]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-throttle.c
blk-throttle: add a mechanism to estimate IO latency
[karo-tx-linux.git] / block / blk-throttle.c
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over a slice and after that slice is renewed */
22 #define DFL_THROTL_SLICE_HD (HZ / 10)
23 #define DFL_THROTL_SLICE_SSD (HZ / 50)
24 #define MAX_THROTL_SLICE (HZ)
25 #define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
26 #define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
27 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 /* default latency target is 0, eg, guarantee IO latency by default */
29 #define DFL_LATENCY_TARGET (0)
30
31 #define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)
32
33 static struct blkcg_policy blkcg_policy_throtl;
34
35 /* A workqueue to queue throttle related work */
36 static struct workqueue_struct *kthrotld_workqueue;
37
38 /*
39  * To implement hierarchical throttling, throtl_grps form a tree and bios
40  * are dispatched upwards level by level until they reach the top and get
41  * issued.  When dispatching bios from the children and local group at each
42  * level, if the bios are dispatched into a single bio_list, there's a risk
43  * of a local or child group which can queue many bios at once filling up
44  * the list starving others.
45  *
46  * To avoid such starvation, dispatched bios are queued separately
47  * according to where they came from.  When they are again dispatched to
48  * the parent, they're popped in round-robin order so that no single source
49  * hogs the dispatch window.
50  *
51  * throtl_qnode is used to keep the queued bios separated by their sources.
52  * Bios are queued to throtl_qnode which in turn is queued to
53  * throtl_service_queue and then dispatched in round-robin order.
54  *
55  * It's also used to track the reference counts on blkg's.  A qnode always
56  * belongs to a throtl_grp and gets queued on itself or the parent, so
57  * incrementing the reference of the associated throtl_grp when a qnode is
58  * queued and decrementing when dequeued is enough to keep the whole blkg
59  * tree pinned while bios are in flight.
60  */
61 struct throtl_qnode {
62         struct list_head        node;           /* service_queue->queued[] */
63         struct bio_list         bios;           /* queued bios */
64         struct throtl_grp       *tg;            /* tg this qnode belongs to */
65 };
66
67 struct throtl_service_queue {
68         struct throtl_service_queue *parent_sq; /* the parent service_queue */
69
70         /*
71          * Bios queued directly to this service_queue or dispatched from
72          * children throtl_grp's.
73          */
74         struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
75         unsigned int            nr_queued[2];   /* number of queued bios */
76
77         /*
78          * RB tree of active children throtl_grp's, which are sorted by
79          * their ->disptime.
80          */
81         struct rb_root          pending_tree;   /* RB tree of active tgs */
82         struct rb_node          *first_pending; /* first node in the tree */
83         unsigned int            nr_pending;     /* # queued in the tree */
84         unsigned long           first_pending_disptime; /* disptime of the first tg */
85         struct timer_list       pending_timer;  /* fires on first_pending_disptime */
86 };
87
88 enum tg_state_flags {
89         THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
90         THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
91 };
92
93 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
94
95 enum {
96         LIMIT_LOW,
97         LIMIT_MAX,
98         LIMIT_CNT,
99 };
100
101 struct throtl_grp {
102         /* must be the first member */
103         struct blkg_policy_data pd;
104
105         /* active throtl group service_queue member */
106         struct rb_node rb_node;
107
108         /* throtl_data this group belongs to */
109         struct throtl_data *td;
110
111         /* this group's service queue */
112         struct throtl_service_queue service_queue;
113
114         /*
115          * qnode_on_self is used when bios are directly queued to this
116          * throtl_grp so that local bios compete fairly with bios
117          * dispatched from children.  qnode_on_parent is used when bios are
118          * dispatched from this throtl_grp into its parent and will compete
119          * with the sibling qnode_on_parents and the parent's
120          * qnode_on_self.
121          */
122         struct throtl_qnode qnode_on_self[2];
123         struct throtl_qnode qnode_on_parent[2];
124
125         /*
126          * Dispatch time in jiffies. This is the estimated time when group
127          * will unthrottle and is ready to dispatch more bio. It is used as
128          * key to sort active groups in service tree.
129          */
130         unsigned long disptime;
131
132         unsigned int flags;
133
134         /* are there any throtl rules between this group and td? */
135         bool has_rules[2];
136
137         /* internally used bytes per second rate limits */
138         uint64_t bps[2][LIMIT_CNT];
139         /* user configured bps limits */
140         uint64_t bps_conf[2][LIMIT_CNT];
141
142         /* internally used IOPS limits */
143         unsigned int iops[2][LIMIT_CNT];
144         /* user configured IOPS limits */
145         unsigned int iops_conf[2][LIMIT_CNT];
146
147         /* Number of bytes disptached in current slice */
148         uint64_t bytes_disp[2];
149         /* Number of bio's dispatched in current slice */
150         unsigned int io_disp[2];
151
152         unsigned long last_low_overflow_time[2];
153
154         uint64_t last_bytes_disp[2];
155         unsigned int last_io_disp[2];
156
157         unsigned long last_check_time;
158
159         unsigned long latency_target; /* us */
160         /* When did we start a new slice */
161         unsigned long slice_start[2];
162         unsigned long slice_end[2];
163
164         unsigned long last_finish_time; /* ns / 1024 */
165         unsigned long checked_last_finish_time; /* ns / 1024 */
166         unsigned long avg_idletime; /* ns / 1024 */
167         unsigned long idletime_threshold; /* us */
168 };
169
170 /* We measure latency for request size from <= 4k to >= 1M */
171 #define LATENCY_BUCKET_SIZE 9
172
173 struct latency_bucket {
174         unsigned long total_latency; /* ns / 1024 */
175         int samples;
176 };
177
178 struct avg_latency_bucket {
179         unsigned long latency; /* ns / 1024 */
180         bool valid;
181 };
182
183 struct throtl_data
184 {
185         /* service tree for active throtl groups */
186         struct throtl_service_queue service_queue;
187
188         struct request_queue *queue;
189
190         /* Total Number of queued bios on READ and WRITE lists */
191         unsigned int nr_queued[2];
192
193         unsigned int throtl_slice;
194
195         /* Work for dispatching throttled bios */
196         struct work_struct dispatch_work;
197         unsigned int limit_index;
198         bool limit_valid[LIMIT_CNT];
199
200         unsigned long dft_idletime_threshold; /* us */
201
202         unsigned long low_upgrade_time;
203         unsigned long low_downgrade_time;
204
205         unsigned int scale;
206
207         struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
208         struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
209         struct latency_bucket __percpu *latency_buckets;
210         unsigned long last_calculate_time;
211
212         bool track_bio_latency;
213 };
214
215 static void throtl_pending_timer_fn(unsigned long arg);
216
217 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
218 {
219         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
220 }
221
222 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
223 {
224         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
225 }
226
227 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
228 {
229         return pd_to_blkg(&tg->pd);
230 }
231
232 /**
233  * sq_to_tg - return the throl_grp the specified service queue belongs to
234  * @sq: the throtl_service_queue of interest
235  *
236  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
237  * embedded in throtl_data, %NULL is returned.
238  */
239 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
240 {
241         if (sq && sq->parent_sq)
242                 return container_of(sq, struct throtl_grp, service_queue);
243         else
244                 return NULL;
245 }
246
247 /**
248  * sq_to_td - return throtl_data the specified service queue belongs to
249  * @sq: the throtl_service_queue of interest
250  *
251  * A service_queue can be embedded in either a throtl_grp or throtl_data.
252  * Determine the associated throtl_data accordingly and return it.
253  */
254 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
255 {
256         struct throtl_grp *tg = sq_to_tg(sq);
257
258         if (tg)
259                 return tg->td;
260         else
261                 return container_of(sq, struct throtl_data, service_queue);
262 }
263
264 /*
265  * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
266  * make the IO dispatch more smooth.
267  * Scale up: linearly scale up according to lapsed time since upgrade. For
268  *           every throtl_slice, the limit scales up 1/2 .low limit till the
269  *           limit hits .max limit
270  * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
271  */
272 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
273 {
274         /* arbitrary value to avoid too big scale */
275         if (td->scale < 4096 && time_after_eq(jiffies,
276             td->low_upgrade_time + td->scale * td->throtl_slice))
277                 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
278
279         return low + (low >> 1) * td->scale;
280 }
281
282 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
283 {
284         struct blkcg_gq *blkg = tg_to_blkg(tg);
285         struct throtl_data *td;
286         uint64_t ret;
287
288         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
289                 return U64_MAX;
290
291         td = tg->td;
292         ret = tg->bps[rw][td->limit_index];
293         if (ret == 0 && td->limit_index == LIMIT_LOW)
294                 return tg->bps[rw][LIMIT_MAX];
295
296         if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
297             tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
298                 uint64_t adjusted;
299
300                 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
301                 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
302         }
303         return ret;
304 }
305
306 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
307 {
308         struct blkcg_gq *blkg = tg_to_blkg(tg);
309         struct throtl_data *td;
310         unsigned int ret;
311
312         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
313                 return UINT_MAX;
314         td = tg->td;
315         ret = tg->iops[rw][td->limit_index];
316         if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
317                 return tg->iops[rw][LIMIT_MAX];
318
319         if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
320             tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
321                 uint64_t adjusted;
322
323                 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
324                 if (adjusted > UINT_MAX)
325                         adjusted = UINT_MAX;
326                 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
327         }
328         return ret;
329 }
330
331 #define request_bucket_index(sectors) \
332         clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
333
334 /**
335  * throtl_log - log debug message via blktrace
336  * @sq: the service_queue being reported
337  * @fmt: printf format string
338  * @args: printf args
339  *
340  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
341  * throtl_grp; otherwise, just "throtl".
342  */
343 #define throtl_log(sq, fmt, args...)    do {                            \
344         struct throtl_grp *__tg = sq_to_tg((sq));                       \
345         struct throtl_data *__td = sq_to_td((sq));                      \
346                                                                         \
347         (void)__td;                                                     \
348         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
349                 break;                                                  \
350         if ((__tg)) {                                                   \
351                 char __pbuf[128];                                       \
352                                                                         \
353                 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));    \
354                 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
355         } else {                                                        \
356                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
357         }                                                               \
358 } while (0)
359
360 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
361 {
362         INIT_LIST_HEAD(&qn->node);
363         bio_list_init(&qn->bios);
364         qn->tg = tg;
365 }
366
367 /**
368  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
369  * @bio: bio being added
370  * @qn: qnode to add bio to
371  * @queued: the service_queue->queued[] list @qn belongs to
372  *
373  * Add @bio to @qn and put @qn on @queued if it's not already on.
374  * @qn->tg's reference count is bumped when @qn is activated.  See the
375  * comment on top of throtl_qnode definition for details.
376  */
377 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
378                                  struct list_head *queued)
379 {
380         bio_list_add(&qn->bios, bio);
381         if (list_empty(&qn->node)) {
382                 list_add_tail(&qn->node, queued);
383                 blkg_get(tg_to_blkg(qn->tg));
384         }
385 }
386
387 /**
388  * throtl_peek_queued - peek the first bio on a qnode list
389  * @queued: the qnode list to peek
390  */
391 static struct bio *throtl_peek_queued(struct list_head *queued)
392 {
393         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
394         struct bio *bio;
395
396         if (list_empty(queued))
397                 return NULL;
398
399         bio = bio_list_peek(&qn->bios);
400         WARN_ON_ONCE(!bio);
401         return bio;
402 }
403
404 /**
405  * throtl_pop_queued - pop the first bio form a qnode list
406  * @queued: the qnode list to pop a bio from
407  * @tg_to_put: optional out argument for throtl_grp to put
408  *
409  * Pop the first bio from the qnode list @queued.  After popping, the first
410  * qnode is removed from @queued if empty or moved to the end of @queued so
411  * that the popping order is round-robin.
412  *
413  * When the first qnode is removed, its associated throtl_grp should be put
414  * too.  If @tg_to_put is NULL, this function automatically puts it;
415  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
416  * responsible for putting it.
417  */
418 static struct bio *throtl_pop_queued(struct list_head *queued,
419                                      struct throtl_grp **tg_to_put)
420 {
421         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
422         struct bio *bio;
423
424         if (list_empty(queued))
425                 return NULL;
426
427         bio = bio_list_pop(&qn->bios);
428         WARN_ON_ONCE(!bio);
429
430         if (bio_list_empty(&qn->bios)) {
431                 list_del_init(&qn->node);
432                 if (tg_to_put)
433                         *tg_to_put = qn->tg;
434                 else
435                         blkg_put(tg_to_blkg(qn->tg));
436         } else {
437                 list_move_tail(&qn->node, queued);
438         }
439
440         return bio;
441 }
442
443 /* init a service_queue, assumes the caller zeroed it */
444 static void throtl_service_queue_init(struct throtl_service_queue *sq)
445 {
446         INIT_LIST_HEAD(&sq->queued[0]);
447         INIT_LIST_HEAD(&sq->queued[1]);
448         sq->pending_tree = RB_ROOT;
449         setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
450                     (unsigned long)sq);
451 }
452
453 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
454 {
455         struct throtl_grp *tg;
456         int rw;
457
458         tg = kzalloc_node(sizeof(*tg), gfp, node);
459         if (!tg)
460                 return NULL;
461
462         throtl_service_queue_init(&tg->service_queue);
463
464         for (rw = READ; rw <= WRITE; rw++) {
465                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
466                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
467         }
468
469         RB_CLEAR_NODE(&tg->rb_node);
470         tg->bps[READ][LIMIT_MAX] = U64_MAX;
471         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
472         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
473         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
474         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
475         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
476         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
477         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
478         /* LIMIT_LOW will have default value 0 */
479
480         tg->latency_target = DFL_LATENCY_TARGET;
481
482         return &tg->pd;
483 }
484
485 static void throtl_pd_init(struct blkg_policy_data *pd)
486 {
487         struct throtl_grp *tg = pd_to_tg(pd);
488         struct blkcg_gq *blkg = tg_to_blkg(tg);
489         struct throtl_data *td = blkg->q->td;
490         struct throtl_service_queue *sq = &tg->service_queue;
491
492         /*
493          * If on the default hierarchy, we switch to properly hierarchical
494          * behavior where limits on a given throtl_grp are applied to the
495          * whole subtree rather than just the group itself.  e.g. If 16M
496          * read_bps limit is set on the root group, the whole system can't
497          * exceed 16M for the device.
498          *
499          * If not on the default hierarchy, the broken flat hierarchy
500          * behavior is retained where all throtl_grps are treated as if
501          * they're all separate root groups right below throtl_data.
502          * Limits of a group don't interact with limits of other groups
503          * regardless of the position of the group in the hierarchy.
504          */
505         sq->parent_sq = &td->service_queue;
506         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
507                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
508         tg->td = td;
509
510         tg->idletime_threshold = td->dft_idletime_threshold;
511 }
512
513 /*
514  * Set has_rules[] if @tg or any of its parents have limits configured.
515  * This doesn't require walking up to the top of the hierarchy as the
516  * parent's has_rules[] is guaranteed to be correct.
517  */
518 static void tg_update_has_rules(struct throtl_grp *tg)
519 {
520         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
521         struct throtl_data *td = tg->td;
522         int rw;
523
524         for (rw = READ; rw <= WRITE; rw++)
525                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
526                         (td->limit_valid[td->limit_index] &&
527                          (tg_bps_limit(tg, rw) != U64_MAX ||
528                           tg_iops_limit(tg, rw) != UINT_MAX));
529 }
530
531 static void throtl_pd_online(struct blkg_policy_data *pd)
532 {
533         struct throtl_grp *tg = pd_to_tg(pd);
534         /*
535          * We don't want new groups to escape the limits of its ancestors.
536          * Update has_rules[] after a new group is brought online.
537          */
538         tg_update_has_rules(tg);
539 }
540
541 static void blk_throtl_update_limit_valid(struct throtl_data *td)
542 {
543         struct cgroup_subsys_state *pos_css;
544         struct blkcg_gq *blkg;
545         bool low_valid = false;
546
547         rcu_read_lock();
548         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
549                 struct throtl_grp *tg = blkg_to_tg(blkg);
550
551                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
552                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
553                         low_valid = true;
554         }
555         rcu_read_unlock();
556
557         td->limit_valid[LIMIT_LOW] = low_valid;
558 }
559
560 static void throtl_upgrade_state(struct throtl_data *td);
561 static void throtl_pd_offline(struct blkg_policy_data *pd)
562 {
563         struct throtl_grp *tg = pd_to_tg(pd);
564
565         tg->bps[READ][LIMIT_LOW] = 0;
566         tg->bps[WRITE][LIMIT_LOW] = 0;
567         tg->iops[READ][LIMIT_LOW] = 0;
568         tg->iops[WRITE][LIMIT_LOW] = 0;
569
570         blk_throtl_update_limit_valid(tg->td);
571
572         if (!tg->td->limit_valid[tg->td->limit_index])
573                 throtl_upgrade_state(tg->td);
574 }
575
576 static void throtl_pd_free(struct blkg_policy_data *pd)
577 {
578         struct throtl_grp *tg = pd_to_tg(pd);
579
580         del_timer_sync(&tg->service_queue.pending_timer);
581         kfree(tg);
582 }
583
584 static struct throtl_grp *
585 throtl_rb_first(struct throtl_service_queue *parent_sq)
586 {
587         /* Service tree is empty */
588         if (!parent_sq->nr_pending)
589                 return NULL;
590
591         if (!parent_sq->first_pending)
592                 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
593
594         if (parent_sq->first_pending)
595                 return rb_entry_tg(parent_sq->first_pending);
596
597         return NULL;
598 }
599
600 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
601 {
602         rb_erase(n, root);
603         RB_CLEAR_NODE(n);
604 }
605
606 static void throtl_rb_erase(struct rb_node *n,
607                             struct throtl_service_queue *parent_sq)
608 {
609         if (parent_sq->first_pending == n)
610                 parent_sq->first_pending = NULL;
611         rb_erase_init(n, &parent_sq->pending_tree);
612         --parent_sq->nr_pending;
613 }
614
615 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
616 {
617         struct throtl_grp *tg;
618
619         tg = throtl_rb_first(parent_sq);
620         if (!tg)
621                 return;
622
623         parent_sq->first_pending_disptime = tg->disptime;
624 }
625
626 static void tg_service_queue_add(struct throtl_grp *tg)
627 {
628         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
629         struct rb_node **node = &parent_sq->pending_tree.rb_node;
630         struct rb_node *parent = NULL;
631         struct throtl_grp *__tg;
632         unsigned long key = tg->disptime;
633         int left = 1;
634
635         while (*node != NULL) {
636                 parent = *node;
637                 __tg = rb_entry_tg(parent);
638
639                 if (time_before(key, __tg->disptime))
640                         node = &parent->rb_left;
641                 else {
642                         node = &parent->rb_right;
643                         left = 0;
644                 }
645         }
646
647         if (left)
648                 parent_sq->first_pending = &tg->rb_node;
649
650         rb_link_node(&tg->rb_node, parent, node);
651         rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
652 }
653
654 static void __throtl_enqueue_tg(struct throtl_grp *tg)
655 {
656         tg_service_queue_add(tg);
657         tg->flags |= THROTL_TG_PENDING;
658         tg->service_queue.parent_sq->nr_pending++;
659 }
660
661 static void throtl_enqueue_tg(struct throtl_grp *tg)
662 {
663         if (!(tg->flags & THROTL_TG_PENDING))
664                 __throtl_enqueue_tg(tg);
665 }
666
667 static void __throtl_dequeue_tg(struct throtl_grp *tg)
668 {
669         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
670         tg->flags &= ~THROTL_TG_PENDING;
671 }
672
673 static void throtl_dequeue_tg(struct throtl_grp *tg)
674 {
675         if (tg->flags & THROTL_TG_PENDING)
676                 __throtl_dequeue_tg(tg);
677 }
678
679 /* Call with queue lock held */
680 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
681                                           unsigned long expires)
682 {
683         unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
684
685         /*
686          * Since we are adjusting the throttle limit dynamically, the sleep
687          * time calculated according to previous limit might be invalid. It's
688          * possible the cgroup sleep time is very long and no other cgroups
689          * have IO running so notify the limit changes. Make sure the cgroup
690          * doesn't sleep too long to avoid the missed notification.
691          */
692         if (time_after(expires, max_expire))
693                 expires = max_expire;
694         mod_timer(&sq->pending_timer, expires);
695         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
696                    expires - jiffies, jiffies);
697 }
698
699 /**
700  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
701  * @sq: the service_queue to schedule dispatch for
702  * @force: force scheduling
703  *
704  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
705  * dispatch time of the first pending child.  Returns %true if either timer
706  * is armed or there's no pending child left.  %false if the current
707  * dispatch window is still open and the caller should continue
708  * dispatching.
709  *
710  * If @force is %true, the dispatch timer is always scheduled and this
711  * function is guaranteed to return %true.  This is to be used when the
712  * caller can't dispatch itself and needs to invoke pending_timer
713  * unconditionally.  Note that forced scheduling is likely to induce short
714  * delay before dispatch starts even if @sq->first_pending_disptime is not
715  * in the future and thus shouldn't be used in hot paths.
716  */
717 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
718                                           bool force)
719 {
720         /* any pending children left? */
721         if (!sq->nr_pending)
722                 return true;
723
724         update_min_dispatch_time(sq);
725
726         /* is the next dispatch time in the future? */
727         if (force || time_after(sq->first_pending_disptime, jiffies)) {
728                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
729                 return true;
730         }
731
732         /* tell the caller to continue dispatching */
733         return false;
734 }
735
736 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
737                 bool rw, unsigned long start)
738 {
739         tg->bytes_disp[rw] = 0;
740         tg->io_disp[rw] = 0;
741
742         /*
743          * Previous slice has expired. We must have trimmed it after last
744          * bio dispatch. That means since start of last slice, we never used
745          * that bandwidth. Do try to make use of that bandwidth while giving
746          * credit.
747          */
748         if (time_after_eq(start, tg->slice_start[rw]))
749                 tg->slice_start[rw] = start;
750
751         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
752         throtl_log(&tg->service_queue,
753                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
754                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
755                    tg->slice_end[rw], jiffies);
756 }
757
758 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
759 {
760         tg->bytes_disp[rw] = 0;
761         tg->io_disp[rw] = 0;
762         tg->slice_start[rw] = jiffies;
763         tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
764         throtl_log(&tg->service_queue,
765                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
766                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
767                    tg->slice_end[rw], jiffies);
768 }
769
770 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
771                                         unsigned long jiffy_end)
772 {
773         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
774 }
775
776 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
777                                        unsigned long jiffy_end)
778 {
779         tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
780         throtl_log(&tg->service_queue,
781                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
782                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
783                    tg->slice_end[rw], jiffies);
784 }
785
786 /* Determine if previously allocated or extended slice is complete or not */
787 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
788 {
789         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
790                 return false;
791
792         return 1;
793 }
794
795 /* Trim the used slices and adjust slice start accordingly */
796 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
797 {
798         unsigned long nr_slices, time_elapsed, io_trim;
799         u64 bytes_trim, tmp;
800
801         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
802
803         /*
804          * If bps are unlimited (-1), then time slice don't get
805          * renewed. Don't try to trim the slice if slice is used. A new
806          * slice will start when appropriate.
807          */
808         if (throtl_slice_used(tg, rw))
809                 return;
810
811         /*
812          * A bio has been dispatched. Also adjust slice_end. It might happen
813          * that initially cgroup limit was very low resulting in high
814          * slice_end, but later limit was bumped up and bio was dispached
815          * sooner, then we need to reduce slice_end. A high bogus slice_end
816          * is bad because it does not allow new slice to start.
817          */
818
819         throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
820
821         time_elapsed = jiffies - tg->slice_start[rw];
822
823         nr_slices = time_elapsed / tg->td->throtl_slice;
824
825         if (!nr_slices)
826                 return;
827         tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
828         do_div(tmp, HZ);
829         bytes_trim = tmp;
830
831         io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
832                 HZ;
833
834         if (!bytes_trim && !io_trim)
835                 return;
836
837         if (tg->bytes_disp[rw] >= bytes_trim)
838                 tg->bytes_disp[rw] -= bytes_trim;
839         else
840                 tg->bytes_disp[rw] = 0;
841
842         if (tg->io_disp[rw] >= io_trim)
843                 tg->io_disp[rw] -= io_trim;
844         else
845                 tg->io_disp[rw] = 0;
846
847         tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
848
849         throtl_log(&tg->service_queue,
850                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
851                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
852                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
853 }
854
855 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
856                                   unsigned long *wait)
857 {
858         bool rw = bio_data_dir(bio);
859         unsigned int io_allowed;
860         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
861         u64 tmp;
862
863         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
864
865         /* Slice has just started. Consider one slice interval */
866         if (!jiffy_elapsed)
867                 jiffy_elapsed_rnd = tg->td->throtl_slice;
868
869         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
870
871         /*
872          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
873          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
874          * will allow dispatch after 1 second and after that slice should
875          * have been trimmed.
876          */
877
878         tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
879         do_div(tmp, HZ);
880
881         if (tmp > UINT_MAX)
882                 io_allowed = UINT_MAX;
883         else
884                 io_allowed = tmp;
885
886         if (tg->io_disp[rw] + 1 <= io_allowed) {
887                 if (wait)
888                         *wait = 0;
889                 return true;
890         }
891
892         /* Calc approx time to dispatch */
893         jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
894
895         if (jiffy_wait > jiffy_elapsed)
896                 jiffy_wait = jiffy_wait - jiffy_elapsed;
897         else
898                 jiffy_wait = 1;
899
900         if (wait)
901                 *wait = jiffy_wait;
902         return 0;
903 }
904
905 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
906                                  unsigned long *wait)
907 {
908         bool rw = bio_data_dir(bio);
909         u64 bytes_allowed, extra_bytes, tmp;
910         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
911
912         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
913
914         /* Slice has just started. Consider one slice interval */
915         if (!jiffy_elapsed)
916                 jiffy_elapsed_rnd = tg->td->throtl_slice;
917
918         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
919
920         tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
921         do_div(tmp, HZ);
922         bytes_allowed = tmp;
923
924         if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
925                 if (wait)
926                         *wait = 0;
927                 return true;
928         }
929
930         /* Calc approx time to dispatch */
931         extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
932         jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
933
934         if (!jiffy_wait)
935                 jiffy_wait = 1;
936
937         /*
938          * This wait time is without taking into consideration the rounding
939          * up we did. Add that time also.
940          */
941         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
942         if (wait)
943                 *wait = jiffy_wait;
944         return 0;
945 }
946
947 /*
948  * Returns whether one can dispatch a bio or not. Also returns approx number
949  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
950  */
951 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
952                             unsigned long *wait)
953 {
954         bool rw = bio_data_dir(bio);
955         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
956
957         /*
958          * Currently whole state machine of group depends on first bio
959          * queued in the group bio list. So one should not be calling
960          * this function with a different bio if there are other bios
961          * queued.
962          */
963         BUG_ON(tg->service_queue.nr_queued[rw] &&
964                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
965
966         /* If tg->bps = -1, then BW is unlimited */
967         if (tg_bps_limit(tg, rw) == U64_MAX &&
968             tg_iops_limit(tg, rw) == UINT_MAX) {
969                 if (wait)
970                         *wait = 0;
971                 return true;
972         }
973
974         /*
975          * If previous slice expired, start a new one otherwise renew/extend
976          * existing slice to make sure it is at least throtl_slice interval
977          * long since now. New slice is started only for empty throttle group.
978          * If there is queued bio, that means there should be an active
979          * slice and it should be extended instead.
980          */
981         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
982                 throtl_start_new_slice(tg, rw);
983         else {
984                 if (time_before(tg->slice_end[rw],
985                     jiffies + tg->td->throtl_slice))
986                         throtl_extend_slice(tg, rw,
987                                 jiffies + tg->td->throtl_slice);
988         }
989
990         if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
991             tg_with_in_iops_limit(tg, bio, &iops_wait)) {
992                 if (wait)
993                         *wait = 0;
994                 return 1;
995         }
996
997         max_wait = max(bps_wait, iops_wait);
998
999         if (wait)
1000                 *wait = max_wait;
1001
1002         if (time_before(tg->slice_end[rw], jiffies + max_wait))
1003                 throtl_extend_slice(tg, rw, jiffies + max_wait);
1004
1005         return 0;
1006 }
1007
1008 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1009 {
1010         bool rw = bio_data_dir(bio);
1011
1012         /* Charge the bio to the group */
1013         tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1014         tg->io_disp[rw]++;
1015         tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
1016         tg->last_io_disp[rw]++;
1017
1018         /*
1019          * BIO_THROTTLED is used to prevent the same bio to be throttled
1020          * more than once as a throttled bio will go through blk-throtl the
1021          * second time when it eventually gets issued.  Set it when a bio
1022          * is being charged to a tg.
1023          */
1024         if (!bio_flagged(bio, BIO_THROTTLED))
1025                 bio_set_flag(bio, BIO_THROTTLED);
1026 }
1027
1028 /**
1029  * throtl_add_bio_tg - add a bio to the specified throtl_grp
1030  * @bio: bio to add
1031  * @qn: qnode to use
1032  * @tg: the target throtl_grp
1033  *
1034  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1035  * tg->qnode_on_self[] is used.
1036  */
1037 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1038                               struct throtl_grp *tg)
1039 {
1040         struct throtl_service_queue *sq = &tg->service_queue;
1041         bool rw = bio_data_dir(bio);
1042
1043         if (!qn)
1044                 qn = &tg->qnode_on_self[rw];
1045
1046         /*
1047          * If @tg doesn't currently have any bios queued in the same
1048          * direction, queueing @bio can change when @tg should be
1049          * dispatched.  Mark that @tg was empty.  This is automatically
1050          * cleaered on the next tg_update_disptime().
1051          */
1052         if (!sq->nr_queued[rw])
1053                 tg->flags |= THROTL_TG_WAS_EMPTY;
1054
1055         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1056
1057         sq->nr_queued[rw]++;
1058         throtl_enqueue_tg(tg);
1059 }
1060
1061 static void tg_update_disptime(struct throtl_grp *tg)
1062 {
1063         struct throtl_service_queue *sq = &tg->service_queue;
1064         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1065         struct bio *bio;
1066
1067         bio = throtl_peek_queued(&sq->queued[READ]);
1068         if (bio)
1069                 tg_may_dispatch(tg, bio, &read_wait);
1070
1071         bio = throtl_peek_queued(&sq->queued[WRITE]);
1072         if (bio)
1073                 tg_may_dispatch(tg, bio, &write_wait);
1074
1075         min_wait = min(read_wait, write_wait);
1076         disptime = jiffies + min_wait;
1077
1078         /* Update dispatch time */
1079         throtl_dequeue_tg(tg);
1080         tg->disptime = disptime;
1081         throtl_enqueue_tg(tg);
1082
1083         /* see throtl_add_bio_tg() */
1084         tg->flags &= ~THROTL_TG_WAS_EMPTY;
1085 }
1086
1087 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1088                                         struct throtl_grp *parent_tg, bool rw)
1089 {
1090         if (throtl_slice_used(parent_tg, rw)) {
1091                 throtl_start_new_slice_with_credit(parent_tg, rw,
1092                                 child_tg->slice_start[rw]);
1093         }
1094
1095 }
1096
1097 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1098 {
1099         struct throtl_service_queue *sq = &tg->service_queue;
1100         struct throtl_service_queue *parent_sq = sq->parent_sq;
1101         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1102         struct throtl_grp *tg_to_put = NULL;
1103         struct bio *bio;
1104
1105         /*
1106          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1107          * from @tg may put its reference and @parent_sq might end up
1108          * getting released prematurely.  Remember the tg to put and put it
1109          * after @bio is transferred to @parent_sq.
1110          */
1111         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1112         sq->nr_queued[rw]--;
1113
1114         throtl_charge_bio(tg, bio);
1115
1116         /*
1117          * If our parent is another tg, we just need to transfer @bio to
1118          * the parent using throtl_add_bio_tg().  If our parent is
1119          * @td->service_queue, @bio is ready to be issued.  Put it on its
1120          * bio_lists[] and decrease total number queued.  The caller is
1121          * responsible for issuing these bios.
1122          */
1123         if (parent_tg) {
1124                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1125                 start_parent_slice_with_credit(tg, parent_tg, rw);
1126         } else {
1127                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1128                                      &parent_sq->queued[rw]);
1129                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1130                 tg->td->nr_queued[rw]--;
1131         }
1132
1133         throtl_trim_slice(tg, rw);
1134
1135         if (tg_to_put)
1136                 blkg_put(tg_to_blkg(tg_to_put));
1137 }
1138
1139 static int throtl_dispatch_tg(struct throtl_grp *tg)
1140 {
1141         struct throtl_service_queue *sq = &tg->service_queue;
1142         unsigned int nr_reads = 0, nr_writes = 0;
1143         unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1144         unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1145         struct bio *bio;
1146
1147         /* Try to dispatch 75% READS and 25% WRITES */
1148
1149         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1150                tg_may_dispatch(tg, bio, NULL)) {
1151
1152                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1153                 nr_reads++;
1154
1155                 if (nr_reads >= max_nr_reads)
1156                         break;
1157         }
1158
1159         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1160                tg_may_dispatch(tg, bio, NULL)) {
1161
1162                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1163                 nr_writes++;
1164
1165                 if (nr_writes >= max_nr_writes)
1166                         break;
1167         }
1168
1169         return nr_reads + nr_writes;
1170 }
1171
1172 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1173 {
1174         unsigned int nr_disp = 0;
1175
1176         while (1) {
1177                 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1178                 struct throtl_service_queue *sq = &tg->service_queue;
1179
1180                 if (!tg)
1181                         break;
1182
1183                 if (time_before(jiffies, tg->disptime))
1184                         break;
1185
1186                 throtl_dequeue_tg(tg);
1187
1188                 nr_disp += throtl_dispatch_tg(tg);
1189
1190                 if (sq->nr_queued[0] || sq->nr_queued[1])
1191                         tg_update_disptime(tg);
1192
1193                 if (nr_disp >= throtl_quantum)
1194                         break;
1195         }
1196
1197         return nr_disp;
1198 }
1199
1200 static bool throtl_can_upgrade(struct throtl_data *td,
1201         struct throtl_grp *this_tg);
1202 /**
1203  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1204  * @arg: the throtl_service_queue being serviced
1205  *
1206  * This timer is armed when a child throtl_grp with active bio's become
1207  * pending and queued on the service_queue's pending_tree and expires when
1208  * the first child throtl_grp should be dispatched.  This function
1209  * dispatches bio's from the children throtl_grps to the parent
1210  * service_queue.
1211  *
1212  * If the parent's parent is another throtl_grp, dispatching is propagated
1213  * by either arming its pending_timer or repeating dispatch directly.  If
1214  * the top-level service_tree is reached, throtl_data->dispatch_work is
1215  * kicked so that the ready bio's are issued.
1216  */
1217 static void throtl_pending_timer_fn(unsigned long arg)
1218 {
1219         struct throtl_service_queue *sq = (void *)arg;
1220         struct throtl_grp *tg = sq_to_tg(sq);
1221         struct throtl_data *td = sq_to_td(sq);
1222         struct request_queue *q = td->queue;
1223         struct throtl_service_queue *parent_sq;
1224         bool dispatched;
1225         int ret;
1226
1227         spin_lock_irq(q->queue_lock);
1228         if (throtl_can_upgrade(td, NULL))
1229                 throtl_upgrade_state(td);
1230
1231 again:
1232         parent_sq = sq->parent_sq;
1233         dispatched = false;
1234
1235         while (true) {
1236                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1237                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1238                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1239
1240                 ret = throtl_select_dispatch(sq);
1241                 if (ret) {
1242                         throtl_log(sq, "bios disp=%u", ret);
1243                         dispatched = true;
1244                 }
1245
1246                 if (throtl_schedule_next_dispatch(sq, false))
1247                         break;
1248
1249                 /* this dispatch windows is still open, relax and repeat */
1250                 spin_unlock_irq(q->queue_lock);
1251                 cpu_relax();
1252                 spin_lock_irq(q->queue_lock);
1253         }
1254
1255         if (!dispatched)
1256                 goto out_unlock;
1257
1258         if (parent_sq) {
1259                 /* @parent_sq is another throl_grp, propagate dispatch */
1260                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1261                         tg_update_disptime(tg);
1262                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1263                                 /* window is already open, repeat dispatching */
1264                                 sq = parent_sq;
1265                                 tg = sq_to_tg(sq);
1266                                 goto again;
1267                         }
1268                 }
1269         } else {
1270                 /* reached the top-level, queue issueing */
1271                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1272         }
1273 out_unlock:
1274         spin_unlock_irq(q->queue_lock);
1275 }
1276
1277 /**
1278  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1279  * @work: work item being executed
1280  *
1281  * This function is queued for execution when bio's reach the bio_lists[]
1282  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1283  * function.
1284  */
1285 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1286 {
1287         struct throtl_data *td = container_of(work, struct throtl_data,
1288                                               dispatch_work);
1289         struct throtl_service_queue *td_sq = &td->service_queue;
1290         struct request_queue *q = td->queue;
1291         struct bio_list bio_list_on_stack;
1292         struct bio *bio;
1293         struct blk_plug plug;
1294         int rw;
1295
1296         bio_list_init(&bio_list_on_stack);
1297
1298         spin_lock_irq(q->queue_lock);
1299         for (rw = READ; rw <= WRITE; rw++)
1300                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1301                         bio_list_add(&bio_list_on_stack, bio);
1302         spin_unlock_irq(q->queue_lock);
1303
1304         if (!bio_list_empty(&bio_list_on_stack)) {
1305                 blk_start_plug(&plug);
1306                 while((bio = bio_list_pop(&bio_list_on_stack)))
1307                         generic_make_request(bio);
1308                 blk_finish_plug(&plug);
1309         }
1310 }
1311
1312 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1313                               int off)
1314 {
1315         struct throtl_grp *tg = pd_to_tg(pd);
1316         u64 v = *(u64 *)((void *)tg + off);
1317
1318         if (v == U64_MAX)
1319                 return 0;
1320         return __blkg_prfill_u64(sf, pd, v);
1321 }
1322
1323 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1324                                int off)
1325 {
1326         struct throtl_grp *tg = pd_to_tg(pd);
1327         unsigned int v = *(unsigned int *)((void *)tg + off);
1328
1329         if (v == UINT_MAX)
1330                 return 0;
1331         return __blkg_prfill_u64(sf, pd, v);
1332 }
1333
1334 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1335 {
1336         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1337                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1338         return 0;
1339 }
1340
1341 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1342 {
1343         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1344                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1345         return 0;
1346 }
1347
1348 static void tg_conf_updated(struct throtl_grp *tg)
1349 {
1350         struct throtl_service_queue *sq = &tg->service_queue;
1351         struct cgroup_subsys_state *pos_css;
1352         struct blkcg_gq *blkg;
1353
1354         throtl_log(&tg->service_queue,
1355                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1356                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1357                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1358
1359         /*
1360          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1361          * considered to have rules if either the tg itself or any of its
1362          * ancestors has rules.  This identifies groups without any
1363          * restrictions in the whole hierarchy and allows them to bypass
1364          * blk-throttle.
1365          */
1366         blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1367                 tg_update_has_rules(blkg_to_tg(blkg));
1368
1369         /*
1370          * We're already holding queue_lock and know @tg is valid.  Let's
1371          * apply the new config directly.
1372          *
1373          * Restart the slices for both READ and WRITES. It might happen
1374          * that a group's limit are dropped suddenly and we don't want to
1375          * account recently dispatched IO with new low rate.
1376          */
1377         throtl_start_new_slice(tg, 0);
1378         throtl_start_new_slice(tg, 1);
1379
1380         if (tg->flags & THROTL_TG_PENDING) {
1381                 tg_update_disptime(tg);
1382                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1383         }
1384 }
1385
1386 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1387                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1388 {
1389         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1390         struct blkg_conf_ctx ctx;
1391         struct throtl_grp *tg;
1392         int ret;
1393         u64 v;
1394
1395         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1396         if (ret)
1397                 return ret;
1398
1399         ret = -EINVAL;
1400         if (sscanf(ctx.body, "%llu", &v) != 1)
1401                 goto out_finish;
1402         if (!v)
1403                 v = U64_MAX;
1404
1405         tg = blkg_to_tg(ctx.blkg);
1406
1407         if (is_u64)
1408                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1409         else
1410                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1411
1412         tg_conf_updated(tg);
1413         ret = 0;
1414 out_finish:
1415         blkg_conf_finish(&ctx);
1416         return ret ?: nbytes;
1417 }
1418
1419 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1420                                char *buf, size_t nbytes, loff_t off)
1421 {
1422         return tg_set_conf(of, buf, nbytes, off, true);
1423 }
1424
1425 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1426                                 char *buf, size_t nbytes, loff_t off)
1427 {
1428         return tg_set_conf(of, buf, nbytes, off, false);
1429 }
1430
1431 static struct cftype throtl_legacy_files[] = {
1432         {
1433                 .name = "throttle.read_bps_device",
1434                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1435                 .seq_show = tg_print_conf_u64,
1436                 .write = tg_set_conf_u64,
1437         },
1438         {
1439                 .name = "throttle.write_bps_device",
1440                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1441                 .seq_show = tg_print_conf_u64,
1442                 .write = tg_set_conf_u64,
1443         },
1444         {
1445                 .name = "throttle.read_iops_device",
1446                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1447                 .seq_show = tg_print_conf_uint,
1448                 .write = tg_set_conf_uint,
1449         },
1450         {
1451                 .name = "throttle.write_iops_device",
1452                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1453                 .seq_show = tg_print_conf_uint,
1454                 .write = tg_set_conf_uint,
1455         },
1456         {
1457                 .name = "throttle.io_service_bytes",
1458                 .private = (unsigned long)&blkcg_policy_throtl,
1459                 .seq_show = blkg_print_stat_bytes,
1460         },
1461         {
1462                 .name = "throttle.io_serviced",
1463                 .private = (unsigned long)&blkcg_policy_throtl,
1464                 .seq_show = blkg_print_stat_ios,
1465         },
1466         { }     /* terminate */
1467 };
1468
1469 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1470                          int off)
1471 {
1472         struct throtl_grp *tg = pd_to_tg(pd);
1473         const char *dname = blkg_dev_name(pd->blkg);
1474         char bufs[4][21] = { "max", "max", "max", "max" };
1475         u64 bps_dft;
1476         unsigned int iops_dft;
1477         char idle_time[26] = "";
1478         char latency_time[26] = "";
1479
1480         if (!dname)
1481                 return 0;
1482
1483         if (off == LIMIT_LOW) {
1484                 bps_dft = 0;
1485                 iops_dft = 0;
1486         } else {
1487                 bps_dft = U64_MAX;
1488                 iops_dft = UINT_MAX;
1489         }
1490
1491         if (tg->bps_conf[READ][off] == bps_dft &&
1492             tg->bps_conf[WRITE][off] == bps_dft &&
1493             tg->iops_conf[READ][off] == iops_dft &&
1494             tg->iops_conf[WRITE][off] == iops_dft &&
1495             (off != LIMIT_LOW ||
1496              (tg->idletime_threshold == tg->td->dft_idletime_threshold &&
1497               tg->latency_target == DFL_LATENCY_TARGET)))
1498                 return 0;
1499
1500         if (tg->bps_conf[READ][off] != bps_dft)
1501                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1502                         tg->bps_conf[READ][off]);
1503         if (tg->bps_conf[WRITE][off] != bps_dft)
1504                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1505                         tg->bps_conf[WRITE][off]);
1506         if (tg->iops_conf[READ][off] != iops_dft)
1507                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1508                         tg->iops_conf[READ][off]);
1509         if (tg->iops_conf[WRITE][off] != iops_dft)
1510                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1511                         tg->iops_conf[WRITE][off]);
1512         if (off == LIMIT_LOW) {
1513                 if (tg->idletime_threshold == ULONG_MAX)
1514                         strcpy(idle_time, " idle=max");
1515                 else
1516                         snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1517                                 tg->idletime_threshold);
1518
1519                 if (tg->latency_target == ULONG_MAX)
1520                         strcpy(latency_time, " latency=max");
1521                 else
1522                         snprintf(latency_time, sizeof(latency_time),
1523                                 " latency=%lu", tg->latency_target);
1524         }
1525
1526         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1527                    dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1528                    latency_time);
1529         return 0;
1530 }
1531
1532 static int tg_print_limit(struct seq_file *sf, void *v)
1533 {
1534         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1535                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1536         return 0;
1537 }
1538
1539 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1540                           char *buf, size_t nbytes, loff_t off)
1541 {
1542         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1543         struct blkg_conf_ctx ctx;
1544         struct throtl_grp *tg;
1545         u64 v[4];
1546         unsigned long idle_time;
1547         unsigned long latency_time;
1548         int ret;
1549         int index = of_cft(of)->private;
1550
1551         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1552         if (ret)
1553                 return ret;
1554
1555         tg = blkg_to_tg(ctx.blkg);
1556
1557         v[0] = tg->bps_conf[READ][index];
1558         v[1] = tg->bps_conf[WRITE][index];
1559         v[2] = tg->iops_conf[READ][index];
1560         v[3] = tg->iops_conf[WRITE][index];
1561
1562         idle_time = tg->idletime_threshold;
1563         latency_time = tg->latency_target;
1564         while (true) {
1565                 char tok[27];   /* wiops=18446744073709551616 */
1566                 char *p;
1567                 u64 val = U64_MAX;
1568                 int len;
1569
1570                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1571                         break;
1572                 if (tok[0] == '\0')
1573                         break;
1574                 ctx.body += len;
1575
1576                 ret = -EINVAL;
1577                 p = tok;
1578                 strsep(&p, "=");
1579                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1580                         goto out_finish;
1581
1582                 ret = -ERANGE;
1583                 if (!val)
1584                         goto out_finish;
1585
1586                 ret = -EINVAL;
1587                 if (!strcmp(tok, "rbps"))
1588                         v[0] = val;
1589                 else if (!strcmp(tok, "wbps"))
1590                         v[1] = val;
1591                 else if (!strcmp(tok, "riops"))
1592                         v[2] = min_t(u64, val, UINT_MAX);
1593                 else if (!strcmp(tok, "wiops"))
1594                         v[3] = min_t(u64, val, UINT_MAX);
1595                 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1596                         idle_time = val;
1597                 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1598                         latency_time = val;
1599                 else
1600                         goto out_finish;
1601         }
1602
1603         tg->bps_conf[READ][index] = v[0];
1604         tg->bps_conf[WRITE][index] = v[1];
1605         tg->iops_conf[READ][index] = v[2];
1606         tg->iops_conf[WRITE][index] = v[3];
1607
1608         if (index == LIMIT_MAX) {
1609                 tg->bps[READ][index] = v[0];
1610                 tg->bps[WRITE][index] = v[1];
1611                 tg->iops[READ][index] = v[2];
1612                 tg->iops[WRITE][index] = v[3];
1613         }
1614         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1615                 tg->bps_conf[READ][LIMIT_MAX]);
1616         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1617                 tg->bps_conf[WRITE][LIMIT_MAX]);
1618         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1619                 tg->iops_conf[READ][LIMIT_MAX]);
1620         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1621                 tg->iops_conf[WRITE][LIMIT_MAX]);
1622
1623         if (index == LIMIT_LOW) {
1624                 blk_throtl_update_limit_valid(tg->td);
1625                 if (tg->td->limit_valid[LIMIT_LOW])
1626                         tg->td->limit_index = LIMIT_LOW;
1627                 tg->idletime_threshold = (idle_time == ULONG_MAX) ?
1628                         ULONG_MAX : idle_time;
1629                 tg->latency_target = (latency_time == ULONG_MAX) ?
1630                         ULONG_MAX : latency_time;
1631         }
1632         tg_conf_updated(tg);
1633         ret = 0;
1634 out_finish:
1635         blkg_conf_finish(&ctx);
1636         return ret ?: nbytes;
1637 }
1638
1639 static struct cftype throtl_files[] = {
1640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1641         {
1642                 .name = "low",
1643                 .flags = CFTYPE_NOT_ON_ROOT,
1644                 .seq_show = tg_print_limit,
1645                 .write = tg_set_limit,
1646                 .private = LIMIT_LOW,
1647         },
1648 #endif
1649         {
1650                 .name = "max",
1651                 .flags = CFTYPE_NOT_ON_ROOT,
1652                 .seq_show = tg_print_limit,
1653                 .write = tg_set_limit,
1654                 .private = LIMIT_MAX,
1655         },
1656         { }     /* terminate */
1657 };
1658
1659 static void throtl_shutdown_wq(struct request_queue *q)
1660 {
1661         struct throtl_data *td = q->td;
1662
1663         cancel_work_sync(&td->dispatch_work);
1664 }
1665
1666 static struct blkcg_policy blkcg_policy_throtl = {
1667         .dfl_cftypes            = throtl_files,
1668         .legacy_cftypes         = throtl_legacy_files,
1669
1670         .pd_alloc_fn            = throtl_pd_alloc,
1671         .pd_init_fn             = throtl_pd_init,
1672         .pd_online_fn           = throtl_pd_online,
1673         .pd_offline_fn          = throtl_pd_offline,
1674         .pd_free_fn             = throtl_pd_free,
1675 };
1676
1677 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1678 {
1679         unsigned long rtime = jiffies, wtime = jiffies;
1680
1681         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1682                 rtime = tg->last_low_overflow_time[READ];
1683         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1684                 wtime = tg->last_low_overflow_time[WRITE];
1685         return min(rtime, wtime);
1686 }
1687
1688 /* tg should not be an intermediate node */
1689 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1690 {
1691         struct throtl_service_queue *parent_sq;
1692         struct throtl_grp *parent = tg;
1693         unsigned long ret = __tg_last_low_overflow_time(tg);
1694
1695         while (true) {
1696                 parent_sq = parent->service_queue.parent_sq;
1697                 parent = sq_to_tg(parent_sq);
1698                 if (!parent)
1699                         break;
1700
1701                 /*
1702                  * The parent doesn't have low limit, it always reaches low
1703                  * limit. Its overflow time is useless for children
1704                  */
1705                 if (!parent->bps[READ][LIMIT_LOW] &&
1706                     !parent->iops[READ][LIMIT_LOW] &&
1707                     !parent->bps[WRITE][LIMIT_LOW] &&
1708                     !parent->iops[WRITE][LIMIT_LOW])
1709                         continue;
1710                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1711                         ret = __tg_last_low_overflow_time(parent);
1712         }
1713         return ret;
1714 }
1715
1716 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1717 {
1718         /*
1719          * cgroup is idle if:
1720          * - single idle is too long, longer than a fixed value (in case user
1721          *   configure a too big threshold) or 4 times of slice
1722          * - average think time is more than threshold
1723          */
1724         unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);
1725
1726         time = min_t(unsigned long, MAX_IDLE_TIME, time);
1727         return (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1728                tg->avg_idletime > tg->idletime_threshold;
1729 }
1730
1731 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1732 {
1733         struct throtl_service_queue *sq = &tg->service_queue;
1734         bool read_limit, write_limit;
1735
1736         /*
1737          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1738          * reaches), it's ok to upgrade to next limit
1739          */
1740         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1741         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1742         if (!read_limit && !write_limit)
1743                 return true;
1744         if (read_limit && sq->nr_queued[READ] &&
1745             (!write_limit || sq->nr_queued[WRITE]))
1746                 return true;
1747         if (write_limit && sq->nr_queued[WRITE] &&
1748             (!read_limit || sq->nr_queued[READ]))
1749                 return true;
1750
1751         if (time_after_eq(jiffies,
1752                 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1753             throtl_tg_is_idle(tg))
1754                 return true;
1755         return false;
1756 }
1757
1758 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1759 {
1760         while (true) {
1761                 if (throtl_tg_can_upgrade(tg))
1762                         return true;
1763                 tg = sq_to_tg(tg->service_queue.parent_sq);
1764                 if (!tg || !tg_to_blkg(tg)->parent)
1765                         return false;
1766         }
1767         return false;
1768 }
1769
1770 static bool throtl_can_upgrade(struct throtl_data *td,
1771         struct throtl_grp *this_tg)
1772 {
1773         struct cgroup_subsys_state *pos_css;
1774         struct blkcg_gq *blkg;
1775
1776         if (td->limit_index != LIMIT_LOW)
1777                 return false;
1778
1779         if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1780                 return false;
1781
1782         rcu_read_lock();
1783         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1784                 struct throtl_grp *tg = blkg_to_tg(blkg);
1785
1786                 if (tg == this_tg)
1787                         continue;
1788                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1789                         continue;
1790                 if (!throtl_hierarchy_can_upgrade(tg)) {
1791                         rcu_read_unlock();
1792                         return false;
1793                 }
1794         }
1795         rcu_read_unlock();
1796         return true;
1797 }
1798
1799 static void throtl_upgrade_check(struct throtl_grp *tg)
1800 {
1801         unsigned long now = jiffies;
1802
1803         if (tg->td->limit_index != LIMIT_LOW)
1804                 return;
1805
1806         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1807                 return;
1808
1809         tg->last_check_time = now;
1810
1811         if (!time_after_eq(now,
1812              __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1813                 return;
1814
1815         if (throtl_can_upgrade(tg->td, NULL))
1816                 throtl_upgrade_state(tg->td);
1817 }
1818
1819 static void throtl_upgrade_state(struct throtl_data *td)
1820 {
1821         struct cgroup_subsys_state *pos_css;
1822         struct blkcg_gq *blkg;
1823
1824         td->limit_index = LIMIT_MAX;
1825         td->low_upgrade_time = jiffies;
1826         td->scale = 0;
1827         rcu_read_lock();
1828         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1829                 struct throtl_grp *tg = blkg_to_tg(blkg);
1830                 struct throtl_service_queue *sq = &tg->service_queue;
1831
1832                 tg->disptime = jiffies - 1;
1833                 throtl_select_dispatch(sq);
1834                 throtl_schedule_next_dispatch(sq, false);
1835         }
1836         rcu_read_unlock();
1837         throtl_select_dispatch(&td->service_queue);
1838         throtl_schedule_next_dispatch(&td->service_queue, false);
1839         queue_work(kthrotld_workqueue, &td->dispatch_work);
1840 }
1841
1842 static void throtl_downgrade_state(struct throtl_data *td, int new)
1843 {
1844         td->scale /= 2;
1845
1846         if (td->scale) {
1847                 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1848                 return;
1849         }
1850
1851         td->limit_index = new;
1852         td->low_downgrade_time = jiffies;
1853 }
1854
1855 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1856 {
1857         struct throtl_data *td = tg->td;
1858         unsigned long now = jiffies;
1859
1860         /*
1861          * If cgroup is below low limit, consider downgrade and throttle other
1862          * cgroups
1863          */
1864         if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1865             time_after_eq(now, tg_last_low_overflow_time(tg) +
1866                                         td->throtl_slice) &&
1867             (!throtl_tg_is_idle(tg) ||
1868              !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1869                 return true;
1870         return false;
1871 }
1872
1873 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1874 {
1875         while (true) {
1876                 if (!throtl_tg_can_downgrade(tg))
1877                         return false;
1878                 tg = sq_to_tg(tg->service_queue.parent_sq);
1879                 if (!tg || !tg_to_blkg(tg)->parent)
1880                         break;
1881         }
1882         return true;
1883 }
1884
1885 static void throtl_downgrade_check(struct throtl_grp *tg)
1886 {
1887         uint64_t bps;
1888         unsigned int iops;
1889         unsigned long elapsed_time;
1890         unsigned long now = jiffies;
1891
1892         if (tg->td->limit_index != LIMIT_MAX ||
1893             !tg->td->limit_valid[LIMIT_LOW])
1894                 return;
1895         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1896                 return;
1897         if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1898                 return;
1899
1900         elapsed_time = now - tg->last_check_time;
1901         tg->last_check_time = now;
1902
1903         if (time_before(now, tg_last_low_overflow_time(tg) +
1904                         tg->td->throtl_slice))
1905                 return;
1906
1907         if (tg->bps[READ][LIMIT_LOW]) {
1908                 bps = tg->last_bytes_disp[READ] * HZ;
1909                 do_div(bps, elapsed_time);
1910                 if (bps >= tg->bps[READ][LIMIT_LOW])
1911                         tg->last_low_overflow_time[READ] = now;
1912         }
1913
1914         if (tg->bps[WRITE][LIMIT_LOW]) {
1915                 bps = tg->last_bytes_disp[WRITE] * HZ;
1916                 do_div(bps, elapsed_time);
1917                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1918                         tg->last_low_overflow_time[WRITE] = now;
1919         }
1920
1921         if (tg->iops[READ][LIMIT_LOW]) {
1922                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1923                 if (iops >= tg->iops[READ][LIMIT_LOW])
1924                         tg->last_low_overflow_time[READ] = now;
1925         }
1926
1927         if (tg->iops[WRITE][LIMIT_LOW]) {
1928                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1929                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1930                         tg->last_low_overflow_time[WRITE] = now;
1931         }
1932
1933         /*
1934          * If cgroup is below low limit, consider downgrade and throttle other
1935          * cgroups
1936          */
1937         if (throtl_hierarchy_can_downgrade(tg))
1938                 throtl_downgrade_state(tg->td, LIMIT_LOW);
1939
1940         tg->last_bytes_disp[READ] = 0;
1941         tg->last_bytes_disp[WRITE] = 0;
1942         tg->last_io_disp[READ] = 0;
1943         tg->last_io_disp[WRITE] = 0;
1944 }
1945
1946 static void blk_throtl_update_idletime(struct throtl_grp *tg)
1947 {
1948         unsigned long now = ktime_get_ns() >> 10;
1949         unsigned long last_finish_time = tg->last_finish_time;
1950
1951         if (now <= last_finish_time || last_finish_time == 0 ||
1952             last_finish_time == tg->checked_last_finish_time)
1953                 return;
1954
1955         tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
1956         tg->checked_last_finish_time = last_finish_time;
1957 }
1958
1959 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1960 static void throtl_update_latency_buckets(struct throtl_data *td)
1961 {
1962         struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
1963         int i, cpu;
1964         unsigned long last_latency = 0;
1965         unsigned long latency;
1966
1967         if (!blk_queue_nonrot(td->queue))
1968                 return;
1969         if (time_before(jiffies, td->last_calculate_time + HZ))
1970                 return;
1971         td->last_calculate_time = jiffies;
1972
1973         memset(avg_latency, 0, sizeof(avg_latency));
1974         for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
1975                 struct latency_bucket *tmp = &td->tmp_buckets[i];
1976
1977                 for_each_possible_cpu(cpu) {
1978                         struct latency_bucket *bucket;
1979
1980                         /* this isn't race free, but ok in practice */
1981                         bucket = per_cpu_ptr(td->latency_buckets, cpu);
1982                         tmp->total_latency += bucket[i].total_latency;
1983                         tmp->samples += bucket[i].samples;
1984                         bucket[i].total_latency = 0;
1985                         bucket[i].samples = 0;
1986                 }
1987
1988                 if (tmp->samples >= 32) {
1989                         int samples = tmp->samples;
1990
1991                         latency = tmp->total_latency;
1992
1993                         tmp->total_latency = 0;
1994                         tmp->samples = 0;
1995                         latency /= samples;
1996                         if (latency == 0)
1997                                 continue;
1998                         avg_latency[i].latency = latency;
1999                 }
2000         }
2001
2002         for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2003                 if (!avg_latency[i].latency) {
2004                         if (td->avg_buckets[i].latency < last_latency)
2005                                 td->avg_buckets[i].latency = last_latency;
2006                         continue;
2007                 }
2008
2009                 if (!td->avg_buckets[i].valid)
2010                         latency = avg_latency[i].latency;
2011                 else
2012                         latency = (td->avg_buckets[i].latency * 7 +
2013                                 avg_latency[i].latency) >> 3;
2014
2015                 td->avg_buckets[i].latency = max(latency, last_latency);
2016                 td->avg_buckets[i].valid = true;
2017                 last_latency = td->avg_buckets[i].latency;
2018         }
2019 }
2020 #else
2021 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2022 {
2023 }
2024 #endif
2025
2026 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
2027                     struct bio *bio)
2028 {
2029         struct throtl_qnode *qn = NULL;
2030         struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2031         struct throtl_service_queue *sq;
2032         bool rw = bio_data_dir(bio);
2033         bool throttled = false;
2034         struct throtl_data *td = tg->td;
2035         int ret;
2036
2037         WARN_ON_ONCE(!rcu_read_lock_held());
2038
2039         /* see throtl_charge_bio() */
2040         if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2041                 goto out;
2042
2043         spin_lock_irq(q->queue_lock);
2044
2045         throtl_update_latency_buckets(td);
2046
2047         if (unlikely(blk_queue_bypass(q)))
2048                 goto out_unlock;
2049
2050         ret = bio_associate_current(bio);
2051 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2052         if (ret == 0 || ret == -EBUSY)
2053                 bio->bi_cg_private = tg;
2054         blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
2055 #endif
2056         blk_throtl_update_idletime(tg);
2057
2058         sq = &tg->service_queue;
2059
2060 again:
2061         while (true) {
2062                 if (tg->last_low_overflow_time[rw] == 0)
2063                         tg->last_low_overflow_time[rw] = jiffies;
2064                 throtl_downgrade_check(tg);
2065                 throtl_upgrade_check(tg);
2066                 /* throtl is FIFO - if bios are already queued, should queue */
2067                 if (sq->nr_queued[rw])
2068                         break;
2069
2070                 /* if above limits, break to queue */
2071                 if (!tg_may_dispatch(tg, bio, NULL)) {
2072                         tg->last_low_overflow_time[rw] = jiffies;
2073                         if (throtl_can_upgrade(td, tg)) {
2074                                 throtl_upgrade_state(td);
2075                                 goto again;
2076                         }
2077                         break;
2078                 }
2079
2080                 /* within limits, let's charge and dispatch directly */
2081                 throtl_charge_bio(tg, bio);
2082
2083                 /*
2084                  * We need to trim slice even when bios are not being queued
2085                  * otherwise it might happen that a bio is not queued for
2086                  * a long time and slice keeps on extending and trim is not
2087                  * called for a long time. Now if limits are reduced suddenly
2088                  * we take into account all the IO dispatched so far at new
2089                  * low rate and * newly queued IO gets a really long dispatch
2090                  * time.
2091                  *
2092                  * So keep on trimming slice even if bio is not queued.
2093                  */
2094                 throtl_trim_slice(tg, rw);
2095
2096                 /*
2097                  * @bio passed through this layer without being throttled.
2098                  * Climb up the ladder.  If we''re already at the top, it
2099                  * can be executed directly.
2100                  */
2101                 qn = &tg->qnode_on_parent[rw];
2102                 sq = sq->parent_sq;
2103                 tg = sq_to_tg(sq);
2104                 if (!tg)
2105                         goto out_unlock;
2106         }
2107
2108         /* out-of-limit, queue to @tg */
2109         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2110                    rw == READ ? 'R' : 'W',
2111                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
2112                    tg_bps_limit(tg, rw),
2113                    tg->io_disp[rw], tg_iops_limit(tg, rw),
2114                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
2115
2116         tg->last_low_overflow_time[rw] = jiffies;
2117
2118         td->nr_queued[rw]++;
2119         throtl_add_bio_tg(bio, qn, tg);
2120         throttled = true;
2121
2122         /*
2123          * Update @tg's dispatch time and force schedule dispatch if @tg
2124          * was empty before @bio.  The forced scheduling isn't likely to
2125          * cause undue delay as @bio is likely to be dispatched directly if
2126          * its @tg's disptime is not in the future.
2127          */
2128         if (tg->flags & THROTL_TG_WAS_EMPTY) {
2129                 tg_update_disptime(tg);
2130                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2131         }
2132
2133 out_unlock:
2134         spin_unlock_irq(q->queue_lock);
2135 out:
2136         /*
2137          * As multiple blk-throtls may stack in the same issue path, we
2138          * don't want bios to leave with the flag set.  Clear the flag if
2139          * being issued.
2140          */
2141         if (!throttled)
2142                 bio_clear_flag(bio, BIO_THROTTLED);
2143
2144 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2145         if (throttled || !td->track_bio_latency)
2146                 bio->bi_issue_stat.stat |= SKIP_LATENCY;
2147 #endif
2148         return throttled;
2149 }
2150
2151 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2152 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2153         int op, unsigned long time)
2154 {
2155         struct latency_bucket *latency;
2156         int index;
2157
2158         if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
2159             !blk_queue_nonrot(td->queue))
2160                 return;
2161
2162         index = request_bucket_index(size);
2163
2164         latency = get_cpu_ptr(td->latency_buckets);
2165         latency[index].total_latency += time;
2166         latency[index].samples++;
2167         put_cpu_ptr(td->latency_buckets);
2168 }
2169
2170 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2171 {
2172         struct request_queue *q = rq->q;
2173         struct throtl_data *td = q->td;
2174
2175         throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
2176                 req_op(rq), time_ns >> 10);
2177 }
2178
2179 void blk_throtl_bio_endio(struct bio *bio)
2180 {
2181         struct throtl_grp *tg;
2182         u64 finish_time_ns;
2183         unsigned long finish_time;
2184         unsigned long start_time;
2185         unsigned long lat;
2186
2187         tg = bio->bi_cg_private;
2188         if (!tg)
2189                 return;
2190         bio->bi_cg_private = NULL;
2191
2192         finish_time_ns = ktime_get_ns();
2193         tg->last_finish_time = finish_time_ns >> 10;
2194
2195         start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
2196         finish_time = __blk_stat_time(finish_time_ns) >> 10;
2197         /* this is only for bio based driver */
2198         if (start_time && finish_time > start_time &&
2199             !(bio->bi_issue_stat.stat & SKIP_LATENCY)) {
2200                 lat = finish_time - start_time;
2201                 throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
2202                         bio_op(bio), lat);
2203         }
2204 }
2205 #endif
2206
2207 /*
2208  * Dispatch all bios from all children tg's queued on @parent_sq.  On
2209  * return, @parent_sq is guaranteed to not have any active children tg's
2210  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2211  */
2212 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
2213 {
2214         struct throtl_grp *tg;
2215
2216         while ((tg = throtl_rb_first(parent_sq))) {
2217                 struct throtl_service_queue *sq = &tg->service_queue;
2218                 struct bio *bio;
2219
2220                 throtl_dequeue_tg(tg);
2221
2222                 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2223                         tg_dispatch_one_bio(tg, bio_data_dir(bio));
2224                 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2225                         tg_dispatch_one_bio(tg, bio_data_dir(bio));
2226         }
2227 }
2228
2229 /**
2230  * blk_throtl_drain - drain throttled bios
2231  * @q: request_queue to drain throttled bios for
2232  *
2233  * Dispatch all currently throttled bios on @q through ->make_request_fn().
2234  */
2235 void blk_throtl_drain(struct request_queue *q)
2236         __releases(q->queue_lock) __acquires(q->queue_lock)
2237 {
2238         struct throtl_data *td = q->td;
2239         struct blkcg_gq *blkg;
2240         struct cgroup_subsys_state *pos_css;
2241         struct bio *bio;
2242         int rw;
2243
2244         queue_lockdep_assert_held(q);
2245         rcu_read_lock();
2246
2247         /*
2248          * Drain each tg while doing post-order walk on the blkg tree, so
2249          * that all bios are propagated to td->service_queue.  It'd be
2250          * better to walk service_queue tree directly but blkg walk is
2251          * easier.
2252          */
2253         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2254                 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2255
2256         /* finally, transfer bios from top-level tg's into the td */
2257         tg_drain_bios(&td->service_queue);
2258
2259         rcu_read_unlock();
2260         spin_unlock_irq(q->queue_lock);
2261
2262         /* all bios now should be in td->service_queue, issue them */
2263         for (rw = READ; rw <= WRITE; rw++)
2264                 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
2265                                                 NULL)))
2266                         generic_make_request(bio);
2267
2268         spin_lock_irq(q->queue_lock);
2269 }
2270
2271 int blk_throtl_init(struct request_queue *q)
2272 {
2273         struct throtl_data *td;
2274         int ret;
2275
2276         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2277         if (!td)
2278                 return -ENOMEM;
2279         td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
2280                 LATENCY_BUCKET_SIZE, __alignof__(u64));
2281         if (!td->latency_buckets) {
2282                 kfree(td);
2283                 return -ENOMEM;
2284         }
2285
2286         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2287         throtl_service_queue_init(&td->service_queue);
2288
2289         q->td = td;
2290         td->queue = q;
2291
2292         td->limit_valid[LIMIT_MAX] = true;
2293         td->limit_index = LIMIT_MAX;
2294         td->low_upgrade_time = jiffies;
2295         td->low_downgrade_time = jiffies;
2296
2297         /* activate policy */
2298         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2299         if (ret) {
2300                 free_percpu(td->latency_buckets);
2301                 kfree(td);
2302         }
2303         return ret;
2304 }
2305
2306 void blk_throtl_exit(struct request_queue *q)
2307 {
2308         BUG_ON(!q->td);
2309         throtl_shutdown_wq(q);
2310         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2311         free_percpu(q->td->latency_buckets);
2312         kfree(q->td);
2313 }
2314
2315 void blk_throtl_register_queue(struct request_queue *q)
2316 {
2317         struct throtl_data *td;
2318         struct cgroup_subsys_state *pos_css;
2319         struct blkcg_gq *blkg;
2320
2321         td = q->td;
2322         BUG_ON(!td);
2323
2324         if (blk_queue_nonrot(q)) {
2325                 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2326                 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
2327         } else {
2328                 td->throtl_slice = DFL_THROTL_SLICE_HD;
2329                 td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
2330         }
2331 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2332         /* if no low limit, use previous default */
2333         td->throtl_slice = DFL_THROTL_SLICE_HD;
2334 #endif
2335
2336         td->track_bio_latency = !q->mq_ops && !q->request_fn;
2337         if (!td->track_bio_latency)
2338                 blk_stat_enable_accounting(q);
2339
2340         /*
2341          * some tg are created before queue is fully initialized, eg, nonrot
2342          * isn't initialized yet
2343          */
2344         rcu_read_lock();
2345         blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
2346                 struct throtl_grp *tg = blkg_to_tg(blkg);
2347
2348                 tg->idletime_threshold = td->dft_idletime_threshold;
2349         }
2350         rcu_read_unlock();
2351 }
2352
2353 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2354 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2355 {
2356         if (!q->td)
2357                 return -EINVAL;
2358         return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2359 }
2360
2361 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2362         const char *page, size_t count)
2363 {
2364         unsigned long v;
2365         unsigned long t;
2366
2367         if (!q->td)
2368                 return -EINVAL;
2369         if (kstrtoul(page, 10, &v))
2370                 return -EINVAL;
2371         t = msecs_to_jiffies(v);
2372         if (t == 0 || t > MAX_THROTL_SLICE)
2373                 return -EINVAL;
2374         q->td->throtl_slice = t;
2375         return count;
2376 }
2377 #endif
2378
2379 static int __init throtl_init(void)
2380 {
2381         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2382         if (!kthrotld_workqueue)
2383                 panic("Failed to create kthrotld\n");
2384
2385         return blkcg_policy_register(&blkcg_policy_throtl);
2386 }
2387
2388 module_init(throtl_init);