2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
20 unsigned long blk_max_pfn;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
37 EXPORT_SYMBOL(blk_queue_prep_rq);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 q->unprep_rq_fn = ufn;
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
74 q->merge_bvec_fn = mbfn;
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
80 q->softirq_done_fn = fn;
82 EXPORT_SYMBOL(blk_queue_softirq_done);
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
86 q->rq_timeout = timeout;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
92 q->rq_timed_out_fn = fn;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
107 * Returns a queue_limit struct to its default state. Can be used by
108 * stacking drivers like DM that stage table swaps and reuse an
109 * existing device queue.
111 void blk_set_default_limits(struct queue_limits *lim)
113 lim->max_segments = BLK_MAX_SEGMENTS;
114 lim->max_integrity_segments = 0;
115 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117 lim->max_sectors = BLK_DEF_MAX_SECTORS;
118 lim->max_hw_sectors = INT_MAX;
119 lim->max_discard_sectors = 0;
120 lim->discard_granularity = 0;
121 lim->discard_alignment = 0;
122 lim->discard_misaligned = 0;
123 lim->discard_zeroes_data = -1;
124 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126 lim->alignment_offset = 0;
131 EXPORT_SYMBOL(blk_set_default_limits);
134 * blk_queue_make_request - define an alternate make_request function for a device
135 * @q: the request queue for the device to be affected
136 * @mfn: the alternate make_request function
139 * The normal way for &struct bios to be passed to a device
140 * driver is for them to be collected into requests on a request
141 * queue, and then to allow the device driver to select requests
142 * off that queue when it is ready. This works well for many block
143 * devices. However some block devices (typically virtual devices
144 * such as md or lvm) do not benefit from the processing on the
145 * request queue, and are served best by having the requests passed
146 * directly to them. This can be achieved by providing a function
147 * to blk_queue_make_request().
150 * The driver that does this *must* be able to deal appropriately
151 * with buffers in "highmemory". This can be accomplished by either calling
152 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153 * blk_queue_bounce() to create a buffer in normal memory.
155 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
160 q->nr_requests = BLKDEV_MAX_RQ;
162 q->make_request_fn = mfn;
163 blk_queue_dma_alignment(q, 511);
164 blk_queue_congestion_threshold(q);
165 q->nr_batching = BLK_BATCH_REQ;
167 q->unplug_thresh = 4; /* hmm */
168 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
169 if (q->unplug_delay == 0)
172 q->unplug_timer.function = blk_unplug_timeout;
173 q->unplug_timer.data = (unsigned long)q;
175 blk_set_default_limits(&q->limits);
176 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
179 * If the caller didn't supply a lock, fall back to our embedded
183 q->queue_lock = &q->__queue_lock;
186 * by default assume old behaviour and bounce for any highmem page
188 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
190 EXPORT_SYMBOL(blk_queue_make_request);
193 * blk_queue_bounce_limit - set bounce buffer limit for queue
194 * @q: the request queue for the device
195 * @dma_mask: the maximum address the device can handle
198 * Different hardware can have different requirements as to what pages
199 * it can do I/O directly to. A low level driver can call
200 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
201 * buffers for doing I/O to pages residing above @dma_mask.
203 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
205 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
208 q->bounce_gfp = GFP_NOIO;
209 #if BITS_PER_LONG == 64
211 * Assume anything <= 4GB can be handled by IOMMU. Actually
212 * some IOMMUs can handle everything, but I don't know of a
213 * way to test this here.
215 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
217 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
219 if (b_pfn < blk_max_low_pfn)
221 q->limits.bounce_pfn = b_pfn;
224 init_emergency_isa_pool();
225 q->bounce_gfp = GFP_NOIO | GFP_DMA;
226 q->limits.bounce_pfn = b_pfn;
229 EXPORT_SYMBOL(blk_queue_bounce_limit);
232 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
233 * @q: the request queue for the device
234 * @max_hw_sectors: max hardware sectors in the usual 512b unit
237 * Enables a low level driver to set a hard upper limit,
238 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
239 * the device driver based upon the combined capabilities of I/O
240 * controller and storage device.
242 * max_sectors is a soft limit imposed by the block layer for
243 * filesystem type requests. This value can be overridden on a
244 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
245 * The soft limit can not exceed max_hw_sectors.
247 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
249 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
250 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
251 printk(KERN_INFO "%s: set to minimum %d\n",
252 __func__, max_hw_sectors);
255 q->limits.max_hw_sectors = max_hw_sectors;
256 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
257 BLK_DEF_MAX_SECTORS);
259 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
262 * blk_queue_max_discard_sectors - set max sectors for a single discard
263 * @q: the request queue for the device
264 * @max_discard_sectors: maximum number of sectors to discard
266 void blk_queue_max_discard_sectors(struct request_queue *q,
267 unsigned int max_discard_sectors)
269 q->limits.max_discard_sectors = max_discard_sectors;
271 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
274 * blk_queue_max_segments - set max hw segments for a request for this queue
275 * @q: the request queue for the device
276 * @max_segments: max number of segments
279 * Enables a low level driver to set an upper limit on the number of
280 * hw data segments in a request.
282 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
286 printk(KERN_INFO "%s: set to minimum %d\n",
287 __func__, max_segments);
290 q->limits.max_segments = max_segments;
292 EXPORT_SYMBOL(blk_queue_max_segments);
295 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
296 * @q: the request queue for the device
297 * @max_size: max size of segment in bytes
300 * Enables a low level driver to set an upper limit on the size of a
303 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
305 if (max_size < PAGE_CACHE_SIZE) {
306 max_size = PAGE_CACHE_SIZE;
307 printk(KERN_INFO "%s: set to minimum %d\n",
311 q->limits.max_segment_size = max_size;
313 EXPORT_SYMBOL(blk_queue_max_segment_size);
316 * blk_queue_logical_block_size - set logical block size for the queue
317 * @q: the request queue for the device
318 * @size: the logical block size, in bytes
321 * This should be set to the lowest possible block size that the
322 * storage device can address. The default of 512 covers most
325 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
327 q->limits.logical_block_size = size;
329 if (q->limits.physical_block_size < size)
330 q->limits.physical_block_size = size;
332 if (q->limits.io_min < q->limits.physical_block_size)
333 q->limits.io_min = q->limits.physical_block_size;
335 EXPORT_SYMBOL(blk_queue_logical_block_size);
338 * blk_queue_physical_block_size - set physical block size for the queue
339 * @q: the request queue for the device
340 * @size: the physical block size, in bytes
343 * This should be set to the lowest possible sector size that the
344 * hardware can operate on without reverting to read-modify-write
347 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
349 q->limits.physical_block_size = size;
351 if (q->limits.physical_block_size < q->limits.logical_block_size)
352 q->limits.physical_block_size = q->limits.logical_block_size;
354 if (q->limits.io_min < q->limits.physical_block_size)
355 q->limits.io_min = q->limits.physical_block_size;
357 EXPORT_SYMBOL(blk_queue_physical_block_size);
360 * blk_queue_alignment_offset - set physical block alignment offset
361 * @q: the request queue for the device
362 * @offset: alignment offset in bytes
365 * Some devices are naturally misaligned to compensate for things like
366 * the legacy DOS partition table 63-sector offset. Low-level drivers
367 * should call this function for devices whose first sector is not
370 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
372 q->limits.alignment_offset =
373 offset & (q->limits.physical_block_size - 1);
374 q->limits.misaligned = 0;
376 EXPORT_SYMBOL(blk_queue_alignment_offset);
379 * blk_limits_io_min - set minimum request size for a device
380 * @limits: the queue limits
381 * @min: smallest I/O size in bytes
384 * Some devices have an internal block size bigger than the reported
385 * hardware sector size. This function can be used to signal the
386 * smallest I/O the device can perform without incurring a performance
389 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
391 limits->io_min = min;
393 if (limits->io_min < limits->logical_block_size)
394 limits->io_min = limits->logical_block_size;
396 if (limits->io_min < limits->physical_block_size)
397 limits->io_min = limits->physical_block_size;
399 EXPORT_SYMBOL(blk_limits_io_min);
402 * blk_queue_io_min - set minimum request size for the queue
403 * @q: the request queue for the device
404 * @min: smallest I/O size in bytes
407 * Storage devices may report a granularity or preferred minimum I/O
408 * size which is the smallest request the device can perform without
409 * incurring a performance penalty. For disk drives this is often the
410 * physical block size. For RAID arrays it is often the stripe chunk
411 * size. A properly aligned multiple of minimum_io_size is the
412 * preferred request size for workloads where a high number of I/O
413 * operations is desired.
415 void blk_queue_io_min(struct request_queue *q, unsigned int min)
417 blk_limits_io_min(&q->limits, min);
419 EXPORT_SYMBOL(blk_queue_io_min);
422 * blk_limits_io_opt - set optimal request size for a device
423 * @limits: the queue limits
424 * @opt: smallest I/O size in bytes
427 * Storage devices may report an optimal I/O size, which is the
428 * device's preferred unit for sustained I/O. This is rarely reported
429 * for disk drives. For RAID arrays it is usually the stripe width or
430 * the internal track size. A properly aligned multiple of
431 * optimal_io_size is the preferred request size for workloads where
432 * sustained throughput is desired.
434 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
436 limits->io_opt = opt;
438 EXPORT_SYMBOL(blk_limits_io_opt);
441 * blk_queue_io_opt - set optimal request size for the queue
442 * @q: the request queue for the device
443 * @opt: optimal request size in bytes
446 * Storage devices may report an optimal I/O size, which is the
447 * device's preferred unit for sustained I/O. This is rarely reported
448 * for disk drives. For RAID arrays it is usually the stripe width or
449 * the internal track size. A properly aligned multiple of
450 * optimal_io_size is the preferred request size for workloads where
451 * sustained throughput is desired.
453 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
455 blk_limits_io_opt(&q->limits, opt);
457 EXPORT_SYMBOL(blk_queue_io_opt);
460 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
461 * @t: the stacking driver (top)
462 * @b: the underlying device (bottom)
464 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
466 blk_stack_limits(&t->limits, &b->limits, 0);
470 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
472 spin_lock_irqsave(t->queue_lock, flags);
473 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
474 spin_unlock_irqrestore(t->queue_lock, flags);
477 EXPORT_SYMBOL(blk_queue_stack_limits);
480 * blk_stack_limits - adjust queue_limits for stacked devices
481 * @t: the stacking driver limits (top device)
482 * @b: the underlying queue limits (bottom, component device)
483 * @start: first data sector within component device
486 * This function is used by stacking drivers like MD and DM to ensure
487 * that all component devices have compatible block sizes and
488 * alignments. The stacking driver must provide a queue_limits
489 * struct (top) and then iteratively call the stacking function for
490 * all component (bottom) devices. The stacking function will
491 * attempt to combine the values and ensure proper alignment.
493 * Returns 0 if the top and bottom queue_limits are compatible. The
494 * top device's block sizes and alignment offsets may be adjusted to
495 * ensure alignment with the bottom device. If no compatible sizes
496 * and alignments exist, -1 is returned and the resulting top
497 * queue_limits will have the misaligned flag set to indicate that
498 * the alignment_offset is undefined.
500 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
503 unsigned int top, bottom, alignment, ret = 0;
505 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
506 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
507 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
509 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
510 b->seg_boundary_mask);
512 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
513 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
514 b->max_integrity_segments);
516 t->max_segment_size = min_not_zero(t->max_segment_size,
517 b->max_segment_size);
519 t->misaligned |= b->misaligned;
521 alignment = queue_limit_alignment_offset(b, start);
523 /* Bottom device has different alignment. Check that it is
524 * compatible with the current top alignment.
526 if (t->alignment_offset != alignment) {
528 top = max(t->physical_block_size, t->io_min)
529 + t->alignment_offset;
530 bottom = max(b->physical_block_size, b->io_min) + alignment;
532 /* Verify that top and bottom intervals line up */
533 if (max(top, bottom) & (min(top, bottom) - 1)) {
539 t->logical_block_size = max(t->logical_block_size,
540 b->logical_block_size);
542 t->physical_block_size = max(t->physical_block_size,
543 b->physical_block_size);
545 t->io_min = max(t->io_min, b->io_min);
546 t->io_opt = lcm(t->io_opt, b->io_opt);
548 t->no_cluster |= b->no_cluster;
549 t->discard_zeroes_data &= b->discard_zeroes_data;
551 /* Physical block size a multiple of the logical block size? */
552 if (t->physical_block_size & (t->logical_block_size - 1)) {
553 t->physical_block_size = t->logical_block_size;
558 /* Minimum I/O a multiple of the physical block size? */
559 if (t->io_min & (t->physical_block_size - 1)) {
560 t->io_min = t->physical_block_size;
565 /* Optimal I/O a multiple of the physical block size? */
566 if (t->io_opt & (t->physical_block_size - 1)) {
572 /* Find lowest common alignment_offset */
573 t->alignment_offset = lcm(t->alignment_offset, alignment)
574 & (max(t->physical_block_size, t->io_min) - 1);
576 /* Verify that new alignment_offset is on a logical block boundary */
577 if (t->alignment_offset & (t->logical_block_size - 1)) {
582 /* Discard alignment and granularity */
583 if (b->discard_granularity) {
584 alignment = queue_limit_discard_alignment(b, start);
586 if (t->discard_granularity != 0 &&
587 t->discard_alignment != alignment) {
588 top = t->discard_granularity + t->discard_alignment;
589 bottom = b->discard_granularity + alignment;
591 /* Verify that top and bottom intervals line up */
592 if (max(top, bottom) & (min(top, bottom) - 1))
593 t->discard_misaligned = 1;
596 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
597 b->max_discard_sectors);
598 t->discard_granularity = max(t->discard_granularity,
599 b->discard_granularity);
600 t->discard_alignment = lcm(t->discard_alignment, alignment) &
601 (t->discard_granularity - 1);
606 EXPORT_SYMBOL(blk_stack_limits);
609 * bdev_stack_limits - adjust queue limits for stacked drivers
610 * @t: the stacking driver limits (top device)
611 * @bdev: the component block_device (bottom)
612 * @start: first data sector within component device
615 * Merges queue limits for a top device and a block_device. Returns
616 * 0 if alignment didn't change. Returns -1 if adding the bottom
617 * device caused misalignment.
619 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
622 struct request_queue *bq = bdev_get_queue(bdev);
624 start += get_start_sect(bdev);
626 return blk_stack_limits(t, &bq->limits, start);
628 EXPORT_SYMBOL(bdev_stack_limits);
631 * disk_stack_limits - adjust queue limits for stacked drivers
632 * @disk: MD/DM gendisk (top)
633 * @bdev: the underlying block device (bottom)
634 * @offset: offset to beginning of data within component device
637 * Merges the limits for a top level gendisk and a bottom level
640 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
643 struct request_queue *t = disk->queue;
644 struct request_queue *b = bdev_get_queue(bdev);
646 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
647 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
649 disk_name(disk, 0, top);
650 bdevname(bdev, bottom);
652 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
658 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
661 spin_lock_irqsave(t->queue_lock, flags);
662 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
663 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
664 spin_unlock_irqrestore(t->queue_lock, flags);
667 EXPORT_SYMBOL(disk_stack_limits);
670 * blk_queue_dma_pad - set pad mask
671 * @q: the request queue for the device
676 * Appending pad buffer to a request modifies the last entry of a
677 * scatter list such that it includes the pad buffer.
679 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
681 q->dma_pad_mask = mask;
683 EXPORT_SYMBOL(blk_queue_dma_pad);
686 * blk_queue_update_dma_pad - update pad mask
687 * @q: the request queue for the device
690 * Update dma pad mask.
692 * Appending pad buffer to a request modifies the last entry of a
693 * scatter list such that it includes the pad buffer.
695 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
697 if (mask > q->dma_pad_mask)
698 q->dma_pad_mask = mask;
700 EXPORT_SYMBOL(blk_queue_update_dma_pad);
703 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
704 * @q: the request queue for the device
705 * @dma_drain_needed: fn which returns non-zero if drain is necessary
706 * @buf: physically contiguous buffer
707 * @size: size of the buffer in bytes
709 * Some devices have excess DMA problems and can't simply discard (or
710 * zero fill) the unwanted piece of the transfer. They have to have a
711 * real area of memory to transfer it into. The use case for this is
712 * ATAPI devices in DMA mode. If the packet command causes a transfer
713 * bigger than the transfer size some HBAs will lock up if there
714 * aren't DMA elements to contain the excess transfer. What this API
715 * does is adjust the queue so that the buf is always appended
716 * silently to the scatterlist.
718 * Note: This routine adjusts max_hw_segments to make room for appending
719 * the drain buffer. If you call blk_queue_max_segments() after calling
720 * this routine, you must set the limit to one fewer than your device
721 * can support otherwise there won't be room for the drain buffer.
723 int blk_queue_dma_drain(struct request_queue *q,
724 dma_drain_needed_fn *dma_drain_needed,
725 void *buf, unsigned int size)
727 if (queue_max_segments(q) < 2)
729 /* make room for appending the drain */
730 blk_queue_max_segments(q, queue_max_segments(q) - 1);
731 q->dma_drain_needed = dma_drain_needed;
732 q->dma_drain_buffer = buf;
733 q->dma_drain_size = size;
737 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
740 * blk_queue_segment_boundary - set boundary rules for segment merging
741 * @q: the request queue for the device
742 * @mask: the memory boundary mask
744 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
746 if (mask < PAGE_CACHE_SIZE - 1) {
747 mask = PAGE_CACHE_SIZE - 1;
748 printk(KERN_INFO "%s: set to minimum %lx\n",
752 q->limits.seg_boundary_mask = mask;
754 EXPORT_SYMBOL(blk_queue_segment_boundary);
757 * blk_queue_dma_alignment - set dma length and memory alignment
758 * @q: the request queue for the device
759 * @mask: alignment mask
762 * set required memory and length alignment for direct dma transactions.
763 * this is used when building direct io requests for the queue.
766 void blk_queue_dma_alignment(struct request_queue *q, int mask)
768 q->dma_alignment = mask;
770 EXPORT_SYMBOL(blk_queue_dma_alignment);
773 * blk_queue_update_dma_alignment - update dma length and memory alignment
774 * @q: the request queue for the device
775 * @mask: alignment mask
778 * update required memory and length alignment for direct dma transactions.
779 * If the requested alignment is larger than the current alignment, then
780 * the current queue alignment is updated to the new value, otherwise it
781 * is left alone. The design of this is to allow multiple objects
782 * (driver, device, transport etc) to set their respective
783 * alignments without having them interfere.
786 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
788 BUG_ON(mask > PAGE_SIZE);
790 if (mask > q->dma_alignment)
791 q->dma_alignment = mask;
793 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
796 * blk_queue_flush - configure queue's cache flush capability
797 * @q: the request queue for the device
798 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
800 * Tell block layer cache flush capability of @q. If it supports
801 * flushing, REQ_FLUSH should be set. If it supports bypassing
802 * write cache for individual writes, REQ_FUA should be set.
804 void blk_queue_flush(struct request_queue *q, unsigned int flush)
806 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
808 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
811 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
813 EXPORT_SYMBOL_GPL(blk_queue_flush);
815 static int __init blk_settings_init(void)
817 blk_max_low_pfn = max_low_pfn - 1;
818 blk_max_pfn = max_pfn - 1;
821 subsys_initcall(blk_settings_init);