]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk-throttle.c
2073b4839ba53a7d26f72ff4e33ed5c1a193ab07
[karo-tx-linux.git] / block / blk-throttle.c
1 /*
2  * Interface for controlling IO bandwidth on a request queue
3  *
4  * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5  */
6
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
13 #include "blk.h"
14
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
17
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
20
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10;      /* 100 ms */
23
24 static struct blkcg_policy blkcg_policy_throtl;
25
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28
29 /*
30  * To implement hierarchical throttling, throtl_grps form a tree and bios
31  * are dispatched upwards level by level until they reach the top and get
32  * issued.  When dispatching bios from the children and local group at each
33  * level, if the bios are dispatched into a single bio_list, there's a risk
34  * of a local or child group which can queue many bios at once filling up
35  * the list starving others.
36  *
37  * To avoid such starvation, dispatched bios are queued separately
38  * according to where they came from.  When they are again dispatched to
39  * the parent, they're popped in round-robin order so that no single source
40  * hogs the dispatch window.
41  *
42  * throtl_qnode is used to keep the queued bios separated by their sources.
43  * Bios are queued to throtl_qnode which in turn is queued to
44  * throtl_service_queue and then dispatched in round-robin order.
45  *
46  * It's also used to track the reference counts on blkg's.  A qnode always
47  * belongs to a throtl_grp and gets queued on itself or the parent, so
48  * incrementing the reference of the associated throtl_grp when a qnode is
49  * queued and decrementing when dequeued is enough to keep the whole blkg
50  * tree pinned while bios are in flight.
51  */
52 struct throtl_qnode {
53         struct list_head        node;           /* service_queue->queued[] */
54         struct bio_list         bios;           /* queued bios */
55         struct throtl_grp       *tg;            /* tg this qnode belongs to */
56 };
57
58 struct throtl_service_queue {
59         struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
61         /*
62          * Bios queued directly to this service_queue or dispatched from
63          * children throtl_grp's.
64          */
65         struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
66         unsigned int            nr_queued[2];   /* number of queued bios */
67
68         /*
69          * RB tree of active children throtl_grp's, which are sorted by
70          * their ->disptime.
71          */
72         struct rb_root          pending_tree;   /* RB tree of active tgs */
73         struct rb_node          *first_pending; /* first node in the tree */
74         unsigned int            nr_pending;     /* # queued in the tree */
75         unsigned long           first_pending_disptime; /* disptime of the first tg */
76         struct timer_list       pending_timer;  /* fires on first_pending_disptime */
77 };
78
79 enum tg_state_flags {
80         THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
81         THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
82 };
83
84 #define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
85
86 enum {
87         LIMIT_LOW,
88         LIMIT_MAX,
89         LIMIT_CNT,
90 };
91
92 struct throtl_grp {
93         /* must be the first member */
94         struct blkg_policy_data pd;
95
96         /* active throtl group service_queue member */
97         struct rb_node rb_node;
98
99         /* throtl_data this group belongs to */
100         struct throtl_data *td;
101
102         /* this group's service queue */
103         struct throtl_service_queue service_queue;
104
105         /*
106          * qnode_on_self is used when bios are directly queued to this
107          * throtl_grp so that local bios compete fairly with bios
108          * dispatched from children.  qnode_on_parent is used when bios are
109          * dispatched from this throtl_grp into its parent and will compete
110          * with the sibling qnode_on_parents and the parent's
111          * qnode_on_self.
112          */
113         struct throtl_qnode qnode_on_self[2];
114         struct throtl_qnode qnode_on_parent[2];
115
116         /*
117          * Dispatch time in jiffies. This is the estimated time when group
118          * will unthrottle and is ready to dispatch more bio. It is used as
119          * key to sort active groups in service tree.
120          */
121         unsigned long disptime;
122
123         unsigned int flags;
124
125         /* are there any throtl rules between this group and td? */
126         bool has_rules[2];
127
128         /* internally used bytes per second rate limits */
129         uint64_t bps[2][LIMIT_CNT];
130         /* user configured bps limits */
131         uint64_t bps_conf[2][LIMIT_CNT];
132
133         /* internally used IOPS limits */
134         unsigned int iops[2][LIMIT_CNT];
135         /* user configured IOPS limits */
136         unsigned int iops_conf[2][LIMIT_CNT];
137
138         /* Number of bytes disptached in current slice */
139         uint64_t bytes_disp[2];
140         /* Number of bio's dispatched in current slice */
141         unsigned int io_disp[2];
142
143         unsigned long last_low_overflow_time[2];
144
145         uint64_t last_bytes_disp[2];
146         unsigned int last_io_disp[2];
147
148         unsigned long last_check_time;
149
150         /* When did we start a new slice */
151         unsigned long slice_start[2];
152         unsigned long slice_end[2];
153 };
154
155 struct throtl_data
156 {
157         /* service tree for active throtl groups */
158         struct throtl_service_queue service_queue;
159
160         struct request_queue *queue;
161
162         /* Total Number of queued bios on READ and WRITE lists */
163         unsigned int nr_queued[2];
164
165         /* Work for dispatching throttled bios */
166         struct work_struct dispatch_work;
167         unsigned int limit_index;
168         bool limit_valid[LIMIT_CNT];
169
170         unsigned long low_upgrade_time;
171         unsigned long low_downgrade_time;
172 };
173
174 static void throtl_pending_timer_fn(unsigned long arg);
175
176 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
177 {
178         return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
179 }
180
181 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
182 {
183         return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
184 }
185
186 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
187 {
188         return pd_to_blkg(&tg->pd);
189 }
190
191 /**
192  * sq_to_tg - return the throl_grp the specified service queue belongs to
193  * @sq: the throtl_service_queue of interest
194  *
195  * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
196  * embedded in throtl_data, %NULL is returned.
197  */
198 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
199 {
200         if (sq && sq->parent_sq)
201                 return container_of(sq, struct throtl_grp, service_queue);
202         else
203                 return NULL;
204 }
205
206 /**
207  * sq_to_td - return throtl_data the specified service queue belongs to
208  * @sq: the throtl_service_queue of interest
209  *
210  * A service_queue can be embedded in either a throtl_grp or throtl_data.
211  * Determine the associated throtl_data accordingly and return it.
212  */
213 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
214 {
215         struct throtl_grp *tg = sq_to_tg(sq);
216
217         if (tg)
218                 return tg->td;
219         else
220                 return container_of(sq, struct throtl_data, service_queue);
221 }
222
223 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
224 {
225         struct blkcg_gq *blkg = tg_to_blkg(tg);
226         uint64_t ret;
227
228         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
229                 return U64_MAX;
230         ret = tg->bps[rw][tg->td->limit_index];
231         if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
232                 return tg->bps[rw][LIMIT_MAX];
233         return ret;
234 }
235
236 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
237 {
238         struct blkcg_gq *blkg = tg_to_blkg(tg);
239         unsigned int ret;
240
241         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
242                 return UINT_MAX;
243         ret = tg->iops[rw][tg->td->limit_index];
244         if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
245                 return tg->iops[rw][LIMIT_MAX];
246         return ret;
247 }
248
249 /**
250  * throtl_log - log debug message via blktrace
251  * @sq: the service_queue being reported
252  * @fmt: printf format string
253  * @args: printf args
254  *
255  * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
256  * throtl_grp; otherwise, just "throtl".
257  */
258 #define throtl_log(sq, fmt, args...)    do {                            \
259         struct throtl_grp *__tg = sq_to_tg((sq));                       \
260         struct throtl_data *__td = sq_to_td((sq));                      \
261                                                                         \
262         (void)__td;                                                     \
263         if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
264                 break;                                                  \
265         if ((__tg)) {                                                   \
266                 char __pbuf[128];                                       \
267                                                                         \
268                 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));    \
269                 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
270         } else {                                                        \
271                 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
272         }                                                               \
273 } while (0)
274
275 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
276 {
277         INIT_LIST_HEAD(&qn->node);
278         bio_list_init(&qn->bios);
279         qn->tg = tg;
280 }
281
282 /**
283  * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
284  * @bio: bio being added
285  * @qn: qnode to add bio to
286  * @queued: the service_queue->queued[] list @qn belongs to
287  *
288  * Add @bio to @qn and put @qn on @queued if it's not already on.
289  * @qn->tg's reference count is bumped when @qn is activated.  See the
290  * comment on top of throtl_qnode definition for details.
291  */
292 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
293                                  struct list_head *queued)
294 {
295         bio_list_add(&qn->bios, bio);
296         if (list_empty(&qn->node)) {
297                 list_add_tail(&qn->node, queued);
298                 blkg_get(tg_to_blkg(qn->tg));
299         }
300 }
301
302 /**
303  * throtl_peek_queued - peek the first bio on a qnode list
304  * @queued: the qnode list to peek
305  */
306 static struct bio *throtl_peek_queued(struct list_head *queued)
307 {
308         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
309         struct bio *bio;
310
311         if (list_empty(queued))
312                 return NULL;
313
314         bio = bio_list_peek(&qn->bios);
315         WARN_ON_ONCE(!bio);
316         return bio;
317 }
318
319 /**
320  * throtl_pop_queued - pop the first bio form a qnode list
321  * @queued: the qnode list to pop a bio from
322  * @tg_to_put: optional out argument for throtl_grp to put
323  *
324  * Pop the first bio from the qnode list @queued.  After popping, the first
325  * qnode is removed from @queued if empty or moved to the end of @queued so
326  * that the popping order is round-robin.
327  *
328  * When the first qnode is removed, its associated throtl_grp should be put
329  * too.  If @tg_to_put is NULL, this function automatically puts it;
330  * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
331  * responsible for putting it.
332  */
333 static struct bio *throtl_pop_queued(struct list_head *queued,
334                                      struct throtl_grp **tg_to_put)
335 {
336         struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
337         struct bio *bio;
338
339         if (list_empty(queued))
340                 return NULL;
341
342         bio = bio_list_pop(&qn->bios);
343         WARN_ON_ONCE(!bio);
344
345         if (bio_list_empty(&qn->bios)) {
346                 list_del_init(&qn->node);
347                 if (tg_to_put)
348                         *tg_to_put = qn->tg;
349                 else
350                         blkg_put(tg_to_blkg(qn->tg));
351         } else {
352                 list_move_tail(&qn->node, queued);
353         }
354
355         return bio;
356 }
357
358 /* init a service_queue, assumes the caller zeroed it */
359 static void throtl_service_queue_init(struct throtl_service_queue *sq)
360 {
361         INIT_LIST_HEAD(&sq->queued[0]);
362         INIT_LIST_HEAD(&sq->queued[1]);
363         sq->pending_tree = RB_ROOT;
364         setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
365                     (unsigned long)sq);
366 }
367
368 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
369 {
370         struct throtl_grp *tg;
371         int rw;
372
373         tg = kzalloc_node(sizeof(*tg), gfp, node);
374         if (!tg)
375                 return NULL;
376
377         throtl_service_queue_init(&tg->service_queue);
378
379         for (rw = READ; rw <= WRITE; rw++) {
380                 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
381                 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
382         }
383
384         RB_CLEAR_NODE(&tg->rb_node);
385         tg->bps[READ][LIMIT_MAX] = U64_MAX;
386         tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
387         tg->iops[READ][LIMIT_MAX] = UINT_MAX;
388         tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
389         tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
390         tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
391         tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
392         tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
393         /* LIMIT_LOW will have default value 0 */
394
395         return &tg->pd;
396 }
397
398 static void throtl_pd_init(struct blkg_policy_data *pd)
399 {
400         struct throtl_grp *tg = pd_to_tg(pd);
401         struct blkcg_gq *blkg = tg_to_blkg(tg);
402         struct throtl_data *td = blkg->q->td;
403         struct throtl_service_queue *sq = &tg->service_queue;
404
405         /*
406          * If on the default hierarchy, we switch to properly hierarchical
407          * behavior where limits on a given throtl_grp are applied to the
408          * whole subtree rather than just the group itself.  e.g. If 16M
409          * read_bps limit is set on the root group, the whole system can't
410          * exceed 16M for the device.
411          *
412          * If not on the default hierarchy, the broken flat hierarchy
413          * behavior is retained where all throtl_grps are treated as if
414          * they're all separate root groups right below throtl_data.
415          * Limits of a group don't interact with limits of other groups
416          * regardless of the position of the group in the hierarchy.
417          */
418         sq->parent_sq = &td->service_queue;
419         if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
420                 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
421         tg->td = td;
422 }
423
424 /*
425  * Set has_rules[] if @tg or any of its parents have limits configured.
426  * This doesn't require walking up to the top of the hierarchy as the
427  * parent's has_rules[] is guaranteed to be correct.
428  */
429 static void tg_update_has_rules(struct throtl_grp *tg)
430 {
431         struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
432         struct throtl_data *td = tg->td;
433         int rw;
434
435         for (rw = READ; rw <= WRITE; rw++)
436                 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
437                         (td->limit_valid[td->limit_index] &&
438                          (tg_bps_limit(tg, rw) != U64_MAX ||
439                           tg_iops_limit(tg, rw) != UINT_MAX));
440 }
441
442 static void throtl_pd_online(struct blkg_policy_data *pd)
443 {
444         /*
445          * We don't want new groups to escape the limits of its ancestors.
446          * Update has_rules[] after a new group is brought online.
447          */
448         tg_update_has_rules(pd_to_tg(pd));
449 }
450
451 static void blk_throtl_update_limit_valid(struct throtl_data *td)
452 {
453         struct cgroup_subsys_state *pos_css;
454         struct blkcg_gq *blkg;
455         bool low_valid = false;
456
457         rcu_read_lock();
458         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
459                 struct throtl_grp *tg = blkg_to_tg(blkg);
460
461                 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
462                     tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
463                         low_valid = true;
464         }
465         rcu_read_unlock();
466
467         td->limit_valid[LIMIT_LOW] = low_valid;
468 }
469
470 static void throtl_upgrade_state(struct throtl_data *td);
471 static void throtl_pd_offline(struct blkg_policy_data *pd)
472 {
473         struct throtl_grp *tg = pd_to_tg(pd);
474
475         tg->bps[READ][LIMIT_LOW] = 0;
476         tg->bps[WRITE][LIMIT_LOW] = 0;
477         tg->iops[READ][LIMIT_LOW] = 0;
478         tg->iops[WRITE][LIMIT_LOW] = 0;
479
480         blk_throtl_update_limit_valid(tg->td);
481
482         if (!tg->td->limit_valid[tg->td->limit_index])
483                 throtl_upgrade_state(tg->td);
484 }
485
486 static void throtl_pd_free(struct blkg_policy_data *pd)
487 {
488         struct throtl_grp *tg = pd_to_tg(pd);
489
490         del_timer_sync(&tg->service_queue.pending_timer);
491         kfree(tg);
492 }
493
494 static struct throtl_grp *
495 throtl_rb_first(struct throtl_service_queue *parent_sq)
496 {
497         /* Service tree is empty */
498         if (!parent_sq->nr_pending)
499                 return NULL;
500
501         if (!parent_sq->first_pending)
502                 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
503
504         if (parent_sq->first_pending)
505                 return rb_entry_tg(parent_sq->first_pending);
506
507         return NULL;
508 }
509
510 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
511 {
512         rb_erase(n, root);
513         RB_CLEAR_NODE(n);
514 }
515
516 static void throtl_rb_erase(struct rb_node *n,
517                             struct throtl_service_queue *parent_sq)
518 {
519         if (parent_sq->first_pending == n)
520                 parent_sq->first_pending = NULL;
521         rb_erase_init(n, &parent_sq->pending_tree);
522         --parent_sq->nr_pending;
523 }
524
525 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
526 {
527         struct throtl_grp *tg;
528
529         tg = throtl_rb_first(parent_sq);
530         if (!tg)
531                 return;
532
533         parent_sq->first_pending_disptime = tg->disptime;
534 }
535
536 static void tg_service_queue_add(struct throtl_grp *tg)
537 {
538         struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
539         struct rb_node **node = &parent_sq->pending_tree.rb_node;
540         struct rb_node *parent = NULL;
541         struct throtl_grp *__tg;
542         unsigned long key = tg->disptime;
543         int left = 1;
544
545         while (*node != NULL) {
546                 parent = *node;
547                 __tg = rb_entry_tg(parent);
548
549                 if (time_before(key, __tg->disptime))
550                         node = &parent->rb_left;
551                 else {
552                         node = &parent->rb_right;
553                         left = 0;
554                 }
555         }
556
557         if (left)
558                 parent_sq->first_pending = &tg->rb_node;
559
560         rb_link_node(&tg->rb_node, parent, node);
561         rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
562 }
563
564 static void __throtl_enqueue_tg(struct throtl_grp *tg)
565 {
566         tg_service_queue_add(tg);
567         tg->flags |= THROTL_TG_PENDING;
568         tg->service_queue.parent_sq->nr_pending++;
569 }
570
571 static void throtl_enqueue_tg(struct throtl_grp *tg)
572 {
573         if (!(tg->flags & THROTL_TG_PENDING))
574                 __throtl_enqueue_tg(tg);
575 }
576
577 static void __throtl_dequeue_tg(struct throtl_grp *tg)
578 {
579         throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
580         tg->flags &= ~THROTL_TG_PENDING;
581 }
582
583 static void throtl_dequeue_tg(struct throtl_grp *tg)
584 {
585         if (tg->flags & THROTL_TG_PENDING)
586                 __throtl_dequeue_tg(tg);
587 }
588
589 /* Call with queue lock held */
590 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
591                                           unsigned long expires)
592 {
593         unsigned long max_expire = jiffies + 8 * throtl_slice;
594
595         /*
596          * Since we are adjusting the throttle limit dynamically, the sleep
597          * time calculated according to previous limit might be invalid. It's
598          * possible the cgroup sleep time is very long and no other cgroups
599          * have IO running so notify the limit changes. Make sure the cgroup
600          * doesn't sleep too long to avoid the missed notification.
601          */
602         if (time_after(expires, max_expire))
603                 expires = max_expire;
604         mod_timer(&sq->pending_timer, expires);
605         throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
606                    expires - jiffies, jiffies);
607 }
608
609 /**
610  * throtl_schedule_next_dispatch - schedule the next dispatch cycle
611  * @sq: the service_queue to schedule dispatch for
612  * @force: force scheduling
613  *
614  * Arm @sq->pending_timer so that the next dispatch cycle starts on the
615  * dispatch time of the first pending child.  Returns %true if either timer
616  * is armed or there's no pending child left.  %false if the current
617  * dispatch window is still open and the caller should continue
618  * dispatching.
619  *
620  * If @force is %true, the dispatch timer is always scheduled and this
621  * function is guaranteed to return %true.  This is to be used when the
622  * caller can't dispatch itself and needs to invoke pending_timer
623  * unconditionally.  Note that forced scheduling is likely to induce short
624  * delay before dispatch starts even if @sq->first_pending_disptime is not
625  * in the future and thus shouldn't be used in hot paths.
626  */
627 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
628                                           bool force)
629 {
630         /* any pending children left? */
631         if (!sq->nr_pending)
632                 return true;
633
634         update_min_dispatch_time(sq);
635
636         /* is the next dispatch time in the future? */
637         if (force || time_after(sq->first_pending_disptime, jiffies)) {
638                 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
639                 return true;
640         }
641
642         /* tell the caller to continue dispatching */
643         return false;
644 }
645
646 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
647                 bool rw, unsigned long start)
648 {
649         tg->bytes_disp[rw] = 0;
650         tg->io_disp[rw] = 0;
651
652         /*
653          * Previous slice has expired. We must have trimmed it after last
654          * bio dispatch. That means since start of last slice, we never used
655          * that bandwidth. Do try to make use of that bandwidth while giving
656          * credit.
657          */
658         if (time_after_eq(start, tg->slice_start[rw]))
659                 tg->slice_start[rw] = start;
660
661         tg->slice_end[rw] = jiffies + throtl_slice;
662         throtl_log(&tg->service_queue,
663                    "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
664                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
665                    tg->slice_end[rw], jiffies);
666 }
667
668 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
669 {
670         tg->bytes_disp[rw] = 0;
671         tg->io_disp[rw] = 0;
672         tg->slice_start[rw] = jiffies;
673         tg->slice_end[rw] = jiffies + throtl_slice;
674         throtl_log(&tg->service_queue,
675                    "[%c] new slice start=%lu end=%lu jiffies=%lu",
676                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
677                    tg->slice_end[rw], jiffies);
678 }
679
680 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
681                                         unsigned long jiffy_end)
682 {
683         tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
684 }
685
686 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
687                                        unsigned long jiffy_end)
688 {
689         tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
690         throtl_log(&tg->service_queue,
691                    "[%c] extend slice start=%lu end=%lu jiffies=%lu",
692                    rw == READ ? 'R' : 'W', tg->slice_start[rw],
693                    tg->slice_end[rw], jiffies);
694 }
695
696 /* Determine if previously allocated or extended slice is complete or not */
697 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
698 {
699         if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
700                 return false;
701
702         return 1;
703 }
704
705 /* Trim the used slices and adjust slice start accordingly */
706 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
707 {
708         unsigned long nr_slices, time_elapsed, io_trim;
709         u64 bytes_trim, tmp;
710
711         BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
712
713         /*
714          * If bps are unlimited (-1), then time slice don't get
715          * renewed. Don't try to trim the slice if slice is used. A new
716          * slice will start when appropriate.
717          */
718         if (throtl_slice_used(tg, rw))
719                 return;
720
721         /*
722          * A bio has been dispatched. Also adjust slice_end. It might happen
723          * that initially cgroup limit was very low resulting in high
724          * slice_end, but later limit was bumped up and bio was dispached
725          * sooner, then we need to reduce slice_end. A high bogus slice_end
726          * is bad because it does not allow new slice to start.
727          */
728
729         throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
730
731         time_elapsed = jiffies - tg->slice_start[rw];
732
733         nr_slices = time_elapsed / throtl_slice;
734
735         if (!nr_slices)
736                 return;
737         tmp = tg_bps_limit(tg, rw) * throtl_slice * nr_slices;
738         do_div(tmp, HZ);
739         bytes_trim = tmp;
740
741         io_trim = (tg_iops_limit(tg, rw) * throtl_slice * nr_slices) / HZ;
742
743         if (!bytes_trim && !io_trim)
744                 return;
745
746         if (tg->bytes_disp[rw] >= bytes_trim)
747                 tg->bytes_disp[rw] -= bytes_trim;
748         else
749                 tg->bytes_disp[rw] = 0;
750
751         if (tg->io_disp[rw] >= io_trim)
752                 tg->io_disp[rw] -= io_trim;
753         else
754                 tg->io_disp[rw] = 0;
755
756         tg->slice_start[rw] += nr_slices * throtl_slice;
757
758         throtl_log(&tg->service_queue,
759                    "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
760                    rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
761                    tg->slice_start[rw], tg->slice_end[rw], jiffies);
762 }
763
764 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
765                                   unsigned long *wait)
766 {
767         bool rw = bio_data_dir(bio);
768         unsigned int io_allowed;
769         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
770         u64 tmp;
771
772         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
773
774         /* Slice has just started. Consider one slice interval */
775         if (!jiffy_elapsed)
776                 jiffy_elapsed_rnd = throtl_slice;
777
778         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
779
780         /*
781          * jiffy_elapsed_rnd should not be a big value as minimum iops can be
782          * 1 then at max jiffy elapsed should be equivalent of 1 second as we
783          * will allow dispatch after 1 second and after that slice should
784          * have been trimmed.
785          */
786
787         tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
788         do_div(tmp, HZ);
789
790         if (tmp > UINT_MAX)
791                 io_allowed = UINT_MAX;
792         else
793                 io_allowed = tmp;
794
795         if (tg->io_disp[rw] + 1 <= io_allowed) {
796                 if (wait)
797                         *wait = 0;
798                 return true;
799         }
800
801         /* Calc approx time to dispatch */
802         jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
803
804         if (jiffy_wait > jiffy_elapsed)
805                 jiffy_wait = jiffy_wait - jiffy_elapsed;
806         else
807                 jiffy_wait = 1;
808
809         if (wait)
810                 *wait = jiffy_wait;
811         return 0;
812 }
813
814 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
815                                  unsigned long *wait)
816 {
817         bool rw = bio_data_dir(bio);
818         u64 bytes_allowed, extra_bytes, tmp;
819         unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
820
821         jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
822
823         /* Slice has just started. Consider one slice interval */
824         if (!jiffy_elapsed)
825                 jiffy_elapsed_rnd = throtl_slice;
826
827         jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
828
829         tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
830         do_div(tmp, HZ);
831         bytes_allowed = tmp;
832
833         if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
834                 if (wait)
835                         *wait = 0;
836                 return true;
837         }
838
839         /* Calc approx time to dispatch */
840         extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
841         jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
842
843         if (!jiffy_wait)
844                 jiffy_wait = 1;
845
846         /*
847          * This wait time is without taking into consideration the rounding
848          * up we did. Add that time also.
849          */
850         jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
851         if (wait)
852                 *wait = jiffy_wait;
853         return 0;
854 }
855
856 /*
857  * Returns whether one can dispatch a bio or not. Also returns approx number
858  * of jiffies to wait before this bio is with-in IO rate and can be dispatched
859  */
860 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
861                             unsigned long *wait)
862 {
863         bool rw = bio_data_dir(bio);
864         unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
865
866         /*
867          * Currently whole state machine of group depends on first bio
868          * queued in the group bio list. So one should not be calling
869          * this function with a different bio if there are other bios
870          * queued.
871          */
872         BUG_ON(tg->service_queue.nr_queued[rw] &&
873                bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
874
875         /* If tg->bps = -1, then BW is unlimited */
876         if (tg_bps_limit(tg, rw) == U64_MAX &&
877             tg_iops_limit(tg, rw) == UINT_MAX) {
878                 if (wait)
879                         *wait = 0;
880                 return true;
881         }
882
883         /*
884          * If previous slice expired, start a new one otherwise renew/extend
885          * existing slice to make sure it is at least throtl_slice interval
886          * long since now. New slice is started only for empty throttle group.
887          * If there is queued bio, that means there should be an active
888          * slice and it should be extended instead.
889          */
890         if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
891                 throtl_start_new_slice(tg, rw);
892         else {
893                 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
894                         throtl_extend_slice(tg, rw, jiffies + throtl_slice);
895         }
896
897         if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
898             tg_with_in_iops_limit(tg, bio, &iops_wait)) {
899                 if (wait)
900                         *wait = 0;
901                 return 1;
902         }
903
904         max_wait = max(bps_wait, iops_wait);
905
906         if (wait)
907                 *wait = max_wait;
908
909         if (time_before(tg->slice_end[rw], jiffies + max_wait))
910                 throtl_extend_slice(tg, rw, jiffies + max_wait);
911
912         return 0;
913 }
914
915 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
916 {
917         bool rw = bio_data_dir(bio);
918
919         /* Charge the bio to the group */
920         tg->bytes_disp[rw] += bio->bi_iter.bi_size;
921         tg->io_disp[rw]++;
922         tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
923         tg->last_io_disp[rw]++;
924
925         /*
926          * BIO_THROTTLED is used to prevent the same bio to be throttled
927          * more than once as a throttled bio will go through blk-throtl the
928          * second time when it eventually gets issued.  Set it when a bio
929          * is being charged to a tg.
930          */
931         if (!bio_flagged(bio, BIO_THROTTLED))
932                 bio_set_flag(bio, BIO_THROTTLED);
933 }
934
935 /**
936  * throtl_add_bio_tg - add a bio to the specified throtl_grp
937  * @bio: bio to add
938  * @qn: qnode to use
939  * @tg: the target throtl_grp
940  *
941  * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
942  * tg->qnode_on_self[] is used.
943  */
944 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
945                               struct throtl_grp *tg)
946 {
947         struct throtl_service_queue *sq = &tg->service_queue;
948         bool rw = bio_data_dir(bio);
949
950         if (!qn)
951                 qn = &tg->qnode_on_self[rw];
952
953         /*
954          * If @tg doesn't currently have any bios queued in the same
955          * direction, queueing @bio can change when @tg should be
956          * dispatched.  Mark that @tg was empty.  This is automatically
957          * cleaered on the next tg_update_disptime().
958          */
959         if (!sq->nr_queued[rw])
960                 tg->flags |= THROTL_TG_WAS_EMPTY;
961
962         throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
963
964         sq->nr_queued[rw]++;
965         throtl_enqueue_tg(tg);
966 }
967
968 static void tg_update_disptime(struct throtl_grp *tg)
969 {
970         struct throtl_service_queue *sq = &tg->service_queue;
971         unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
972         struct bio *bio;
973
974         bio = throtl_peek_queued(&sq->queued[READ]);
975         if (bio)
976                 tg_may_dispatch(tg, bio, &read_wait);
977
978         bio = throtl_peek_queued(&sq->queued[WRITE]);
979         if (bio)
980                 tg_may_dispatch(tg, bio, &write_wait);
981
982         min_wait = min(read_wait, write_wait);
983         disptime = jiffies + min_wait;
984
985         /* Update dispatch time */
986         throtl_dequeue_tg(tg);
987         tg->disptime = disptime;
988         throtl_enqueue_tg(tg);
989
990         /* see throtl_add_bio_tg() */
991         tg->flags &= ~THROTL_TG_WAS_EMPTY;
992 }
993
994 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
995                                         struct throtl_grp *parent_tg, bool rw)
996 {
997         if (throtl_slice_used(parent_tg, rw)) {
998                 throtl_start_new_slice_with_credit(parent_tg, rw,
999                                 child_tg->slice_start[rw]);
1000         }
1001
1002 }
1003
1004 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1005 {
1006         struct throtl_service_queue *sq = &tg->service_queue;
1007         struct throtl_service_queue *parent_sq = sq->parent_sq;
1008         struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1009         struct throtl_grp *tg_to_put = NULL;
1010         struct bio *bio;
1011
1012         /*
1013          * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1014          * from @tg may put its reference and @parent_sq might end up
1015          * getting released prematurely.  Remember the tg to put and put it
1016          * after @bio is transferred to @parent_sq.
1017          */
1018         bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1019         sq->nr_queued[rw]--;
1020
1021         throtl_charge_bio(tg, bio);
1022
1023         /*
1024          * If our parent is another tg, we just need to transfer @bio to
1025          * the parent using throtl_add_bio_tg().  If our parent is
1026          * @td->service_queue, @bio is ready to be issued.  Put it on its
1027          * bio_lists[] and decrease total number queued.  The caller is
1028          * responsible for issuing these bios.
1029          */
1030         if (parent_tg) {
1031                 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1032                 start_parent_slice_with_credit(tg, parent_tg, rw);
1033         } else {
1034                 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1035                                      &parent_sq->queued[rw]);
1036                 BUG_ON(tg->td->nr_queued[rw] <= 0);
1037                 tg->td->nr_queued[rw]--;
1038         }
1039
1040         throtl_trim_slice(tg, rw);
1041
1042         if (tg_to_put)
1043                 blkg_put(tg_to_blkg(tg_to_put));
1044 }
1045
1046 static int throtl_dispatch_tg(struct throtl_grp *tg)
1047 {
1048         struct throtl_service_queue *sq = &tg->service_queue;
1049         unsigned int nr_reads = 0, nr_writes = 0;
1050         unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1051         unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1052         struct bio *bio;
1053
1054         /* Try to dispatch 75% READS and 25% WRITES */
1055
1056         while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1057                tg_may_dispatch(tg, bio, NULL)) {
1058
1059                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1060                 nr_reads++;
1061
1062                 if (nr_reads >= max_nr_reads)
1063                         break;
1064         }
1065
1066         while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1067                tg_may_dispatch(tg, bio, NULL)) {
1068
1069                 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1070                 nr_writes++;
1071
1072                 if (nr_writes >= max_nr_writes)
1073                         break;
1074         }
1075
1076         return nr_reads + nr_writes;
1077 }
1078
1079 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1080 {
1081         unsigned int nr_disp = 0;
1082
1083         while (1) {
1084                 struct throtl_grp *tg = throtl_rb_first(parent_sq);
1085                 struct throtl_service_queue *sq = &tg->service_queue;
1086
1087                 if (!tg)
1088                         break;
1089
1090                 if (time_before(jiffies, tg->disptime))
1091                         break;
1092
1093                 throtl_dequeue_tg(tg);
1094
1095                 nr_disp += throtl_dispatch_tg(tg);
1096
1097                 if (sq->nr_queued[0] || sq->nr_queued[1])
1098                         tg_update_disptime(tg);
1099
1100                 if (nr_disp >= throtl_quantum)
1101                         break;
1102         }
1103
1104         return nr_disp;
1105 }
1106
1107 static bool throtl_can_upgrade(struct throtl_data *td,
1108         struct throtl_grp *this_tg);
1109 /**
1110  * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1111  * @arg: the throtl_service_queue being serviced
1112  *
1113  * This timer is armed when a child throtl_grp with active bio's become
1114  * pending and queued on the service_queue's pending_tree and expires when
1115  * the first child throtl_grp should be dispatched.  This function
1116  * dispatches bio's from the children throtl_grps to the parent
1117  * service_queue.
1118  *
1119  * If the parent's parent is another throtl_grp, dispatching is propagated
1120  * by either arming its pending_timer or repeating dispatch directly.  If
1121  * the top-level service_tree is reached, throtl_data->dispatch_work is
1122  * kicked so that the ready bio's are issued.
1123  */
1124 static void throtl_pending_timer_fn(unsigned long arg)
1125 {
1126         struct throtl_service_queue *sq = (void *)arg;
1127         struct throtl_grp *tg = sq_to_tg(sq);
1128         struct throtl_data *td = sq_to_td(sq);
1129         struct request_queue *q = td->queue;
1130         struct throtl_service_queue *parent_sq;
1131         bool dispatched;
1132         int ret;
1133
1134         spin_lock_irq(q->queue_lock);
1135         if (throtl_can_upgrade(td, NULL))
1136                 throtl_upgrade_state(td);
1137
1138 again:
1139         parent_sq = sq->parent_sq;
1140         dispatched = false;
1141
1142         while (true) {
1143                 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1144                            sq->nr_queued[READ] + sq->nr_queued[WRITE],
1145                            sq->nr_queued[READ], sq->nr_queued[WRITE]);
1146
1147                 ret = throtl_select_dispatch(sq);
1148                 if (ret) {
1149                         throtl_log(sq, "bios disp=%u", ret);
1150                         dispatched = true;
1151                 }
1152
1153                 if (throtl_schedule_next_dispatch(sq, false))
1154                         break;
1155
1156                 /* this dispatch windows is still open, relax and repeat */
1157                 spin_unlock_irq(q->queue_lock);
1158                 cpu_relax();
1159                 spin_lock_irq(q->queue_lock);
1160         }
1161
1162         if (!dispatched)
1163                 goto out_unlock;
1164
1165         if (parent_sq) {
1166                 /* @parent_sq is another throl_grp, propagate dispatch */
1167                 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1168                         tg_update_disptime(tg);
1169                         if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1170                                 /* window is already open, repeat dispatching */
1171                                 sq = parent_sq;
1172                                 tg = sq_to_tg(sq);
1173                                 goto again;
1174                         }
1175                 }
1176         } else {
1177                 /* reached the top-level, queue issueing */
1178                 queue_work(kthrotld_workqueue, &td->dispatch_work);
1179         }
1180 out_unlock:
1181         spin_unlock_irq(q->queue_lock);
1182 }
1183
1184 /**
1185  * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1186  * @work: work item being executed
1187  *
1188  * This function is queued for execution when bio's reach the bio_lists[]
1189  * of throtl_data->service_queue.  Those bio's are ready and issued by this
1190  * function.
1191  */
1192 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1193 {
1194         struct throtl_data *td = container_of(work, struct throtl_data,
1195                                               dispatch_work);
1196         struct throtl_service_queue *td_sq = &td->service_queue;
1197         struct request_queue *q = td->queue;
1198         struct bio_list bio_list_on_stack;
1199         struct bio *bio;
1200         struct blk_plug plug;
1201         int rw;
1202
1203         bio_list_init(&bio_list_on_stack);
1204
1205         spin_lock_irq(q->queue_lock);
1206         for (rw = READ; rw <= WRITE; rw++)
1207                 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1208                         bio_list_add(&bio_list_on_stack, bio);
1209         spin_unlock_irq(q->queue_lock);
1210
1211         if (!bio_list_empty(&bio_list_on_stack)) {
1212                 blk_start_plug(&plug);
1213                 while((bio = bio_list_pop(&bio_list_on_stack)))
1214                         generic_make_request(bio);
1215                 blk_finish_plug(&plug);
1216         }
1217 }
1218
1219 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1220                               int off)
1221 {
1222         struct throtl_grp *tg = pd_to_tg(pd);
1223         u64 v = *(u64 *)((void *)tg + off);
1224
1225         if (v == U64_MAX)
1226                 return 0;
1227         return __blkg_prfill_u64(sf, pd, v);
1228 }
1229
1230 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1231                                int off)
1232 {
1233         struct throtl_grp *tg = pd_to_tg(pd);
1234         unsigned int v = *(unsigned int *)((void *)tg + off);
1235
1236         if (v == UINT_MAX)
1237                 return 0;
1238         return __blkg_prfill_u64(sf, pd, v);
1239 }
1240
1241 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1242 {
1243         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1244                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1245         return 0;
1246 }
1247
1248 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1249 {
1250         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1251                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1252         return 0;
1253 }
1254
1255 static void tg_conf_updated(struct throtl_grp *tg)
1256 {
1257         struct throtl_service_queue *sq = &tg->service_queue;
1258         struct cgroup_subsys_state *pos_css;
1259         struct blkcg_gq *blkg;
1260
1261         throtl_log(&tg->service_queue,
1262                    "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1263                    tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1264                    tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1265
1266         /*
1267          * Update has_rules[] flags for the updated tg's subtree.  A tg is
1268          * considered to have rules if either the tg itself or any of its
1269          * ancestors has rules.  This identifies groups without any
1270          * restrictions in the whole hierarchy and allows them to bypass
1271          * blk-throttle.
1272          */
1273         blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1274                 tg_update_has_rules(blkg_to_tg(blkg));
1275
1276         /*
1277          * We're already holding queue_lock and know @tg is valid.  Let's
1278          * apply the new config directly.
1279          *
1280          * Restart the slices for both READ and WRITES. It might happen
1281          * that a group's limit are dropped suddenly and we don't want to
1282          * account recently dispatched IO with new low rate.
1283          */
1284         throtl_start_new_slice(tg, 0);
1285         throtl_start_new_slice(tg, 1);
1286
1287         if (tg->flags & THROTL_TG_PENDING) {
1288                 tg_update_disptime(tg);
1289                 throtl_schedule_next_dispatch(sq->parent_sq, true);
1290         }
1291 }
1292
1293 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1294                            char *buf, size_t nbytes, loff_t off, bool is_u64)
1295 {
1296         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1297         struct blkg_conf_ctx ctx;
1298         struct throtl_grp *tg;
1299         int ret;
1300         u64 v;
1301
1302         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1303         if (ret)
1304                 return ret;
1305
1306         ret = -EINVAL;
1307         if (sscanf(ctx.body, "%llu", &v) != 1)
1308                 goto out_finish;
1309         if (!v)
1310                 v = U64_MAX;
1311
1312         tg = blkg_to_tg(ctx.blkg);
1313
1314         if (is_u64)
1315                 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1316         else
1317                 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1318
1319         tg_conf_updated(tg);
1320         ret = 0;
1321 out_finish:
1322         blkg_conf_finish(&ctx);
1323         return ret ?: nbytes;
1324 }
1325
1326 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1327                                char *buf, size_t nbytes, loff_t off)
1328 {
1329         return tg_set_conf(of, buf, nbytes, off, true);
1330 }
1331
1332 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1333                                 char *buf, size_t nbytes, loff_t off)
1334 {
1335         return tg_set_conf(of, buf, nbytes, off, false);
1336 }
1337
1338 static struct cftype throtl_legacy_files[] = {
1339         {
1340                 .name = "throttle.read_bps_device",
1341                 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1342                 .seq_show = tg_print_conf_u64,
1343                 .write = tg_set_conf_u64,
1344         },
1345         {
1346                 .name = "throttle.write_bps_device",
1347                 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1348                 .seq_show = tg_print_conf_u64,
1349                 .write = tg_set_conf_u64,
1350         },
1351         {
1352                 .name = "throttle.read_iops_device",
1353                 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1354                 .seq_show = tg_print_conf_uint,
1355                 .write = tg_set_conf_uint,
1356         },
1357         {
1358                 .name = "throttle.write_iops_device",
1359                 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1360                 .seq_show = tg_print_conf_uint,
1361                 .write = tg_set_conf_uint,
1362         },
1363         {
1364                 .name = "throttle.io_service_bytes",
1365                 .private = (unsigned long)&blkcg_policy_throtl,
1366                 .seq_show = blkg_print_stat_bytes,
1367         },
1368         {
1369                 .name = "throttle.io_serviced",
1370                 .private = (unsigned long)&blkcg_policy_throtl,
1371                 .seq_show = blkg_print_stat_ios,
1372         },
1373         { }     /* terminate */
1374 };
1375
1376 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1377                          int off)
1378 {
1379         struct throtl_grp *tg = pd_to_tg(pd);
1380         const char *dname = blkg_dev_name(pd->blkg);
1381         char bufs[4][21] = { "max", "max", "max", "max" };
1382         u64 bps_dft;
1383         unsigned int iops_dft;
1384
1385         if (!dname)
1386                 return 0;
1387
1388         if (off == LIMIT_LOW) {
1389                 bps_dft = 0;
1390                 iops_dft = 0;
1391         } else {
1392                 bps_dft = U64_MAX;
1393                 iops_dft = UINT_MAX;
1394         }
1395
1396         if (tg->bps_conf[READ][off] == bps_dft &&
1397             tg->bps_conf[WRITE][off] == bps_dft &&
1398             tg->iops_conf[READ][off] == iops_dft &&
1399             tg->iops_conf[WRITE][off] == iops_dft)
1400                 return 0;
1401
1402         if (tg->bps_conf[READ][off] != bps_dft)
1403                 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1404                         tg->bps_conf[READ][off]);
1405         if (tg->bps_conf[WRITE][off] != bps_dft)
1406                 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1407                         tg->bps_conf[WRITE][off]);
1408         if (tg->iops_conf[READ][off] != iops_dft)
1409                 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1410                         tg->iops_conf[READ][off]);
1411         if (tg->iops_conf[WRITE][off] != iops_dft)
1412                 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1413                         tg->iops_conf[WRITE][off]);
1414
1415         seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1416                    dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1417         return 0;
1418 }
1419
1420 static int tg_print_limit(struct seq_file *sf, void *v)
1421 {
1422         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1423                           &blkcg_policy_throtl, seq_cft(sf)->private, false);
1424         return 0;
1425 }
1426
1427 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1428                           char *buf, size_t nbytes, loff_t off)
1429 {
1430         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1431         struct blkg_conf_ctx ctx;
1432         struct throtl_grp *tg;
1433         u64 v[4];
1434         int ret;
1435         int index = of_cft(of)->private;
1436
1437         ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1438         if (ret)
1439                 return ret;
1440
1441         tg = blkg_to_tg(ctx.blkg);
1442
1443         v[0] = tg->bps_conf[READ][index];
1444         v[1] = tg->bps_conf[WRITE][index];
1445         v[2] = tg->iops_conf[READ][index];
1446         v[3] = tg->iops_conf[WRITE][index];
1447
1448         while (true) {
1449                 char tok[27];   /* wiops=18446744073709551616 */
1450                 char *p;
1451                 u64 val = U64_MAX;
1452                 int len;
1453
1454                 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1455                         break;
1456                 if (tok[0] == '\0')
1457                         break;
1458                 ctx.body += len;
1459
1460                 ret = -EINVAL;
1461                 p = tok;
1462                 strsep(&p, "=");
1463                 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1464                         goto out_finish;
1465
1466                 ret = -ERANGE;
1467                 if (!val)
1468                         goto out_finish;
1469
1470                 ret = -EINVAL;
1471                 if (!strcmp(tok, "rbps"))
1472                         v[0] = val;
1473                 else if (!strcmp(tok, "wbps"))
1474                         v[1] = val;
1475                 else if (!strcmp(tok, "riops"))
1476                         v[2] = min_t(u64, val, UINT_MAX);
1477                 else if (!strcmp(tok, "wiops"))
1478                         v[3] = min_t(u64, val, UINT_MAX);
1479                 else
1480                         goto out_finish;
1481         }
1482
1483         tg->bps_conf[READ][index] = v[0];
1484         tg->bps_conf[WRITE][index] = v[1];
1485         tg->iops_conf[READ][index] = v[2];
1486         tg->iops_conf[WRITE][index] = v[3];
1487
1488         if (index == LIMIT_MAX) {
1489                 tg->bps[READ][index] = v[0];
1490                 tg->bps[WRITE][index] = v[1];
1491                 tg->iops[READ][index] = v[2];
1492                 tg->iops[WRITE][index] = v[3];
1493         }
1494         tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1495                 tg->bps_conf[READ][LIMIT_MAX]);
1496         tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1497                 tg->bps_conf[WRITE][LIMIT_MAX]);
1498         tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1499                 tg->iops_conf[READ][LIMIT_MAX]);
1500         tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1501                 tg->iops_conf[WRITE][LIMIT_MAX]);
1502
1503         if (index == LIMIT_LOW) {
1504                 blk_throtl_update_limit_valid(tg->td);
1505                 if (tg->td->limit_valid[LIMIT_LOW])
1506                         tg->td->limit_index = LIMIT_LOW;
1507         }
1508         tg_conf_updated(tg);
1509         ret = 0;
1510 out_finish:
1511         blkg_conf_finish(&ctx);
1512         return ret ?: nbytes;
1513 }
1514
1515 static struct cftype throtl_files[] = {
1516 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1517         {
1518                 .name = "low",
1519                 .flags = CFTYPE_NOT_ON_ROOT,
1520                 .seq_show = tg_print_limit,
1521                 .write = tg_set_limit,
1522                 .private = LIMIT_LOW,
1523         },
1524 #endif
1525         {
1526                 .name = "max",
1527                 .flags = CFTYPE_NOT_ON_ROOT,
1528                 .seq_show = tg_print_limit,
1529                 .write = tg_set_limit,
1530                 .private = LIMIT_MAX,
1531         },
1532         { }     /* terminate */
1533 };
1534
1535 static void throtl_shutdown_wq(struct request_queue *q)
1536 {
1537         struct throtl_data *td = q->td;
1538
1539         cancel_work_sync(&td->dispatch_work);
1540 }
1541
1542 static struct blkcg_policy blkcg_policy_throtl = {
1543         .dfl_cftypes            = throtl_files,
1544         .legacy_cftypes         = throtl_legacy_files,
1545
1546         .pd_alloc_fn            = throtl_pd_alloc,
1547         .pd_init_fn             = throtl_pd_init,
1548         .pd_online_fn           = throtl_pd_online,
1549         .pd_offline_fn          = throtl_pd_offline,
1550         .pd_free_fn             = throtl_pd_free,
1551 };
1552
1553 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1554 {
1555         unsigned long rtime = jiffies, wtime = jiffies;
1556
1557         if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1558                 rtime = tg->last_low_overflow_time[READ];
1559         if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1560                 wtime = tg->last_low_overflow_time[WRITE];
1561         return min(rtime, wtime);
1562 }
1563
1564 /* tg should not be an intermediate node */
1565 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1566 {
1567         struct throtl_service_queue *parent_sq;
1568         struct throtl_grp *parent = tg;
1569         unsigned long ret = __tg_last_low_overflow_time(tg);
1570
1571         while (true) {
1572                 parent_sq = parent->service_queue.parent_sq;
1573                 parent = sq_to_tg(parent_sq);
1574                 if (!parent)
1575                         break;
1576
1577                 /*
1578                  * The parent doesn't have low limit, it always reaches low
1579                  * limit. Its overflow time is useless for children
1580                  */
1581                 if (!parent->bps[READ][LIMIT_LOW] &&
1582                     !parent->iops[READ][LIMIT_LOW] &&
1583                     !parent->bps[WRITE][LIMIT_LOW] &&
1584                     !parent->iops[WRITE][LIMIT_LOW])
1585                         continue;
1586                 if (time_after(__tg_last_low_overflow_time(parent), ret))
1587                         ret = __tg_last_low_overflow_time(parent);
1588         }
1589         return ret;
1590 }
1591
1592 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1593 {
1594         struct throtl_service_queue *sq = &tg->service_queue;
1595         bool read_limit, write_limit;
1596
1597         /*
1598          * if cgroup reaches low limit (if low limit is 0, the cgroup always
1599          * reaches), it's ok to upgrade to next limit
1600          */
1601         read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1602         write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1603         if (!read_limit && !write_limit)
1604                 return true;
1605         if (read_limit && sq->nr_queued[READ] &&
1606             (!write_limit || sq->nr_queued[WRITE]))
1607                 return true;
1608         if (write_limit && sq->nr_queued[WRITE] &&
1609             (!read_limit || sq->nr_queued[READ]))
1610                 return true;
1611         return false;
1612 }
1613
1614 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1615 {
1616         while (true) {
1617                 if (throtl_tg_can_upgrade(tg))
1618                         return true;
1619                 tg = sq_to_tg(tg->service_queue.parent_sq);
1620                 if (!tg || !tg_to_blkg(tg)->parent)
1621                         return false;
1622         }
1623         return false;
1624 }
1625
1626 static bool throtl_can_upgrade(struct throtl_data *td,
1627         struct throtl_grp *this_tg)
1628 {
1629         struct cgroup_subsys_state *pos_css;
1630         struct blkcg_gq *blkg;
1631
1632         if (td->limit_index != LIMIT_LOW)
1633                 return false;
1634
1635         if (time_before(jiffies, td->low_downgrade_time + throtl_slice))
1636                 return false;
1637
1638         rcu_read_lock();
1639         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1640                 struct throtl_grp *tg = blkg_to_tg(blkg);
1641
1642                 if (tg == this_tg)
1643                         continue;
1644                 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1645                         continue;
1646                 if (!throtl_hierarchy_can_upgrade(tg)) {
1647                         rcu_read_unlock();
1648                         return false;
1649                 }
1650         }
1651         rcu_read_unlock();
1652         return true;
1653 }
1654
1655 static void throtl_upgrade_state(struct throtl_data *td)
1656 {
1657         struct cgroup_subsys_state *pos_css;
1658         struct blkcg_gq *blkg;
1659
1660         td->limit_index = LIMIT_MAX;
1661         td->low_upgrade_time = jiffies;
1662         rcu_read_lock();
1663         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1664                 struct throtl_grp *tg = blkg_to_tg(blkg);
1665                 struct throtl_service_queue *sq = &tg->service_queue;
1666
1667                 tg->disptime = jiffies - 1;
1668                 throtl_select_dispatch(sq);
1669                 throtl_schedule_next_dispatch(sq, false);
1670         }
1671         rcu_read_unlock();
1672         throtl_select_dispatch(&td->service_queue);
1673         throtl_schedule_next_dispatch(&td->service_queue, false);
1674         queue_work(kthrotld_workqueue, &td->dispatch_work);
1675 }
1676
1677 static void throtl_downgrade_state(struct throtl_data *td, int new)
1678 {
1679         td->limit_index = new;
1680         td->low_downgrade_time = jiffies;
1681 }
1682
1683 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1684 {
1685         struct throtl_data *td = tg->td;
1686         unsigned long now = jiffies;
1687
1688         /*
1689          * If cgroup is below low limit, consider downgrade and throttle other
1690          * cgroups
1691          */
1692         if (time_after_eq(now, td->low_upgrade_time + throtl_slice) &&
1693             time_after_eq(now, tg_last_low_overflow_time(tg) + throtl_slice))
1694                 return true;
1695         return false;
1696 }
1697
1698 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1699 {
1700         while (true) {
1701                 if (!throtl_tg_can_downgrade(tg))
1702                         return false;
1703                 tg = sq_to_tg(tg->service_queue.parent_sq);
1704                 if (!tg || !tg_to_blkg(tg)->parent)
1705                         break;
1706         }
1707         return true;
1708 }
1709
1710 static void throtl_downgrade_check(struct throtl_grp *tg)
1711 {
1712         uint64_t bps;
1713         unsigned int iops;
1714         unsigned long elapsed_time;
1715         unsigned long now = jiffies;
1716
1717         if (tg->td->limit_index != LIMIT_MAX ||
1718             !tg->td->limit_valid[LIMIT_LOW])
1719                 return;
1720         if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1721                 return;
1722         if (time_after(tg->last_check_time + throtl_slice, now))
1723                 return;
1724
1725         elapsed_time = now - tg->last_check_time;
1726         tg->last_check_time = now;
1727
1728         if (time_before(now, tg_last_low_overflow_time(tg) + throtl_slice))
1729                 return;
1730
1731         if (tg->bps[READ][LIMIT_LOW]) {
1732                 bps = tg->last_bytes_disp[READ] * HZ;
1733                 do_div(bps, elapsed_time);
1734                 if (bps >= tg->bps[READ][LIMIT_LOW])
1735                         tg->last_low_overflow_time[READ] = now;
1736         }
1737
1738         if (tg->bps[WRITE][LIMIT_LOW]) {
1739                 bps = tg->last_bytes_disp[WRITE] * HZ;
1740                 do_div(bps, elapsed_time);
1741                 if (bps >= tg->bps[WRITE][LIMIT_LOW])
1742                         tg->last_low_overflow_time[WRITE] = now;
1743         }
1744
1745         if (tg->iops[READ][LIMIT_LOW]) {
1746                 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
1747                 if (iops >= tg->iops[READ][LIMIT_LOW])
1748                         tg->last_low_overflow_time[READ] = now;
1749         }
1750
1751         if (tg->iops[WRITE][LIMIT_LOW]) {
1752                 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
1753                 if (iops >= tg->iops[WRITE][LIMIT_LOW])
1754                         tg->last_low_overflow_time[WRITE] = now;
1755         }
1756
1757         /*
1758          * If cgroup is below low limit, consider downgrade and throttle other
1759          * cgroups
1760          */
1761         if (throtl_hierarchy_can_downgrade(tg))
1762                 throtl_downgrade_state(tg->td, LIMIT_LOW);
1763
1764         tg->last_bytes_disp[READ] = 0;
1765         tg->last_bytes_disp[WRITE] = 0;
1766         tg->last_io_disp[READ] = 0;
1767         tg->last_io_disp[WRITE] = 0;
1768 }
1769
1770 bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1771                     struct bio *bio)
1772 {
1773         struct throtl_qnode *qn = NULL;
1774         struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1775         struct throtl_service_queue *sq;
1776         bool rw = bio_data_dir(bio);
1777         bool throttled = false;
1778
1779         WARN_ON_ONCE(!rcu_read_lock_held());
1780
1781         /* see throtl_charge_bio() */
1782         if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1783                 goto out;
1784
1785         spin_lock_irq(q->queue_lock);
1786
1787         if (unlikely(blk_queue_bypass(q)))
1788                 goto out_unlock;
1789
1790         sq = &tg->service_queue;
1791
1792 again:
1793         while (true) {
1794                 if (tg->last_low_overflow_time[rw] == 0)
1795                         tg->last_low_overflow_time[rw] = jiffies;
1796                 throtl_downgrade_check(tg);
1797                 /* throtl is FIFO - if bios are already queued, should queue */
1798                 if (sq->nr_queued[rw])
1799                         break;
1800
1801                 /* if above limits, break to queue */
1802                 if (!tg_may_dispatch(tg, bio, NULL)) {
1803                         tg->last_low_overflow_time[rw] = jiffies;
1804                         if (throtl_can_upgrade(tg->td, tg)) {
1805                                 throtl_upgrade_state(tg->td);
1806                                 goto again;
1807                         }
1808                         break;
1809                 }
1810
1811                 /* within limits, let's charge and dispatch directly */
1812                 throtl_charge_bio(tg, bio);
1813
1814                 /*
1815                  * We need to trim slice even when bios are not being queued
1816                  * otherwise it might happen that a bio is not queued for
1817                  * a long time and slice keeps on extending and trim is not
1818                  * called for a long time. Now if limits are reduced suddenly
1819                  * we take into account all the IO dispatched so far at new
1820                  * low rate and * newly queued IO gets a really long dispatch
1821                  * time.
1822                  *
1823                  * So keep on trimming slice even if bio is not queued.
1824                  */
1825                 throtl_trim_slice(tg, rw);
1826
1827                 /*
1828                  * @bio passed through this layer without being throttled.
1829                  * Climb up the ladder.  If we''re already at the top, it
1830                  * can be executed directly.
1831                  */
1832                 qn = &tg->qnode_on_parent[rw];
1833                 sq = sq->parent_sq;
1834                 tg = sq_to_tg(sq);
1835                 if (!tg)
1836                         goto out_unlock;
1837         }
1838
1839         /* out-of-limit, queue to @tg */
1840         throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1841                    rw == READ ? 'R' : 'W',
1842                    tg->bytes_disp[rw], bio->bi_iter.bi_size,
1843                    tg_bps_limit(tg, rw),
1844                    tg->io_disp[rw], tg_iops_limit(tg, rw),
1845                    sq->nr_queued[READ], sq->nr_queued[WRITE]);
1846
1847         tg->last_low_overflow_time[rw] = jiffies;
1848
1849         bio_associate_current(bio);
1850         tg->td->nr_queued[rw]++;
1851         throtl_add_bio_tg(bio, qn, tg);
1852         throttled = true;
1853
1854         /*
1855          * Update @tg's dispatch time and force schedule dispatch if @tg
1856          * was empty before @bio.  The forced scheduling isn't likely to
1857          * cause undue delay as @bio is likely to be dispatched directly if
1858          * its @tg's disptime is not in the future.
1859          */
1860         if (tg->flags & THROTL_TG_WAS_EMPTY) {
1861                 tg_update_disptime(tg);
1862                 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1863         }
1864
1865 out_unlock:
1866         spin_unlock_irq(q->queue_lock);
1867 out:
1868         /*
1869          * As multiple blk-throtls may stack in the same issue path, we
1870          * don't want bios to leave with the flag set.  Clear the flag if
1871          * being issued.
1872          */
1873         if (!throttled)
1874                 bio_clear_flag(bio, BIO_THROTTLED);
1875         return throttled;
1876 }
1877
1878 /*
1879  * Dispatch all bios from all children tg's queued on @parent_sq.  On
1880  * return, @parent_sq is guaranteed to not have any active children tg's
1881  * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1882  */
1883 static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1884 {
1885         struct throtl_grp *tg;
1886
1887         while ((tg = throtl_rb_first(parent_sq))) {
1888                 struct throtl_service_queue *sq = &tg->service_queue;
1889                 struct bio *bio;
1890
1891                 throtl_dequeue_tg(tg);
1892
1893                 while ((bio = throtl_peek_queued(&sq->queued[READ])))
1894                         tg_dispatch_one_bio(tg, bio_data_dir(bio));
1895                 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1896                         tg_dispatch_one_bio(tg, bio_data_dir(bio));
1897         }
1898 }
1899
1900 /**
1901  * blk_throtl_drain - drain throttled bios
1902  * @q: request_queue to drain throttled bios for
1903  *
1904  * Dispatch all currently throttled bios on @q through ->make_request_fn().
1905  */
1906 void blk_throtl_drain(struct request_queue *q)
1907         __releases(q->queue_lock) __acquires(q->queue_lock)
1908 {
1909         struct throtl_data *td = q->td;
1910         struct blkcg_gq *blkg;
1911         struct cgroup_subsys_state *pos_css;
1912         struct bio *bio;
1913         int rw;
1914
1915         queue_lockdep_assert_held(q);
1916         rcu_read_lock();
1917
1918         /*
1919          * Drain each tg while doing post-order walk on the blkg tree, so
1920          * that all bios are propagated to td->service_queue.  It'd be
1921          * better to walk service_queue tree directly but blkg walk is
1922          * easier.
1923          */
1924         blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1925                 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1926
1927         /* finally, transfer bios from top-level tg's into the td */
1928         tg_drain_bios(&td->service_queue);
1929
1930         rcu_read_unlock();
1931         spin_unlock_irq(q->queue_lock);
1932
1933         /* all bios now should be in td->service_queue, issue them */
1934         for (rw = READ; rw <= WRITE; rw++)
1935                 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1936                                                 NULL)))
1937                         generic_make_request(bio);
1938
1939         spin_lock_irq(q->queue_lock);
1940 }
1941
1942 int blk_throtl_init(struct request_queue *q)
1943 {
1944         struct throtl_data *td;
1945         int ret;
1946
1947         td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1948         if (!td)
1949                 return -ENOMEM;
1950
1951         INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1952         throtl_service_queue_init(&td->service_queue);
1953
1954         q->td = td;
1955         td->queue = q;
1956
1957         td->limit_valid[LIMIT_MAX] = true;
1958         td->limit_index = LIMIT_MAX;
1959         td->low_upgrade_time = jiffies;
1960         td->low_downgrade_time = jiffies;
1961         /* activate policy */
1962         ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1963         if (ret)
1964                 kfree(td);
1965         return ret;
1966 }
1967
1968 void blk_throtl_exit(struct request_queue *q)
1969 {
1970         BUG_ON(!q->td);
1971         throtl_shutdown_wq(q);
1972         blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1973         kfree(q->td);
1974 }
1975
1976 static int __init throtl_init(void)
1977 {
1978         kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1979         if (!kthrotld_workqueue)
1980                 panic("Failed to create kthrotld\n");
1981
1982         return blkcg_policy_register(&blkcg_policy_throtl);
1983 }
1984
1985 module_init(throtl_init);