
1086                  * If RESTART or TAG_WAITING is set, then let completion restart
1087                  * the queue instead of potentially looping here.
1088                  */
1089                 if (!blk_mq_sched_needs_restart(hctx) &&
1090                     !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1091                         blk_mq_run_hw_queue(hctx, true);
1092         }
1093
1094         return (queued + errors) != 0;
1095 }
1096
1097 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1098 {
1099         int srcu_idx;
1100
1101         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1102                 cpu_online(hctx->next_cpu));
1103
1104         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1105                 rcu_read_lock();
1106                 blk_mq_sched_dispatch_requests(hctx);
1107                 rcu_read_unlock();
1108         } else {
1109                 might_sleep();
1110
1111                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1112                 blk_mq_sched_dispatch_requests(hctx);
1113                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1114         }
1115 }
1116
1117 /*
1118  * It'd be great if the workqueue API had a way to pass
1119  * in a mask and had some smarts for more clever placement.
1120  * For now we just round-robin here, switching for every
1121  * BLK_MQ_CPU_WORK_BATCH queued items.
1122  */
1123 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1124 {
1125         if (hctx->queue->nr_hw_queues == 1)
1126                 return WORK_CPU_UNBOUND;
1127
1128         if (--hctx->next_cpu_batch <= 0) {
1129                 int next_cpu;
1130
1131                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1132                 if (next_cpu >= nr_cpu_ids)
1133                         next_cpu = cpumask_first(hctx->cpumask);
1134
1135                 hctx->next_cpu = next_cpu;
1136                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1137         }
1138
1139         return hctx->next_cpu;
1140 }
1141
1142 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1143                                         unsigned long msecs)
1144 {
1145         if (unlikely(blk_mq_hctx_stopped(hctx) ||
1146                      !blk_mq_hw_queue_mapped(hctx)))
1147                 return;
1148
1149         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1150                 int cpu = get_cpu();
1151                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1152                         __blk_mq_run_hw_queue(hctx);
1153                         put_cpu();
1154                         return;
1155                 }
1156
1157                 put_cpu();
1158         }
1159
1160         if (msecs == 0)
1161                 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx),
1162                                          &hctx->run_work);
1163         else
1164                 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1165                                                  &hctx->delayed_run_work,
1166                                                  msecs_to_jiffies(msecs));
1167 }
1168
1169 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1170 {
1171         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1172 }
1173 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1174
1175 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1176 {
1177         __blk_mq_delay_run_hw_queue(hctx, async, 0);
1178 }
1179
1180 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1181 {
1182         struct blk_mq_hw_ctx *hctx;
1183         int i;
1184
1185         queue_for_each_hw_ctx(q, hctx, i) {
1186                 if (!blk_mq_hctx_has_pending(hctx) ||
1187                     blk_mq_hctx_stopped(hctx))
1188                         continue;
1189
1190                 blk_mq_run_hw_queue(hctx, async);
1191         }
1192 }
1193 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1194
1195 /**
1196  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1197  * @q: request queue.
1198  *
1199  * The caller is responsible for serializing this function against
1200  * blk_mq_{start,stop}_hw_queue().
1201  */
1202 bool blk_mq_queue_stopped(struct request_queue *q)
1203 {
1204         struct blk_mq_hw_ctx *hctx;
1205         int i;
1206
1207         queue_for_each_hw_ctx(q, hctx, i)
1208                 if (blk_mq_hctx_stopped(hctx))
1209                         return true;
1210
1211         return false;
1212 }
1213 EXPORT_SYMBOL(blk_mq_queue_stopped);
1214
1215 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1216 {
1217         cancel_work(&hctx->run_work);
1218         cancel_delayed_work(&hctx->delay_work);
1219         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1220 }
1221 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1222
1223 void blk_mq_stop_hw_queues(struct request_queue *q)
1224 {
1225         struct blk_mq_hw_ctx *hctx;
1226         int i;
1227
1228         queue_for_each_hw_ctx(q, hctx, i)
1229                 blk_mq_stop_hw_queue(hctx);
1230 }
1231 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1232
1233 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1234 {
1235         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1236
1237         blk_mq_run_hw_queue(hctx, false);
1238 }
1239 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1240
1241 void blk_mq_start_hw_queues(struct request_queue *q)
1242 {
1243         struct blk_mq_hw_ctx *hctx;
1244         int i;
1245
1246         queue_for_each_hw_ctx(q, hctx, i)
1247                 blk_mq_start_hw_queue(hctx);
1248 }
1249 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1250
1251 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1252 {
1253         if (!blk_mq_hctx_stopped(hctx))
1254                 return;
1255
1256         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1257         blk_mq_run_hw_queue(hctx, async);
1258 }
1259 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1260
1261 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1262 {
1263         struct blk_mq_hw_ctx *hctx;
1264         int i;
1265
1266         queue_for_each_hw_ctx(q, hctx, i)
1267                 blk_mq_start_stopped_hw_queue(hctx, async);
1268 }
1269 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1270
1271 static void blk_mq_run_work_fn(struct work_struct *work)
1272 {
1273         struct blk_mq_hw_ctx *hctx;
1274
1275         hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1276
1277         __blk_mq_run_hw_queue(hctx);
1278 }
1279
1280 static void blk_mq_delayed_run_work_fn(struct work_struct *work)
1281 {
1282         struct blk_mq_hw_ctx *hctx;
1283
1284         hctx = container_of(work, struct blk_mq_hw_ctx, delayed_run_work.work);
1285
1286         __blk_mq_run_hw_queue(hctx);
1287 }
1288
1289 static void blk_mq_delay_work_fn(struct work_struct *work)
1290 {
1291         struct blk_mq_hw_ctx *hctx;
1292
1293         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1294
1295         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1296                 __blk_mq_run_hw_queue(hctx);
1297 }
1298
1299 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1300 {
1301         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1302                 return;
1303
1304         blk_mq_stop_hw_queue(hctx);
1305         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1306                         &hctx->delay_work, msecs_to_jiffies(msecs));
1307 }
1308 EXPORT_SYMBOL(blk_mq_delay_queue);
1309
1310 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1311                                             struct request *rq,
1312                                             bool at_head)
1313 {
1314         struct blk_mq_ctx *ctx = rq->mq_ctx;
1315
1316         trace_block_rq_insert(hctx->queue, rq);
1317
1318         if (at_head)
1319                 list_add(&rq->queuelist, &ctx->rq_list);
1320         else
1321                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1322 }
1323
1324 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1325                              bool at_head)
1326 {
1327         struct blk_mq_ctx *ctx = rq->mq_ctx;
1328
1329         __blk_mq_insert_req_list(hctx, rq, at_head);
1330         blk_mq_hctx_mark_pending(hctx, ctx);
1331 }
1332
1333 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1334                             struct list_head *list)
1335
1336 {
1337         /*
1338          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1339          * offline now
1340          */
1341         spin_lock(&ctx->lock);
1342         while (!list_empty(list)) {
1343                 struct request *rq;
1344
1345                 rq = list_first_entry(list, struct request, queuelist);
1346                 BUG_ON(rq->mq_ctx != ctx);
1347                 list_del_init(&rq->queuelist);
1348                 __blk_mq_insert_req_list(hctx, rq, false);
1349         }
1350         blk_mq_hctx_mark_pending(hctx, ctx);
1351         spin_unlock(&ctx->lock);
1352 }
1353
1354 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1355 {
1356         struct request *rqa = container_of(a, struct request, queuelist);
1357         struct request *rqb = container_of(b, struct request, queuelist);
1358
1359         return !(rqa->mq_ctx < rqb->mq_ctx ||
1360                  (rqa->mq_ctx == rqb->mq_ctx &&
1361                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1362 }
1363
1364 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1365 {
1366         struct blk_mq_ctx *this_ctx;
1367         struct request_queue *this_q;
1368         struct request *rq;
1369         LIST_HEAD(list);
1370         LIST_HEAD(ctx_list);
1371         unsigned int depth;
1372
1373         list_splice_init(&plug->mq_list, &list);
1374
1375         list_sort(NULL, &list, plug_ctx_cmp);
1376
1377         this_q = NULL;
1378         this_ctx = NULL;
1379         depth = 0;
1380
1381         while (!list_empty(&list)) {
1382                 rq = list_entry_rq(list.next);
1383                 list_del_init(&rq->queuelist);
1384                 BUG_ON(!rq->q);
1385                 if (rq->mq_ctx != this_ctx) {
1386                         if (this_ctx) {
1387                                 trace_block_unplug(this_q, depth, from_schedule);
1388                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1389                                                                 &ctx_list,
1390                                                                 from_schedule);
1391                         }
1392
1393                         this_ctx = rq->mq_ctx;
1394                         this_q = rq->q;
1395                         depth = 0;
1396                 }
1397
1398                 depth++;
1399                 list_add_tail(&rq->queuelist, &ctx_list);
1400         }
1401
1402         /*
1403          * If 'this_ctx' is set, we know we have entries to complete
1404          * on 'ctx_list'. Do those.
1405          */
1406         if (this_ctx) {
1407                 trace_block_unplug(this_q, depth, from_schedule);
1408                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1409                                                 from_schedule);
1410         }
1411 }
1412
1413 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1414 {
1415         init_request_from_bio(rq, bio);
1416
1417         blk_account_io_start(rq, true);
1418 }
1419
1420 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1421 {
1422         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1423                 !blk_queue_nomerges(hctx->queue);
1424 }
1425
1426 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1427                                          struct blk_mq_ctx *ctx,
1428                                          struct request *rq, struct bio *bio)
1429 {
1430         if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1431                 blk_mq_bio_to_request(rq, bio);
1432                 spin_lock(&ctx->lock);
1433 insert_rq:
1434                 __blk_mq_insert_request(hctx, rq, false);
1435                 spin_unlock(&ctx->lock);
1436                 return false;
1437         } else {
1438                 struct request_queue *q = hctx->queue;
1439
1440                 spin_lock(&ctx->lock);
1441                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1442                         blk_mq_bio_to_request(rq, bio);
1443                         goto insert_rq;
1444                 }
1445
1446                 spin_unlock(&ctx->lock);
1447                 __blk_mq_finish_request(hctx, ctx, rq);
1448                 return true;
1449         }
1450 }
1451
1452 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1453 {
1454         if (rq->tag != -1)
1455                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1456
1457         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1458 }
1459
1460 static void __blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie,
1461                                       bool may_sleep)
1462 {
1463         struct request_queue *q = rq->q;
1464         struct blk_mq_queue_data bd = {
1465                 .rq = rq,
1466                 .last = 1
1467         };
1468         struct blk_mq_hw_ctx *hctx;
1469         blk_qc_t new_cookie;
1470         int ret;
1471
1472         if (q->elevator)
1473                 goto insert;
1474
1475         if (!blk_mq_get_driver_tag(rq, &hctx, false))
1476                 goto insert;
1477
1478         new_cookie = request_to_qc_t(hctx, rq);
1479
1480         /*
1481          * For OK queue, we are done. For error, kill it. Any other
1482          * error (busy), just add it to our list as we previously
1483          * would have done
1484          */
1485         ret = q->mq_ops->queue_rq(hctx, &bd);
1486         if (ret == BLK_MQ_RQ_QUEUE_OK) {
1487                 *cookie = new_cookie;
1488                 return;
1489         }
1490
1491         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1492                 *cookie = BLK_QC_T_NONE;
1493                 rq->errors = -EIO;
1494                 blk_mq_end_request(rq, rq->errors);
1495                 return;
1496         }
1497
1498         __blk_mq_requeue_request(rq);
1499 insert:
1500         blk_mq_sched_insert_request(rq, false, true, false, may_sleep);
1501 }
1502
1503 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1504                 struct request *rq, blk_qc_t *cookie)
1505 {
1506         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1507                 rcu_read_lock();
1508                 __blk_mq_try_issue_directly(rq, cookie, false);
1509                 rcu_read_unlock();
1510         } else {
1511                 unsigned int srcu_idx;
1512
1513                 might_sleep();
1514
1515                 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1516                 __blk_mq_try_issue_directly(rq, cookie, true);
1517                 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1518         }
1519 }
1520
1521 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1522 {
1523         const int is_sync = op_is_sync(bio->bi_opf);
1524         const int is_flush_fua = op_is_flush(bio->bi_opf);
1525         struct blk_mq_alloc_data data = { .flags = 0 };
1526         struct request *rq;
1527         unsigned int request_count = 0;
1528         struct blk_plug *plug;
1529         struct request *same_queue_rq = NULL;
1530         blk_qc_t cookie;
1531         unsigned int wb_acct;
1532
1533         blk_queue_bounce(q, &bio);
1534
1535         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1536                 bio_io_error(bio);
1537                 return BLK_QC_T_NONE;
1538         }
1539
1540         blk_queue_split(q, &bio, q->bio_split);
1541
1542         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1543             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1544                 return BLK_QC_T_NONE;
1545
1546         if (blk_mq_sched_bio_merge(q, bio))
1547                 return BLK_QC_T_NONE;
1548
1549         wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1550
1551         trace_block_getrq(q, bio, bio->bi_opf);
1552
1553         rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1554         if (unlikely(!rq)) {
1555                 __wbt_done(q->rq_wb, wb_acct);
1556                 return BLK_QC_T_NONE;
1557         }
1558
1559         wbt_track(&rq->issue_stat, wb_acct);
1560
1561         cookie = request_to_qc_t(data.hctx, rq);
1562
1563         plug = current->plug;
1564         if (unlikely(is_flush_fua)) {
1565                 blk_mq_bio_to_request(rq, bio);
1566                 if (q->elevator) {
1567                         blk_mq_sched_insert_request(rq, false, true, true,
1568                                         true);
1569                 } else {
1570                         blk_insert_flush(rq);
1571                         blk_mq_run_hw_queue(data.hctx, true);
1572                 }
1573         } else if (plug && q->nr_hw_queues == 1) {
1574                 struct request *last = NULL;
1575
1576                 blk_mq_bio_to_request(rq, bio);
1577
1578                 /*
1579                  * @request_count may become stale because of schedule
1580                  * out, so check the list again.
1581                  */
1582                 if (list_empty(&plug->mq_list))
1583                         request_count = 0;
1584                 else if (blk_queue_nomerges(q))
1585                         request_count = blk_plug_queued_count(q);
1586
1587                 if (!request_count)
1588                         trace_block_plug(q);
1589                 else
1590                         last = list_entry_rq(plug->mq_list.prev);
1591
1592                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1593                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1594                         blk_flush_plug_list(plug, false);
1595                         trace_block_plug(q);
1596                 }
1597
1598                 list_add_tail(&rq->queuelist, &plug->mq_list);
1599         } else if (plug && !blk_queue_nomerges(q)) {
1600                 blk_mq_bio_to_request(rq, bio);
1601
1602                 /*
1603                  * We do limited plugging. If the bio can be merged, do that.
1604                  * Otherwise the existing request in the plug list will be
1605                  * issued. So the plug list will have one request at most
1606                  * The plug list might get flushed before this. If that happens,
1607                  * the plug list is empty, and same_queue_rq is invalid.
1608                  */
1609                 if (list_empty(&plug->mq_list))
1610                         same_queue_rq = NULL;
1611                 if (same_queue_rq)
1612                         list_del_init(&same_queue_rq->queuelist);
1613                 list_add_tail(&rq->queuelist, &plug->mq_list);
1614
1615                 blk_mq_put_ctx(data.ctx);
1616
1617                 if (same_queue_rq)
1618                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1619                                         &cookie);
1620
1621                 return cookie;
1622         } else if (q->nr_hw_queues > 1 && is_sync) {
1623                 blk_mq_put_ctx(data.ctx);
1624                 blk_mq_bio_to_request(rq, bio);
1625                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1626                 return cookie;
1627         } else if (q->elevator) {
1628                 blk_mq_bio_to_request(rq, bio);
1629                 blk_mq_sched_insert_request(rq, false, true, true, true);
1630         } else if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio))
1631                 blk_mq_run_hw_queue(data.hctx, true);
1632
1633         blk_mq_put_ctx(data.ctx);
1634         return cookie;
1635 }
1636
1637 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1638                      unsigned int hctx_idx)
1639 {
1640         struct page *page;
1641
1642         if (tags->rqs && set->ops->exit_request) {
1643                 int i;
1644
1645                 for (i = 0; i < tags->nr_tags; i++) {
1646                         struct request *rq = tags->static_rqs[i];
1647
1648                         if (!rq)
1649                                 continue;
1650                         set->ops->exit_request(set->driver_data, rq,
1651                                                 hctx_idx, i);
1652                         tags->static_rqs[i] = NULL;
1653                 }
1654         }
1655
1656         while (!list_empty(&tags->page_list)) {
1657                 page = list_first_entry(&tags->page_list, struct page, lru);
1658                 list_del_init(&page->lru);
1659                 /*
1660                  * Remove kmemleak object previously allocated in
1661                  * blk_mq_init_rq_map().
1662                  */
1663                 kmemleak_free(page_address(page));
1664                 __free_pages(page, page->private);
1665         }
1666 }
1667
1668 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1669 {
1670         kfree(tags->rqs);
1671         tags->rqs = NULL;
1672         kfree(tags->static_rqs);
1673         tags->static_rqs = NULL;
1674
1675         blk_mq_free_tags(tags);
1676 }
1677
1678 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1679                                         unsigned int hctx_idx,
1680                                         unsigned int nr_tags,
1681                                         unsigned int reserved_tags)
1682 {
1683         struct blk_mq_tags *tags;
1684         int node;
1685
1686         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1687         if (node == NUMA_NO_NODE)
1688                 node = set->numa_node;
1689
1690         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1691                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1692         if (!tags)
1693                 return NULL;
1694
1695         tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1696                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1697                                  node);
1698         if (!tags->rqs) {
1699                 blk_mq_free_tags(tags);
1700                 return NULL;
1701         }
1702
1703         tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1704                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1705                                  node);
1706         if (!tags->static_rqs) {
1707                 kfree(tags->rqs);
1708                 blk_mq_free_tags(tags);
1709                 return NULL;
1710         }
1711
1712         return tags;
1713 }
1714
1715 static size_t order_to_size(unsigned int order)
1716 {
1717         return (size_t)PAGE_SIZE << order;
1718 }
1719
1720 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1721                      unsigned int hctx_idx, unsigned int depth)
1722 {
1723         unsigned int i, j, entries_per_page, max_order = 4;
1724         size_t rq_size, left;
1725         int node;
1726
1727         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1728         if (node == NUMA_NO_NODE)
1729                 node = set->numa_node;
1730
1731         INIT_LIST_HEAD(&tags->page_list);
1732
1733         /*
1734          * rq_size is the size of the request plus driver payload, rounded
1735          * to the cacheline size
1736          */
1737         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1738                                 cache_line_size());
1739         left = rq_size * depth;
1740
1741         for (i = 0; i < depth; ) {
1742                 int this_order = max_order;
1743                 struct page *page;
1744                 int to_do;
1745                 void *p;
1746
1747                 while (this_order && left < order_to_size(this_order - 1))
1748                         this_order--;
1749
1750                 do {
1751                         page = alloc_pages_node(node,
1752                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1753                                 this_order);
1754                         if (page)
1755                                 break;
1756                         if (!this_order--)
1757                                 break;
1758                         if (order_to_size(this_order) < rq_size)
1759                                 break;
1760                 } while (1);
1761
1762                 if (!page)
1763                         goto fail;
1764
1765                 page->private = this_order;
1766                 list_add_tail(&page->lru, &tags->page_list);
1767
1768                 p = page_address(page);
1769                 /*
1770                  * Allow kmemleak to scan these pages as they contain pointers
1771                  * to additional allocations like via ops->init_request().
1772                  */
1773                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1774                 entries_per_page = order_to_size(this_order) / rq_size;
1775                 to_do = min(entries_per_page, depth - i);
1776                 left -= to_do * rq_size;
1777                 for (j = 0; j < to_do; j++) {
1778                         struct request *rq = p;
1779
1780                         tags->static_rqs[i] = rq;
1781                         if (set->ops->init_request) {
1782                                 if (set->ops->init_request(set->driver_data,
1783                                                 rq, hctx_idx, i,
1784                                                 node)) {
1785                                         tags->static_rqs[i] = NULL;
1786                                         goto fail;
1787                                 }
1788                         }
1789
1790                         p += rq_size;
1791                         i++;
1792                 }
1793         }
1794         return 0;
1795
1796 fail:
1797         blk_mq_free_rqs(set, tags, hctx_idx);
1798         return -ENOMEM;
1799 }
1800
1801 /*
1802  * 'cpu' is going away. splice any existing rq_list entries from this
1803  * software queue to the hw queue dispatch list, and ensure that it
1804  * gets run.
1805  */
1806 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1807 {
1808         struct blk_mq_hw_ctx *hctx;
1809         struct blk_mq_ctx *ctx;
1810         LIST_HEAD(tmp);
1811
1812         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1813         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1814
1815         spin_lock(&ctx->lock);
1816         if (!list_empty(&ctx->rq_list)) {
1817                 list_splice_init(&ctx->rq_list, &tmp);
1818                 blk_mq_hctx_clear_pending(hctx, ctx);
1819         }
1820         spin_unlock(&ctx->lock);
1821
1822         if (list_empty(&tmp))
1823                 return 0;
1824
1825         spin_lock(&hctx->lock);
1826         list_splice_tail_init(&tmp, &hctx->dispatch);
1827         spin_unlock(&hctx->lock);
1828
1829         blk_mq_run_hw_queue(hctx, true);
1830         return 0;
1831 }
1832
1833 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1834 {
1835         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1836                                             &hctx->cpuhp_dead);
1837 }
1838
1839 /* hctx->ctxs will be freed in queue's release handler */
1840 static void blk_mq_exit_hctx(struct request_queue *q,
1841                 struct blk_mq_tag_set *set,
1842                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1843 {
1844         unsigned flush_start_tag = set->queue_depth;
1845
1846         blk_mq_tag_idle(hctx);
1847
1848         if (set->ops->exit_request)
1849                 set->ops->exit_request(set->driver_data,
1850                                        hctx->fq->flush_rq, hctx_idx,
1851                                        flush_start_tag + hctx_idx);
1852
1853         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1854
1855         if (set->ops->exit_hctx)
1856                 set->ops->exit_hctx(hctx, hctx_idx);
1857
1858         if (hctx->flags & BLK_MQ_F_BLOCKING)
1859                 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1860
1861         blk_mq_remove_cpuhp(hctx);
1862         blk_free_flush_queue(hctx->fq);
1863         sbitmap_free(&hctx->ctx_map);
1864 }
1865
1866 static void blk_mq_exit_hw_queues(struct request_queue *q,
1867                 struct blk_mq_tag_set *set, int nr_queue)
1868 {
1869         struct blk_mq_hw_ctx *hctx;
1870         unsigned int i;
1871
1872         queue_for_each_hw_ctx(q, hctx, i) {
1873                 if (i == nr_queue)
1874                         break;
1875                 blk_mq_exit_hctx(q, set, hctx, i);
1876         }
1877 }
1878
1879 static int blk_mq_init_hctx(struct request_queue *q,
1880                 struct blk_mq_tag_set *set,
1881                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1882 {
1883         int node;
1884         unsigned flush_start_tag = set->queue_depth;
1885
1886         node = hctx->numa_node;
1887         if (node == NUMA_NO_NODE)
1888                 node = hctx->numa_node = set->numa_node;
1889
1890         INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1891         INIT_DELAYED_WORK(&hctx->delayed_run_work, blk_mq_delayed_run_work_fn);
1892         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1893         spin_lock_init(&hctx->lock);
1894         INIT_LIST_HEAD(&hctx->dispatch);
1895         hctx->queue = q;
1896         hctx->queue_num = hctx_idx;
1897         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1898
1899         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1900
1901         hctx->tags = set->tags[hctx_idx];
1902
1903         /*
1904          * Allocate space for all possible cpus to avoid allocation at
1905          * runtime
1906          */
1907         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1908                                         GFP_KERNEL, node);
1909         if (!hctx->ctxs)
1910                 goto unregister_cpu_notifier;
1911
1912         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1913                               node))
1914                 goto free_ctxs;
1915
1916         hctx->nr_ctx = 0;
1917
1918         if (set->ops->init_hctx &&
1919             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1920                 goto free_bitmap;
1921
1922         if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
1923                 goto exit_hctx;
1924
1925         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1926         if (!hctx->fq)
1927                 goto sched_exit_hctx;
1928
1929         if (set->ops->init_request &&
1930             set->ops->init_request(set->driver_data,
1931                                    hctx->fq->flush_rq, hctx_idx,
1932                                    flush_start_tag + hctx_idx, node))
1933                 goto free_fq;
1934
1935         if (hctx->flags & BLK_MQ_F_BLOCKING)
1936                 init_srcu_struct(&hctx->queue_rq_srcu);
1937
1938         return 0;
1939
1940  free_fq:
1941         kfree(hctx->fq);
1942  sched_exit_hctx:
1943         blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
1944  exit_hctx:
1945         if (set->ops->exit_hctx)
1946                 set->ops->exit_hctx(hctx, hctx_idx);
1947  free_bitmap:
1948         sbitmap_free(&hctx->ctx_map);
1949  free_ctxs:
1950         kfree(hctx->ctxs);
1951  unregister_cpu_notifier:
1952         blk_mq_remove_cpuhp(hctx);
1953         return -1;
1954 }
1955
1956 static void blk_mq_init_cpu_queues(struct request_queue *q,
1957                                    unsigned int nr_hw_queues)
1958 {
1959         unsigned int i;
1960
1961         for_each_possible_cpu(i) {
1962                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1963                 struct blk_mq_hw_ctx *hctx;
1964
1965                 __ctx->cpu = i;
1966                 spin_lock_init(&__ctx->lock);
1967                 INIT_LIST_HEAD(&__ctx->rq_list);
1968                 __ctx->queue = q;
1969
1970                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1971                 if (!cpu_online(i))
1972                         continue;
1973
1974                 hctx = blk_mq_map_queue(q, i);
1975
1976                 /*
1977                  * Set local node, IFF we have more than one hw queue. If
1978                  * not, we remain on the home node of the device
1979                  */
1980                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1981                         hctx->numa_node = local_memory_node(cpu_to_node(i));
1982         }
1983 }
1984
1985 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1986 {
1987         int ret = 0;
1988
1989         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1990                                         set->queue_depth, set->reserved_tags);
1991         if (!set->tags[hctx_idx])
1992                 return false;
1993
1994         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1995                                 set->queue_depth);
1996         if (!ret)
1997                 return true;
1998
1999         blk_mq_free_rq_map(set->tags[hctx_idx]);
2000         set->tags[hctx_idx] = NULL;
2001         return false;
2002 }
2003
2004 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2005                                          unsigned int hctx_idx)
2006 {
2007         if (set->tags[hctx_idx]) {
2008                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2009                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2010                 set->tags[hctx_idx] = NULL;
2011         }
2012 }
2013
2014 static void blk_mq_map_swqueue(struct request_queue *q,
2015                                const struct cpumask *online_mask)
2016 {
2017         unsigned int i, hctx_idx;
2018         struct blk_mq_hw_ctx *hctx;
2019         struct blk_mq_ctx *ctx;
2020         struct blk_mq_tag_set *set = q->tag_set;
2021
2022         /*
2023          * Avoid others reading imcomplete hctx->cpumask through sysfs
2024          */
2025         mutex_lock(&q->sysfs_lock);
2026
2027         queue_for_each_hw_ctx(q, hctx, i) {
2028                 cpumask_clear(hctx->cpumask);
2029                 hctx->nr_ctx = 0;
2030         }
2031
2032         /*
2033          * Map software to hardware queues
2034          */
2035         for_each_possible_cpu(i) {
2036                 /* If the cpu isn't online, the cpu is mapped to first hctx */
2037                 if (!cpumask_test_cpu(i, online_mask))
2038                         continue;
2039
2040                 hctx_idx = q->mq_map[i];
2041                 /* unmapped hw queue can be remapped after CPU topo changed */
2042                 if (!set->tags[hctx_idx] &&
2043                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2044                         /*
2045                          * If tags initialization fail for some hctx,
2046                          * that hctx won't be brought online.  In this
2047                          * case, remap the current ctx to hctx[0] which
2048                          * is guaranteed to always have tags allocated
2049                          */
2050                         q->mq_map[i] = 0;
2051                 }
2052
2053                 ctx = per_cpu_ptr(q->queue_ctx, i);
2054                 hctx = blk_mq_map_queue(q, i);
2055
2056                 cpumask_set_cpu(i, hctx->cpumask);
2057                 ctx->index_hw = hctx->nr_ctx;
2058                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2059         }
2060
2061         mutex_unlock(&q->sysfs_lock);
2062
2063         queue_for_each_hw_ctx(q, hctx, i) {
2064                 /*
2065                  * If no software queues are mapped to this hardware queue,
2066                  * disable it and free the request entries.
2067                  */
2068                 if (!hctx->nr_ctx) {
2069                         /* Never unmap queue 0.  We need it as a
2070                          * fallback in case of a new remap fails
2071                          * allocation
2072                          */
2073                         if (i && set->tags[i])
2074                                 blk_mq_free_map_and_requests(set, i);
2075
2076                         hctx->tags = NULL;
2077                         continue;
2078                 }
2079
2080                 hctx->tags = set->tags[i];
2081                 WARN_ON(!hctx->tags);
2082
2083                 /*
2084                  * Set the map size to the number of mapped software queues.
2085                  * This is more accurate and more efficient than looping
2086                  * over all possibly mapped software queues.
2087                  */
2088                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2089
2090                 /*
2091                  * Initialize batch roundrobin counts
2092                  */
2093                 hctx->next_cpu = cpumask_first(hctx->cpumask);
2094                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2095         }
2096 }
2097
2098 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2099 {
2100         struct blk_mq_hw_ctx *hctx;
2101         int i;
2102
2103         queue_for_each_hw_ctx(q, hctx, i) {
2104                 if (shared)
2105                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2106                 else
2107                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2108         }
2109 }
2110
2111 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2112 {
2113         struct request_queue *q;
2114
2115         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2116                 blk_mq_freeze_queue(q);
2117                 queue_set_hctx_shared(q, shared);
2118                 blk_mq_unfreeze_queue(q);
2119         }
2120 }
2121
2122 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2123 {
2124         struct blk_mq_tag_set *set = q->tag_set;
2125
2126         mutex_lock(&set->tag_list_lock);
2127         list_del_init(&q->tag_set_list);
2128         if (list_is_singular(&set->tag_list)) {
2129                 /* just transitioned to unshared */
2130                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2131                 /* update existing queue */
2132                 blk_mq_update_tag_set_depth(set, false);
2133         }
2134         mutex_unlock(&set->tag_list_lock);
2135 }
2136
2137 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2138                                      struct request_queue *q)
2139 {
2140         q->tag_set = set;
2141
2142         mutex_lock(&set->tag_list_lock);
2143
2144         /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2145         if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2146                 set->flags |= BLK_MQ_F_TAG_SHARED;
2147                 /* update existing queue */
2148                 blk_mq_update_tag_set_depth(set, true);
2149         }
2150         if (set->flags & BLK_MQ_F_TAG_SHARED)
2151                 queue_set_hctx_shared(q, true);
2152         list_add_tail(&q->tag_set_list, &set->tag_list);
2153
2154         mutex_unlock(&set->tag_list_lock);
2155 }
2156
2157 /*
2158  * It is the actual release handler for mq, but we do it from
2159  * request queue's release handler for avoiding use-after-free
2160  * and headache because q->mq_kobj shouldn't have been introduced,
2161  * but we can't group ctx/kctx kobj without it.
2162  */
2163 void blk_mq_release(struct request_queue *q)
2164 {
2165         struct blk_mq_hw_ctx *hctx;
2166         unsigned int i;
2167
2168         /* hctx kobj stays in hctx */
2169         queue_for_each_hw_ctx(q, hctx, i) {
2170                 if (!hctx)
2171                         continue;
2172                 kobject_put(&hctx->kobj);
2173         }
2174
2175         q->mq_map = NULL;
2176
2177         kfree(q->queue_hw_ctx);
2178
2179         /*
2180          * release .mq_kobj and sw queue's kobject now because
2181          * both share lifetime with request queue.
2182          */
2183         blk_mq_sysfs_deinit(q);
2184
2185         free_percpu(q->queue_ctx);
2186 }
2187
2188 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2189 {
2190         struct request_queue *uninit_q, *q;
2191
2192         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2193         if (!uninit_q)
2194                 return ERR_PTR(-ENOMEM);
2195
2196         q = blk_mq_init_allocated_queue(set, uninit_q);
2197         if (IS_ERR(q))
2198                 blk_cleanup_queue(uninit_q);
2199
2200         return q;
2201 }
2202 EXPORT_SYMBOL(blk_mq_init_queue);
2203
2204 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2205                                                 struct request_queue *q)
2206 {
2207         int i, j;
2208         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2209
2210         blk_mq_sysfs_unregister(q);
2211         for (i = 0; i < set->nr_hw_queues; i++) {
2212                 int node;
2213
2214                 if (hctxs[i])
2215                         continue;
2216
2217                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2218                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2219                                         GFP_KERNEL, node);
2220                 if (!hctxs[i])
2221                         break;
2222
2223                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2224                                                 node)) {
2225                         kfree(hctxs[i]);
2226                         hctxs[i] = NULL;
2227                         break;
2228                 }
2229
2230                 atomic_set(&hctxs[i]->nr_active, 0);
2231                 hctxs[i]->numa_node = node;
2232                 hctxs[i]->queue_num = i;
2233
2234                 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2235                         free_cpumask_var(hctxs[i]->cpumask);
2236                         kfree(hctxs[i]);
2237                         hctxs[i] = NULL;
2238                         break;
2239                 }
2240                 blk_mq_hctx_kobj_init(hctxs[i]);
2241         }
2242         for (j = i; j < q->nr_hw_queues; j++) {
2243                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2244
2245                 if (hctx) {
2246                         if (hctx->tags)
2247                                 blk_mq_free_map_and_requests(set, j);
2248                         blk_mq_exit_hctx(q, set, hctx, j);
2249                         kobject_put(&hctx->kobj);
2250                         hctxs[j] = NULL;
2251
2252                 }
2253         }
2254         q->nr_hw_queues = i;
2255         blk_mq_sysfs_register(q);
2256 }
2257
2258 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2259                                                   struct request_queue *q)
2260 {
2261         /* mark the queue as mq asap */
2262         q->mq_ops = set->ops;
2263
2264         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2265                                              blk_stat_rq_ddir, 2, q);
2266         if (!q->poll_cb)
2267                 goto err_exit;
2268
2269         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2270         if (!q->queue_ctx)
2271                 goto err_exit;
2272
2273         /* init q->mq_kobj and sw queues' kobjects */
2274         blk_mq_sysfs_init(q);
2275
2276         q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2277                                                 GFP_KERNEL, set->numa_node);
2278         if (!q->queue_hw_ctx)
2279                 goto err_percpu;
2280
2281         q->mq_map = set->mq_map;
2282
2283         blk_mq_realloc_hw_ctxs(set, q);
2284         if (!q->nr_hw_queues)
2285                 goto err_hctxs;
2286
2287         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2288         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2289
2290         q->nr_queues = nr_cpu_ids;
2291
2292         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2293
2294         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2295                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2296
2297         q->sg_reserved_size = INT_MAX;
2298
2299         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2300         INIT_LIST_HEAD(&q->requeue_list);
2301         spin_lock_init(&q->requeue_lock);
2302
2303         blk_queue_make_request(q, blk_mq_make_request);
2304
2305         /*
2306          * Do this after blk_queue_make_request() overrides it...
2307          */
2308         q->nr_requests = set->queue_depth;
2309
2310         /*
2311          * Default to classic polling
2312          */
2313         q->poll_nsec = -1;
2314
2315         if (set->ops->complete)
2316                 blk_queue_softirq_done(q, set->ops->complete);
2317
2318         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2319
2320         get_online_cpus();
2321         mutex_lock(&all_q_mutex);
2322
2323         list_add_tail(&q->all_q_node, &all_q_list);
2324         blk_mq_add_queue_tag_set(set, q);
2325         blk_mq_map_swqueue(q, cpu_online_mask);
2326
2327         mutex_unlock(&all_q_mutex);
2328         put_online_cpus();
2329
2330         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2331                 int ret;
2332
2333                 ret = blk_mq_sched_init(q);
2334                 if (ret)
2335                         return ERR_PTR(ret);
2336         }
2337
2338         return q;
2339
2340 err_hctxs:
2341         kfree(q->queue_hw_ctx);
2342 err_percpu:
2343         free_percpu(q->queue_ctx);
2344 err_exit:
2345         q->mq_ops = NULL;
2346         return ERR_PTR(-ENOMEM);
2347 }
2348 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2349
2350 void blk_mq_free_queue(struct request_queue *q)
2351 {
2352         struct blk_mq_tag_set   *set = q->tag_set;
2353
2354         mutex_lock(&all_q_mutex);
2355         list_del_init(&q->all_q_node);
2356         mutex_unlock(&all_q_mutex);
2357
2358         blk_mq_del_queue_tag_set(q);
2359
2360         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2361 }
2362
2363 /* Basically redo blk_mq_init_queue with queue frozen */
2364 static void blk_mq_queue_reinit(struct request_queue *q,
2365                                 const struct cpumask *online_mask)
2366 {
2367         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2368
2369         blk_mq_sysfs_unregister(q);
2370
2371         /*
2372          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2373          * we should change hctx numa_node according to new topology (this
2374          * involves free and re-allocate memory, worthy doing?)
2375          */
2376
2377         blk_mq_map_swqueue(q, online_mask);
2378
2379         blk_mq_sysfs_register(q);
2380 }
2381
2382 /*
2383  * New online cpumask which is going to be set in this hotplug event.
2384  * Declare this cpumasks as global as cpu-hotplug operation is invoked
2385  * one-by-one and dynamically allocating this could result in a failure.
2386  */
2387 static struct cpumask cpuhp_online_new;
2388
2389 static void blk_mq_queue_reinit_work(void)
2390 {
2391         struct request_queue *q;
2392
2393         mutex_lock(&all_q_mutex);
2394         /*
2395          * We need to freeze and reinit all existing queues.  Freezing
2396          * involves synchronous wait for an RCU grace period and doing it
2397          * one by one may take a long time.  Start freezing all queues in
2398          * one swoop and then wait for the completions so that freezing can
2399          * take place in parallel.
2400          */
2401         list_for_each_entry(q, &all_q_list, all_q_node)
2402                 blk_freeze_queue_start(q);
2403         list_for_each_entry(q, &all_q_list, all_q_node)
2404                 blk_mq_freeze_queue_wait(q);
2405
2406         list_for_each_entry(q, &all_q_list, all_q_node)
2407                 blk_mq_queue_reinit(q, &cpuhp_online_new);
2408
2409         list_for_each_entry(q, &all_q_list, all_q_node)
2410                 blk_mq_unfreeze_queue(q);
2411
2412         mutex_unlock(&all_q_mutex);
2413 }
2414
2415 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2416 {
2417         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2418         blk_mq_queue_reinit_work();
2419         return 0;
2420 }
2421
2422 /*
2423  * Before hotadded cpu starts handling requests, new mappings must be
2424  * established.  Otherwise, these requests in hw queue might never be
2425  * dispatched.
2426  *
2427  * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2428  * for CPU0, and ctx1 for CPU1).
2429  *
2430  * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2431  * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2432  *
2433  * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2434  * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2435  * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2436  * ignored.
2437  */
2438 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2439 {
2440         cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2441         cpumask_set_cpu(cpu, &cpuhp_online_new);
2442         blk_mq_queue_reinit_work();
2443         return 0;
2444 }
2445
2446 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2447 {
2448         int i;
2449
2450         for (i = 0; i < set->nr_hw_queues; i++)
2451                 if (!__blk_mq_alloc_rq_map(set, i))
2452                         goto out_unwind;
2453
2454         return 0;
2455
2456 out_unwind:
2457         while (--i >= 0)
2458                 blk_mq_free_rq_map(set->tags[i]);
2459
2460         return -ENOMEM;
2461 }
2462
2463 /*
2464  * Allocate the request maps associated with this tag_set. Note that this
2465  * may reduce the depth asked for, if memory is tight. set->queue_depth
2466  * will be updated to reflect the allocated depth.
2467  */
2468 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2469 {
2470         unsigned int depth;
2471         int err;
2472
2473         depth = set->queue_depth;
2474         do {
2475                 err = __blk_mq_alloc_rq_maps(set);
2476                 if (!err)
2477                         break;
2478
2479                 set->queue_depth >>= 1;
2480                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2481                         err = -ENOMEM;
2482                         break;
2483                 }
2484         } while (set->queue_depth);
2485
2486         if (!set->queue_depth || err) {
2487                 pr_err("blk-mq: failed to allocate request map\n");
2488                 return -ENOMEM;
2489         }
2490
2491         if (depth != set->queue_depth)
2492                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2493                                                 depth, set->queue_depth);
2494
2495         return 0;
2496 }
2497
2498 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2499 {
2500         if (set->ops->map_queues)
2501                 return set->ops->map_queues(set);
2502         else
2503                 return blk_mq_map_queues(set);
2504 }
2505
2506 /*
2507  * Alloc a tag set to be associated with one or more request queues.
2508  * May fail with EINVAL for various error conditions. May adjust the
2509  * requested depth down, if if it too large. In that case, the set
2510  * value will be stored in set->queue_depth.
2511  */
2512 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2513 {
2514         int ret;
2515
2516         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2517
2518         if (!set->nr_hw_queues)
2519                 return -EINVAL;
2520         if (!set->queue_depth)
2521                 return -EINVAL;
2522         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2523                 return -EINVAL;
2524
2525         if (!set->ops->queue_rq)
2526                 return -EINVAL;
2527
2528         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2529                 pr_info("blk-mq: reduced tag depth to %u\n",
2530                         BLK_MQ_MAX_DEPTH);
2531                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2532         }
2533
2534         /*
2535          * If a crashdump is active, then we are potentially in a very
2536          * memory constrained environment. Limit us to 1 queue and
2537          * 64 tags to prevent using too much memory.
2538          */
2539         if (is_kdump_kernel()) {
2540                 set->nr_hw_queues = 1;
2541                 set->queue_depth = min(64U, set->queue_depth);
2542         }
2543         /*
2544          * There is no use for more h/w queues than cpus.
2545          */
2546         if (set->nr_hw_queues > nr_cpu_ids)
2547                 set->nr_hw_queues = nr_cpu_ids;
2548
2549         set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2550                                  GFP_KERNEL, set->numa_node);
2551         if (!set->tags)
2552                 return -ENOMEM;
2553
2554         ret = -ENOMEM;
2555         set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2556                         GFP_KERNEL, set->numa_node);
2557         if (!set->mq_map)
2558                 goto out_free_tags;
2559
2560         ret = blk_mq_update_queue_map(set);
2561         if (ret)
2562                 goto out_free_mq_map;
2563
2564         ret = blk_mq_alloc_rq_maps(set);
2565         if (ret)
2566                 goto out_free_mq_map;
2567
2568         mutex_init(&set->tag_list_lock);
2569         INIT_LIST_HEAD(&set->tag_list);
2570
2571         return 0;
2572
2573 out_free_mq_map:
2574         kfree(set->mq_map);
2575         set->mq_map = NULL;
2576 out_free_tags:
2577         kfree(set->tags);
2578         set->tags = NULL;
2579         return ret;
2580 }
2581 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2582
2583 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2584 {
2585         int i;
2586
2587         for (i = 0; i < nr_cpu_ids; i++)
2588                 blk_mq_free_map_and_requests(set, i);
2589
2590         kfree(set->mq_map);
2591         set->mq_map = NULL;
2592
2593         kfree(set->tags);
2594         set->tags = NULL;
2595 }
2596 EXPORT_SYMBOL(blk_mq_free_tag_set);
2597
2598 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2599 {
2600         struct blk_mq_tag_set *set = q->tag_set;
2601         struct blk_mq_hw_ctx *hctx;
2602         int i, ret;
2603
2604         if (!set)
2605                 return -EINVAL;
2606
2607         blk_mq_freeze_queue(q);
2608         blk_mq_quiesce_queue(q);
2609
2610         ret = 0;
2611         queue_for_each_hw_ctx(q, hctx, i) {
2612                 if (!hctx->tags)
2613                         continue;
2614                 /*
2615                  * If we're using an MQ scheduler, just update the scheduler
2616                  * queue depth. This is similar to what the old code would do.
2617                  */
2618                 if (!hctx->sched_tags) {
2619                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2620                                                         min(nr, set->queue_depth),
2621                                                         false);
2622                 } else {
2623                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2624                                                         nr, true);
2625                 }
2626                 if (ret)
2627                         break;
2628         }
2629
2630         if (!ret)
2631                 q->nr_requests = nr;
2632
2633         blk_mq_unfreeze_queue(q);
2634         blk_mq_start_stopped_hw_queues(q, true);
2635
2636         return ret;
2637 }
2638
2639 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2640 {
2641         struct request_queue *q;
2642
2643         if (nr_hw_queues > nr_cpu_ids)
2644                 nr_hw_queues = nr_cpu_ids;
2645         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2646                 return;
2647
2648         list_for_each_entry(q, &set->tag_list, tag_set_list)
2649                 blk_mq_freeze_queue(q);
2650
2651         set->nr_hw_queues = nr_hw_queues;
2652         blk_mq_update_queue_map(set);
2653         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2654                 blk_mq_realloc_hw_ctxs(set, q);
2655                 blk_mq_queue_reinit(q, cpu_online_mask);
2656         }
2657
2658         list_for_each_entry(q, &set->tag_list, tag_set_list)
2659                 blk_mq_unfreeze_queue(q);
2660 }
2661 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2662
2663 /* Enable polling stats and return whether they were already enabled. */
2664 static bool blk_poll_stats_enable(struct request_queue *q)
2665 {
2666         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2667             test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
2668                 return true;
2669         blk_stat_add_callback(q, q->poll_cb);
2670         return false;
2671 }
2672
2673 static void blk_mq_poll_stats_start(struct request_queue *q)
2674 {
2675         /*
2676          * We don't arm the callback if polling stats are not enabled or the
2677          * callback is already active.
2678          */
2679         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
2680             blk_stat_is_active(q->poll_cb))
2681                 return;
2682
2683         blk_stat_activate_msecs(q->poll_cb, 100);
2684 }
2685
2686 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
2687 {
2688         struct request_queue *q = cb->data;
2689
2690         if (cb->stat[READ].nr_samples)
2691                 q->poll_stat[READ] = cb->stat[READ];
2692         if (cb->stat[WRITE].nr_samples)
2693                 q->poll_stat[WRITE] = cb->stat[WRITE];
2694 }
2695
2696 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2697                                        struct blk_mq_hw_ctx *hctx,
2698                                        struct request *rq)
2699 {
2700         unsigned long ret = 0;
2701
2702         /*
2703          * If stats collection isn't on, don't sleep but turn it on for
2704          * future users
2705          */
2706         if (!blk_poll_stats_enable(q))
2707                 return 0;
2708
2709         /*
2710          * As an optimistic guess, use half of the mean service time
2711          * for this type of request. We can (and should) make this smarter.
2712          * For instance, if the completion latencies are tight, we can
2713          * get closer than just half the mean. This is especially
2714          * important on devices where the completion latencies are longer
2715          * than ~10 usec.
2716          */
2717         if (req_op(rq) == REQ_OP_READ && q->poll_stat[READ].nr_samples)
2718                 ret = (q->poll_stat[READ].mean + 1) / 2;
2719         else if (req_op(rq) == REQ_OP_WRITE && q->poll_stat[WRITE].nr_samples)
2720                 ret = (q->poll_stat[WRITE].mean + 1) / 2;
2721
2722         return ret;
2723 }
2724
2725 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2726                                      struct blk_mq_hw_ctx *hctx,
2727                                      struct request *rq)
2728 {
2729         struct hrtimer_sleeper hs;
2730         enum hrtimer_mode mode;
2731         unsigned int nsecs;
2732         ktime_t kt;
2733
2734         if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2735                 return false;
2736
2737         /*
2738          * poll_nsec can be:
2739          *
2740          * -1:  don't ever hybrid sleep
2741          *  0:  use half of prev avg
2742          * >0:  use this specific value
2743          */
2744         if (q->poll_nsec == -1)
2745                 return false;
2746         else if (q->poll_nsec > 0)
2747                 nsecs = q->poll_nsec;
2748         else
2749                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2750
2751         if (!nsecs)
2752                 return false;
2753
2754         set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2755
2756         /*
2757          * This will be replaced with the stats tracking code, using
2758          * 'avg_completion_time / 2' as the pre-sleep target.
2759          */
2760         kt = nsecs;
2761
2762         mode = HRTIMER_MODE_REL;
2763         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2764         hrtimer_set_expires(&hs.timer, kt);
2765
2766         hrtimer_init_sleeper(&hs, current);
2767         do {
2768                 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2769                         break;
2770                 set_current_state(TASK_UNINTERRUPTIBLE);
2771                 hrtimer_start_expires(&hs.timer, mode);
2772                 if (hs.task)
2773                         io_schedule();
2774                 hrtimer_cancel(&hs.timer);
2775                 mode = HRTIMER_MODE_ABS;
2776         } while (hs.task && !signal_pending(current));
2777
2778         __set_current_state(TASK_RUNNING);
2779         destroy_hrtimer_on_stack(&hs.timer);
2780         return true;
2781 }
2782
2783 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2784 {
2785         struct request_queue *q = hctx->queue;
2786         long state;
2787
2788         /*
2789          * If we sleep, have the caller restart the poll loop to reset
2790          * the state. Like for the other success return cases, the
2791          * caller is responsible for checking if the IO completed. If
2792          * the IO isn't complete, we'll get called again and will go
2793          * straight to the busy poll loop.
2794          */
2795         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2796                 return true;
2797
2798         hctx->poll_considered++;
2799
2800         state = current->state;
2801         while (!need_resched()) {
2802                 int ret;
2803
2804                 hctx->poll_invoked++;
2805
2806                 ret = q->mq_ops->poll(hctx, rq->tag);
2807                 if (ret > 0) {
2808                         hctx->poll_success++;
2809                         set_current_state(TASK_RUNNING);
2810                         return true;
2811                 }
2812
2813                 if (signal_pending_state(state, current))
2814                         set_current_state(TASK_RUNNING);
2815
2816                 if (current->state == TASK_RUNNING)
2817                         return true;
2818                 if (ret < 0)
2819                         break;
2820                 cpu_relax();
2821         }
2822
2823         return false;
2824 }
2825
2826 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2827 {
2828         struct blk_mq_hw_ctx *hctx;
2829         struct blk_plug *plug;
2830         struct request *rq;
2831
2832         if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2833             !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2834                 return false;
2835
2836         plug = current->plug;
2837         if (plug)
2838                 blk_flush_plug_list(plug, false);
2839
2840         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2841         if (!blk_qc_t_is_internal(cookie))
2842                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2843         else
2844                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2845
2846         return __blk_mq_poll(hctx, rq);
2847 }
2848 EXPORT_SYMBOL_GPL(blk_mq_poll);
2849
2850 void blk_mq_disable_hotplug(void)
2851 {
2852         mutex_lock(&all_q_mutex);
2853 }
2854
2855 void blk_mq_enable_hotplug(void)
2856 {
2857         mutex_unlock(&all_q_mutex);
2858 }
2859
2860 static int __init blk_mq_init(void)
2861 {
2862         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2863                                 blk_mq_hctx_notify_dead);
2864
2865         cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2866                                   blk_mq_queue_reinit_prepare,
2867                                   blk_mq_queue_reinit_dead);
2868         return 0;
2869 }
2870 subsys_initcall(blk_mq_init);