]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/blk.h
ASoC: wm8962: correct addresses for HPF_C_0/1
[karo-tx-linux.git] / block / blk.h
1 #ifndef BLK_INTERNAL_H
2 #define BLK_INTERNAL_H
3
4 #include <linux/idr.h>
5 #include <linux/blk-mq.h>
6 #include "blk-mq.h"
7
8 /* Amount of time in which a process may batch requests */
9 #define BLK_BATCH_TIME  (HZ/50UL)
10
11 /* Number of requests a "batching" process may submit */
12 #define BLK_BATCH_REQ   32
13
14 /* Max future timer expiry for timeouts */
15 #define BLK_MAX_TIMEOUT         (5 * HZ)
16
17 struct blk_flush_queue {
18         unsigned int            flush_queue_delayed:1;
19         unsigned int            flush_pending_idx:1;
20         unsigned int            flush_running_idx:1;
21         unsigned long           flush_pending_since;
22         struct list_head        flush_queue[2];
23         struct list_head        flush_data_in_flight;
24         struct request          *flush_rq;
25
26         /*
27          * flush_rq shares tag with this rq, both can't be active
28          * at the same time
29          */
30         struct request          *orig_rq;
31         spinlock_t              mq_flush_lock;
32 };
33
34 extern struct kmem_cache *blk_requestq_cachep;
35 extern struct kmem_cache *request_cachep;
36 extern struct kobj_type blk_queue_ktype;
37 extern struct ida blk_queue_ida;
38
39 static inline struct blk_flush_queue *blk_get_flush_queue(
40                 struct request_queue *q, struct blk_mq_ctx *ctx)
41 {
42         struct blk_mq_hw_ctx *hctx;
43
44         if (!q->mq_ops)
45                 return q->fq;
46
47         hctx = q->mq_ops->map_queue(q, ctx->cpu);
48
49         return hctx->fq;
50 }
51
52 static inline void __blk_get_queue(struct request_queue *q)
53 {
54         kobject_get(&q->kobj);
55 }
56
57 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
58                 int node, int cmd_size);
59 void blk_free_flush_queue(struct blk_flush_queue *q);
60
61 int blk_init_rl(struct request_list *rl, struct request_queue *q,
62                 gfp_t gfp_mask);
63 void blk_exit_rl(struct request_list *rl);
64 void init_request_from_bio(struct request *req, struct bio *bio);
65 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
66                         struct bio *bio);
67 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
68                       struct bio *bio);
69 void blk_queue_bypass_start(struct request_queue *q);
70 void blk_queue_bypass_end(struct request_queue *q);
71 void blk_dequeue_request(struct request *rq);
72 void __blk_queue_free_tags(struct request_queue *q);
73 bool __blk_end_bidi_request(struct request *rq, int error,
74                             unsigned int nr_bytes, unsigned int bidi_bytes);
75 int blk_queue_enter(struct request_queue *q, gfp_t gfp);
76 void blk_queue_exit(struct request_queue *q);
77 void blk_freeze_queue(struct request_queue *q);
78
79 static inline void blk_queue_enter_live(struct request_queue *q)
80 {
81         /*
82          * Given that running in generic_make_request() context
83          * guarantees that a live reference against q_usage_counter has
84          * been established, further references under that same context
85          * need not check that the queue has been frozen (marked dead).
86          */
87         percpu_ref_get(&q->q_usage_counter);
88 }
89
90 #ifdef CONFIG_BLK_DEV_INTEGRITY
91 void blk_flush_integrity(void);
92 #else
93 static inline void blk_flush_integrity(void)
94 {
95 }
96 #endif
97
98 void blk_rq_timed_out_timer(unsigned long data);
99 unsigned long blk_rq_timeout(unsigned long timeout);
100 void blk_add_timer(struct request *req);
101 void blk_delete_timer(struct request *);
102
103
104 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
105                              struct bio *bio);
106 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
107                             struct bio *bio);
108 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
109                             unsigned int *request_count,
110                             struct request **same_queue_rq);
111 unsigned int blk_plug_queued_count(struct request_queue *q);
112
113 void blk_account_io_start(struct request *req, bool new_io);
114 void blk_account_io_completion(struct request *req, unsigned int bytes);
115 void blk_account_io_done(struct request *req);
116
117 /*
118  * Internal atomic flags for request handling
119  */
120 enum rq_atomic_flags {
121         REQ_ATOM_COMPLETE = 0,
122         REQ_ATOM_STARTED,
123 };
124
125 /*
126  * EH timer and IO completion will both attempt to 'grab' the request, make
127  * sure that only one of them succeeds
128  */
129 static inline int blk_mark_rq_complete(struct request *rq)
130 {
131         return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
132 }
133
134 static inline void blk_clear_rq_complete(struct request *rq)
135 {
136         clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
137 }
138
139 /*
140  * Internal elevator interface
141  */
142 #define ELV_ON_HASH(rq) ((rq)->cmd_flags & REQ_HASHED)
143
144 void blk_insert_flush(struct request *rq);
145
146 static inline struct request *__elv_next_request(struct request_queue *q)
147 {
148         struct request *rq;
149         struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
150
151         while (1) {
152                 if (!list_empty(&q->queue_head)) {
153                         rq = list_entry_rq(q->queue_head.next);
154                         return rq;
155                 }
156
157                 /*
158                  * Flush request is running and flush request isn't queueable
159                  * in the drive, we can hold the queue till flush request is
160                  * finished. Even we don't do this, driver can't dispatch next
161                  * requests and will requeue them. And this can improve
162                  * throughput too. For example, we have request flush1, write1,
163                  * flush 2. flush1 is dispatched, then queue is hold, write1
164                  * isn't inserted to queue. After flush1 is finished, flush2
165                  * will be dispatched. Since disk cache is already clean,
166                  * flush2 will be finished very soon, so looks like flush2 is
167                  * folded to flush1.
168                  * Since the queue is hold, a flag is set to indicate the queue
169                  * should be restarted later. Please see flush_end_io() for
170                  * details.
171                  */
172                 if (fq->flush_pending_idx != fq->flush_running_idx &&
173                                 !queue_flush_queueable(q)) {
174                         fq->flush_queue_delayed = 1;
175                         return NULL;
176                 }
177                 if (unlikely(blk_queue_bypass(q)) ||
178                     !q->elevator->type->ops.elevator_dispatch_fn(q, 0))
179                         return NULL;
180         }
181 }
182
183 static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
184 {
185         struct elevator_queue *e = q->elevator;
186
187         if (e->type->ops.elevator_activate_req_fn)
188                 e->type->ops.elevator_activate_req_fn(q, rq);
189 }
190
191 static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
192 {
193         struct elevator_queue *e = q->elevator;
194
195         if (e->type->ops.elevator_deactivate_req_fn)
196                 e->type->ops.elevator_deactivate_req_fn(q, rq);
197 }
198
199 #ifdef CONFIG_FAIL_IO_TIMEOUT
200 int blk_should_fake_timeout(struct request_queue *);
201 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
202 ssize_t part_timeout_store(struct device *, struct device_attribute *,
203                                 const char *, size_t);
204 #else
205 static inline int blk_should_fake_timeout(struct request_queue *q)
206 {
207         return 0;
208 }
209 #endif
210
211 int ll_back_merge_fn(struct request_queue *q, struct request *req,
212                      struct bio *bio);
213 int ll_front_merge_fn(struct request_queue *q, struct request *req, 
214                       struct bio *bio);
215 int attempt_back_merge(struct request_queue *q, struct request *rq);
216 int attempt_front_merge(struct request_queue *q, struct request *rq);
217 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
218                                 struct request *next);
219 void blk_recalc_rq_segments(struct request *rq);
220 void blk_rq_set_mixed_merge(struct request *rq);
221 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
222 int blk_try_merge(struct request *rq, struct bio *bio);
223
224 void blk_queue_congestion_threshold(struct request_queue *q);
225
226 int blk_dev_init(void);
227
228
229 /*
230  * Return the threshold (number of used requests) at which the queue is
231  * considered to be congested.  It include a little hysteresis to keep the
232  * context switch rate down.
233  */
234 static inline int queue_congestion_on_threshold(struct request_queue *q)
235 {
236         return q->nr_congestion_on;
237 }
238
239 /*
240  * The threshold at which a queue is considered to be uncongested
241  */
242 static inline int queue_congestion_off_threshold(struct request_queue *q)
243 {
244         return q->nr_congestion_off;
245 }
246
247 extern int blk_update_nr_requests(struct request_queue *, unsigned int);
248
249 /*
250  * Contribute to IO statistics IFF:
251  *
252  *      a) it's attached to a gendisk, and
253  *      b) the queue had IO stats enabled when this request was started, and
254  *      c) it's a file system request
255  */
256 static inline int blk_do_io_stat(struct request *rq)
257 {
258         return rq->rq_disk &&
259                (rq->cmd_flags & REQ_IO_STAT) &&
260                 (rq->cmd_type == REQ_TYPE_FS);
261 }
262
263 /*
264  * Internal io_context interface
265  */
266 void get_io_context(struct io_context *ioc);
267 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
268 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
269                              gfp_t gfp_mask);
270 void ioc_clear_queue(struct request_queue *q);
271
272 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
273
274 /**
275  * create_io_context - try to create task->io_context
276  * @gfp_mask: allocation mask
277  * @node: allocation node
278  *
279  * If %current->io_context is %NULL, allocate a new io_context and install
280  * it.  Returns the current %current->io_context which may be %NULL if
281  * allocation failed.
282  *
283  * Note that this function can't be called with IRQ disabled because
284  * task_lock which protects %current->io_context is IRQ-unsafe.
285  */
286 static inline struct io_context *create_io_context(gfp_t gfp_mask, int node)
287 {
288         WARN_ON_ONCE(irqs_disabled());
289         if (unlikely(!current->io_context))
290                 create_task_io_context(current, gfp_mask, node);
291         return current->io_context;
292 }
293
294 /*
295  * Internal throttling interface
296  */
297 #ifdef CONFIG_BLK_DEV_THROTTLING
298 extern void blk_throtl_drain(struct request_queue *q);
299 extern int blk_throtl_init(struct request_queue *q);
300 extern void blk_throtl_exit(struct request_queue *q);
301 #else /* CONFIG_BLK_DEV_THROTTLING */
302 static inline void blk_throtl_drain(struct request_queue *q) { }
303 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
304 static inline void blk_throtl_exit(struct request_queue *q) { }
305 #endif /* CONFIG_BLK_DEV_THROTTLING */
306
307 #endif /* BLK_INTERNAL_H */