]> git.karo-electronics.de Git - linux-beck.git/blob - block/blk-mq.c
blk-mq: call blk_mq_start_request from ->queue_rq
[linux-beck.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37  * Check if any of the ctx's have pending work in this hardware queue
38  */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41         unsigned int i;
42
43         for (i = 0; i < hctx->ctx_map.map_size; i++)
44                 if (hctx->ctx_map.map[i].word)
45                         return true;
46
47         return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51                                               struct blk_mq_ctx *ctx)
52 {
53         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx)   \
57         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60  * Mark this ctx as having pending work in this hardware queue
61  */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63                                      struct blk_mq_ctx *ctx)
64 {
65         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72                                       struct blk_mq_ctx *ctx)
73 {
74         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81         while (true) {
82                 int ret;
83
84                 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85                         return 0;
86
87                 ret = wait_event_interruptible(q->mq_freeze_wq,
88                                 !q->mq_freeze_depth || blk_queue_dying(q));
89                 if (blk_queue_dying(q))
90                         return -ENODEV;
91                 if (ret)
92                         return ret;
93         }
94 }
95
96 static void blk_mq_queue_exit(struct request_queue *q)
97 {
98         percpu_ref_put(&q->mq_usage_counter);
99 }
100
101 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102 {
103         struct request_queue *q =
104                 container_of(ref, struct request_queue, mq_usage_counter);
105
106         wake_up_all(&q->mq_freeze_wq);
107 }
108
109 /*
110  * Guarantee no request is in use, so we can change any data structure of
111  * the queue afterward.
112  */
113 void blk_mq_freeze_queue(struct request_queue *q)
114 {
115         bool freeze;
116
117         spin_lock_irq(q->queue_lock);
118         freeze = !q->mq_freeze_depth++;
119         spin_unlock_irq(q->queue_lock);
120
121         if (freeze) {
122                 percpu_ref_kill(&q->mq_usage_counter);
123                 blk_mq_run_queues(q, false);
124         }
125         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
126 }
127
128 static void blk_mq_unfreeze_queue(struct request_queue *q)
129 {
130         bool wake;
131
132         spin_lock_irq(q->queue_lock);
133         wake = !--q->mq_freeze_depth;
134         WARN_ON_ONCE(q->mq_freeze_depth < 0);
135         spin_unlock_irq(q->queue_lock);
136         if (wake) {
137                 percpu_ref_reinit(&q->mq_usage_counter);
138                 wake_up_all(&q->mq_freeze_wq);
139         }
140 }
141
142 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
143 {
144         return blk_mq_has_free_tags(hctx->tags);
145 }
146 EXPORT_SYMBOL(blk_mq_can_queue);
147
148 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
149                                struct request *rq, unsigned int rw_flags)
150 {
151         if (blk_queue_io_stat(q))
152                 rw_flags |= REQ_IO_STAT;
153
154         INIT_LIST_HEAD(&rq->queuelist);
155         /* csd/requeue_work/fifo_time is initialized before use */
156         rq->q = q;
157         rq->mq_ctx = ctx;
158         rq->cmd_flags |= rw_flags;
159         /* do not touch atomic flags, it needs atomic ops against the timer */
160         rq->cpu = -1;
161         INIT_HLIST_NODE(&rq->hash);
162         RB_CLEAR_NODE(&rq->rb_node);
163         rq->rq_disk = NULL;
164         rq->part = NULL;
165         rq->start_time = jiffies;
166 #ifdef CONFIG_BLK_CGROUP
167         rq->rl = NULL;
168         set_start_time_ns(rq);
169         rq->io_start_time_ns = 0;
170 #endif
171         rq->nr_phys_segments = 0;
172 #if defined(CONFIG_BLK_DEV_INTEGRITY)
173         rq->nr_integrity_segments = 0;
174 #endif
175         rq->special = NULL;
176         /* tag was already set */
177         rq->errors = 0;
178
179         rq->cmd = rq->__cmd;
180
181         rq->extra_len = 0;
182         rq->sense_len = 0;
183         rq->resid_len = 0;
184         rq->sense = NULL;
185
186         INIT_LIST_HEAD(&rq->timeout_list);
187         rq->timeout = 0;
188
189         rq->end_io = NULL;
190         rq->end_io_data = NULL;
191         rq->next_rq = NULL;
192
193         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194 }
195
196 static struct request *
197 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
198 {
199         struct request *rq;
200         unsigned int tag;
201
202         tag = blk_mq_get_tag(data);
203         if (tag != BLK_MQ_TAG_FAIL) {
204                 rq = data->hctx->tags->rqs[tag];
205
206                 if (blk_mq_tag_busy(data->hctx)) {
207                         rq->cmd_flags = REQ_MQ_INFLIGHT;
208                         atomic_inc(&data->hctx->nr_active);
209                 }
210
211                 rq->tag = tag;
212                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
213                 return rq;
214         }
215
216         return NULL;
217 }
218
219 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
220                 bool reserved)
221 {
222         struct blk_mq_ctx *ctx;
223         struct blk_mq_hw_ctx *hctx;
224         struct request *rq;
225         struct blk_mq_alloc_data alloc_data;
226         int ret;
227
228         ret = blk_mq_queue_enter(q);
229         if (ret)
230                 return ERR_PTR(ret);
231
232         ctx = blk_mq_get_ctx(q);
233         hctx = q->mq_ops->map_queue(q, ctx->cpu);
234         blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
235                         reserved, ctx, hctx);
236
237         rq = __blk_mq_alloc_request(&alloc_data, rw);
238         if (!rq && (gfp & __GFP_WAIT)) {
239                 __blk_mq_run_hw_queue(hctx);
240                 blk_mq_put_ctx(ctx);
241
242                 ctx = blk_mq_get_ctx(q);
243                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
244                 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
245                                 hctx);
246                 rq =  __blk_mq_alloc_request(&alloc_data, rw);
247                 ctx = alloc_data.ctx;
248         }
249         blk_mq_put_ctx(ctx);
250         if (!rq)
251                 return ERR_PTR(-EWOULDBLOCK);
252         return rq;
253 }
254 EXPORT_SYMBOL(blk_mq_alloc_request);
255
256 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
257                                   struct blk_mq_ctx *ctx, struct request *rq)
258 {
259         const int tag = rq->tag;
260         struct request_queue *q = rq->q;
261
262         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
263                 atomic_dec(&hctx->nr_active);
264         rq->cmd_flags = 0;
265
266         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
267         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
268         blk_mq_queue_exit(q);
269 }
270
271 void blk_mq_free_request(struct request *rq)
272 {
273         struct blk_mq_ctx *ctx = rq->mq_ctx;
274         struct blk_mq_hw_ctx *hctx;
275         struct request_queue *q = rq->q;
276
277         ctx->rq_completed[rq_is_sync(rq)]++;
278
279         hctx = q->mq_ops->map_queue(q, ctx->cpu);
280         __blk_mq_free_request(hctx, ctx, rq);
281 }
282
283 /*
284  * Clone all relevant state from a request that has been put on hold in
285  * the flush state machine into the preallocated flush request that hangs
286  * off the request queue.
287  *
288  * For a driver the flush request should be invisible, that's why we are
289  * impersonating the original request here.
290  */
291 void blk_mq_clone_flush_request(struct request *flush_rq,
292                 struct request *orig_rq)
293 {
294         struct blk_mq_hw_ctx *hctx =
295                 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
296
297         flush_rq->mq_ctx = orig_rq->mq_ctx;
298         flush_rq->tag = orig_rq->tag;
299         memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
300                 hctx->cmd_size);
301 }
302
303 inline void __blk_mq_end_io(struct request *rq, int error)
304 {
305         blk_account_io_done(rq);
306
307         if (rq->end_io) {
308                 rq->end_io(rq, error);
309         } else {
310                 if (unlikely(blk_bidi_rq(rq)))
311                         blk_mq_free_request(rq->next_rq);
312                 blk_mq_free_request(rq);
313         }
314 }
315 EXPORT_SYMBOL(__blk_mq_end_io);
316
317 void blk_mq_end_io(struct request *rq, int error)
318 {
319         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
320                 BUG();
321         __blk_mq_end_io(rq, error);
322 }
323 EXPORT_SYMBOL(blk_mq_end_io);
324
325 static void __blk_mq_complete_request_remote(void *data)
326 {
327         struct request *rq = data;
328
329         rq->q->softirq_done_fn(rq);
330 }
331
332 static void blk_mq_ipi_complete_request(struct request *rq)
333 {
334         struct blk_mq_ctx *ctx = rq->mq_ctx;
335         bool shared = false;
336         int cpu;
337
338         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
339                 rq->q->softirq_done_fn(rq);
340                 return;
341         }
342
343         cpu = get_cpu();
344         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
345                 shared = cpus_share_cache(cpu, ctx->cpu);
346
347         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
348                 rq->csd.func = __blk_mq_complete_request_remote;
349                 rq->csd.info = rq;
350                 rq->csd.flags = 0;
351                 smp_call_function_single_async(ctx->cpu, &rq->csd);
352         } else {
353                 rq->q->softirq_done_fn(rq);
354         }
355         put_cpu();
356 }
357
358 void __blk_mq_complete_request(struct request *rq)
359 {
360         struct request_queue *q = rq->q;
361
362         if (!q->softirq_done_fn)
363                 blk_mq_end_io(rq, rq->errors);
364         else
365                 blk_mq_ipi_complete_request(rq);
366 }
367
368 /**
369  * blk_mq_complete_request - end I/O on a request
370  * @rq:         the request being processed
371  *
372  * Description:
373  *      Ends all I/O on a request. It does not handle partial completions.
374  *      The actual completion happens out-of-order, through a IPI handler.
375  **/
376 void blk_mq_complete_request(struct request *rq)
377 {
378         struct request_queue *q = rq->q;
379
380         if (unlikely(blk_should_fake_timeout(q)))
381                 return;
382         if (!blk_mark_rq_complete(rq))
383                 __blk_mq_complete_request(rq);
384 }
385 EXPORT_SYMBOL(blk_mq_complete_request);
386
387 void blk_mq_start_request(struct request *rq)
388 {
389         struct request_queue *q = rq->q;
390
391         trace_block_rq_issue(q, rq);
392
393         rq->resid_len = blk_rq_bytes(rq);
394         if (unlikely(blk_bidi_rq(rq)))
395                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
396
397         blk_add_timer(rq);
398
399         /*
400          * Ensure that ->deadline is visible before set the started
401          * flag and clear the completed flag.
402          */
403         smp_mb__before_atomic();
404
405         /*
406          * Mark us as started and clear complete. Complete might have been
407          * set if requeue raced with timeout, which then marked it as
408          * complete. So be sure to clear complete again when we start
409          * the request, otherwise we'll ignore the completion event.
410          */
411         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
412                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
414                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
415
416         if (q->dma_drain_size && blk_rq_bytes(rq)) {
417                 /*
418                  * Make sure space for the drain appears.  We know we can do
419                  * this because max_hw_segments has been adjusted to be one
420                  * fewer than the device can handle.
421                  */
422                 rq->nr_phys_segments++;
423         }
424 }
425 EXPORT_SYMBOL(blk_mq_start_request);
426
427 static void __blk_mq_requeue_request(struct request *rq)
428 {
429         struct request_queue *q = rq->q;
430
431         trace_block_rq_requeue(q, rq);
432
433         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
434                 if (q->dma_drain_size && blk_rq_bytes(rq))
435                         rq->nr_phys_segments--;
436         }
437 }
438
439 void blk_mq_requeue_request(struct request *rq)
440 {
441         __blk_mq_requeue_request(rq);
442         blk_clear_rq_complete(rq);
443
444         BUG_ON(blk_queued_rq(rq));
445         blk_mq_add_to_requeue_list(rq, true);
446 }
447 EXPORT_SYMBOL(blk_mq_requeue_request);
448
449 static void blk_mq_requeue_work(struct work_struct *work)
450 {
451         struct request_queue *q =
452                 container_of(work, struct request_queue, requeue_work);
453         LIST_HEAD(rq_list);
454         struct request *rq, *next;
455         unsigned long flags;
456
457         spin_lock_irqsave(&q->requeue_lock, flags);
458         list_splice_init(&q->requeue_list, &rq_list);
459         spin_unlock_irqrestore(&q->requeue_lock, flags);
460
461         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
462                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
463                         continue;
464
465                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
466                 list_del_init(&rq->queuelist);
467                 blk_mq_insert_request(rq, true, false, false);
468         }
469
470         while (!list_empty(&rq_list)) {
471                 rq = list_entry(rq_list.next, struct request, queuelist);
472                 list_del_init(&rq->queuelist);
473                 blk_mq_insert_request(rq, false, false, false);
474         }
475
476         /*
477          * Use the start variant of queue running here, so that running
478          * the requeue work will kick stopped queues.
479          */
480         blk_mq_start_hw_queues(q);
481 }
482
483 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
484 {
485         struct request_queue *q = rq->q;
486         unsigned long flags;
487
488         /*
489          * We abuse this flag that is otherwise used by the I/O scheduler to
490          * request head insertation from the workqueue.
491          */
492         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
493
494         spin_lock_irqsave(&q->requeue_lock, flags);
495         if (at_head) {
496                 rq->cmd_flags |= REQ_SOFTBARRIER;
497                 list_add(&rq->queuelist, &q->requeue_list);
498         } else {
499                 list_add_tail(&rq->queuelist, &q->requeue_list);
500         }
501         spin_unlock_irqrestore(&q->requeue_lock, flags);
502 }
503 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
504
505 void blk_mq_kick_requeue_list(struct request_queue *q)
506 {
507         kblockd_schedule_work(&q->requeue_work);
508 }
509 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
510
511 static inline bool is_flush_request(struct request *rq, unsigned int tag)
512 {
513         return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
514                         rq->q->flush_rq->tag == tag);
515 }
516
517 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
518 {
519         struct request *rq = tags->rqs[tag];
520
521         if (!is_flush_request(rq, tag))
522                 return rq;
523
524         return rq->q->flush_rq;
525 }
526 EXPORT_SYMBOL(blk_mq_tag_to_rq);
527
528 struct blk_mq_timeout_data {
529         struct blk_mq_hw_ctx *hctx;
530         unsigned long *next;
531         unsigned int *next_set;
532 };
533
534 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
535 {
536         struct blk_mq_timeout_data *data = __data;
537         struct blk_mq_hw_ctx *hctx = data->hctx;
538         unsigned int tag;
539
540          /* It may not be in flight yet (this is where
541          * the REQ_ATOMIC_STARTED flag comes in). The requests are
542          * statically allocated, so we know it's always safe to access the
543          * memory associated with a bit offset into ->rqs[].
544          */
545         tag = 0;
546         do {
547                 struct request *rq;
548
549                 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
550                 if (tag >= hctx->tags->nr_tags)
551                         break;
552
553                 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
554                 if (rq->q != hctx->queue)
555                         continue;
556                 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
557                         continue;
558
559                 blk_rq_check_expired(rq, data->next, data->next_set);
560         } while (1);
561 }
562
563 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
564                                         unsigned long *next,
565                                         unsigned int *next_set)
566 {
567         struct blk_mq_timeout_data data = {
568                 .hctx           = hctx,
569                 .next           = next,
570                 .next_set       = next_set,
571         };
572
573         /*
574          * Ask the tagging code to iterate busy requests, so we can
575          * check them for timeout.
576          */
577         blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
578 }
579
580 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
581 {
582         struct request_queue *q = rq->q;
583
584         /*
585          * We know that complete is set at this point. If STARTED isn't set
586          * anymore, then the request isn't active and the "timeout" should
587          * just be ignored. This can happen due to the bitflag ordering.
588          * Timeout first checks if STARTED is set, and if it is, assumes
589          * the request is active. But if we race with completion, then
590          * we both flags will get cleared. So check here again, and ignore
591          * a timeout event with a request that isn't active.
592          */
593         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
594                 return BLK_EH_NOT_HANDLED;
595
596         if (!q->mq_ops->timeout)
597                 return BLK_EH_RESET_TIMER;
598
599         return q->mq_ops->timeout(rq);
600 }
601
602 static void blk_mq_rq_timer(unsigned long data)
603 {
604         struct request_queue *q = (struct request_queue *) data;
605         struct blk_mq_hw_ctx *hctx;
606         unsigned long next = 0;
607         int i, next_set = 0;
608
609         queue_for_each_hw_ctx(q, hctx, i) {
610                 /*
611                  * If not software queues are currently mapped to this
612                  * hardware queue, there's nothing to check
613                  */
614                 if (!hctx->nr_ctx || !hctx->tags)
615                         continue;
616
617                 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
618         }
619
620         if (next_set) {
621                 next = blk_rq_timeout(round_jiffies_up(next));
622                 mod_timer(&q->timeout, next);
623         } else {
624                 queue_for_each_hw_ctx(q, hctx, i)
625                         blk_mq_tag_idle(hctx);
626         }
627 }
628
629 /*
630  * Reverse check our software queue for entries that we could potentially
631  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
632  * too much time checking for merges.
633  */
634 static bool blk_mq_attempt_merge(struct request_queue *q,
635                                  struct blk_mq_ctx *ctx, struct bio *bio)
636 {
637         struct request *rq;
638         int checked = 8;
639
640         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
641                 int el_ret;
642
643                 if (!checked--)
644                         break;
645
646                 if (!blk_rq_merge_ok(rq, bio))
647                         continue;
648
649                 el_ret = blk_try_merge(rq, bio);
650                 if (el_ret == ELEVATOR_BACK_MERGE) {
651                         if (bio_attempt_back_merge(q, rq, bio)) {
652                                 ctx->rq_merged++;
653                                 return true;
654                         }
655                         break;
656                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
657                         if (bio_attempt_front_merge(q, rq, bio)) {
658                                 ctx->rq_merged++;
659                                 return true;
660                         }
661                         break;
662                 }
663         }
664
665         return false;
666 }
667
668 /*
669  * Process software queues that have been marked busy, splicing them
670  * to the for-dispatch
671  */
672 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
673 {
674         struct blk_mq_ctx *ctx;
675         int i;
676
677         for (i = 0; i < hctx->ctx_map.map_size; i++) {
678                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
679                 unsigned int off, bit;
680
681                 if (!bm->word)
682                         continue;
683
684                 bit = 0;
685                 off = i * hctx->ctx_map.bits_per_word;
686                 do {
687                         bit = find_next_bit(&bm->word, bm->depth, bit);
688                         if (bit >= bm->depth)
689                                 break;
690
691                         ctx = hctx->ctxs[bit + off];
692                         clear_bit(bit, &bm->word);
693                         spin_lock(&ctx->lock);
694                         list_splice_tail_init(&ctx->rq_list, list);
695                         spin_unlock(&ctx->lock);
696
697                         bit++;
698                 } while (1);
699         }
700 }
701
702 /*
703  * Run this hardware queue, pulling any software queues mapped to it in.
704  * Note that this function currently has various problems around ordering
705  * of IO. In particular, we'd like FIFO behaviour on handling existing
706  * items on the hctx->dispatch list. Ignore that for now.
707  */
708 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
709 {
710         struct request_queue *q = hctx->queue;
711         struct request *rq;
712         LIST_HEAD(rq_list);
713         int queued;
714
715         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
716
717         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
718                 return;
719
720         hctx->run++;
721
722         /*
723          * Touch any software queue that has pending entries.
724          */
725         flush_busy_ctxs(hctx, &rq_list);
726
727         /*
728          * If we have previous entries on our dispatch list, grab them
729          * and stuff them at the front for more fair dispatch.
730          */
731         if (!list_empty_careful(&hctx->dispatch)) {
732                 spin_lock(&hctx->lock);
733                 if (!list_empty(&hctx->dispatch))
734                         list_splice_init(&hctx->dispatch, &rq_list);
735                 spin_unlock(&hctx->lock);
736         }
737
738         /*
739          * Now process all the entries, sending them to the driver.
740          */
741         queued = 0;
742         while (!list_empty(&rq_list)) {
743                 int ret;
744
745                 rq = list_first_entry(&rq_list, struct request, queuelist);
746                 list_del_init(&rq->queuelist);
747
748                 ret = q->mq_ops->queue_rq(hctx, rq, list_empty(&rq_list));
749                 switch (ret) {
750                 case BLK_MQ_RQ_QUEUE_OK:
751                         queued++;
752                         continue;
753                 case BLK_MQ_RQ_QUEUE_BUSY:
754                         list_add(&rq->queuelist, &rq_list);
755                         __blk_mq_requeue_request(rq);
756                         break;
757                 default:
758                         pr_err("blk-mq: bad return on queue: %d\n", ret);
759                 case BLK_MQ_RQ_QUEUE_ERROR:
760                         rq->errors = -EIO;
761                         blk_mq_end_io(rq, rq->errors);
762                         break;
763                 }
764
765                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
766                         break;
767         }
768
769         if (!queued)
770                 hctx->dispatched[0]++;
771         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
772                 hctx->dispatched[ilog2(queued) + 1]++;
773
774         /*
775          * Any items that need requeuing? Stuff them into hctx->dispatch,
776          * that is where we will continue on next queue run.
777          */
778         if (!list_empty(&rq_list)) {
779                 spin_lock(&hctx->lock);
780                 list_splice(&rq_list, &hctx->dispatch);
781                 spin_unlock(&hctx->lock);
782         }
783 }
784
785 /*
786  * It'd be great if the workqueue API had a way to pass
787  * in a mask and had some smarts for more clever placement.
788  * For now we just round-robin here, switching for every
789  * BLK_MQ_CPU_WORK_BATCH queued items.
790  */
791 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
792 {
793         int cpu = hctx->next_cpu;
794
795         if (--hctx->next_cpu_batch <= 0) {
796                 int next_cpu;
797
798                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
799                 if (next_cpu >= nr_cpu_ids)
800                         next_cpu = cpumask_first(hctx->cpumask);
801
802                 hctx->next_cpu = next_cpu;
803                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
804         }
805
806         return cpu;
807 }
808
809 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
810 {
811         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
812                 return;
813
814         if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
815                 __blk_mq_run_hw_queue(hctx);
816         else if (hctx->queue->nr_hw_queues == 1)
817                 kblockd_schedule_delayed_work(&hctx->run_work, 0);
818         else {
819                 unsigned int cpu;
820
821                 cpu = blk_mq_hctx_next_cpu(hctx);
822                 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
823         }
824 }
825
826 void blk_mq_run_queues(struct request_queue *q, bool async)
827 {
828         struct blk_mq_hw_ctx *hctx;
829         int i;
830
831         queue_for_each_hw_ctx(q, hctx, i) {
832                 if ((!blk_mq_hctx_has_pending(hctx) &&
833                     list_empty_careful(&hctx->dispatch)) ||
834                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
835                         continue;
836
837                 preempt_disable();
838                 blk_mq_run_hw_queue(hctx, async);
839                 preempt_enable();
840         }
841 }
842 EXPORT_SYMBOL(blk_mq_run_queues);
843
844 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
845 {
846         cancel_delayed_work(&hctx->run_work);
847         cancel_delayed_work(&hctx->delay_work);
848         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
849 }
850 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
851
852 void blk_mq_stop_hw_queues(struct request_queue *q)
853 {
854         struct blk_mq_hw_ctx *hctx;
855         int i;
856
857         queue_for_each_hw_ctx(q, hctx, i)
858                 blk_mq_stop_hw_queue(hctx);
859 }
860 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
861
862 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
863 {
864         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
865
866         preempt_disable();
867         blk_mq_run_hw_queue(hctx, false);
868         preempt_enable();
869 }
870 EXPORT_SYMBOL(blk_mq_start_hw_queue);
871
872 void blk_mq_start_hw_queues(struct request_queue *q)
873 {
874         struct blk_mq_hw_ctx *hctx;
875         int i;
876
877         queue_for_each_hw_ctx(q, hctx, i)
878                 blk_mq_start_hw_queue(hctx);
879 }
880 EXPORT_SYMBOL(blk_mq_start_hw_queues);
881
882
883 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
884 {
885         struct blk_mq_hw_ctx *hctx;
886         int i;
887
888         queue_for_each_hw_ctx(q, hctx, i) {
889                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
890                         continue;
891
892                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
893                 preempt_disable();
894                 blk_mq_run_hw_queue(hctx, async);
895                 preempt_enable();
896         }
897 }
898 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
899
900 static void blk_mq_run_work_fn(struct work_struct *work)
901 {
902         struct blk_mq_hw_ctx *hctx;
903
904         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
905
906         __blk_mq_run_hw_queue(hctx);
907 }
908
909 static void blk_mq_delay_work_fn(struct work_struct *work)
910 {
911         struct blk_mq_hw_ctx *hctx;
912
913         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
914
915         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
916                 __blk_mq_run_hw_queue(hctx);
917 }
918
919 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
920 {
921         unsigned long tmo = msecs_to_jiffies(msecs);
922
923         if (hctx->queue->nr_hw_queues == 1)
924                 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
925         else {
926                 unsigned int cpu;
927
928                 cpu = blk_mq_hctx_next_cpu(hctx);
929                 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
930         }
931 }
932 EXPORT_SYMBOL(blk_mq_delay_queue);
933
934 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
935                                     struct request *rq, bool at_head)
936 {
937         struct blk_mq_ctx *ctx = rq->mq_ctx;
938
939         trace_block_rq_insert(hctx->queue, rq);
940
941         if (at_head)
942                 list_add(&rq->queuelist, &ctx->rq_list);
943         else
944                 list_add_tail(&rq->queuelist, &ctx->rq_list);
945
946         blk_mq_hctx_mark_pending(hctx, ctx);
947 }
948
949 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
950                 bool async)
951 {
952         struct request_queue *q = rq->q;
953         struct blk_mq_hw_ctx *hctx;
954         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
955
956         current_ctx = blk_mq_get_ctx(q);
957         if (!cpu_online(ctx->cpu))
958                 rq->mq_ctx = ctx = current_ctx;
959
960         hctx = q->mq_ops->map_queue(q, ctx->cpu);
961
962         spin_lock(&ctx->lock);
963         __blk_mq_insert_request(hctx, rq, at_head);
964         spin_unlock(&ctx->lock);
965
966         if (run_queue)
967                 blk_mq_run_hw_queue(hctx, async);
968
969         blk_mq_put_ctx(current_ctx);
970 }
971
972 static void blk_mq_insert_requests(struct request_queue *q,
973                                      struct blk_mq_ctx *ctx,
974                                      struct list_head *list,
975                                      int depth,
976                                      bool from_schedule)
977
978 {
979         struct blk_mq_hw_ctx *hctx;
980         struct blk_mq_ctx *current_ctx;
981
982         trace_block_unplug(q, depth, !from_schedule);
983
984         current_ctx = blk_mq_get_ctx(q);
985
986         if (!cpu_online(ctx->cpu))
987                 ctx = current_ctx;
988         hctx = q->mq_ops->map_queue(q, ctx->cpu);
989
990         /*
991          * preemption doesn't flush plug list, so it's possible ctx->cpu is
992          * offline now
993          */
994         spin_lock(&ctx->lock);
995         while (!list_empty(list)) {
996                 struct request *rq;
997
998                 rq = list_first_entry(list, struct request, queuelist);
999                 list_del_init(&rq->queuelist);
1000                 rq->mq_ctx = ctx;
1001                 __blk_mq_insert_request(hctx, rq, false);
1002         }
1003         spin_unlock(&ctx->lock);
1004
1005         blk_mq_run_hw_queue(hctx, from_schedule);
1006         blk_mq_put_ctx(current_ctx);
1007 }
1008
1009 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1010 {
1011         struct request *rqa = container_of(a, struct request, queuelist);
1012         struct request *rqb = container_of(b, struct request, queuelist);
1013
1014         return !(rqa->mq_ctx < rqb->mq_ctx ||
1015                  (rqa->mq_ctx == rqb->mq_ctx &&
1016                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1017 }
1018
1019 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1020 {
1021         struct blk_mq_ctx *this_ctx;
1022         struct request_queue *this_q;
1023         struct request *rq;
1024         LIST_HEAD(list);
1025         LIST_HEAD(ctx_list);
1026         unsigned int depth;
1027
1028         list_splice_init(&plug->mq_list, &list);
1029
1030         list_sort(NULL, &list, plug_ctx_cmp);
1031
1032         this_q = NULL;
1033         this_ctx = NULL;
1034         depth = 0;
1035
1036         while (!list_empty(&list)) {
1037                 rq = list_entry_rq(list.next);
1038                 list_del_init(&rq->queuelist);
1039                 BUG_ON(!rq->q);
1040                 if (rq->mq_ctx != this_ctx) {
1041                         if (this_ctx) {
1042                                 blk_mq_insert_requests(this_q, this_ctx,
1043                                                         &ctx_list, depth,
1044                                                         from_schedule);
1045                         }
1046
1047                         this_ctx = rq->mq_ctx;
1048                         this_q = rq->q;
1049                         depth = 0;
1050                 }
1051
1052                 depth++;
1053                 list_add_tail(&rq->queuelist, &ctx_list);
1054         }
1055
1056         /*
1057          * If 'this_ctx' is set, we know we have entries to complete
1058          * on 'ctx_list'. Do those.
1059          */
1060         if (this_ctx) {
1061                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1062                                        from_schedule);
1063         }
1064 }
1065
1066 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1067 {
1068         init_request_from_bio(rq, bio);
1069
1070         if (blk_do_io_stat(rq))
1071                 blk_account_io_start(rq, 1);
1072 }
1073
1074 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1075 {
1076         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1077                 !blk_queue_nomerges(hctx->queue);
1078 }
1079
1080 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1081                                          struct blk_mq_ctx *ctx,
1082                                          struct request *rq, struct bio *bio)
1083 {
1084         if (!hctx_allow_merges(hctx)) {
1085                 blk_mq_bio_to_request(rq, bio);
1086                 spin_lock(&ctx->lock);
1087 insert_rq:
1088                 __blk_mq_insert_request(hctx, rq, false);
1089                 spin_unlock(&ctx->lock);
1090                 return false;
1091         } else {
1092                 struct request_queue *q = hctx->queue;
1093
1094                 spin_lock(&ctx->lock);
1095                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1096                         blk_mq_bio_to_request(rq, bio);
1097                         goto insert_rq;
1098                 }
1099
1100                 spin_unlock(&ctx->lock);
1101                 __blk_mq_free_request(hctx, ctx, rq);
1102                 return true;
1103         }
1104 }
1105
1106 struct blk_map_ctx {
1107         struct blk_mq_hw_ctx *hctx;
1108         struct blk_mq_ctx *ctx;
1109 };
1110
1111 static struct request *blk_mq_map_request(struct request_queue *q,
1112                                           struct bio *bio,
1113                                           struct blk_map_ctx *data)
1114 {
1115         struct blk_mq_hw_ctx *hctx;
1116         struct blk_mq_ctx *ctx;
1117         struct request *rq;
1118         int rw = bio_data_dir(bio);
1119         struct blk_mq_alloc_data alloc_data;
1120
1121         if (unlikely(blk_mq_queue_enter(q))) {
1122                 bio_endio(bio, -EIO);
1123                 return NULL;
1124         }
1125
1126         ctx = blk_mq_get_ctx(q);
1127         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1128
1129         if (rw_is_sync(bio->bi_rw))
1130                 rw |= REQ_SYNC;
1131
1132         trace_block_getrq(q, bio, rw);
1133         blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1134                         hctx);
1135         rq = __blk_mq_alloc_request(&alloc_data, rw);
1136         if (unlikely(!rq)) {
1137                 __blk_mq_run_hw_queue(hctx);
1138                 blk_mq_put_ctx(ctx);
1139                 trace_block_sleeprq(q, bio, rw);
1140
1141                 ctx = blk_mq_get_ctx(q);
1142                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1143                 blk_mq_set_alloc_data(&alloc_data, q,
1144                                 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1145                 rq = __blk_mq_alloc_request(&alloc_data, rw);
1146                 ctx = alloc_data.ctx;
1147                 hctx = alloc_data.hctx;
1148         }
1149
1150         hctx->queued++;
1151         data->hctx = hctx;
1152         data->ctx = ctx;
1153         return rq;
1154 }
1155
1156 /*
1157  * Multiple hardware queue variant. This will not use per-process plugs,
1158  * but will attempt to bypass the hctx queueing if we can go straight to
1159  * hardware for SYNC IO.
1160  */
1161 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1162 {
1163         const int is_sync = rw_is_sync(bio->bi_rw);
1164         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1165         struct blk_map_ctx data;
1166         struct request *rq;
1167
1168         blk_queue_bounce(q, &bio);
1169
1170         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1171                 bio_endio(bio, -EIO);
1172                 return;
1173         }
1174
1175         rq = blk_mq_map_request(q, bio, &data);
1176         if (unlikely(!rq))
1177                 return;
1178
1179         if (unlikely(is_flush_fua)) {
1180                 blk_mq_bio_to_request(rq, bio);
1181                 blk_insert_flush(rq);
1182                 goto run_queue;
1183         }
1184
1185         if (is_sync) {
1186                 int ret;
1187
1188                 blk_mq_bio_to_request(rq, bio);
1189
1190                 /*
1191                  * For OK queue, we are done. For error, kill it. Any other
1192                  * error (busy), just add it to our list as we previously
1193                  * would have done
1194                  */
1195                 ret = q->mq_ops->queue_rq(data.hctx, rq, true);
1196                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1197                         goto done;
1198                 else {
1199                         __blk_mq_requeue_request(rq);
1200
1201                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1202                                 rq->errors = -EIO;
1203                                 blk_mq_end_io(rq, rq->errors);
1204                                 goto done;
1205                         }
1206                 }
1207         }
1208
1209         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1210                 /*
1211                  * For a SYNC request, send it to the hardware immediately. For
1212                  * an ASYNC request, just ensure that we run it later on. The
1213                  * latter allows for merging opportunities and more efficient
1214                  * dispatching.
1215                  */
1216 run_queue:
1217                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1218         }
1219 done:
1220         blk_mq_put_ctx(data.ctx);
1221 }
1222
1223 /*
1224  * Single hardware queue variant. This will attempt to use any per-process
1225  * plug for merging and IO deferral.
1226  */
1227 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1228 {
1229         const int is_sync = rw_is_sync(bio->bi_rw);
1230         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1231         unsigned int use_plug, request_count = 0;
1232         struct blk_map_ctx data;
1233         struct request *rq;
1234
1235         /*
1236          * If we have multiple hardware queues, just go directly to
1237          * one of those for sync IO.
1238          */
1239         use_plug = !is_flush_fua && !is_sync;
1240
1241         blk_queue_bounce(q, &bio);
1242
1243         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1244                 bio_endio(bio, -EIO);
1245                 return;
1246         }
1247
1248         if (use_plug && !blk_queue_nomerges(q) &&
1249             blk_attempt_plug_merge(q, bio, &request_count))
1250                 return;
1251
1252         rq = blk_mq_map_request(q, bio, &data);
1253         if (unlikely(!rq))
1254                 return;
1255
1256         if (unlikely(is_flush_fua)) {
1257                 blk_mq_bio_to_request(rq, bio);
1258                 blk_insert_flush(rq);
1259                 goto run_queue;
1260         }
1261
1262         /*
1263          * A task plug currently exists. Since this is completely lockless,
1264          * utilize that to temporarily store requests until the task is
1265          * either done or scheduled away.
1266          */
1267         if (use_plug) {
1268                 struct blk_plug *plug = current->plug;
1269
1270                 if (plug) {
1271                         blk_mq_bio_to_request(rq, bio);
1272                         if (list_empty(&plug->mq_list))
1273                                 trace_block_plug(q);
1274                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1275                                 blk_flush_plug_list(plug, false);
1276                                 trace_block_plug(q);
1277                         }
1278                         list_add_tail(&rq->queuelist, &plug->mq_list);
1279                         blk_mq_put_ctx(data.ctx);
1280                         return;
1281                 }
1282         }
1283
1284         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1285                 /*
1286                  * For a SYNC request, send it to the hardware immediately. For
1287                  * an ASYNC request, just ensure that we run it later on. The
1288                  * latter allows for merging opportunities and more efficient
1289                  * dispatching.
1290                  */
1291 run_queue:
1292                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1293         }
1294
1295         blk_mq_put_ctx(data.ctx);
1296 }
1297
1298 /*
1299  * Default mapping to a software queue, since we use one per CPU.
1300  */
1301 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1302 {
1303         return q->queue_hw_ctx[q->mq_map[cpu]];
1304 }
1305 EXPORT_SYMBOL(blk_mq_map_queue);
1306
1307 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1308                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1309 {
1310         struct page *page;
1311
1312         if (tags->rqs && set->ops->exit_request) {
1313                 int i;
1314
1315                 for (i = 0; i < tags->nr_tags; i++) {
1316                         if (!tags->rqs[i])
1317                                 continue;
1318                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1319                                                 hctx_idx, i);
1320                         tags->rqs[i] = NULL;
1321                 }
1322         }
1323
1324         while (!list_empty(&tags->page_list)) {
1325                 page = list_first_entry(&tags->page_list, struct page, lru);
1326                 list_del_init(&page->lru);
1327                 __free_pages(page, page->private);
1328         }
1329
1330         kfree(tags->rqs);
1331
1332         blk_mq_free_tags(tags);
1333 }
1334
1335 static size_t order_to_size(unsigned int order)
1336 {
1337         return (size_t)PAGE_SIZE << order;
1338 }
1339
1340 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1341                 unsigned int hctx_idx)
1342 {
1343         struct blk_mq_tags *tags;
1344         unsigned int i, j, entries_per_page, max_order = 4;
1345         size_t rq_size, left;
1346
1347         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1348                                 set->numa_node);
1349         if (!tags)
1350                 return NULL;
1351
1352         INIT_LIST_HEAD(&tags->page_list);
1353
1354         tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1355                                  GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1356                                  set->numa_node);
1357         if (!tags->rqs) {
1358                 blk_mq_free_tags(tags);
1359                 return NULL;
1360         }
1361
1362         /*
1363          * rq_size is the size of the request plus driver payload, rounded
1364          * to the cacheline size
1365          */
1366         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1367                                 cache_line_size());
1368         left = rq_size * set->queue_depth;
1369
1370         for (i = 0; i < set->queue_depth; ) {
1371                 int this_order = max_order;
1372                 struct page *page;
1373                 int to_do;
1374                 void *p;
1375
1376                 while (left < order_to_size(this_order - 1) && this_order)
1377                         this_order--;
1378
1379                 do {
1380                         page = alloc_pages_node(set->numa_node,
1381                                 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1382                                 this_order);
1383                         if (page)
1384                                 break;
1385                         if (!this_order--)
1386                                 break;
1387                         if (order_to_size(this_order) < rq_size)
1388                                 break;
1389                 } while (1);
1390
1391                 if (!page)
1392                         goto fail;
1393
1394                 page->private = this_order;
1395                 list_add_tail(&page->lru, &tags->page_list);
1396
1397                 p = page_address(page);
1398                 entries_per_page = order_to_size(this_order) / rq_size;
1399                 to_do = min(entries_per_page, set->queue_depth - i);
1400                 left -= to_do * rq_size;
1401                 for (j = 0; j < to_do; j++) {
1402                         tags->rqs[i] = p;
1403                         tags->rqs[i]->atomic_flags = 0;
1404                         tags->rqs[i]->cmd_flags = 0;
1405                         if (set->ops->init_request) {
1406                                 if (set->ops->init_request(set->driver_data,
1407                                                 tags->rqs[i], hctx_idx, i,
1408                                                 set->numa_node)) {
1409                                         tags->rqs[i] = NULL;
1410                                         goto fail;
1411                                 }
1412                         }
1413
1414                         p += rq_size;
1415                         i++;
1416                 }
1417         }
1418
1419         return tags;
1420
1421 fail:
1422         blk_mq_free_rq_map(set, tags, hctx_idx);
1423         return NULL;
1424 }
1425
1426 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1427 {
1428         kfree(bitmap->map);
1429 }
1430
1431 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1432 {
1433         unsigned int bpw = 8, total, num_maps, i;
1434
1435         bitmap->bits_per_word = bpw;
1436
1437         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1438         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1439                                         GFP_KERNEL, node);
1440         if (!bitmap->map)
1441                 return -ENOMEM;
1442
1443         bitmap->map_size = num_maps;
1444
1445         total = nr_cpu_ids;
1446         for (i = 0; i < num_maps; i++) {
1447                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1448                 total -= bitmap->map[i].depth;
1449         }
1450
1451         return 0;
1452 }
1453
1454 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1455 {
1456         struct request_queue *q = hctx->queue;
1457         struct blk_mq_ctx *ctx;
1458         LIST_HEAD(tmp);
1459
1460         /*
1461          * Move ctx entries to new CPU, if this one is going away.
1462          */
1463         ctx = __blk_mq_get_ctx(q, cpu);
1464
1465         spin_lock(&ctx->lock);
1466         if (!list_empty(&ctx->rq_list)) {
1467                 list_splice_init(&ctx->rq_list, &tmp);
1468                 blk_mq_hctx_clear_pending(hctx, ctx);
1469         }
1470         spin_unlock(&ctx->lock);
1471
1472         if (list_empty(&tmp))
1473                 return NOTIFY_OK;
1474
1475         ctx = blk_mq_get_ctx(q);
1476         spin_lock(&ctx->lock);
1477
1478         while (!list_empty(&tmp)) {
1479                 struct request *rq;
1480
1481                 rq = list_first_entry(&tmp, struct request, queuelist);
1482                 rq->mq_ctx = ctx;
1483                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1484         }
1485
1486         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1487         blk_mq_hctx_mark_pending(hctx, ctx);
1488
1489         spin_unlock(&ctx->lock);
1490
1491         blk_mq_run_hw_queue(hctx, true);
1492         blk_mq_put_ctx(ctx);
1493         return NOTIFY_OK;
1494 }
1495
1496 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1497 {
1498         struct request_queue *q = hctx->queue;
1499         struct blk_mq_tag_set *set = q->tag_set;
1500
1501         if (set->tags[hctx->queue_num])
1502                 return NOTIFY_OK;
1503
1504         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1505         if (!set->tags[hctx->queue_num])
1506                 return NOTIFY_STOP;
1507
1508         hctx->tags = set->tags[hctx->queue_num];
1509         return NOTIFY_OK;
1510 }
1511
1512 static int blk_mq_hctx_notify(void *data, unsigned long action,
1513                               unsigned int cpu)
1514 {
1515         struct blk_mq_hw_ctx *hctx = data;
1516
1517         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1518                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1519         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1520                 return blk_mq_hctx_cpu_online(hctx, cpu);
1521
1522         return NOTIFY_OK;
1523 }
1524
1525 static void blk_mq_exit_hw_queues(struct request_queue *q,
1526                 struct blk_mq_tag_set *set, int nr_queue)
1527 {
1528         struct blk_mq_hw_ctx *hctx;
1529         unsigned int i;
1530
1531         queue_for_each_hw_ctx(q, hctx, i) {
1532                 if (i == nr_queue)
1533                         break;
1534
1535                 blk_mq_tag_idle(hctx);
1536
1537                 if (set->ops->exit_hctx)
1538                         set->ops->exit_hctx(hctx, i);
1539
1540                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1541                 kfree(hctx->ctxs);
1542                 blk_mq_free_bitmap(&hctx->ctx_map);
1543         }
1544
1545 }
1546
1547 static void blk_mq_free_hw_queues(struct request_queue *q,
1548                 struct blk_mq_tag_set *set)
1549 {
1550         struct blk_mq_hw_ctx *hctx;
1551         unsigned int i;
1552
1553         queue_for_each_hw_ctx(q, hctx, i) {
1554                 free_cpumask_var(hctx->cpumask);
1555                 kfree(hctx);
1556         }
1557 }
1558
1559 static int blk_mq_init_hw_queues(struct request_queue *q,
1560                 struct blk_mq_tag_set *set)
1561 {
1562         struct blk_mq_hw_ctx *hctx;
1563         unsigned int i;
1564
1565         /*
1566          * Initialize hardware queues
1567          */
1568         queue_for_each_hw_ctx(q, hctx, i) {
1569                 int node;
1570
1571                 node = hctx->numa_node;
1572                 if (node == NUMA_NO_NODE)
1573                         node = hctx->numa_node = set->numa_node;
1574
1575                 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1576                 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1577                 spin_lock_init(&hctx->lock);
1578                 INIT_LIST_HEAD(&hctx->dispatch);
1579                 hctx->queue = q;
1580                 hctx->queue_num = i;
1581                 hctx->flags = set->flags;
1582                 hctx->cmd_size = set->cmd_size;
1583
1584                 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1585                                                 blk_mq_hctx_notify, hctx);
1586                 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1587
1588                 hctx->tags = set->tags[i];
1589
1590                 /*
1591                  * Allocate space for all possible cpus to avoid allocation at
1592                  * runtime
1593                  */
1594                 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1595                                                 GFP_KERNEL, node);
1596                 if (!hctx->ctxs)
1597                         break;
1598
1599                 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1600                         break;
1601
1602                 hctx->nr_ctx = 0;
1603
1604                 if (set->ops->init_hctx &&
1605                     set->ops->init_hctx(hctx, set->driver_data, i))
1606                         break;
1607         }
1608
1609         if (i == q->nr_hw_queues)
1610                 return 0;
1611
1612         /*
1613          * Init failed
1614          */
1615         blk_mq_exit_hw_queues(q, set, i);
1616
1617         return 1;
1618 }
1619
1620 static void blk_mq_init_cpu_queues(struct request_queue *q,
1621                                    unsigned int nr_hw_queues)
1622 {
1623         unsigned int i;
1624
1625         for_each_possible_cpu(i) {
1626                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1627                 struct blk_mq_hw_ctx *hctx;
1628
1629                 memset(__ctx, 0, sizeof(*__ctx));
1630                 __ctx->cpu = i;
1631                 spin_lock_init(&__ctx->lock);
1632                 INIT_LIST_HEAD(&__ctx->rq_list);
1633                 __ctx->queue = q;
1634
1635                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1636                 if (!cpu_online(i))
1637                         continue;
1638
1639                 hctx = q->mq_ops->map_queue(q, i);
1640                 cpumask_set_cpu(i, hctx->cpumask);
1641                 hctx->nr_ctx++;
1642
1643                 /*
1644                  * Set local node, IFF we have more than one hw queue. If
1645                  * not, we remain on the home node of the device
1646                  */
1647                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1648                         hctx->numa_node = cpu_to_node(i);
1649         }
1650 }
1651
1652 static void blk_mq_map_swqueue(struct request_queue *q)
1653 {
1654         unsigned int i;
1655         struct blk_mq_hw_ctx *hctx;
1656         struct blk_mq_ctx *ctx;
1657
1658         queue_for_each_hw_ctx(q, hctx, i) {
1659                 cpumask_clear(hctx->cpumask);
1660                 hctx->nr_ctx = 0;
1661         }
1662
1663         /*
1664          * Map software to hardware queues
1665          */
1666         queue_for_each_ctx(q, ctx, i) {
1667                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1668                 if (!cpu_online(i))
1669                         continue;
1670
1671                 hctx = q->mq_ops->map_queue(q, i);
1672                 cpumask_set_cpu(i, hctx->cpumask);
1673                 ctx->index_hw = hctx->nr_ctx;
1674                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1675         }
1676
1677         queue_for_each_hw_ctx(q, hctx, i) {
1678                 /*
1679                  * If no software queues are mapped to this hardware queue,
1680                  * disable it and free the request entries.
1681                  */
1682                 if (!hctx->nr_ctx) {
1683                         struct blk_mq_tag_set *set = q->tag_set;
1684
1685                         if (set->tags[i]) {
1686                                 blk_mq_free_rq_map(set, set->tags[i], i);
1687                                 set->tags[i] = NULL;
1688                                 hctx->tags = NULL;
1689                         }
1690                         continue;
1691                 }
1692
1693                 /*
1694                  * Initialize batch roundrobin counts
1695                  */
1696                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1697                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1698         }
1699 }
1700
1701 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1702 {
1703         struct blk_mq_hw_ctx *hctx;
1704         struct request_queue *q;
1705         bool shared;
1706         int i;
1707
1708         if (set->tag_list.next == set->tag_list.prev)
1709                 shared = false;
1710         else
1711                 shared = true;
1712
1713         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1714                 blk_mq_freeze_queue(q);
1715
1716                 queue_for_each_hw_ctx(q, hctx, i) {
1717                         if (shared)
1718                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1719                         else
1720                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1721                 }
1722                 blk_mq_unfreeze_queue(q);
1723         }
1724 }
1725
1726 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1727 {
1728         struct blk_mq_tag_set *set = q->tag_set;
1729
1730         mutex_lock(&set->tag_list_lock);
1731         list_del_init(&q->tag_set_list);
1732         blk_mq_update_tag_set_depth(set);
1733         mutex_unlock(&set->tag_list_lock);
1734 }
1735
1736 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1737                                      struct request_queue *q)
1738 {
1739         q->tag_set = set;
1740
1741         mutex_lock(&set->tag_list_lock);
1742         list_add_tail(&q->tag_set_list, &set->tag_list);
1743         blk_mq_update_tag_set_depth(set);
1744         mutex_unlock(&set->tag_list_lock);
1745 }
1746
1747 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1748 {
1749         struct blk_mq_hw_ctx **hctxs;
1750         struct blk_mq_ctx __percpu *ctx;
1751         struct request_queue *q;
1752         unsigned int *map;
1753         int i;
1754
1755         ctx = alloc_percpu(struct blk_mq_ctx);
1756         if (!ctx)
1757                 return ERR_PTR(-ENOMEM);
1758
1759         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1760                         set->numa_node);
1761
1762         if (!hctxs)
1763                 goto err_percpu;
1764
1765         map = blk_mq_make_queue_map(set);
1766         if (!map)
1767                 goto err_map;
1768
1769         for (i = 0; i < set->nr_hw_queues; i++) {
1770                 int node = blk_mq_hw_queue_to_node(map, i);
1771
1772                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1773                                         GFP_KERNEL, node);
1774                 if (!hctxs[i])
1775                         goto err_hctxs;
1776
1777                 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1778                         goto err_hctxs;
1779
1780                 atomic_set(&hctxs[i]->nr_active, 0);
1781                 hctxs[i]->numa_node = node;
1782                 hctxs[i]->queue_num = i;
1783         }
1784
1785         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1786         if (!q)
1787                 goto err_hctxs;
1788
1789         if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1790                 goto err_map;
1791
1792         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1793         blk_queue_rq_timeout(q, 30000);
1794
1795         q->nr_queues = nr_cpu_ids;
1796         q->nr_hw_queues = set->nr_hw_queues;
1797         q->mq_map = map;
1798
1799         q->queue_ctx = ctx;
1800         q->queue_hw_ctx = hctxs;
1801
1802         q->mq_ops = set->ops;
1803         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1804
1805         if (!(set->flags & BLK_MQ_F_SG_MERGE))
1806                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1807
1808         q->sg_reserved_size = INT_MAX;
1809
1810         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1811         INIT_LIST_HEAD(&q->requeue_list);
1812         spin_lock_init(&q->requeue_lock);
1813
1814         if (q->nr_hw_queues > 1)
1815                 blk_queue_make_request(q, blk_mq_make_request);
1816         else
1817                 blk_queue_make_request(q, blk_sq_make_request);
1818
1819         blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1820         if (set->timeout)
1821                 blk_queue_rq_timeout(q, set->timeout);
1822
1823         /*
1824          * Do this after blk_queue_make_request() overrides it...
1825          */
1826         q->nr_requests = set->queue_depth;
1827
1828         if (set->ops->complete)
1829                 blk_queue_softirq_done(q, set->ops->complete);
1830
1831         blk_mq_init_flush(q);
1832         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1833
1834         q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1835                                 set->cmd_size, cache_line_size()),
1836                                 GFP_KERNEL);
1837         if (!q->flush_rq)
1838                 goto err_hw;
1839
1840         if (blk_mq_init_hw_queues(q, set))
1841                 goto err_flush_rq;
1842
1843         mutex_lock(&all_q_mutex);
1844         list_add_tail(&q->all_q_node, &all_q_list);
1845         mutex_unlock(&all_q_mutex);
1846
1847         blk_mq_add_queue_tag_set(set, q);
1848
1849         blk_mq_map_swqueue(q);
1850
1851         return q;
1852
1853 err_flush_rq:
1854         kfree(q->flush_rq);
1855 err_hw:
1856         blk_cleanup_queue(q);
1857 err_hctxs:
1858         kfree(map);
1859         for (i = 0; i < set->nr_hw_queues; i++) {
1860                 if (!hctxs[i])
1861                         break;
1862                 free_cpumask_var(hctxs[i]->cpumask);
1863                 kfree(hctxs[i]);
1864         }
1865 err_map:
1866         kfree(hctxs);
1867 err_percpu:
1868         free_percpu(ctx);
1869         return ERR_PTR(-ENOMEM);
1870 }
1871 EXPORT_SYMBOL(blk_mq_init_queue);
1872
1873 void blk_mq_free_queue(struct request_queue *q)
1874 {
1875         struct blk_mq_tag_set   *set = q->tag_set;
1876
1877         blk_mq_del_queue_tag_set(q);
1878
1879         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1880         blk_mq_free_hw_queues(q, set);
1881
1882         percpu_ref_exit(&q->mq_usage_counter);
1883
1884         free_percpu(q->queue_ctx);
1885         kfree(q->queue_hw_ctx);
1886         kfree(q->mq_map);
1887
1888         q->queue_ctx = NULL;
1889         q->queue_hw_ctx = NULL;
1890         q->mq_map = NULL;
1891
1892         mutex_lock(&all_q_mutex);
1893         list_del_init(&q->all_q_node);
1894         mutex_unlock(&all_q_mutex);
1895 }
1896
1897 /* Basically redo blk_mq_init_queue with queue frozen */
1898 static void blk_mq_queue_reinit(struct request_queue *q)
1899 {
1900         blk_mq_freeze_queue(q);
1901
1902         blk_mq_sysfs_unregister(q);
1903
1904         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1905
1906         /*
1907          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1908          * we should change hctx numa_node according to new topology (this
1909          * involves free and re-allocate memory, worthy doing?)
1910          */
1911
1912         blk_mq_map_swqueue(q);
1913
1914         blk_mq_sysfs_register(q);
1915
1916         blk_mq_unfreeze_queue(q);
1917 }
1918
1919 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1920                                       unsigned long action, void *hcpu)
1921 {
1922         struct request_queue *q;
1923
1924         /*
1925          * Before new mappings are established, hotadded cpu might already
1926          * start handling requests. This doesn't break anything as we map
1927          * offline CPUs to first hardware queue. We will re-init the queue
1928          * below to get optimal settings.
1929          */
1930         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1931             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1932                 return NOTIFY_OK;
1933
1934         mutex_lock(&all_q_mutex);
1935         list_for_each_entry(q, &all_q_list, all_q_node)
1936                 blk_mq_queue_reinit(q);
1937         mutex_unlock(&all_q_mutex);
1938         return NOTIFY_OK;
1939 }
1940
1941 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1942 {
1943         int i;
1944
1945         for (i = 0; i < set->nr_hw_queues; i++) {
1946                 set->tags[i] = blk_mq_init_rq_map(set, i);
1947                 if (!set->tags[i])
1948                         goto out_unwind;
1949         }
1950
1951         return 0;
1952
1953 out_unwind:
1954         while (--i >= 0)
1955                 blk_mq_free_rq_map(set, set->tags[i], i);
1956
1957         return -ENOMEM;
1958 }
1959
1960 /*
1961  * Allocate the request maps associated with this tag_set. Note that this
1962  * may reduce the depth asked for, if memory is tight. set->queue_depth
1963  * will be updated to reflect the allocated depth.
1964  */
1965 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
1966 {
1967         unsigned int depth;
1968         int err;
1969
1970         depth = set->queue_depth;
1971         do {
1972                 err = __blk_mq_alloc_rq_maps(set);
1973                 if (!err)
1974                         break;
1975
1976                 set->queue_depth >>= 1;
1977                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
1978                         err = -ENOMEM;
1979                         break;
1980                 }
1981         } while (set->queue_depth);
1982
1983         if (!set->queue_depth || err) {
1984                 pr_err("blk-mq: failed to allocate request map\n");
1985                 return -ENOMEM;
1986         }
1987
1988         if (depth != set->queue_depth)
1989                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
1990                                                 depth, set->queue_depth);
1991
1992         return 0;
1993 }
1994
1995 /*
1996  * Alloc a tag set to be associated with one or more request queues.
1997  * May fail with EINVAL for various error conditions. May adjust the
1998  * requested depth down, if if it too large. In that case, the set
1999  * value will be stored in set->queue_depth.
2000  */
2001 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2002 {
2003         if (!set->nr_hw_queues)
2004                 return -EINVAL;
2005         if (!set->queue_depth)
2006                 return -EINVAL;
2007         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2008                 return -EINVAL;
2009
2010         if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2011                 return -EINVAL;
2012
2013         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2014                 pr_info("blk-mq: reduced tag depth to %u\n",
2015                         BLK_MQ_MAX_DEPTH);
2016                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2017         }
2018
2019         set->tags = kmalloc_node(set->nr_hw_queues *
2020                                  sizeof(struct blk_mq_tags *),
2021                                  GFP_KERNEL, set->numa_node);
2022         if (!set->tags)
2023                 return -ENOMEM;
2024
2025         if (blk_mq_alloc_rq_maps(set))
2026                 goto enomem;
2027
2028         mutex_init(&set->tag_list_lock);
2029         INIT_LIST_HEAD(&set->tag_list);
2030
2031         return 0;
2032 enomem:
2033         kfree(set->tags);
2034         set->tags = NULL;
2035         return -ENOMEM;
2036 }
2037 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2038
2039 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2040 {
2041         int i;
2042
2043         for (i = 0; i < set->nr_hw_queues; i++) {
2044                 if (set->tags[i])
2045                         blk_mq_free_rq_map(set, set->tags[i], i);
2046         }
2047
2048         kfree(set->tags);
2049         set->tags = NULL;
2050 }
2051 EXPORT_SYMBOL(blk_mq_free_tag_set);
2052
2053 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2054 {
2055         struct blk_mq_tag_set *set = q->tag_set;
2056         struct blk_mq_hw_ctx *hctx;
2057         int i, ret;
2058
2059         if (!set || nr > set->queue_depth)
2060                 return -EINVAL;
2061
2062         ret = 0;
2063         queue_for_each_hw_ctx(q, hctx, i) {
2064                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2065                 if (ret)
2066                         break;
2067         }
2068
2069         if (!ret)
2070                 q->nr_requests = nr;
2071
2072         return ret;
2073 }
2074
2075 void blk_mq_disable_hotplug(void)
2076 {
2077         mutex_lock(&all_q_mutex);
2078 }
2079
2080 void blk_mq_enable_hotplug(void)
2081 {
2082         mutex_unlock(&all_q_mutex);
2083 }
2084
2085 static int __init blk_mq_init(void)
2086 {
2087         blk_mq_cpu_init();
2088
2089         hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2090
2091         return 0;
2092 }
2093 subsys_initcall(blk_mq_init);