2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn;
18 EXPORT_SYMBOL(blk_max_low_pfn);
20 unsigned long blk_max_pfn;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
37 EXPORT_SYMBOL(blk_queue_prep_rq);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
52 q->unprep_rq_fn = ufn;
54 EXPORT_SYMBOL(blk_queue_unprep_rq);
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
72 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
74 q->merge_bvec_fn = mbfn;
76 EXPORT_SYMBOL(blk_queue_merge_bvec);
78 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
80 q->softirq_done_fn = fn;
82 EXPORT_SYMBOL(blk_queue_softirq_done);
84 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
86 q->rq_timeout = timeout;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
90 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
92 q->rq_timed_out_fn = fn;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
96 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
107 * Returns a queue_limit struct to its default state.
109 void blk_set_default_limits(struct queue_limits *lim)
111 lim->max_segments = BLK_MAX_SEGMENTS;
112 lim->max_integrity_segments = 0;
113 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
114 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
115 lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
116 lim->chunk_sectors = 0;
117 lim->max_write_same_sectors = 0;
118 lim->max_discard_sectors = 0;
119 lim->discard_granularity = 0;
120 lim->discard_alignment = 0;
121 lim->discard_misaligned = 0;
122 lim->discard_zeroes_data = 0;
123 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
124 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
125 lim->alignment_offset = 0;
130 EXPORT_SYMBOL(blk_set_default_limits);
133 * blk_set_stacking_limits - set default limits for stacking devices
134 * @lim: the queue_limits structure to reset
137 * Returns a queue_limit struct to its default state. Should be used
138 * by stacking drivers like DM that have no internal limits.
140 void blk_set_stacking_limits(struct queue_limits *lim)
142 blk_set_default_limits(lim);
144 /* Inherit limits from component devices */
145 lim->discard_zeroes_data = 1;
146 lim->max_segments = USHRT_MAX;
147 lim->max_hw_sectors = UINT_MAX;
148 lim->max_segment_size = UINT_MAX;
149 lim->max_sectors = UINT_MAX;
150 lim->max_write_same_sectors = UINT_MAX;
152 EXPORT_SYMBOL(blk_set_stacking_limits);
155 * blk_queue_make_request - define an alternate make_request function for a device
156 * @q: the request queue for the device to be affected
157 * @mfn: the alternate make_request function
160 * The normal way for &struct bios to be passed to a device
161 * driver is for them to be collected into requests on a request
162 * queue, and then to allow the device driver to select requests
163 * off that queue when it is ready. This works well for many block
164 * devices. However some block devices (typically virtual devices
165 * such as md or lvm) do not benefit from the processing on the
166 * request queue, and are served best by having the requests passed
167 * directly to them. This can be achieved by providing a function
168 * to blk_queue_make_request().
171 * The driver that does this *must* be able to deal appropriately
172 * with buffers in "highmemory". This can be accomplished by either calling
173 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
174 * blk_queue_bounce() to create a buffer in normal memory.
176 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
181 q->nr_requests = BLKDEV_MAX_RQ;
183 q->make_request_fn = mfn;
184 blk_queue_dma_alignment(q, 511);
185 blk_queue_congestion_threshold(q);
186 q->nr_batching = BLK_BATCH_REQ;
188 blk_set_default_limits(&q->limits);
191 * by default assume old behaviour and bounce for any highmem page
193 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
195 EXPORT_SYMBOL(blk_queue_make_request);
198 * blk_queue_bounce_limit - set bounce buffer limit for queue
199 * @q: the request queue for the device
200 * @max_addr: the maximum address the device can handle
203 * Different hardware can have different requirements as to what pages
204 * it can do I/O directly to. A low level driver can call
205 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
206 * buffers for doing I/O to pages residing above @max_addr.
208 void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
210 unsigned long b_pfn = max_addr >> PAGE_SHIFT;
213 q->bounce_gfp = GFP_NOIO;
214 #if BITS_PER_LONG == 64
216 * Assume anything <= 4GB can be handled by IOMMU. Actually
217 * some IOMMUs can handle everything, but I don't know of a
218 * way to test this here.
220 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
222 q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
224 if (b_pfn < blk_max_low_pfn)
226 q->limits.bounce_pfn = b_pfn;
229 init_emergency_isa_pool();
230 q->bounce_gfp = GFP_NOIO | GFP_DMA;
231 q->limits.bounce_pfn = b_pfn;
234 EXPORT_SYMBOL(blk_queue_bounce_limit);
237 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
238 * @limits: the queue limits
239 * @max_hw_sectors: max hardware sectors in the usual 512b unit
242 * Enables a low level driver to set a hard upper limit,
243 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
244 * the device driver based upon the combined capabilities of I/O
245 * controller and storage device.
247 * max_sectors is a soft limit imposed by the block layer for
248 * filesystem type requests. This value can be overridden on a
249 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
250 * The soft limit can not exceed max_hw_sectors.
252 void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
254 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
255 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
256 printk(KERN_INFO "%s: set to minimum %d\n",
257 __func__, max_hw_sectors);
260 limits->max_sectors = limits->max_hw_sectors = max_hw_sectors;
262 EXPORT_SYMBOL(blk_limits_max_hw_sectors);
265 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
266 * @q: the request queue for the device
267 * @max_hw_sectors: max hardware sectors in the usual 512b unit
270 * See description for blk_limits_max_hw_sectors().
272 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
274 blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
276 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
279 * blk_queue_chunk_sectors - set size of the chunk for this queue
280 * @q: the request queue for the device
281 * @chunk_sectors: chunk sectors in the usual 512b unit
284 * If a driver doesn't want IOs to cross a given chunk size, it can set
285 * this limit and prevent merging across chunks. Note that the chunk size
286 * must currently be a power-of-2 in sectors. Also note that the block
287 * layer must accept a page worth of data at any offset. So if the
288 * crossing of chunks is a hard limitation in the driver, it must still be
289 * prepared to split single page bios.
291 void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
293 BUG_ON(!is_power_of_2(chunk_sectors));
294 q->limits.chunk_sectors = chunk_sectors;
296 EXPORT_SYMBOL(blk_queue_chunk_sectors);
299 * blk_queue_max_discard_sectors - set max sectors for a single discard
300 * @q: the request queue for the device
301 * @max_discard_sectors: maximum number of sectors to discard
303 void blk_queue_max_discard_sectors(struct request_queue *q,
304 unsigned int max_discard_sectors)
306 q->limits.max_discard_sectors = max_discard_sectors;
308 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
311 * blk_queue_max_write_same_sectors - set max sectors for a single write same
312 * @q: the request queue for the device
313 * @max_write_same_sectors: maximum number of sectors to write per command
315 void blk_queue_max_write_same_sectors(struct request_queue *q,
316 unsigned int max_write_same_sectors)
318 q->limits.max_write_same_sectors = max_write_same_sectors;
320 EXPORT_SYMBOL(blk_queue_max_write_same_sectors);
323 * blk_queue_max_segments - set max hw segments for a request for this queue
324 * @q: the request queue for the device
325 * @max_segments: max number of segments
328 * Enables a low level driver to set an upper limit on the number of
329 * hw data segments in a request.
331 void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
335 printk(KERN_INFO "%s: set to minimum %d\n",
336 __func__, max_segments);
339 q->limits.max_segments = max_segments;
341 EXPORT_SYMBOL(blk_queue_max_segments);
344 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
345 * @q: the request queue for the device
346 * @max_size: max size of segment in bytes
349 * Enables a low level driver to set an upper limit on the size of a
352 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
354 if (max_size < PAGE_CACHE_SIZE) {
355 max_size = PAGE_CACHE_SIZE;
356 printk(KERN_INFO "%s: set to minimum %d\n",
360 q->limits.max_segment_size = max_size;
362 EXPORT_SYMBOL(blk_queue_max_segment_size);
365 * blk_queue_logical_block_size - set logical block size for the queue
366 * @q: the request queue for the device
367 * @size: the logical block size, in bytes
370 * This should be set to the lowest possible block size that the
371 * storage device can address. The default of 512 covers most
374 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
376 q->limits.logical_block_size = size;
378 if (q->limits.physical_block_size < size)
379 q->limits.physical_block_size = size;
381 if (q->limits.io_min < q->limits.physical_block_size)
382 q->limits.io_min = q->limits.physical_block_size;
384 EXPORT_SYMBOL(blk_queue_logical_block_size);
387 * blk_queue_physical_block_size - set physical block size for the queue
388 * @q: the request queue for the device
389 * @size: the physical block size, in bytes
392 * This should be set to the lowest possible sector size that the
393 * hardware can operate on without reverting to read-modify-write
396 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
398 q->limits.physical_block_size = size;
400 if (q->limits.physical_block_size < q->limits.logical_block_size)
401 q->limits.physical_block_size = q->limits.logical_block_size;
403 if (q->limits.io_min < q->limits.physical_block_size)
404 q->limits.io_min = q->limits.physical_block_size;
406 EXPORT_SYMBOL(blk_queue_physical_block_size);
409 * blk_queue_alignment_offset - set physical block alignment offset
410 * @q: the request queue for the device
411 * @offset: alignment offset in bytes
414 * Some devices are naturally misaligned to compensate for things like
415 * the legacy DOS partition table 63-sector offset. Low-level drivers
416 * should call this function for devices whose first sector is not
419 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
421 q->limits.alignment_offset =
422 offset & (q->limits.physical_block_size - 1);
423 q->limits.misaligned = 0;
425 EXPORT_SYMBOL(blk_queue_alignment_offset);
428 * blk_limits_io_min - set minimum request size for a device
429 * @limits: the queue limits
430 * @min: smallest I/O size in bytes
433 * Some devices have an internal block size bigger than the reported
434 * hardware sector size. This function can be used to signal the
435 * smallest I/O the device can perform without incurring a performance
438 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
440 limits->io_min = min;
442 if (limits->io_min < limits->logical_block_size)
443 limits->io_min = limits->logical_block_size;
445 if (limits->io_min < limits->physical_block_size)
446 limits->io_min = limits->physical_block_size;
448 EXPORT_SYMBOL(blk_limits_io_min);
451 * blk_queue_io_min - set minimum request size for the queue
452 * @q: the request queue for the device
453 * @min: smallest I/O size in bytes
456 * Storage devices may report a granularity or preferred minimum I/O
457 * size which is the smallest request the device can perform without
458 * incurring a performance penalty. For disk drives this is often the
459 * physical block size. For RAID arrays it is often the stripe chunk
460 * size. A properly aligned multiple of minimum_io_size is the
461 * preferred request size for workloads where a high number of I/O
462 * operations is desired.
464 void blk_queue_io_min(struct request_queue *q, unsigned int min)
466 blk_limits_io_min(&q->limits, min);
468 EXPORT_SYMBOL(blk_queue_io_min);
471 * blk_limits_io_opt - set optimal request size for a device
472 * @limits: the queue limits
473 * @opt: smallest I/O size in bytes
476 * Storage devices may report an optimal I/O size, which is the
477 * device's preferred unit for sustained I/O. This is rarely reported
478 * for disk drives. For RAID arrays it is usually the stripe width or
479 * the internal track size. A properly aligned multiple of
480 * optimal_io_size is the preferred request size for workloads where
481 * sustained throughput is desired.
483 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
485 limits->io_opt = opt;
487 EXPORT_SYMBOL(blk_limits_io_opt);
490 * blk_queue_io_opt - set optimal request size for the queue
491 * @q: the request queue for the device
492 * @opt: optimal request size in bytes
495 * Storage devices may report an optimal I/O size, which is the
496 * device's preferred unit for sustained I/O. This is rarely reported
497 * for disk drives. For RAID arrays it is usually the stripe width or
498 * the internal track size. A properly aligned multiple of
499 * optimal_io_size is the preferred request size for workloads where
500 * sustained throughput is desired.
502 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
504 blk_limits_io_opt(&q->limits, opt);
506 EXPORT_SYMBOL(blk_queue_io_opt);
509 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
510 * @t: the stacking driver (top)
511 * @b: the underlying device (bottom)
513 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
515 blk_stack_limits(&t->limits, &b->limits, 0);
517 EXPORT_SYMBOL(blk_queue_stack_limits);
520 * blk_stack_limits - adjust queue_limits for stacked devices
521 * @t: the stacking driver limits (top device)
522 * @b: the underlying queue limits (bottom, component device)
523 * @start: first data sector within component device
526 * This function is used by stacking drivers like MD and DM to ensure
527 * that all component devices have compatible block sizes and
528 * alignments. The stacking driver must provide a queue_limits
529 * struct (top) and then iteratively call the stacking function for
530 * all component (bottom) devices. The stacking function will
531 * attempt to combine the values and ensure proper alignment.
533 * Returns 0 if the top and bottom queue_limits are compatible. The
534 * top device's block sizes and alignment offsets may be adjusted to
535 * ensure alignment with the bottom device. If no compatible sizes
536 * and alignments exist, -1 is returned and the resulting top
537 * queue_limits will have the misaligned flag set to indicate that
538 * the alignment_offset is undefined.
540 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
543 unsigned int top, bottom, alignment, ret = 0;
545 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
546 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
547 t->max_write_same_sectors = min(t->max_write_same_sectors,
548 b->max_write_same_sectors);
549 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
551 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
552 b->seg_boundary_mask);
554 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
555 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
556 b->max_integrity_segments);
558 t->max_segment_size = min_not_zero(t->max_segment_size,
559 b->max_segment_size);
561 t->misaligned |= b->misaligned;
563 alignment = queue_limit_alignment_offset(b, start);
565 /* Bottom device has different alignment. Check that it is
566 * compatible with the current top alignment.
568 if (t->alignment_offset != alignment) {
570 top = max(t->physical_block_size, t->io_min)
571 + t->alignment_offset;
572 bottom = max(b->physical_block_size, b->io_min) + alignment;
574 /* Verify that top and bottom intervals line up */
575 if (max(top, bottom) % min(top, bottom)) {
581 t->logical_block_size = max(t->logical_block_size,
582 b->logical_block_size);
584 t->physical_block_size = max(t->physical_block_size,
585 b->physical_block_size);
587 t->io_min = max(t->io_min, b->io_min);
588 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
590 t->cluster &= b->cluster;
591 t->discard_zeroes_data &= b->discard_zeroes_data;
593 /* Physical block size a multiple of the logical block size? */
594 if (t->physical_block_size & (t->logical_block_size - 1)) {
595 t->physical_block_size = t->logical_block_size;
600 /* Minimum I/O a multiple of the physical block size? */
601 if (t->io_min & (t->physical_block_size - 1)) {
602 t->io_min = t->physical_block_size;
607 /* Optimal I/O a multiple of the physical block size? */
608 if (t->io_opt & (t->physical_block_size - 1)) {
614 t->raid_partial_stripes_expensive =
615 max(t->raid_partial_stripes_expensive,
616 b->raid_partial_stripes_expensive);
618 /* Find lowest common alignment_offset */
619 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
620 % max(t->physical_block_size, t->io_min);
622 /* Verify that new alignment_offset is on a logical block boundary */
623 if (t->alignment_offset & (t->logical_block_size - 1)) {
628 /* Discard alignment and granularity */
629 if (b->discard_granularity) {
630 alignment = queue_limit_discard_alignment(b, start);
632 if (t->discard_granularity != 0 &&
633 t->discard_alignment != alignment) {
634 top = t->discard_granularity + t->discard_alignment;
635 bottom = b->discard_granularity + alignment;
637 /* Verify that top and bottom intervals line up */
638 if ((max(top, bottom) % min(top, bottom)) != 0)
639 t->discard_misaligned = 1;
642 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
643 b->max_discard_sectors);
644 t->discard_granularity = max(t->discard_granularity,
645 b->discard_granularity);
646 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
647 t->discard_granularity;
652 EXPORT_SYMBOL(blk_stack_limits);
655 * bdev_stack_limits - adjust queue limits for stacked drivers
656 * @t: the stacking driver limits (top device)
657 * @bdev: the component block_device (bottom)
658 * @start: first data sector within component device
661 * Merges queue limits for a top device and a block_device. Returns
662 * 0 if alignment didn't change. Returns -1 if adding the bottom
663 * device caused misalignment.
665 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
668 struct request_queue *bq = bdev_get_queue(bdev);
670 start += get_start_sect(bdev);
672 return blk_stack_limits(t, &bq->limits, start);
674 EXPORT_SYMBOL(bdev_stack_limits);
677 * disk_stack_limits - adjust queue limits for stacked drivers
678 * @disk: MD/DM gendisk (top)
679 * @bdev: the underlying block device (bottom)
680 * @offset: offset to beginning of data within component device
683 * Merges the limits for a top level gendisk and a bottom level
686 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
689 struct request_queue *t = disk->queue;
691 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
692 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
694 disk_name(disk, 0, top);
695 bdevname(bdev, bottom);
697 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
701 EXPORT_SYMBOL(disk_stack_limits);
704 * blk_queue_dma_pad - set pad mask
705 * @q: the request queue for the device
710 * Appending pad buffer to a request modifies the last entry of a
711 * scatter list such that it includes the pad buffer.
713 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
715 q->dma_pad_mask = mask;
717 EXPORT_SYMBOL(blk_queue_dma_pad);
720 * blk_queue_update_dma_pad - update pad mask
721 * @q: the request queue for the device
724 * Update dma pad mask.
726 * Appending pad buffer to a request modifies the last entry of a
727 * scatter list such that it includes the pad buffer.
729 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
731 if (mask > q->dma_pad_mask)
732 q->dma_pad_mask = mask;
734 EXPORT_SYMBOL(blk_queue_update_dma_pad);
737 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
738 * @q: the request queue for the device
739 * @dma_drain_needed: fn which returns non-zero if drain is necessary
740 * @buf: physically contiguous buffer
741 * @size: size of the buffer in bytes
743 * Some devices have excess DMA problems and can't simply discard (or
744 * zero fill) the unwanted piece of the transfer. They have to have a
745 * real area of memory to transfer it into. The use case for this is
746 * ATAPI devices in DMA mode. If the packet command causes a transfer
747 * bigger than the transfer size some HBAs will lock up if there
748 * aren't DMA elements to contain the excess transfer. What this API
749 * does is adjust the queue so that the buf is always appended
750 * silently to the scatterlist.
752 * Note: This routine adjusts max_hw_segments to make room for appending
753 * the drain buffer. If you call blk_queue_max_segments() after calling
754 * this routine, you must set the limit to one fewer than your device
755 * can support otherwise there won't be room for the drain buffer.
757 int blk_queue_dma_drain(struct request_queue *q,
758 dma_drain_needed_fn *dma_drain_needed,
759 void *buf, unsigned int size)
761 if (queue_max_segments(q) < 2)
763 /* make room for appending the drain */
764 blk_queue_max_segments(q, queue_max_segments(q) - 1);
765 q->dma_drain_needed = dma_drain_needed;
766 q->dma_drain_buffer = buf;
767 q->dma_drain_size = size;
771 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
774 * blk_queue_segment_boundary - set boundary rules for segment merging
775 * @q: the request queue for the device
776 * @mask: the memory boundary mask
778 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
780 if (mask < PAGE_CACHE_SIZE - 1) {
781 mask = PAGE_CACHE_SIZE - 1;
782 printk(KERN_INFO "%s: set to minimum %lx\n",
786 q->limits.seg_boundary_mask = mask;
788 EXPORT_SYMBOL(blk_queue_segment_boundary);
791 * blk_queue_dma_alignment - set dma length and memory alignment
792 * @q: the request queue for the device
793 * @mask: alignment mask
796 * set required memory and length alignment for direct dma transactions.
797 * this is used when building direct io requests for the queue.
800 void blk_queue_dma_alignment(struct request_queue *q, int mask)
802 q->dma_alignment = mask;
804 EXPORT_SYMBOL(blk_queue_dma_alignment);
807 * blk_queue_update_dma_alignment - update dma length and memory alignment
808 * @q: the request queue for the device
809 * @mask: alignment mask
812 * update required memory and length alignment for direct dma transactions.
813 * If the requested alignment is larger than the current alignment, then
814 * the current queue alignment is updated to the new value, otherwise it
815 * is left alone. The design of this is to allow multiple objects
816 * (driver, device, transport etc) to set their respective
817 * alignments without having them interfere.
820 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
822 BUG_ON(mask > PAGE_SIZE);
824 if (mask > q->dma_alignment)
825 q->dma_alignment = mask;
827 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
830 * blk_queue_flush - configure queue's cache flush capability
831 * @q: the request queue for the device
832 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
834 * Tell block layer cache flush capability of @q. If it supports
835 * flushing, REQ_FLUSH should be set. If it supports bypassing
836 * write cache for individual writes, REQ_FUA should be set.
838 void blk_queue_flush(struct request_queue *q, unsigned int flush)
840 WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
842 if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
845 q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
847 EXPORT_SYMBOL_GPL(blk_queue_flush);
849 void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
851 q->flush_not_queueable = !queueable;
853 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
855 static int __init blk_settings_init(void)
857 blk_max_low_pfn = max_low_pfn - 1;
858 blk_max_pfn = max_pfn - 1;
861 subsys_initcall(blk_settings_init);