]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/cfq-iosched.c
x86: Fix x2apic preenabled system with kexec
[karo-tx-linux.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 #define CFQ_SLICE_SCALE         (5)
46 #define CFQ_HW_QUEUE_MIN        (5)
47 #define CFQ_SERVICE_SHIFT       12
48
49 #define CFQQ_SEEK_THR           8 * 1024
50 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
51
52 #define RQ_CIC(rq)              \
53         ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
55
56 static struct kmem_cache *cfq_pool;
57 static struct kmem_cache *cfq_ioc_pool;
58
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60 static struct completion *ioc_gone;
61 static DEFINE_SPINLOCK(ioc_gone_lock);
62
63 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples)   ((samples) > 80)
68 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
69
70 /*
71  * Most of our rbtree usage is for sorting with min extraction, so
72  * if we cache the leftmost node we don't have to walk down the tree
73  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74  * move this into the elevator for the rq sorting as well.
75  */
76 struct cfq_rb_root {
77         struct rb_root rb;
78         struct rb_node *left;
79         unsigned count;
80         u64 min_vdisktime;
81         struct rb_node *active;
82         unsigned total_weight;
83 };
84 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
85
86 /*
87  * Per process-grouping structure
88  */
89 struct cfq_queue {
90         /* reference count */
91         atomic_t ref;
92         /* various state flags, see below */
93         unsigned int flags;
94         /* parent cfq_data */
95         struct cfq_data *cfqd;
96         /* service_tree member */
97         struct rb_node rb_node;
98         /* service_tree key */
99         unsigned long rb_key;
100         /* prio tree member */
101         struct rb_node p_node;
102         /* prio tree root we belong to, if any */
103         struct rb_root *p_root;
104         /* sorted list of pending requests */
105         struct rb_root sort_list;
106         /* if fifo isn't expired, next request to serve */
107         struct request *next_rq;
108         /* requests queued in sort_list */
109         int queued[2];
110         /* currently allocated requests */
111         int allocated[2];
112         /* fifo list of requests in sort_list */
113         struct list_head fifo;
114
115         /* time when queue got scheduled in to dispatch first request. */
116         unsigned long dispatch_start;
117         unsigned int allocated_slice;
118         /* time when first request from queue completed and slice started. */
119         unsigned long slice_start;
120         unsigned long slice_end;
121         long slice_resid;
122         unsigned int slice_dispatch;
123
124         /* pending metadata requests */
125         int meta_pending;
126         /* number of requests that are on the dispatch list or inside driver */
127         int dispatched;
128
129         /* io prio of this group */
130         unsigned short ioprio, org_ioprio;
131         unsigned short ioprio_class, org_ioprio_class;
132
133         unsigned int seek_samples;
134         u64 seek_total;
135         sector_t seek_mean;
136         sector_t last_request_pos;
137
138         pid_t pid;
139
140         struct cfq_rb_root *service_tree;
141         struct cfq_queue *new_cfqq;
142         struct cfq_group *cfqg;
143         struct cfq_group *orig_cfqg;
144         /* Sectors dispatched in current dispatch round */
145         unsigned long nr_sectors;
146 };
147
148 /*
149  * First index in the service_trees.
150  * IDLE is handled separately, so it has negative index
151  */
152 enum wl_prio_t {
153         BE_WORKLOAD = 0,
154         RT_WORKLOAD = 1,
155         IDLE_WORKLOAD = 2,
156 };
157
158 /*
159  * Second index in the service_trees.
160  */
161 enum wl_type_t {
162         ASYNC_WORKLOAD = 0,
163         SYNC_NOIDLE_WORKLOAD = 1,
164         SYNC_WORKLOAD = 2
165 };
166
167 /* This is per cgroup per device grouping structure */
168 struct cfq_group {
169         /* group service_tree member */
170         struct rb_node rb_node;
171
172         /* group service_tree key */
173         u64 vdisktime;
174         unsigned int weight;
175         bool on_st;
176
177         /* number of cfqq currently on this group */
178         int nr_cfqq;
179
180         /* Per group busy queus average. Useful for workload slice calc. */
181         unsigned int busy_queues_avg[2];
182         /*
183          * rr lists of queues with requests, onle rr for each priority class.
184          * Counts are embedded in the cfq_rb_root
185          */
186         struct cfq_rb_root service_trees[2][3];
187         struct cfq_rb_root service_tree_idle;
188
189         unsigned long saved_workload_slice;
190         enum wl_type_t saved_workload;
191         enum wl_prio_t saved_serving_prio;
192         struct blkio_group blkg;
193 #ifdef CONFIG_CFQ_GROUP_IOSCHED
194         struct hlist_node cfqd_node;
195         atomic_t ref;
196 #endif
197 };
198
199 /*
200  * Per block device queue structure
201  */
202 struct cfq_data {
203         struct request_queue *queue;
204         /* Root service tree for cfq_groups */
205         struct cfq_rb_root grp_service_tree;
206         struct cfq_group root_group;
207
208         /*
209          * The priority currently being served
210          */
211         enum wl_prio_t serving_prio;
212         enum wl_type_t serving_type;
213         unsigned long workload_expires;
214         struct cfq_group *serving_group;
215         bool noidle_tree_requires_idle;
216
217         /*
218          * Each priority tree is sorted by next_request position.  These
219          * trees are used when determining if two or more queues are
220          * interleaving requests (see cfq_close_cooperator).
221          */
222         struct rb_root prio_trees[CFQ_PRIO_LISTS];
223
224         unsigned int busy_queues;
225
226         int rq_in_driver[2];
227         int sync_flight;
228
229         /*
230          * queue-depth detection
231          */
232         int rq_queued;
233         int hw_tag;
234         /*
235          * hw_tag can be
236          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
237          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
238          *  0 => no NCQ
239          */
240         int hw_tag_est_depth;
241         unsigned int hw_tag_samples;
242
243         /*
244          * idle window management
245          */
246         struct timer_list idle_slice_timer;
247         struct work_struct unplug_work;
248
249         struct cfq_queue *active_queue;
250         struct cfq_io_context *active_cic;
251
252         /*
253          * async queue for each priority case
254          */
255         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
256         struct cfq_queue *async_idle_cfqq;
257
258         sector_t last_position;
259
260         /*
261          * tunables, see top of file
262          */
263         unsigned int cfq_quantum;
264         unsigned int cfq_fifo_expire[2];
265         unsigned int cfq_back_penalty;
266         unsigned int cfq_back_max;
267         unsigned int cfq_slice[2];
268         unsigned int cfq_slice_async_rq;
269         unsigned int cfq_slice_idle;
270         unsigned int cfq_latency;
271         unsigned int cfq_group_isolation;
272
273         struct list_head cic_list;
274
275         /*
276          * Fallback dummy cfqq for extreme OOM conditions
277          */
278         struct cfq_queue oom_cfqq;
279
280         unsigned long last_delayed_sync;
281
282         /* List of cfq groups being managed on this device*/
283         struct hlist_head cfqg_list;
284         struct rcu_head rcu;
285 };
286
287 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
288
289 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
290                                             enum wl_prio_t prio,
291                                             enum wl_type_t type)
292 {
293         if (!cfqg)
294                 return NULL;
295
296         if (prio == IDLE_WORKLOAD)
297                 return &cfqg->service_tree_idle;
298
299         return &cfqg->service_trees[prio][type];
300 }
301
302 enum cfqq_state_flags {
303         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
304         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
305         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
306         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
307         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
308         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
309         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
310         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
311         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
312         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
313         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
314         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
315         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
316 };
317
318 #define CFQ_CFQQ_FNS(name)                                              \
319 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
320 {                                                                       \
321         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
322 }                                                                       \
323 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
324 {                                                                       \
325         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
326 }                                                                       \
327 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
328 {                                                                       \
329         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
330 }
331
332 CFQ_CFQQ_FNS(on_rr);
333 CFQ_CFQQ_FNS(wait_request);
334 CFQ_CFQQ_FNS(must_dispatch);
335 CFQ_CFQQ_FNS(must_alloc_slice);
336 CFQ_CFQQ_FNS(fifo_expire);
337 CFQ_CFQQ_FNS(idle_window);
338 CFQ_CFQQ_FNS(prio_changed);
339 CFQ_CFQQ_FNS(slice_new);
340 CFQ_CFQQ_FNS(sync);
341 CFQ_CFQQ_FNS(coop);
342 CFQ_CFQQ_FNS(split_coop);
343 CFQ_CFQQ_FNS(deep);
344 CFQ_CFQQ_FNS(wait_busy);
345 #undef CFQ_CFQQ_FNS
346
347 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
348 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
349         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
350                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
351                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
352
353 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
354         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
355                                 blkg_path(&(cfqg)->blkg), ##args);      \
356
357 #else
358 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
359         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
361 #endif
362 #define cfq_log(cfqd, fmt, args...)     \
363         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
364
365 /* Traverses through cfq group service trees */
366 #define for_each_cfqg_st(cfqg, i, j, st) \
367         for (i = 0; i <= IDLE_WORKLOAD; i++) \
368                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
369                         : &cfqg->service_tree_idle; \
370                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
371                         (i == IDLE_WORKLOAD && j == 0); \
372                         j++, st = i < IDLE_WORKLOAD ? \
373                         &cfqg->service_trees[i][j]: NULL) \
374
375
376 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
377 {
378         if (cfq_class_idle(cfqq))
379                 return IDLE_WORKLOAD;
380         if (cfq_class_rt(cfqq))
381                 return RT_WORKLOAD;
382         return BE_WORKLOAD;
383 }
384
385
386 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
387 {
388         if (!cfq_cfqq_sync(cfqq))
389                 return ASYNC_WORKLOAD;
390         if (!cfq_cfqq_idle_window(cfqq))
391                 return SYNC_NOIDLE_WORKLOAD;
392         return SYNC_WORKLOAD;
393 }
394
395 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
396                                         struct cfq_data *cfqd,
397                                         struct cfq_group *cfqg)
398 {
399         if (wl == IDLE_WORKLOAD)
400                 return cfqg->service_tree_idle.count;
401
402         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
403                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
404                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
405 }
406
407 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
408                                         struct cfq_group *cfqg)
409 {
410         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
411                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
412 }
413
414 static void cfq_dispatch_insert(struct request_queue *, struct request *);
415 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
416                                        struct io_context *, gfp_t);
417 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
418                                                 struct io_context *);
419
420 static inline int rq_in_driver(struct cfq_data *cfqd)
421 {
422         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
423 }
424
425 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
426                                             bool is_sync)
427 {
428         return cic->cfqq[is_sync];
429 }
430
431 static inline void cic_set_cfqq(struct cfq_io_context *cic,
432                                 struct cfq_queue *cfqq, bool is_sync)
433 {
434         cic->cfqq[is_sync] = cfqq;
435 }
436
437 /*
438  * We regard a request as SYNC, if it's either a read or has the SYNC bit
439  * set (in which case it could also be direct WRITE).
440  */
441 static inline bool cfq_bio_sync(struct bio *bio)
442 {
443         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
444 }
445
446 /*
447  * scheduler run of queue, if there are requests pending and no one in the
448  * driver that will restart queueing
449  */
450 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
451 {
452         if (cfqd->busy_queues) {
453                 cfq_log(cfqd, "schedule dispatch");
454                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
455         }
456 }
457
458 static int cfq_queue_empty(struct request_queue *q)
459 {
460         struct cfq_data *cfqd = q->elevator->elevator_data;
461
462         return !cfqd->rq_queued;
463 }
464
465 /*
466  * Scale schedule slice based on io priority. Use the sync time slice only
467  * if a queue is marked sync and has sync io queued. A sync queue with async
468  * io only, should not get full sync slice length.
469  */
470 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
471                                  unsigned short prio)
472 {
473         const int base_slice = cfqd->cfq_slice[sync];
474
475         WARN_ON(prio >= IOPRIO_BE_NR);
476
477         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
478 }
479
480 static inline int
481 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
482 {
483         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
484 }
485
486 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
487 {
488         u64 d = delta << CFQ_SERVICE_SHIFT;
489
490         d = d * BLKIO_WEIGHT_DEFAULT;
491         do_div(d, cfqg->weight);
492         return d;
493 }
494
495 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
496 {
497         s64 delta = (s64)(vdisktime - min_vdisktime);
498         if (delta > 0)
499                 min_vdisktime = vdisktime;
500
501         return min_vdisktime;
502 }
503
504 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
505 {
506         s64 delta = (s64)(vdisktime - min_vdisktime);
507         if (delta < 0)
508                 min_vdisktime = vdisktime;
509
510         return min_vdisktime;
511 }
512
513 static void update_min_vdisktime(struct cfq_rb_root *st)
514 {
515         u64 vdisktime = st->min_vdisktime;
516         struct cfq_group *cfqg;
517
518         if (st->active) {
519                 cfqg = rb_entry_cfqg(st->active);
520                 vdisktime = cfqg->vdisktime;
521         }
522
523         if (st->left) {
524                 cfqg = rb_entry_cfqg(st->left);
525                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
526         }
527
528         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
529 }
530
531 /*
532  * get averaged number of queues of RT/BE priority.
533  * average is updated, with a formula that gives more weight to higher numbers,
534  * to quickly follows sudden increases and decrease slowly
535  */
536
537 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
538                                         struct cfq_group *cfqg, bool rt)
539 {
540         unsigned min_q, max_q;
541         unsigned mult  = cfq_hist_divisor - 1;
542         unsigned round = cfq_hist_divisor / 2;
543         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
544
545         min_q = min(cfqg->busy_queues_avg[rt], busy);
546         max_q = max(cfqg->busy_queues_avg[rt], busy);
547         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
548                 cfq_hist_divisor;
549         return cfqg->busy_queues_avg[rt];
550 }
551
552 static inline unsigned
553 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
554 {
555         struct cfq_rb_root *st = &cfqd->grp_service_tree;
556
557         return cfq_target_latency * cfqg->weight / st->total_weight;
558 }
559
560 static inline void
561 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
562 {
563         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
564         if (cfqd->cfq_latency) {
565                 /*
566                  * interested queues (we consider only the ones with the same
567                  * priority class in the cfq group)
568                  */
569                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
570                                                 cfq_class_rt(cfqq));
571                 unsigned sync_slice = cfqd->cfq_slice[1];
572                 unsigned expect_latency = sync_slice * iq;
573                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
574
575                 if (expect_latency > group_slice) {
576                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
577                         /* scale low_slice according to IO priority
578                          * and sync vs async */
579                         unsigned low_slice =
580                                 min(slice, base_low_slice * slice / sync_slice);
581                         /* the adapted slice value is scaled to fit all iqs
582                          * into the target latency */
583                         slice = max(slice * group_slice / expect_latency,
584                                     low_slice);
585                 }
586         }
587         cfqq->slice_start = jiffies;
588         cfqq->slice_end = jiffies + slice;
589         cfqq->allocated_slice = slice;
590         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
591 }
592
593 /*
594  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
595  * isn't valid until the first request from the dispatch is activated
596  * and the slice time set.
597  */
598 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
599 {
600         if (cfq_cfqq_slice_new(cfqq))
601                 return 0;
602         if (time_before(jiffies, cfqq->slice_end))
603                 return 0;
604
605         return 1;
606 }
607
608 /*
609  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
610  * We choose the request that is closest to the head right now. Distance
611  * behind the head is penalized and only allowed to a certain extent.
612  */
613 static struct request *
614 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
615 {
616         sector_t s1, s2, d1 = 0, d2 = 0;
617         unsigned long back_max;
618 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
619 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
620         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
621
622         if (rq1 == NULL || rq1 == rq2)
623                 return rq2;
624         if (rq2 == NULL)
625                 return rq1;
626
627         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
628                 return rq1;
629         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
630                 return rq2;
631         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
632                 return rq1;
633         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
634                 return rq2;
635
636         s1 = blk_rq_pos(rq1);
637         s2 = blk_rq_pos(rq2);
638
639         /*
640          * by definition, 1KiB is 2 sectors
641          */
642         back_max = cfqd->cfq_back_max * 2;
643
644         /*
645          * Strict one way elevator _except_ in the case where we allow
646          * short backward seeks which are biased as twice the cost of a
647          * similar forward seek.
648          */
649         if (s1 >= last)
650                 d1 = s1 - last;
651         else if (s1 + back_max >= last)
652                 d1 = (last - s1) * cfqd->cfq_back_penalty;
653         else
654                 wrap |= CFQ_RQ1_WRAP;
655
656         if (s2 >= last)
657                 d2 = s2 - last;
658         else if (s2 + back_max >= last)
659                 d2 = (last - s2) * cfqd->cfq_back_penalty;
660         else
661                 wrap |= CFQ_RQ2_WRAP;
662
663         /* Found required data */
664
665         /*
666          * By doing switch() on the bit mask "wrap" we avoid having to
667          * check two variables for all permutations: --> faster!
668          */
669         switch (wrap) {
670         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
671                 if (d1 < d2)
672                         return rq1;
673                 else if (d2 < d1)
674                         return rq2;
675                 else {
676                         if (s1 >= s2)
677                                 return rq1;
678                         else
679                                 return rq2;
680                 }
681
682         case CFQ_RQ2_WRAP:
683                 return rq1;
684         case CFQ_RQ1_WRAP:
685                 return rq2;
686         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
687         default:
688                 /*
689                  * Since both rqs are wrapped,
690                  * start with the one that's further behind head
691                  * (--> only *one* back seek required),
692                  * since back seek takes more time than forward.
693                  */
694                 if (s1 <= s2)
695                         return rq1;
696                 else
697                         return rq2;
698         }
699 }
700
701 /*
702  * The below is leftmost cache rbtree addon
703  */
704 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
705 {
706         /* Service tree is empty */
707         if (!root->count)
708                 return NULL;
709
710         if (!root->left)
711                 root->left = rb_first(&root->rb);
712
713         if (root->left)
714                 return rb_entry(root->left, struct cfq_queue, rb_node);
715
716         return NULL;
717 }
718
719 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
720 {
721         if (!root->left)
722                 root->left = rb_first(&root->rb);
723
724         if (root->left)
725                 return rb_entry_cfqg(root->left);
726
727         return NULL;
728 }
729
730 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
731 {
732         rb_erase(n, root);
733         RB_CLEAR_NODE(n);
734 }
735
736 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
737 {
738         if (root->left == n)
739                 root->left = NULL;
740         rb_erase_init(n, &root->rb);
741         --root->count;
742 }
743
744 /*
745  * would be nice to take fifo expire time into account as well
746  */
747 static struct request *
748 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
749                   struct request *last)
750 {
751         struct rb_node *rbnext = rb_next(&last->rb_node);
752         struct rb_node *rbprev = rb_prev(&last->rb_node);
753         struct request *next = NULL, *prev = NULL;
754
755         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
756
757         if (rbprev)
758                 prev = rb_entry_rq(rbprev);
759
760         if (rbnext)
761                 next = rb_entry_rq(rbnext);
762         else {
763                 rbnext = rb_first(&cfqq->sort_list);
764                 if (rbnext && rbnext != &last->rb_node)
765                         next = rb_entry_rq(rbnext);
766         }
767
768         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
769 }
770
771 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
772                                       struct cfq_queue *cfqq)
773 {
774         /*
775          * just an approximation, should be ok.
776          */
777         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
778                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
779 }
780
781 static inline s64
782 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
783 {
784         return cfqg->vdisktime - st->min_vdisktime;
785 }
786
787 static void
788 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
789 {
790         struct rb_node **node = &st->rb.rb_node;
791         struct rb_node *parent = NULL;
792         struct cfq_group *__cfqg;
793         s64 key = cfqg_key(st, cfqg);
794         int left = 1;
795
796         while (*node != NULL) {
797                 parent = *node;
798                 __cfqg = rb_entry_cfqg(parent);
799
800                 if (key < cfqg_key(st, __cfqg))
801                         node = &parent->rb_left;
802                 else {
803                         node = &parent->rb_right;
804                         left = 0;
805                 }
806         }
807
808         if (left)
809                 st->left = &cfqg->rb_node;
810
811         rb_link_node(&cfqg->rb_node, parent, node);
812         rb_insert_color(&cfqg->rb_node, &st->rb);
813 }
814
815 static void
816 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
817 {
818         struct cfq_rb_root *st = &cfqd->grp_service_tree;
819         struct cfq_group *__cfqg;
820         struct rb_node *n;
821
822         cfqg->nr_cfqq++;
823         if (cfqg->on_st)
824                 return;
825
826         /*
827          * Currently put the group at the end. Later implement something
828          * so that groups get lesser vtime based on their weights, so that
829          * if group does not loose all if it was not continously backlogged.
830          */
831         n = rb_last(&st->rb);
832         if (n) {
833                 __cfqg = rb_entry_cfqg(n);
834                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
835         } else
836                 cfqg->vdisktime = st->min_vdisktime;
837
838         __cfq_group_service_tree_add(st, cfqg);
839         cfqg->on_st = true;
840         st->total_weight += cfqg->weight;
841 }
842
843 static void
844 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
845 {
846         struct cfq_rb_root *st = &cfqd->grp_service_tree;
847
848         if (st->active == &cfqg->rb_node)
849                 st->active = NULL;
850
851         BUG_ON(cfqg->nr_cfqq < 1);
852         cfqg->nr_cfqq--;
853
854         /* If there are other cfq queues under this group, don't delete it */
855         if (cfqg->nr_cfqq)
856                 return;
857
858         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
859         cfqg->on_st = false;
860         st->total_weight -= cfqg->weight;
861         if (!RB_EMPTY_NODE(&cfqg->rb_node))
862                 cfq_rb_erase(&cfqg->rb_node, st);
863         cfqg->saved_workload_slice = 0;
864         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
865 }
866
867 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
868 {
869         unsigned int slice_used;
870
871         /*
872          * Queue got expired before even a single request completed or
873          * got expired immediately after first request completion.
874          */
875         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
876                 /*
877                  * Also charge the seek time incurred to the group, otherwise
878                  * if there are mutiple queues in the group, each can dispatch
879                  * a single request on seeky media and cause lots of seek time
880                  * and group will never know it.
881                  */
882                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
883                                         1);
884         } else {
885                 slice_used = jiffies - cfqq->slice_start;
886                 if (slice_used > cfqq->allocated_slice)
887                         slice_used = cfqq->allocated_slice;
888         }
889
890         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
891                                 cfqq->nr_sectors);
892         return slice_used;
893 }
894
895 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
896                                 struct cfq_queue *cfqq)
897 {
898         struct cfq_rb_root *st = &cfqd->grp_service_tree;
899         unsigned int used_sl, charge_sl;
900         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
901                         - cfqg->service_tree_idle.count;
902
903         BUG_ON(nr_sync < 0);
904         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
905
906         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
907                 charge_sl = cfqq->allocated_slice;
908
909         /* Can't update vdisktime while group is on service tree */
910         cfq_rb_erase(&cfqg->rb_node, st);
911         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
912         __cfq_group_service_tree_add(st, cfqg);
913
914         /* This group is being expired. Save the context */
915         if (time_after(cfqd->workload_expires, jiffies)) {
916                 cfqg->saved_workload_slice = cfqd->workload_expires
917                                                 - jiffies;
918                 cfqg->saved_workload = cfqd->serving_type;
919                 cfqg->saved_serving_prio = cfqd->serving_prio;
920         } else
921                 cfqg->saved_workload_slice = 0;
922
923         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
924                                         st->min_vdisktime);
925         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
926                                                 cfqq->nr_sectors);
927 }
928
929 #ifdef CONFIG_CFQ_GROUP_IOSCHED
930 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
931 {
932         if (blkg)
933                 return container_of(blkg, struct cfq_group, blkg);
934         return NULL;
935 }
936
937 void
938 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
939 {
940         cfqg_of_blkg(blkg)->weight = weight;
941 }
942
943 static struct cfq_group *
944 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
945 {
946         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
947         struct cfq_group *cfqg = NULL;
948         void *key = cfqd;
949         int i, j;
950         struct cfq_rb_root *st;
951         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
952         unsigned int major, minor;
953
954         /* Do we need to take this reference */
955         if (!blkiocg_css_tryget(blkcg))
956                 return NULL;;
957
958         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
959         if (cfqg || !create)
960                 goto done;
961
962         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
963         if (!cfqg)
964                 goto done;
965
966         cfqg->weight = blkcg->weight;
967         for_each_cfqg_st(cfqg, i, j, st)
968                 *st = CFQ_RB_ROOT;
969         RB_CLEAR_NODE(&cfqg->rb_node);
970
971         /*
972          * Take the initial reference that will be released on destroy
973          * This can be thought of a joint reference by cgroup and
974          * elevator which will be dropped by either elevator exit
975          * or cgroup deletion path depending on who is exiting first.
976          */
977         atomic_set(&cfqg->ref, 1);
978
979         /* Add group onto cgroup list */
980         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
981         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
982                                         MKDEV(major, minor));
983
984         /* Add group on cfqd list */
985         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
986
987 done:
988         blkiocg_css_put(blkcg);
989         return cfqg;
990 }
991
992 /*
993  * Search for the cfq group current task belongs to. If create = 1, then also
994  * create the cfq group if it does not exist. request_queue lock must be held.
995  */
996 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
997 {
998         struct cgroup *cgroup;
999         struct cfq_group *cfqg = NULL;
1000
1001         rcu_read_lock();
1002         cgroup = task_cgroup(current, blkio_subsys_id);
1003         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1004         if (!cfqg && create)
1005                 cfqg = &cfqd->root_group;
1006         rcu_read_unlock();
1007         return cfqg;
1008 }
1009
1010 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1011 {
1012         /* Currently, all async queues are mapped to root group */
1013         if (!cfq_cfqq_sync(cfqq))
1014                 cfqg = &cfqq->cfqd->root_group;
1015
1016         cfqq->cfqg = cfqg;
1017         /* cfqq reference on cfqg */
1018         atomic_inc(&cfqq->cfqg->ref);
1019 }
1020
1021 static void cfq_put_cfqg(struct cfq_group *cfqg)
1022 {
1023         struct cfq_rb_root *st;
1024         int i, j;
1025
1026         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1027         if (!atomic_dec_and_test(&cfqg->ref))
1028                 return;
1029         for_each_cfqg_st(cfqg, i, j, st)
1030                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1031         kfree(cfqg);
1032 }
1033
1034 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1035 {
1036         /* Something wrong if we are trying to remove same group twice */
1037         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1038
1039         hlist_del_init(&cfqg->cfqd_node);
1040
1041         /*
1042          * Put the reference taken at the time of creation so that when all
1043          * queues are gone, group can be destroyed.
1044          */
1045         cfq_put_cfqg(cfqg);
1046 }
1047
1048 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1049 {
1050         struct hlist_node *pos, *n;
1051         struct cfq_group *cfqg;
1052
1053         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1054                 /*
1055                  * If cgroup removal path got to blk_group first and removed
1056                  * it from cgroup list, then it will take care of destroying
1057                  * cfqg also.
1058                  */
1059                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1060                         cfq_destroy_cfqg(cfqd, cfqg);
1061         }
1062 }
1063
1064 /*
1065  * Blk cgroup controller notification saying that blkio_group object is being
1066  * delinked as associated cgroup object is going away. That also means that
1067  * no new IO will come in this group. So get rid of this group as soon as
1068  * any pending IO in the group is finished.
1069  *
1070  * This function is called under rcu_read_lock(). key is the rcu protected
1071  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1072  * read lock.
1073  *
1074  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1075  * it should not be NULL as even if elevator was exiting, cgroup deltion
1076  * path got to it first.
1077  */
1078 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1079 {
1080         unsigned long  flags;
1081         struct cfq_data *cfqd = key;
1082
1083         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1084         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1085         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1086 }
1087
1088 #else /* GROUP_IOSCHED */
1089 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1090 {
1091         return &cfqd->root_group;
1092 }
1093 static inline void
1094 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1095         cfqq->cfqg = cfqg;
1096 }
1097
1098 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1099 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1100
1101 #endif /* GROUP_IOSCHED */
1102
1103 /*
1104  * The cfqd->service_trees holds all pending cfq_queue's that have
1105  * requests waiting to be processed. It is sorted in the order that
1106  * we will service the queues.
1107  */
1108 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1109                                  bool add_front)
1110 {
1111         struct rb_node **p, *parent;
1112         struct cfq_queue *__cfqq;
1113         unsigned long rb_key;
1114         struct cfq_rb_root *service_tree;
1115         int left;
1116         int new_cfqq = 1;
1117         int group_changed = 0;
1118
1119 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1120         if (!cfqd->cfq_group_isolation
1121             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1122             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1123                 /* Move this cfq to root group */
1124                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1125                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1126                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1127                 cfqq->orig_cfqg = cfqq->cfqg;
1128                 cfqq->cfqg = &cfqd->root_group;
1129                 atomic_inc(&cfqd->root_group.ref);
1130                 group_changed = 1;
1131         } else if (!cfqd->cfq_group_isolation
1132                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1133                 /* cfqq is sequential now needs to go to its original group */
1134                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1135                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1136                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1137                 cfq_put_cfqg(cfqq->cfqg);
1138                 cfqq->cfqg = cfqq->orig_cfqg;
1139                 cfqq->orig_cfqg = NULL;
1140                 group_changed = 1;
1141                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1142         }
1143 #endif
1144
1145         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1146                                                 cfqq_type(cfqq));
1147         if (cfq_class_idle(cfqq)) {
1148                 rb_key = CFQ_IDLE_DELAY;
1149                 parent = rb_last(&service_tree->rb);
1150                 if (parent && parent != &cfqq->rb_node) {
1151                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1152                         rb_key += __cfqq->rb_key;
1153                 } else
1154                         rb_key += jiffies;
1155         } else if (!add_front) {
1156                 /*
1157                  * Get our rb key offset. Subtract any residual slice
1158                  * value carried from last service. A negative resid
1159                  * count indicates slice overrun, and this should position
1160                  * the next service time further away in the tree.
1161                  */
1162                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1163                 rb_key -= cfqq->slice_resid;
1164                 cfqq->slice_resid = 0;
1165         } else {
1166                 rb_key = -HZ;
1167                 __cfqq = cfq_rb_first(service_tree);
1168                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1169         }
1170
1171         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1172                 new_cfqq = 0;
1173                 /*
1174                  * same position, nothing more to do
1175                  */
1176                 if (rb_key == cfqq->rb_key &&
1177                     cfqq->service_tree == service_tree)
1178                         return;
1179
1180                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1181                 cfqq->service_tree = NULL;
1182         }
1183
1184         left = 1;
1185         parent = NULL;
1186         cfqq->service_tree = service_tree;
1187         p = &service_tree->rb.rb_node;
1188         while (*p) {
1189                 struct rb_node **n;
1190
1191                 parent = *p;
1192                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1193
1194                 /*
1195                  * sort by key, that represents service time.
1196                  */
1197                 if (time_before(rb_key, __cfqq->rb_key))
1198                         n = &(*p)->rb_left;
1199                 else {
1200                         n = &(*p)->rb_right;
1201                         left = 0;
1202                 }
1203
1204                 p = n;
1205         }
1206
1207         if (left)
1208                 service_tree->left = &cfqq->rb_node;
1209
1210         cfqq->rb_key = rb_key;
1211         rb_link_node(&cfqq->rb_node, parent, p);
1212         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1213         service_tree->count++;
1214         if ((add_front || !new_cfqq) && !group_changed)
1215                 return;
1216         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1217 }
1218
1219 static struct cfq_queue *
1220 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1221                      sector_t sector, struct rb_node **ret_parent,
1222                      struct rb_node ***rb_link)
1223 {
1224         struct rb_node **p, *parent;
1225         struct cfq_queue *cfqq = NULL;
1226
1227         parent = NULL;
1228         p = &root->rb_node;
1229         while (*p) {
1230                 struct rb_node **n;
1231
1232                 parent = *p;
1233                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1234
1235                 /*
1236                  * Sort strictly based on sector.  Smallest to the left,
1237                  * largest to the right.
1238                  */
1239                 if (sector > blk_rq_pos(cfqq->next_rq))
1240                         n = &(*p)->rb_right;
1241                 else if (sector < blk_rq_pos(cfqq->next_rq))
1242                         n = &(*p)->rb_left;
1243                 else
1244                         break;
1245                 p = n;
1246                 cfqq = NULL;
1247         }
1248
1249         *ret_parent = parent;
1250         if (rb_link)
1251                 *rb_link = p;
1252         return cfqq;
1253 }
1254
1255 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1256 {
1257         struct rb_node **p, *parent;
1258         struct cfq_queue *__cfqq;
1259
1260         if (cfqq->p_root) {
1261                 rb_erase(&cfqq->p_node, cfqq->p_root);
1262                 cfqq->p_root = NULL;
1263         }
1264
1265         if (cfq_class_idle(cfqq))
1266                 return;
1267         if (!cfqq->next_rq)
1268                 return;
1269
1270         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1271         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1272                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1273         if (!__cfqq) {
1274                 rb_link_node(&cfqq->p_node, parent, p);
1275                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1276         } else
1277                 cfqq->p_root = NULL;
1278 }
1279
1280 /*
1281  * Update cfqq's position in the service tree.
1282  */
1283 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1284 {
1285         /*
1286          * Resorting requires the cfqq to be on the RR list already.
1287          */
1288         if (cfq_cfqq_on_rr(cfqq)) {
1289                 cfq_service_tree_add(cfqd, cfqq, 0);
1290                 cfq_prio_tree_add(cfqd, cfqq);
1291         }
1292 }
1293
1294 /*
1295  * add to busy list of queues for service, trying to be fair in ordering
1296  * the pending list according to last request service
1297  */
1298 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1299 {
1300         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1301         BUG_ON(cfq_cfqq_on_rr(cfqq));
1302         cfq_mark_cfqq_on_rr(cfqq);
1303         cfqd->busy_queues++;
1304
1305         cfq_resort_rr_list(cfqd, cfqq);
1306 }
1307
1308 /*
1309  * Called when the cfqq no longer has requests pending, remove it from
1310  * the service tree.
1311  */
1312 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1313 {
1314         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1315         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1316         cfq_clear_cfqq_on_rr(cfqq);
1317
1318         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1319                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1320                 cfqq->service_tree = NULL;
1321         }
1322         if (cfqq->p_root) {
1323                 rb_erase(&cfqq->p_node, cfqq->p_root);
1324                 cfqq->p_root = NULL;
1325         }
1326
1327         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1328         BUG_ON(!cfqd->busy_queues);
1329         cfqd->busy_queues--;
1330 }
1331
1332 /*
1333  * rb tree support functions
1334  */
1335 static void cfq_del_rq_rb(struct request *rq)
1336 {
1337         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1338         const int sync = rq_is_sync(rq);
1339
1340         BUG_ON(!cfqq->queued[sync]);
1341         cfqq->queued[sync]--;
1342
1343         elv_rb_del(&cfqq->sort_list, rq);
1344
1345         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1346                 /*
1347                  * Queue will be deleted from service tree when we actually
1348                  * expire it later. Right now just remove it from prio tree
1349                  * as it is empty.
1350                  */
1351                 if (cfqq->p_root) {
1352                         rb_erase(&cfqq->p_node, cfqq->p_root);
1353                         cfqq->p_root = NULL;
1354                 }
1355         }
1356 }
1357
1358 static void cfq_add_rq_rb(struct request *rq)
1359 {
1360         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1361         struct cfq_data *cfqd = cfqq->cfqd;
1362         struct request *__alias, *prev;
1363
1364         cfqq->queued[rq_is_sync(rq)]++;
1365
1366         /*
1367          * looks a little odd, but the first insert might return an alias.
1368          * if that happens, put the alias on the dispatch list
1369          */
1370         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1371                 cfq_dispatch_insert(cfqd->queue, __alias);
1372
1373         if (!cfq_cfqq_on_rr(cfqq))
1374                 cfq_add_cfqq_rr(cfqd, cfqq);
1375
1376         /*
1377          * check if this request is a better next-serve candidate
1378          */
1379         prev = cfqq->next_rq;
1380         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1381
1382         /*
1383          * adjust priority tree position, if ->next_rq changes
1384          */
1385         if (prev != cfqq->next_rq)
1386                 cfq_prio_tree_add(cfqd, cfqq);
1387
1388         BUG_ON(!cfqq->next_rq);
1389 }
1390
1391 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1392 {
1393         elv_rb_del(&cfqq->sort_list, rq);
1394         cfqq->queued[rq_is_sync(rq)]--;
1395         cfq_add_rq_rb(rq);
1396 }
1397
1398 static struct request *
1399 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1400 {
1401         struct task_struct *tsk = current;
1402         struct cfq_io_context *cic;
1403         struct cfq_queue *cfqq;
1404
1405         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1406         if (!cic)
1407                 return NULL;
1408
1409         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1410         if (cfqq) {
1411                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1412
1413                 return elv_rb_find(&cfqq->sort_list, sector);
1414         }
1415
1416         return NULL;
1417 }
1418
1419 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1420 {
1421         struct cfq_data *cfqd = q->elevator->elevator_data;
1422
1423         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1424         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1425                                                 rq_in_driver(cfqd));
1426
1427         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1428 }
1429
1430 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1431 {
1432         struct cfq_data *cfqd = q->elevator->elevator_data;
1433         const int sync = rq_is_sync(rq);
1434
1435         WARN_ON(!cfqd->rq_in_driver[sync]);
1436         cfqd->rq_in_driver[sync]--;
1437         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1438                                                 rq_in_driver(cfqd));
1439 }
1440
1441 static void cfq_remove_request(struct request *rq)
1442 {
1443         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1444
1445         if (cfqq->next_rq == rq)
1446                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1447
1448         list_del_init(&rq->queuelist);
1449         cfq_del_rq_rb(rq);
1450
1451         cfqq->cfqd->rq_queued--;
1452         if (rq_is_meta(rq)) {
1453                 WARN_ON(!cfqq->meta_pending);
1454                 cfqq->meta_pending--;
1455         }
1456 }
1457
1458 static int cfq_merge(struct request_queue *q, struct request **req,
1459                      struct bio *bio)
1460 {
1461         struct cfq_data *cfqd = q->elevator->elevator_data;
1462         struct request *__rq;
1463
1464         __rq = cfq_find_rq_fmerge(cfqd, bio);
1465         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1466                 *req = __rq;
1467                 return ELEVATOR_FRONT_MERGE;
1468         }
1469
1470         return ELEVATOR_NO_MERGE;
1471 }
1472
1473 static void cfq_merged_request(struct request_queue *q, struct request *req,
1474                                int type)
1475 {
1476         if (type == ELEVATOR_FRONT_MERGE) {
1477                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1478
1479                 cfq_reposition_rq_rb(cfqq, req);
1480         }
1481 }
1482
1483 static void
1484 cfq_merged_requests(struct request_queue *q, struct request *rq,
1485                     struct request *next)
1486 {
1487         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1488         /*
1489          * reposition in fifo if next is older than rq
1490          */
1491         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1492             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1493                 list_move(&rq->queuelist, &next->queuelist);
1494                 rq_set_fifo_time(rq, rq_fifo_time(next));
1495         }
1496
1497         if (cfqq->next_rq == next)
1498                 cfqq->next_rq = rq;
1499         cfq_remove_request(next);
1500 }
1501
1502 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1503                            struct bio *bio)
1504 {
1505         struct cfq_data *cfqd = q->elevator->elevator_data;
1506         struct cfq_io_context *cic;
1507         struct cfq_queue *cfqq;
1508
1509         /*
1510          * Disallow merge of a sync bio into an async request.
1511          */
1512         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1513                 return false;
1514
1515         /*
1516          * Lookup the cfqq that this bio will be queued with. Allow
1517          * merge only if rq is queued there.
1518          */
1519         cic = cfq_cic_lookup(cfqd, current->io_context);
1520         if (!cic)
1521                 return false;
1522
1523         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1524         return cfqq == RQ_CFQQ(rq);
1525 }
1526
1527 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1528                                    struct cfq_queue *cfqq)
1529 {
1530         if (cfqq) {
1531                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1532                 cfqq->slice_start = 0;
1533                 cfqq->dispatch_start = jiffies;
1534                 cfqq->allocated_slice = 0;
1535                 cfqq->slice_end = 0;
1536                 cfqq->slice_dispatch = 0;
1537                 cfqq->nr_sectors = 0;
1538
1539                 cfq_clear_cfqq_wait_request(cfqq);
1540                 cfq_clear_cfqq_must_dispatch(cfqq);
1541                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1542                 cfq_clear_cfqq_fifo_expire(cfqq);
1543                 cfq_mark_cfqq_slice_new(cfqq);
1544
1545                 del_timer(&cfqd->idle_slice_timer);
1546         }
1547
1548         cfqd->active_queue = cfqq;
1549 }
1550
1551 /*
1552  * current cfqq expired its slice (or was too idle), select new one
1553  */
1554 static void
1555 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1556                     bool timed_out)
1557 {
1558         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1559
1560         if (cfq_cfqq_wait_request(cfqq))
1561                 del_timer(&cfqd->idle_slice_timer);
1562
1563         cfq_clear_cfqq_wait_request(cfqq);
1564         cfq_clear_cfqq_wait_busy(cfqq);
1565
1566         /*
1567          * If this cfqq is shared between multiple processes, check to
1568          * make sure that those processes are still issuing I/Os within
1569          * the mean seek distance.  If not, it may be time to break the
1570          * queues apart again.
1571          */
1572         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1573                 cfq_mark_cfqq_split_coop(cfqq);
1574
1575         /*
1576          * store what was left of this slice, if the queue idled/timed out
1577          */
1578         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1579                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1580                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1581         }
1582
1583         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1584
1585         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1586                 cfq_del_cfqq_rr(cfqd, cfqq);
1587
1588         cfq_resort_rr_list(cfqd, cfqq);
1589
1590         if (cfqq == cfqd->active_queue)
1591                 cfqd->active_queue = NULL;
1592
1593         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1594                 cfqd->grp_service_tree.active = NULL;
1595
1596         if (cfqd->active_cic) {
1597                 put_io_context(cfqd->active_cic->ioc);
1598                 cfqd->active_cic = NULL;
1599         }
1600 }
1601
1602 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1603 {
1604         struct cfq_queue *cfqq = cfqd->active_queue;
1605
1606         if (cfqq)
1607                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1608 }
1609
1610 /*
1611  * Get next queue for service. Unless we have a queue preemption,
1612  * we'll simply select the first cfqq in the service tree.
1613  */
1614 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1615 {
1616         struct cfq_rb_root *service_tree =
1617                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1618                                         cfqd->serving_type);
1619
1620         if (!cfqd->rq_queued)
1621                 return NULL;
1622
1623         /* There is nothing to dispatch */
1624         if (!service_tree)
1625                 return NULL;
1626         if (RB_EMPTY_ROOT(&service_tree->rb))
1627                 return NULL;
1628         return cfq_rb_first(service_tree);
1629 }
1630
1631 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1632 {
1633         struct cfq_group *cfqg;
1634         struct cfq_queue *cfqq;
1635         int i, j;
1636         struct cfq_rb_root *st;
1637
1638         if (!cfqd->rq_queued)
1639                 return NULL;
1640
1641         cfqg = cfq_get_next_cfqg(cfqd);
1642         if (!cfqg)
1643                 return NULL;
1644
1645         for_each_cfqg_st(cfqg, i, j, st)
1646                 if ((cfqq = cfq_rb_first(st)) != NULL)
1647                         return cfqq;
1648         return NULL;
1649 }
1650
1651 /*
1652  * Get and set a new active queue for service.
1653  */
1654 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1655                                               struct cfq_queue *cfqq)
1656 {
1657         if (!cfqq)
1658                 cfqq = cfq_get_next_queue(cfqd);
1659
1660         __cfq_set_active_queue(cfqd, cfqq);
1661         return cfqq;
1662 }
1663
1664 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1665                                           struct request *rq)
1666 {
1667         if (blk_rq_pos(rq) >= cfqd->last_position)
1668                 return blk_rq_pos(rq) - cfqd->last_position;
1669         else
1670                 return cfqd->last_position - blk_rq_pos(rq);
1671 }
1672
1673 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1674                                struct request *rq, bool for_preempt)
1675 {
1676         sector_t sdist = cfqq->seek_mean;
1677
1678         if (!sample_valid(cfqq->seek_samples))
1679                 sdist = CFQQ_SEEK_THR;
1680
1681         /* if seek_mean is big, using it as close criteria is meaningless */
1682         if (sdist > CFQQ_SEEK_THR && !for_preempt)
1683                 sdist = CFQQ_SEEK_THR;
1684
1685         return cfq_dist_from_last(cfqd, rq) <= sdist;
1686 }
1687
1688 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1689                                     struct cfq_queue *cur_cfqq)
1690 {
1691         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1692         struct rb_node *parent, *node;
1693         struct cfq_queue *__cfqq;
1694         sector_t sector = cfqd->last_position;
1695
1696         if (RB_EMPTY_ROOT(root))
1697                 return NULL;
1698
1699         /*
1700          * First, if we find a request starting at the end of the last
1701          * request, choose it.
1702          */
1703         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1704         if (__cfqq)
1705                 return __cfqq;
1706
1707         /*
1708          * If the exact sector wasn't found, the parent of the NULL leaf
1709          * will contain the closest sector.
1710          */
1711         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1712         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1713                 return __cfqq;
1714
1715         if (blk_rq_pos(__cfqq->next_rq) < sector)
1716                 node = rb_next(&__cfqq->p_node);
1717         else
1718                 node = rb_prev(&__cfqq->p_node);
1719         if (!node)
1720                 return NULL;
1721
1722         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1723         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1724                 return __cfqq;
1725
1726         return NULL;
1727 }
1728
1729 /*
1730  * cfqd - obvious
1731  * cur_cfqq - passed in so that we don't decide that the current queue is
1732  *            closely cooperating with itself.
1733  *
1734  * So, basically we're assuming that that cur_cfqq has dispatched at least
1735  * one request, and that cfqd->last_position reflects a position on the disk
1736  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1737  * assumption.
1738  */
1739 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1740                                               struct cfq_queue *cur_cfqq)
1741 {
1742         struct cfq_queue *cfqq;
1743
1744         if (!cfq_cfqq_sync(cur_cfqq))
1745                 return NULL;
1746         if (CFQQ_SEEKY(cur_cfqq))
1747                 return NULL;
1748
1749         /*
1750          * Don't search priority tree if it's the only queue in the group.
1751          */
1752         if (cur_cfqq->cfqg->nr_cfqq == 1)
1753                 return NULL;
1754
1755         /*
1756          * We should notice if some of the queues are cooperating, eg
1757          * working closely on the same area of the disk. In that case,
1758          * we can group them together and don't waste time idling.
1759          */
1760         cfqq = cfqq_close(cfqd, cur_cfqq);
1761         if (!cfqq)
1762                 return NULL;
1763
1764         /* If new queue belongs to different cfq_group, don't choose it */
1765         if (cur_cfqq->cfqg != cfqq->cfqg)
1766                 return NULL;
1767
1768         /*
1769          * It only makes sense to merge sync queues.
1770          */
1771         if (!cfq_cfqq_sync(cfqq))
1772                 return NULL;
1773         if (CFQQ_SEEKY(cfqq))
1774                 return NULL;
1775
1776         /*
1777          * Do not merge queues of different priority classes
1778          */
1779         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1780                 return NULL;
1781
1782         return cfqq;
1783 }
1784
1785 /*
1786  * Determine whether we should enforce idle window for this queue.
1787  */
1788
1789 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1790 {
1791         enum wl_prio_t prio = cfqq_prio(cfqq);
1792         struct cfq_rb_root *service_tree = cfqq->service_tree;
1793
1794         BUG_ON(!service_tree);
1795         BUG_ON(!service_tree->count);
1796
1797         /* We never do for idle class queues. */
1798         if (prio == IDLE_WORKLOAD)
1799                 return false;
1800
1801         /* We do for queues that were marked with idle window flag. */
1802         if (cfq_cfqq_idle_window(cfqq) &&
1803            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1804                 return true;
1805
1806         /*
1807          * Otherwise, we do only if they are the last ones
1808          * in their service tree.
1809          */
1810         return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1811 }
1812
1813 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1814 {
1815         struct cfq_queue *cfqq = cfqd->active_queue;
1816         struct cfq_io_context *cic;
1817         unsigned long sl;
1818
1819         /*
1820          * SSD device without seek penalty, disable idling. But only do so
1821          * for devices that support queuing, otherwise we still have a problem
1822          * with sync vs async workloads.
1823          */
1824         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1825                 return;
1826
1827         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1828         WARN_ON(cfq_cfqq_slice_new(cfqq));
1829
1830         /*
1831          * idle is disabled, either manually or by past process history
1832          */
1833         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1834                 return;
1835
1836         /*
1837          * still active requests from this queue, don't idle
1838          */
1839         if (cfqq->dispatched)
1840                 return;
1841
1842         /*
1843          * task has exited, don't wait
1844          */
1845         cic = cfqd->active_cic;
1846         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1847                 return;
1848
1849         /*
1850          * If our average think time is larger than the remaining time
1851          * slice, then don't idle. This avoids overrunning the allotted
1852          * time slice.
1853          */
1854         if (sample_valid(cic->ttime_samples) &&
1855             (cfqq->slice_end - jiffies < cic->ttime_mean))
1856                 return;
1857
1858         cfq_mark_cfqq_wait_request(cfqq);
1859
1860         sl = cfqd->cfq_slice_idle;
1861
1862         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1863         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1864 }
1865
1866 /*
1867  * Move request from internal lists to the request queue dispatch list.
1868  */
1869 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1870 {
1871         struct cfq_data *cfqd = q->elevator->elevator_data;
1872         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1873
1874         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1875
1876         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1877         cfq_remove_request(rq);
1878         cfqq->dispatched++;
1879         elv_dispatch_sort(q, rq);
1880
1881         if (cfq_cfqq_sync(cfqq))
1882                 cfqd->sync_flight++;
1883         cfqq->nr_sectors += blk_rq_sectors(rq);
1884 }
1885
1886 /*
1887  * return expired entry, or NULL to just start from scratch in rbtree
1888  */
1889 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1890 {
1891         struct request *rq = NULL;
1892
1893         if (cfq_cfqq_fifo_expire(cfqq))
1894                 return NULL;
1895
1896         cfq_mark_cfqq_fifo_expire(cfqq);
1897
1898         if (list_empty(&cfqq->fifo))
1899                 return NULL;
1900
1901         rq = rq_entry_fifo(cfqq->fifo.next);
1902         if (time_before(jiffies, rq_fifo_time(rq)))
1903                 rq = NULL;
1904
1905         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1906         return rq;
1907 }
1908
1909 static inline int
1910 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1911 {
1912         const int base_rq = cfqd->cfq_slice_async_rq;
1913
1914         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1915
1916         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1917 }
1918
1919 /*
1920  * Must be called with the queue_lock held.
1921  */
1922 static int cfqq_process_refs(struct cfq_queue *cfqq)
1923 {
1924         int process_refs, io_refs;
1925
1926         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1927         process_refs = atomic_read(&cfqq->ref) - io_refs;
1928         BUG_ON(process_refs < 0);
1929         return process_refs;
1930 }
1931
1932 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1933 {
1934         int process_refs, new_process_refs;
1935         struct cfq_queue *__cfqq;
1936
1937         /*
1938          * If there are no process references on the new_cfqq, then it is
1939          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
1940          * chain may have dropped their last reference (not just their
1941          * last process reference).
1942          */
1943         if (!cfqq_process_refs(new_cfqq))
1944                 return;
1945
1946         /* Avoid a circular list and skip interim queue merges */
1947         while ((__cfqq = new_cfqq->new_cfqq)) {
1948                 if (__cfqq == cfqq)
1949                         return;
1950                 new_cfqq = __cfqq;
1951         }
1952
1953         process_refs = cfqq_process_refs(cfqq);
1954         new_process_refs = cfqq_process_refs(new_cfqq);
1955         /*
1956          * If the process for the cfqq has gone away, there is no
1957          * sense in merging the queues.
1958          */
1959         if (process_refs == 0 || new_process_refs == 0)
1960                 return;
1961
1962         /*
1963          * Merge in the direction of the lesser amount of work.
1964          */
1965         if (new_process_refs >= process_refs) {
1966                 cfqq->new_cfqq = new_cfqq;
1967                 atomic_add(process_refs, &new_cfqq->ref);
1968         } else {
1969                 new_cfqq->new_cfqq = cfqq;
1970                 atomic_add(new_process_refs, &cfqq->ref);
1971         }
1972 }
1973
1974 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1975                                 struct cfq_group *cfqg, enum wl_prio_t prio)
1976 {
1977         struct cfq_queue *queue;
1978         int i;
1979         bool key_valid = false;
1980         unsigned long lowest_key = 0;
1981         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1982
1983         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1984                 /* select the one with lowest rb_key */
1985                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1986                 if (queue &&
1987                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1988                         lowest_key = queue->rb_key;
1989                         cur_best = i;
1990                         key_valid = true;
1991                 }
1992         }
1993
1994         return cur_best;
1995 }
1996
1997 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1998 {
1999         unsigned slice;
2000         unsigned count;
2001         struct cfq_rb_root *st;
2002         unsigned group_slice;
2003
2004         if (!cfqg) {
2005                 cfqd->serving_prio = IDLE_WORKLOAD;
2006                 cfqd->workload_expires = jiffies + 1;
2007                 return;
2008         }
2009
2010         /* Choose next priority. RT > BE > IDLE */
2011         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2012                 cfqd->serving_prio = RT_WORKLOAD;
2013         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2014                 cfqd->serving_prio = BE_WORKLOAD;
2015         else {
2016                 cfqd->serving_prio = IDLE_WORKLOAD;
2017                 cfqd->workload_expires = jiffies + 1;
2018                 return;
2019         }
2020
2021         /*
2022          * For RT and BE, we have to choose also the type
2023          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2024          * expiration time
2025          */
2026         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2027         count = st->count;
2028
2029         /*
2030          * check workload expiration, and that we still have other queues ready
2031          */
2032         if (count && !time_after(jiffies, cfqd->workload_expires))
2033                 return;
2034
2035         /* otherwise select new workload type */
2036         cfqd->serving_type =
2037                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2038         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2039         count = st->count;
2040
2041         /*
2042          * the workload slice is computed as a fraction of target latency
2043          * proportional to the number of queues in that workload, over
2044          * all the queues in the same priority class
2045          */
2046         group_slice = cfq_group_slice(cfqd, cfqg);
2047
2048         slice = group_slice * count /
2049                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2050                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2051
2052         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2053                 unsigned int tmp;
2054
2055                 /*
2056                  * Async queues are currently system wide. Just taking
2057                  * proportion of queues with-in same group will lead to higher
2058                  * async ratio system wide as generally root group is going
2059                  * to have higher weight. A more accurate thing would be to
2060                  * calculate system wide asnc/sync ratio.
2061                  */
2062                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2063                 tmp = tmp/cfqd->busy_queues;
2064                 slice = min_t(unsigned, slice, tmp);
2065
2066                 /* async workload slice is scaled down according to
2067                  * the sync/async slice ratio. */
2068                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2069         } else
2070                 /* sync workload slice is at least 2 * cfq_slice_idle */
2071                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2072
2073         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2074         cfqd->workload_expires = jiffies + slice;
2075         cfqd->noidle_tree_requires_idle = false;
2076 }
2077
2078 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2079 {
2080         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2081         struct cfq_group *cfqg;
2082
2083         if (RB_EMPTY_ROOT(&st->rb))
2084                 return NULL;
2085         cfqg = cfq_rb_first_group(st);
2086         st->active = &cfqg->rb_node;
2087         update_min_vdisktime(st);
2088         return cfqg;
2089 }
2090
2091 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2092 {
2093         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2094
2095         cfqd->serving_group = cfqg;
2096
2097         /* Restore the workload type data */
2098         if (cfqg->saved_workload_slice) {
2099                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2100                 cfqd->serving_type = cfqg->saved_workload;
2101                 cfqd->serving_prio = cfqg->saved_serving_prio;
2102         } else
2103                 cfqd->workload_expires = jiffies - 1;
2104
2105         choose_service_tree(cfqd, cfqg);
2106 }
2107
2108 /*
2109  * Select a queue for service. If we have a current active queue,
2110  * check whether to continue servicing it, or retrieve and set a new one.
2111  */
2112 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2113 {
2114         struct cfq_queue *cfqq, *new_cfqq = NULL;
2115
2116         cfqq = cfqd->active_queue;
2117         if (!cfqq)
2118                 goto new_queue;
2119
2120         if (!cfqd->rq_queued)
2121                 return NULL;
2122
2123         /*
2124          * We were waiting for group to get backlogged. Expire the queue
2125          */
2126         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2127                 goto expire;
2128
2129         /*
2130          * The active queue has run out of time, expire it and select new.
2131          */
2132         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2133                 /*
2134                  * If slice had not expired at the completion of last request
2135                  * we might not have turned on wait_busy flag. Don't expire
2136                  * the queue yet. Allow the group to get backlogged.
2137                  *
2138                  * The very fact that we have used the slice, that means we
2139                  * have been idling all along on this queue and it should be
2140                  * ok to wait for this request to complete.
2141                  */
2142                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2143                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2144                         cfqq = NULL;
2145                         goto keep_queue;
2146                 } else
2147                         goto expire;
2148         }
2149
2150         /*
2151          * The active queue has requests and isn't expired, allow it to
2152          * dispatch.
2153          */
2154         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2155                 goto keep_queue;
2156
2157         /*
2158          * If another queue has a request waiting within our mean seek
2159          * distance, let it run.  The expire code will check for close
2160          * cooperators and put the close queue at the front of the service
2161          * tree.  If possible, merge the expiring queue with the new cfqq.
2162          */
2163         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2164         if (new_cfqq) {
2165                 if (!cfqq->new_cfqq)
2166                         cfq_setup_merge(cfqq, new_cfqq);
2167                 goto expire;
2168         }
2169
2170         /*
2171          * No requests pending. If the active queue still has requests in
2172          * flight or is idling for a new request, allow either of these
2173          * conditions to happen (or time out) before selecting a new queue.
2174          */
2175         if (timer_pending(&cfqd->idle_slice_timer) ||
2176             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2177                 cfqq = NULL;
2178                 goto keep_queue;
2179         }
2180
2181 expire:
2182         cfq_slice_expired(cfqd, 0);
2183 new_queue:
2184         /*
2185          * Current queue expired. Check if we have to switch to a new
2186          * service tree
2187          */
2188         if (!new_cfqq)
2189                 cfq_choose_cfqg(cfqd);
2190
2191         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2192 keep_queue:
2193         return cfqq;
2194 }
2195
2196 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2197 {
2198         int dispatched = 0;
2199
2200         while (cfqq->next_rq) {
2201                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2202                 dispatched++;
2203         }
2204
2205         BUG_ON(!list_empty(&cfqq->fifo));
2206
2207         /* By default cfqq is not expired if it is empty. Do it explicitly */
2208         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2209         return dispatched;
2210 }
2211
2212 /*
2213  * Drain our current requests. Used for barriers and when switching
2214  * io schedulers on-the-fly.
2215  */
2216 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2217 {
2218         struct cfq_queue *cfqq;
2219         int dispatched = 0;
2220
2221         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2222                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2223
2224         cfq_slice_expired(cfqd, 0);
2225         BUG_ON(cfqd->busy_queues);
2226
2227         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2228         return dispatched;
2229 }
2230
2231 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2232 {
2233         unsigned int max_dispatch;
2234
2235         /*
2236          * Drain async requests before we start sync IO
2237          */
2238         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2239                 return false;
2240
2241         /*
2242          * If this is an async queue and we have sync IO in flight, let it wait
2243          */
2244         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2245                 return false;
2246
2247         max_dispatch = cfqd->cfq_quantum;
2248         if (cfq_class_idle(cfqq))
2249                 max_dispatch = 1;
2250
2251         /*
2252          * Does this cfqq already have too much IO in flight?
2253          */
2254         if (cfqq->dispatched >= max_dispatch) {
2255                 /*
2256                  * idle queue must always only have a single IO in flight
2257                  */
2258                 if (cfq_class_idle(cfqq))
2259                         return false;
2260
2261                 /*
2262                  * We have other queues, don't allow more IO from this one
2263                  */
2264                 if (cfqd->busy_queues > 1)
2265                         return false;
2266
2267                 /*
2268                  * Sole queue user, no limit
2269                  */
2270                 max_dispatch = -1;
2271         }
2272
2273         /*
2274          * Async queues must wait a bit before being allowed dispatch.
2275          * We also ramp up the dispatch depth gradually for async IO,
2276          * based on the last sync IO we serviced
2277          */
2278         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2279                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2280                 unsigned int depth;
2281
2282                 depth = last_sync / cfqd->cfq_slice[1];
2283                 if (!depth && !cfqq->dispatched)
2284                         depth = 1;
2285                 if (depth < max_dispatch)
2286                         max_dispatch = depth;
2287         }
2288
2289         /*
2290          * If we're below the current max, allow a dispatch
2291          */
2292         return cfqq->dispatched < max_dispatch;
2293 }
2294
2295 /*
2296  * Dispatch a request from cfqq, moving them to the request queue
2297  * dispatch list.
2298  */
2299 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2300 {
2301         struct request *rq;
2302
2303         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2304
2305         if (!cfq_may_dispatch(cfqd, cfqq))
2306                 return false;
2307
2308         /*
2309          * follow expired path, else get first next available
2310          */
2311         rq = cfq_check_fifo(cfqq);
2312         if (!rq)
2313                 rq = cfqq->next_rq;
2314
2315         /*
2316          * insert request into driver dispatch list
2317          */
2318         cfq_dispatch_insert(cfqd->queue, rq);
2319
2320         if (!cfqd->active_cic) {
2321                 struct cfq_io_context *cic = RQ_CIC(rq);
2322
2323                 atomic_long_inc(&cic->ioc->refcount);
2324                 cfqd->active_cic = cic;
2325         }
2326
2327         return true;
2328 }
2329
2330 /*
2331  * Find the cfqq that we need to service and move a request from that to the
2332  * dispatch list
2333  */
2334 static int cfq_dispatch_requests(struct request_queue *q, int force)
2335 {
2336         struct cfq_data *cfqd = q->elevator->elevator_data;
2337         struct cfq_queue *cfqq;
2338
2339         if (!cfqd->busy_queues)
2340                 return 0;
2341
2342         if (unlikely(force))
2343                 return cfq_forced_dispatch(cfqd);
2344
2345         cfqq = cfq_select_queue(cfqd);
2346         if (!cfqq)
2347                 return 0;
2348
2349         /*
2350          * Dispatch a request from this cfqq, if it is allowed
2351          */
2352         if (!cfq_dispatch_request(cfqd, cfqq))
2353                 return 0;
2354
2355         cfqq->slice_dispatch++;
2356         cfq_clear_cfqq_must_dispatch(cfqq);
2357
2358         /*
2359          * expire an async queue immediately if it has used up its slice. idle
2360          * queue always expire after 1 dispatch round.
2361          */
2362         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2363             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2364             cfq_class_idle(cfqq))) {
2365                 cfqq->slice_end = jiffies + 1;
2366                 cfq_slice_expired(cfqd, 0);
2367         }
2368
2369         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2370         return 1;
2371 }
2372
2373 /*
2374  * task holds one reference to the queue, dropped when task exits. each rq
2375  * in-flight on this queue also holds a reference, dropped when rq is freed.
2376  *
2377  * Each cfq queue took a reference on the parent group. Drop it now.
2378  * queue lock must be held here.
2379  */
2380 static void cfq_put_queue(struct cfq_queue *cfqq)
2381 {
2382         struct cfq_data *cfqd = cfqq->cfqd;
2383         struct cfq_group *cfqg, *orig_cfqg;
2384
2385         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2386
2387         if (!atomic_dec_and_test(&cfqq->ref))
2388                 return;
2389
2390         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2391         BUG_ON(rb_first(&cfqq->sort_list));
2392         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2393         cfqg = cfqq->cfqg;
2394         orig_cfqg = cfqq->orig_cfqg;
2395
2396         if (unlikely(cfqd->active_queue == cfqq)) {
2397                 __cfq_slice_expired(cfqd, cfqq, 0);
2398                 cfq_schedule_dispatch(cfqd);
2399         }
2400
2401         BUG_ON(cfq_cfqq_on_rr(cfqq));
2402         kmem_cache_free(cfq_pool, cfqq);
2403         cfq_put_cfqg(cfqg);
2404         if (orig_cfqg)
2405                 cfq_put_cfqg(orig_cfqg);
2406 }
2407
2408 /*
2409  * Must always be called with the rcu_read_lock() held
2410  */
2411 static void
2412 __call_for_each_cic(struct io_context *ioc,
2413                     void (*func)(struct io_context *, struct cfq_io_context *))
2414 {
2415         struct cfq_io_context *cic;
2416         struct hlist_node *n;
2417
2418         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2419                 func(ioc, cic);
2420 }
2421
2422 /*
2423  * Call func for each cic attached to this ioc.
2424  */
2425 static void
2426 call_for_each_cic(struct io_context *ioc,
2427                   void (*func)(struct io_context *, struct cfq_io_context *))
2428 {
2429         rcu_read_lock();
2430         __call_for_each_cic(ioc, func);
2431         rcu_read_unlock();
2432 }
2433
2434 static void cfq_cic_free_rcu(struct rcu_head *head)
2435 {
2436         struct cfq_io_context *cic;
2437
2438         cic = container_of(head, struct cfq_io_context, rcu_head);
2439
2440         kmem_cache_free(cfq_ioc_pool, cic);
2441         elv_ioc_count_dec(cfq_ioc_count);
2442
2443         if (ioc_gone) {
2444                 /*
2445                  * CFQ scheduler is exiting, grab exit lock and check
2446                  * the pending io context count. If it hits zero,
2447                  * complete ioc_gone and set it back to NULL
2448                  */
2449                 spin_lock(&ioc_gone_lock);
2450                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2451                         complete(ioc_gone);
2452                         ioc_gone = NULL;
2453                 }
2454                 spin_unlock(&ioc_gone_lock);
2455         }
2456 }
2457
2458 static void cfq_cic_free(struct cfq_io_context *cic)
2459 {
2460         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2461 }
2462
2463 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2464 {
2465         unsigned long flags;
2466
2467         BUG_ON(!cic->dead_key);
2468
2469         spin_lock_irqsave(&ioc->lock, flags);
2470         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2471         hlist_del_rcu(&cic->cic_list);
2472         spin_unlock_irqrestore(&ioc->lock, flags);
2473
2474         cfq_cic_free(cic);
2475 }
2476
2477 /*
2478  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2479  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2480  * and ->trim() which is called with the task lock held
2481  */
2482 static void cfq_free_io_context(struct io_context *ioc)
2483 {
2484         /*
2485          * ioc->refcount is zero here, or we are called from elv_unregister(),
2486          * so no more cic's are allowed to be linked into this ioc.  So it
2487          * should be ok to iterate over the known list, we will see all cic's
2488          * since no new ones are added.
2489          */
2490         __call_for_each_cic(ioc, cic_free_func);
2491 }
2492
2493 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2494 {
2495         struct cfq_queue *__cfqq, *next;
2496
2497         /*
2498          * If this queue was scheduled to merge with another queue, be
2499          * sure to drop the reference taken on that queue (and others in
2500          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2501          */
2502         __cfqq = cfqq->new_cfqq;
2503         while (__cfqq) {
2504                 if (__cfqq == cfqq) {
2505                         WARN(1, "cfqq->new_cfqq loop detected\n");
2506                         break;
2507                 }
2508                 next = __cfqq->new_cfqq;
2509                 cfq_put_queue(__cfqq);
2510                 __cfqq = next;
2511         }
2512 }
2513
2514 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2515 {
2516         if (unlikely(cfqq == cfqd->active_queue)) {
2517                 __cfq_slice_expired(cfqd, cfqq, 0);
2518                 cfq_schedule_dispatch(cfqd);
2519         }
2520
2521         cfq_put_cooperator(cfqq);
2522
2523         cfq_put_queue(cfqq);
2524 }
2525
2526 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2527                                          struct cfq_io_context *cic)
2528 {
2529         struct io_context *ioc = cic->ioc;
2530
2531         list_del_init(&cic->queue_list);
2532
2533         /*
2534          * Make sure key == NULL is seen for dead queues
2535          */
2536         smp_wmb();
2537         cic->dead_key = (unsigned long) cic->key;
2538         cic->key = NULL;
2539
2540         if (ioc->ioc_data == cic)
2541                 rcu_assign_pointer(ioc->ioc_data, NULL);
2542
2543         if (cic->cfqq[BLK_RW_ASYNC]) {
2544                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2545                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2546         }
2547
2548         if (cic->cfqq[BLK_RW_SYNC]) {
2549                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2550                 cic->cfqq[BLK_RW_SYNC] = NULL;
2551         }
2552 }
2553
2554 static void cfq_exit_single_io_context(struct io_context *ioc,
2555                                        struct cfq_io_context *cic)
2556 {
2557         struct cfq_data *cfqd = cic->key;
2558
2559         if (cfqd) {
2560                 struct request_queue *q = cfqd->queue;
2561                 unsigned long flags;
2562
2563                 spin_lock_irqsave(q->queue_lock, flags);
2564
2565                 /*
2566                  * Ensure we get a fresh copy of the ->key to prevent
2567                  * race between exiting task and queue
2568                  */
2569                 smp_read_barrier_depends();
2570                 if (cic->key)
2571                         __cfq_exit_single_io_context(cfqd, cic);
2572
2573                 spin_unlock_irqrestore(q->queue_lock, flags);
2574         }
2575 }
2576
2577 /*
2578  * The process that ioc belongs to has exited, we need to clean up
2579  * and put the internal structures we have that belongs to that process.
2580  */
2581 static void cfq_exit_io_context(struct io_context *ioc)
2582 {
2583         call_for_each_cic(ioc, cfq_exit_single_io_context);
2584 }
2585
2586 static struct cfq_io_context *
2587 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2588 {
2589         struct cfq_io_context *cic;
2590
2591         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2592                                                         cfqd->queue->node);
2593         if (cic) {
2594                 cic->last_end_request = jiffies;
2595                 INIT_LIST_HEAD(&cic->queue_list);
2596                 INIT_HLIST_NODE(&cic->cic_list);
2597                 cic->dtor = cfq_free_io_context;
2598                 cic->exit = cfq_exit_io_context;
2599                 elv_ioc_count_inc(cfq_ioc_count);
2600         }
2601
2602         return cic;
2603 }
2604
2605 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2606 {
2607         struct task_struct *tsk = current;
2608         int ioprio_class;
2609
2610         if (!cfq_cfqq_prio_changed(cfqq))
2611                 return;
2612
2613         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2614         switch (ioprio_class) {
2615         default:
2616                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2617         case IOPRIO_CLASS_NONE:
2618                 /*
2619                  * no prio set, inherit CPU scheduling settings
2620                  */
2621                 cfqq->ioprio = task_nice_ioprio(tsk);
2622                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2623                 break;
2624         case IOPRIO_CLASS_RT:
2625                 cfqq->ioprio = task_ioprio(ioc);
2626                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2627                 break;
2628         case IOPRIO_CLASS_BE:
2629                 cfqq->ioprio = task_ioprio(ioc);
2630                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2631                 break;
2632         case IOPRIO_CLASS_IDLE:
2633                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2634                 cfqq->ioprio = 7;
2635                 cfq_clear_cfqq_idle_window(cfqq);
2636                 break;
2637         }
2638
2639         /*
2640          * keep track of original prio settings in case we have to temporarily
2641          * elevate the priority of this queue
2642          */
2643         cfqq->org_ioprio = cfqq->ioprio;
2644         cfqq->org_ioprio_class = cfqq->ioprio_class;
2645         cfq_clear_cfqq_prio_changed(cfqq);
2646 }
2647
2648 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2649 {
2650         struct cfq_data *cfqd = cic->key;
2651         struct cfq_queue *cfqq;
2652         unsigned long flags;
2653
2654         if (unlikely(!cfqd))
2655                 return;
2656
2657         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2658
2659         cfqq = cic->cfqq[BLK_RW_ASYNC];
2660         if (cfqq) {
2661                 struct cfq_queue *new_cfqq;
2662                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2663                                                 GFP_ATOMIC);
2664                 if (new_cfqq) {
2665                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2666                         cfq_put_queue(cfqq);
2667                 }
2668         }
2669
2670         cfqq = cic->cfqq[BLK_RW_SYNC];
2671         if (cfqq)
2672                 cfq_mark_cfqq_prio_changed(cfqq);
2673
2674         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2675 }
2676
2677 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2678 {
2679         call_for_each_cic(ioc, changed_ioprio);
2680         ioc->ioprio_changed = 0;
2681 }
2682
2683 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2684                           pid_t pid, bool is_sync)
2685 {
2686         RB_CLEAR_NODE(&cfqq->rb_node);
2687         RB_CLEAR_NODE(&cfqq->p_node);
2688         INIT_LIST_HEAD(&cfqq->fifo);
2689
2690         atomic_set(&cfqq->ref, 0);
2691         cfqq->cfqd = cfqd;
2692
2693         cfq_mark_cfqq_prio_changed(cfqq);
2694
2695         if (is_sync) {
2696                 if (!cfq_class_idle(cfqq))
2697                         cfq_mark_cfqq_idle_window(cfqq);
2698                 cfq_mark_cfqq_sync(cfqq);
2699         }
2700         cfqq->pid = pid;
2701 }
2702
2703 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2704 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2705 {
2706         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2707         struct cfq_data *cfqd = cic->key;
2708         unsigned long flags;
2709         struct request_queue *q;
2710
2711         if (unlikely(!cfqd))
2712                 return;
2713
2714         q = cfqd->queue;
2715
2716         spin_lock_irqsave(q->queue_lock, flags);
2717
2718         if (sync_cfqq) {
2719                 /*
2720                  * Drop reference to sync queue. A new sync queue will be
2721                  * assigned in new group upon arrival of a fresh request.
2722                  */
2723                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2724                 cic_set_cfqq(cic, NULL, 1);
2725                 cfq_put_queue(sync_cfqq);
2726         }
2727
2728         spin_unlock_irqrestore(q->queue_lock, flags);
2729 }
2730
2731 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2732 {
2733         call_for_each_cic(ioc, changed_cgroup);
2734         ioc->cgroup_changed = 0;
2735 }
2736 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2737
2738 static struct cfq_queue *
2739 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2740                      struct io_context *ioc, gfp_t gfp_mask)
2741 {
2742         struct cfq_queue *cfqq, *new_cfqq = NULL;
2743         struct cfq_io_context *cic;
2744         struct cfq_group *cfqg;
2745
2746 retry:
2747         cfqg = cfq_get_cfqg(cfqd, 1);
2748         cic = cfq_cic_lookup(cfqd, ioc);
2749         /* cic always exists here */
2750         cfqq = cic_to_cfqq(cic, is_sync);
2751
2752         /*
2753          * Always try a new alloc if we fell back to the OOM cfqq
2754          * originally, since it should just be a temporary situation.
2755          */
2756         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2757                 cfqq = NULL;
2758                 if (new_cfqq) {
2759                         cfqq = new_cfqq;
2760                         new_cfqq = NULL;
2761                 } else if (gfp_mask & __GFP_WAIT) {
2762                         spin_unlock_irq(cfqd->queue->queue_lock);
2763                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2764                                         gfp_mask | __GFP_ZERO,
2765                                         cfqd->queue->node);
2766                         spin_lock_irq(cfqd->queue->queue_lock);
2767                         if (new_cfqq)
2768                                 goto retry;
2769                 } else {
2770                         cfqq = kmem_cache_alloc_node(cfq_pool,
2771                                         gfp_mask | __GFP_ZERO,
2772                                         cfqd->queue->node);
2773                 }
2774
2775                 if (cfqq) {
2776                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2777                         cfq_init_prio_data(cfqq, ioc);
2778                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2779                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2780                 } else
2781                         cfqq = &cfqd->oom_cfqq;
2782         }
2783
2784         if (new_cfqq)
2785                 kmem_cache_free(cfq_pool, new_cfqq);
2786
2787         return cfqq;
2788 }
2789
2790 static struct cfq_queue **
2791 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2792 {
2793         switch (ioprio_class) {
2794         case IOPRIO_CLASS_RT:
2795                 return &cfqd->async_cfqq[0][ioprio];
2796         case IOPRIO_CLASS_BE:
2797                 return &cfqd->async_cfqq[1][ioprio];
2798         case IOPRIO_CLASS_IDLE:
2799                 return &cfqd->async_idle_cfqq;
2800         default:
2801                 BUG();
2802         }
2803 }
2804
2805 static struct cfq_queue *
2806 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2807               gfp_t gfp_mask)
2808 {
2809         const int ioprio = task_ioprio(ioc);
2810         const int ioprio_class = task_ioprio_class(ioc);
2811         struct cfq_queue **async_cfqq = NULL;
2812         struct cfq_queue *cfqq = NULL;
2813
2814         if (!is_sync) {
2815                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2816                 cfqq = *async_cfqq;
2817         }
2818
2819         if (!cfqq)
2820                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2821
2822         /*
2823          * pin the queue now that it's allocated, scheduler exit will prune it
2824          */
2825         if (!is_sync && !(*async_cfqq)) {
2826                 atomic_inc(&cfqq->ref);
2827                 *async_cfqq = cfqq;
2828         }
2829
2830         atomic_inc(&cfqq->ref);
2831         return cfqq;
2832 }
2833
2834 /*
2835  * We drop cfq io contexts lazily, so we may find a dead one.
2836  */
2837 static void
2838 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2839                   struct cfq_io_context *cic)
2840 {
2841         unsigned long flags;
2842
2843         WARN_ON(!list_empty(&cic->queue_list));
2844
2845         spin_lock_irqsave(&ioc->lock, flags);
2846
2847         BUG_ON(ioc->ioc_data == cic);
2848
2849         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2850         hlist_del_rcu(&cic->cic_list);
2851         spin_unlock_irqrestore(&ioc->lock, flags);
2852
2853         cfq_cic_free(cic);
2854 }
2855
2856 static struct cfq_io_context *
2857 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2858 {
2859         struct cfq_io_context *cic;
2860         unsigned long flags;
2861         void *k;
2862
2863         if (unlikely(!ioc))
2864                 return NULL;
2865
2866         rcu_read_lock();
2867
2868         /*
2869          * we maintain a last-hit cache, to avoid browsing over the tree
2870          */
2871         cic = rcu_dereference(ioc->ioc_data);
2872         if (cic && cic->key == cfqd) {
2873                 rcu_read_unlock();
2874                 return cic;
2875         }
2876
2877         do {
2878                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2879                 rcu_read_unlock();
2880                 if (!cic)
2881                         break;
2882                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2883                 k = cic->key;
2884                 if (unlikely(!k)) {
2885                         cfq_drop_dead_cic(cfqd, ioc, cic);
2886                         rcu_read_lock();
2887                         continue;
2888                 }
2889
2890                 spin_lock_irqsave(&ioc->lock, flags);
2891                 rcu_assign_pointer(ioc->ioc_data, cic);
2892                 spin_unlock_irqrestore(&ioc->lock, flags);
2893                 break;
2894         } while (1);
2895
2896         return cic;
2897 }
2898
2899 /*
2900  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2901  * the process specific cfq io context when entered from the block layer.
2902  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2903  */
2904 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2905                         struct cfq_io_context *cic, gfp_t gfp_mask)
2906 {
2907         unsigned long flags;
2908         int ret;
2909
2910         ret = radix_tree_preload(gfp_mask);
2911         if (!ret) {
2912                 cic->ioc = ioc;
2913                 cic->key = cfqd;
2914
2915                 spin_lock_irqsave(&ioc->lock, flags);
2916                 ret = radix_tree_insert(&ioc->radix_root,
2917                                                 (unsigned long) cfqd, cic);
2918                 if (!ret)
2919                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2920                 spin_unlock_irqrestore(&ioc->lock, flags);
2921
2922                 radix_tree_preload_end();
2923
2924                 if (!ret) {
2925                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2926                         list_add(&cic->queue_list, &cfqd->cic_list);
2927                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2928                 }
2929         }
2930
2931         if (ret)
2932                 printk(KERN_ERR "cfq: cic link failed!\n");
2933
2934         return ret;
2935 }
2936
2937 /*
2938  * Setup general io context and cfq io context. There can be several cfq
2939  * io contexts per general io context, if this process is doing io to more
2940  * than one device managed by cfq.
2941  */
2942 static struct cfq_io_context *
2943 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2944 {
2945         struct io_context *ioc = NULL;
2946         struct cfq_io_context *cic;
2947
2948         might_sleep_if(gfp_mask & __GFP_WAIT);
2949
2950         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2951         if (!ioc)
2952                 return NULL;
2953
2954         cic = cfq_cic_lookup(cfqd, ioc);
2955         if (cic)
2956                 goto out;
2957
2958         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2959         if (cic == NULL)
2960                 goto err;
2961
2962         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2963                 goto err_free;
2964
2965 out:
2966         smp_read_barrier_depends();
2967         if (unlikely(ioc->ioprio_changed))
2968                 cfq_ioc_set_ioprio(ioc);
2969
2970 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2971         if (unlikely(ioc->cgroup_changed))
2972                 cfq_ioc_set_cgroup(ioc);
2973 #endif
2974         return cic;
2975 err_free:
2976         cfq_cic_free(cic);
2977 err:
2978         put_io_context(ioc);
2979         return NULL;
2980 }
2981
2982 static void
2983 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2984 {
2985         unsigned long elapsed = jiffies - cic->last_end_request;
2986         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2987
2988         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2989         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2990         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2991 }
2992
2993 static void
2994 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2995                        struct request *rq)
2996 {
2997         sector_t sdist;
2998         u64 total;
2999
3000         if (!cfqq->last_request_pos)
3001                 sdist = 0;
3002         else if (cfqq->last_request_pos < blk_rq_pos(rq))
3003                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3004         else
3005                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3006
3007         /*
3008          * Don't allow the seek distance to get too large from the
3009          * odd fragment, pagein, etc
3010          */
3011         if (cfqq->seek_samples <= 60) /* second&third seek */
3012                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
3013         else
3014                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
3015
3016         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
3017         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3018         total = cfqq->seek_total + (cfqq->seek_samples/2);
3019         do_div(total, cfqq->seek_samples);
3020         cfqq->seek_mean = (sector_t)total;
3021 }
3022
3023 /*
3024  * Disable idle window if the process thinks too long or seeks so much that
3025  * it doesn't matter
3026  */
3027 static void
3028 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3029                        struct cfq_io_context *cic)
3030 {
3031         int old_idle, enable_idle;
3032
3033         /*
3034          * Don't idle for async or idle io prio class
3035          */
3036         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3037                 return;
3038
3039         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3040
3041         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3042                 cfq_mark_cfqq_deep(cfqq);
3043
3044         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3045             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3046              && CFQQ_SEEKY(cfqq)))
3047                 enable_idle = 0;
3048         else if (sample_valid(cic->ttime_samples)) {
3049                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3050                         enable_idle = 0;
3051                 else
3052                         enable_idle = 1;
3053         }
3054
3055         if (old_idle != enable_idle) {
3056                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3057                 if (enable_idle)
3058                         cfq_mark_cfqq_idle_window(cfqq);
3059                 else
3060                         cfq_clear_cfqq_idle_window(cfqq);
3061         }
3062 }
3063
3064 /*
3065  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3066  * no or if we aren't sure, a 1 will cause a preempt.
3067  */
3068 static bool
3069 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3070                    struct request *rq)
3071 {
3072         struct cfq_queue *cfqq;
3073
3074         cfqq = cfqd->active_queue;
3075         if (!cfqq)
3076                 return false;
3077
3078         if (cfq_class_idle(new_cfqq))
3079                 return false;
3080
3081         if (cfq_class_idle(cfqq))
3082                 return true;
3083
3084         /*
3085          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3086          */
3087         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3088                 return false;
3089
3090         /*
3091          * if the new request is sync, but the currently running queue is
3092          * not, let the sync request have priority.
3093          */
3094         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3095                 return true;
3096
3097         if (new_cfqq->cfqg != cfqq->cfqg)
3098                 return false;
3099
3100         if (cfq_slice_used(cfqq))
3101                 return true;
3102
3103         /* Allow preemption only if we are idling on sync-noidle tree */
3104         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3105             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3106             new_cfqq->service_tree->count == 2 &&
3107             RB_EMPTY_ROOT(&cfqq->sort_list))
3108                 return true;
3109
3110         /*
3111          * So both queues are sync. Let the new request get disk time if
3112          * it's a metadata request and the current queue is doing regular IO.
3113          */
3114         if (rq_is_meta(rq) && !cfqq->meta_pending)
3115                 return true;
3116
3117         /*
3118          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3119          */
3120         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3121                 return true;
3122
3123         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3124                 return false;
3125
3126         /*
3127          * if this request is as-good as one we would expect from the
3128          * current cfqq, let it preempt
3129          */
3130         if (cfq_rq_close(cfqd, cfqq, rq, true))
3131                 return true;
3132
3133         return false;
3134 }
3135
3136 /*
3137  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3138  * let it have half of its nominal slice.
3139  */
3140 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3141 {
3142         cfq_log_cfqq(cfqd, cfqq, "preempt");
3143         cfq_slice_expired(cfqd, 1);
3144
3145         /*
3146          * Put the new queue at the front of the of the current list,
3147          * so we know that it will be selected next.
3148          */
3149         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3150
3151         cfq_service_tree_add(cfqd, cfqq, 1);
3152
3153         cfqq->slice_end = 0;
3154         cfq_mark_cfqq_slice_new(cfqq);
3155 }
3156
3157 /*
3158  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3159  * something we should do about it
3160  */
3161 static void
3162 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3163                 struct request *rq)
3164 {
3165         struct cfq_io_context *cic = RQ_CIC(rq);
3166
3167         cfqd->rq_queued++;
3168         if (rq_is_meta(rq))
3169                 cfqq->meta_pending++;
3170
3171         cfq_update_io_thinktime(cfqd, cic);
3172         cfq_update_io_seektime(cfqd, cfqq, rq);
3173         cfq_update_idle_window(cfqd, cfqq, cic);
3174
3175         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3176
3177         if (cfqq == cfqd->active_queue) {
3178                 /*
3179                  * Remember that we saw a request from this process, but
3180                  * don't start queuing just yet. Otherwise we risk seeing lots
3181                  * of tiny requests, because we disrupt the normal plugging
3182                  * and merging. If the request is already larger than a single
3183                  * page, let it rip immediately. For that case we assume that
3184                  * merging is already done. Ditto for a busy system that
3185                  * has other work pending, don't risk delaying until the
3186                  * idle timer unplug to continue working.
3187                  */
3188                 if (cfq_cfqq_wait_request(cfqq)) {
3189                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3190                             cfqd->busy_queues > 1) {
3191                                 del_timer(&cfqd->idle_slice_timer);
3192                                 cfq_clear_cfqq_wait_request(cfqq);
3193                                 __blk_run_queue(cfqd->queue);
3194                         } else
3195                                 cfq_mark_cfqq_must_dispatch(cfqq);
3196                 }
3197         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3198                 /*
3199                  * not the active queue - expire current slice if it is
3200                  * idle and has expired it's mean thinktime or this new queue
3201                  * has some old slice time left and is of higher priority or
3202                  * this new queue is RT and the current one is BE
3203                  */
3204                 cfq_preempt_queue(cfqd, cfqq);
3205                 __blk_run_queue(cfqd->queue);
3206         }
3207 }
3208
3209 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3210 {
3211         struct cfq_data *cfqd = q->elevator->elevator_data;
3212         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3213
3214         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3215         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3216
3217         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3218         list_add_tail(&rq->queuelist, &cfqq->fifo);
3219         cfq_add_rq_rb(rq);
3220
3221         cfq_rq_enqueued(cfqd, cfqq, rq);
3222 }
3223
3224 /*
3225  * Update hw_tag based on peak queue depth over 50 samples under
3226  * sufficient load.
3227  */
3228 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3229 {
3230         struct cfq_queue *cfqq = cfqd->active_queue;
3231
3232         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3233                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3234
3235         if (cfqd->hw_tag == 1)
3236                 return;
3237
3238         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3239             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3240                 return;
3241
3242         /*
3243          * If active queue hasn't enough requests and can idle, cfq might not
3244          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3245          * case
3246          */
3247         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3248             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3249             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3250                 return;
3251
3252         if (cfqd->hw_tag_samples++ < 50)
3253                 return;
3254
3255         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3256                 cfqd->hw_tag = 1;
3257         else
3258                 cfqd->hw_tag = 0;
3259 }
3260
3261 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3262 {
3263         struct cfq_io_context *cic = cfqd->active_cic;
3264
3265         /* If there are other queues in the group, don't wait */
3266         if (cfqq->cfqg->nr_cfqq > 1)
3267                 return false;
3268
3269         if (cfq_slice_used(cfqq))
3270                 return true;
3271
3272         /* if slice left is less than think time, wait busy */
3273         if (cic && sample_valid(cic->ttime_samples)
3274             && (cfqq->slice_end - jiffies < cic->ttime_mean))
3275                 return true;
3276
3277         /*
3278          * If think times is less than a jiffy than ttime_mean=0 and above
3279          * will not be true. It might happen that slice has not expired yet
3280          * but will expire soon (4-5 ns) during select_queue(). To cover the
3281          * case where think time is less than a jiffy, mark the queue wait
3282          * busy if only 1 jiffy is left in the slice.
3283          */
3284         if (cfqq->slice_end - jiffies == 1)
3285                 return true;
3286
3287         return false;
3288 }
3289
3290 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3291 {
3292         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3293         struct cfq_data *cfqd = cfqq->cfqd;
3294         const int sync = rq_is_sync(rq);
3295         unsigned long now;
3296
3297         now = jiffies;
3298         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3299
3300         cfq_update_hw_tag(cfqd);
3301
3302         WARN_ON(!cfqd->rq_in_driver[sync]);
3303         WARN_ON(!cfqq->dispatched);
3304         cfqd->rq_in_driver[sync]--;
3305         cfqq->dispatched--;
3306
3307         if (cfq_cfqq_sync(cfqq))
3308                 cfqd->sync_flight--;
3309
3310         if (sync) {
3311                 RQ_CIC(rq)->last_end_request = now;
3312                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3313                         cfqd->last_delayed_sync = now;
3314         }
3315
3316         /*
3317          * If this is the active queue, check if it needs to be expired,
3318          * or if we want to idle in case it has no pending requests.
3319          */
3320         if (cfqd->active_queue == cfqq) {
3321                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3322
3323                 if (cfq_cfqq_slice_new(cfqq)) {
3324                         cfq_set_prio_slice(cfqd, cfqq);
3325                         cfq_clear_cfqq_slice_new(cfqq);
3326                 }
3327
3328                 /*
3329                  * Should we wait for next request to come in before we expire
3330                  * the queue.
3331                  */
3332                 if (cfq_should_wait_busy(cfqd, cfqq)) {
3333                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3334                         cfq_mark_cfqq_wait_busy(cfqq);
3335                 }
3336
3337                 /*
3338                  * Idling is not enabled on:
3339                  * - expired queues
3340                  * - idle-priority queues
3341                  * - async queues
3342                  * - queues with still some requests queued
3343                  * - when there is a close cooperator
3344                  */
3345                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3346                         cfq_slice_expired(cfqd, 1);
3347                 else if (sync && cfqq_empty &&
3348                          !cfq_close_cooperator(cfqd, cfqq)) {
3349                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3350                         /*
3351                          * Idling is enabled for SYNC_WORKLOAD.
3352                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3353                          * only if we processed at least one !rq_noidle request
3354                          */
3355                         if (cfqd->serving_type == SYNC_WORKLOAD
3356                             || cfqd->noidle_tree_requires_idle
3357                             || cfqq->cfqg->nr_cfqq == 1)
3358                                 cfq_arm_slice_timer(cfqd);
3359                 }
3360         }
3361
3362         if (!rq_in_driver(cfqd))
3363                 cfq_schedule_dispatch(cfqd);
3364 }
3365
3366 /*
3367  * we temporarily boost lower priority queues if they are holding fs exclusive
3368  * resources. they are boosted to normal prio (CLASS_BE/4)
3369  */
3370 static void cfq_prio_boost(struct cfq_queue *cfqq)
3371 {
3372         if (has_fs_excl()) {
3373                 /*
3374                  * boost idle prio on transactions that would lock out other
3375                  * users of the filesystem
3376                  */
3377                 if (cfq_class_idle(cfqq))
3378                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3379                 if (cfqq->ioprio > IOPRIO_NORM)
3380                         cfqq->ioprio = IOPRIO_NORM;
3381         } else {
3382                 /*
3383                  * unboost the queue (if needed)
3384                  */
3385                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3386                 cfqq->ioprio = cfqq->org_ioprio;
3387         }
3388 }
3389
3390 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3391 {
3392         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3393                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3394                 return ELV_MQUEUE_MUST;
3395         }
3396
3397         return ELV_MQUEUE_MAY;
3398 }
3399
3400 static int cfq_may_queue(struct request_queue *q, int rw)
3401 {
3402         struct cfq_data *cfqd = q->elevator->elevator_data;
3403         struct task_struct *tsk = current;
3404         struct cfq_io_context *cic;
3405         struct cfq_queue *cfqq;
3406
3407         /*
3408          * don't force setup of a queue from here, as a call to may_queue
3409          * does not necessarily imply that a request actually will be queued.
3410          * so just lookup a possibly existing queue, or return 'may queue'
3411          * if that fails
3412          */
3413         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3414         if (!cic)
3415                 return ELV_MQUEUE_MAY;
3416
3417         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3418         if (cfqq) {
3419                 cfq_init_prio_data(cfqq, cic->ioc);
3420                 cfq_prio_boost(cfqq);
3421
3422                 return __cfq_may_queue(cfqq);
3423         }
3424
3425         return ELV_MQUEUE_MAY;
3426 }
3427
3428 /*
3429  * queue lock held here
3430  */
3431 static void cfq_put_request(struct request *rq)
3432 {
3433         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3434
3435         if (cfqq) {
3436                 const int rw = rq_data_dir(rq);
3437
3438                 BUG_ON(!cfqq->allocated[rw]);
3439                 cfqq->allocated[rw]--;
3440
3441                 put_io_context(RQ_CIC(rq)->ioc);
3442
3443                 rq->elevator_private = NULL;
3444                 rq->elevator_private2 = NULL;
3445
3446                 cfq_put_queue(cfqq);
3447         }
3448 }
3449
3450 static struct cfq_queue *
3451 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3452                 struct cfq_queue *cfqq)
3453 {
3454         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3455         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3456         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3457         cfq_put_queue(cfqq);
3458         return cic_to_cfqq(cic, 1);
3459 }
3460
3461 /*
3462  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3463  * was the last process referring to said cfqq.
3464  */
3465 static struct cfq_queue *
3466 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3467 {
3468         if (cfqq_process_refs(cfqq) == 1) {
3469                 cfqq->pid = current->pid;
3470                 cfq_clear_cfqq_coop(cfqq);
3471                 cfq_clear_cfqq_split_coop(cfqq);
3472                 return cfqq;
3473         }
3474
3475         cic_set_cfqq(cic, NULL, 1);
3476
3477         cfq_put_cooperator(cfqq);
3478
3479         cfq_put_queue(cfqq);
3480         return NULL;
3481 }
3482 /*
3483  * Allocate cfq data structures associated with this request.
3484  */
3485 static int
3486 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3487 {
3488         struct cfq_data *cfqd = q->elevator->elevator_data;
3489         struct cfq_io_context *cic;
3490         const int rw = rq_data_dir(rq);
3491         const bool is_sync = rq_is_sync(rq);
3492         struct cfq_queue *cfqq;
3493         unsigned long flags;
3494
3495         might_sleep_if(gfp_mask & __GFP_WAIT);
3496
3497         cic = cfq_get_io_context(cfqd, gfp_mask);
3498
3499         spin_lock_irqsave(q->queue_lock, flags);
3500
3501         if (!cic)
3502                 goto queue_fail;
3503
3504 new_queue:
3505         cfqq = cic_to_cfqq(cic, is_sync);
3506         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3507                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3508                 cic_set_cfqq(cic, cfqq, is_sync);
3509         } else {
3510                 /*
3511                  * If the queue was seeky for too long, break it apart.
3512                  */
3513                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3514                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3515                         cfqq = split_cfqq(cic, cfqq);
3516                         if (!cfqq)
3517                                 goto new_queue;
3518                 }
3519
3520                 /*
3521                  * Check to see if this queue is scheduled to merge with
3522                  * another, closely cooperating queue.  The merging of
3523                  * queues happens here as it must be done in process context.
3524                  * The reference on new_cfqq was taken in merge_cfqqs.
3525                  */
3526                 if (cfqq->new_cfqq)
3527                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3528         }
3529
3530         cfqq->allocated[rw]++;
3531         atomic_inc(&cfqq->ref);
3532
3533         spin_unlock_irqrestore(q->queue_lock, flags);
3534
3535         rq->elevator_private = cic;
3536         rq->elevator_private2 = cfqq;
3537         return 0;
3538
3539 queue_fail:
3540         if (cic)
3541                 put_io_context(cic->ioc);
3542
3543         cfq_schedule_dispatch(cfqd);
3544         spin_unlock_irqrestore(q->queue_lock, flags);
3545         cfq_log(cfqd, "set_request fail");
3546         return 1;
3547 }
3548
3549 static void cfq_kick_queue(struct work_struct *work)
3550 {
3551         struct cfq_data *cfqd =
3552                 container_of(work, struct cfq_data, unplug_work);
3553         struct request_queue *q = cfqd->queue;
3554
3555         spin_lock_irq(q->queue_lock);
3556         __blk_run_queue(cfqd->queue);
3557         spin_unlock_irq(q->queue_lock);
3558 }
3559
3560 /*
3561  * Timer running if the active_queue is currently idling inside its time slice
3562  */
3563 static void cfq_idle_slice_timer(unsigned long data)
3564 {
3565         struct cfq_data *cfqd = (struct cfq_data *) data;
3566         struct cfq_queue *cfqq;
3567         unsigned long flags;
3568         int timed_out = 1;
3569
3570         cfq_log(cfqd, "idle timer fired");
3571
3572         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3573
3574         cfqq = cfqd->active_queue;
3575         if (cfqq) {
3576                 timed_out = 0;
3577
3578                 /*
3579                  * We saw a request before the queue expired, let it through
3580                  */
3581                 if (cfq_cfqq_must_dispatch(cfqq))
3582                         goto out_kick;
3583
3584                 /*
3585                  * expired
3586                  */
3587                 if (cfq_slice_used(cfqq))
3588                         goto expire;
3589
3590                 /*
3591                  * only expire and reinvoke request handler, if there are
3592                  * other queues with pending requests
3593                  */
3594                 if (!cfqd->busy_queues)
3595                         goto out_cont;
3596
3597                 /*
3598                  * not expired and it has a request pending, let it dispatch
3599                  */
3600                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3601                         goto out_kick;
3602
3603                 /*
3604                  * Queue depth flag is reset only when the idle didn't succeed
3605                  */
3606                 cfq_clear_cfqq_deep(cfqq);
3607         }
3608 expire:
3609         cfq_slice_expired(cfqd, timed_out);
3610 out_kick:
3611         cfq_schedule_dispatch(cfqd);
3612 out_cont:
3613         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3614 }
3615
3616 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3617 {
3618         del_timer_sync(&cfqd->idle_slice_timer);
3619         cancel_work_sync(&cfqd->unplug_work);
3620 }
3621
3622 static void cfq_put_async_queues(struct cfq_data *cfqd)
3623 {
3624         int i;
3625
3626         for (i = 0; i < IOPRIO_BE_NR; i++) {
3627                 if (cfqd->async_cfqq[0][i])
3628                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3629                 if (cfqd->async_cfqq[1][i])
3630                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3631         }
3632
3633         if (cfqd->async_idle_cfqq)
3634                 cfq_put_queue(cfqd->async_idle_cfqq);
3635 }
3636
3637 static void cfq_cfqd_free(struct rcu_head *head)
3638 {
3639         kfree(container_of(head, struct cfq_data, rcu));
3640 }
3641
3642 static void cfq_exit_queue(struct elevator_queue *e)
3643 {
3644         struct cfq_data *cfqd = e->elevator_data;
3645         struct request_queue *q = cfqd->queue;
3646
3647         cfq_shutdown_timer_wq(cfqd);
3648
3649         spin_lock_irq(q->queue_lock);
3650
3651         if (cfqd->active_queue)
3652                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3653
3654         while (!list_empty(&cfqd->cic_list)) {
3655                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3656                                                         struct cfq_io_context,
3657                                                         queue_list);
3658
3659                 __cfq_exit_single_io_context(cfqd, cic);
3660         }
3661
3662         cfq_put_async_queues(cfqd);
3663         cfq_release_cfq_groups(cfqd);
3664         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3665
3666         spin_unlock_irq(q->queue_lock);
3667
3668         cfq_shutdown_timer_wq(cfqd);
3669
3670         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3671         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3672 }
3673
3674 static void *cfq_init_queue(struct request_queue *q)
3675 {
3676         struct cfq_data *cfqd;
3677         int i, j;
3678         struct cfq_group *cfqg;
3679         struct cfq_rb_root *st;
3680
3681         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3682         if (!cfqd)
3683                 return NULL;
3684
3685         /* Init root service tree */
3686         cfqd->grp_service_tree = CFQ_RB_ROOT;
3687
3688         /* Init root group */
3689         cfqg = &cfqd->root_group;
3690         for_each_cfqg_st(cfqg, i, j, st)
3691                 *st = CFQ_RB_ROOT;
3692         RB_CLEAR_NODE(&cfqg->rb_node);
3693
3694         /* Give preference to root group over other groups */
3695         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3696
3697 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3698         /*
3699          * Take a reference to root group which we never drop. This is just
3700          * to make sure that cfq_put_cfqg() does not try to kfree root group
3701          */
3702         atomic_set(&cfqg->ref, 1);
3703         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3704                                         0);
3705 #endif
3706         /*
3707          * Not strictly needed (since RB_ROOT just clears the node and we
3708          * zeroed cfqd on alloc), but better be safe in case someone decides
3709          * to add magic to the rb code
3710          */
3711         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3712                 cfqd->prio_trees[i] = RB_ROOT;
3713
3714         /*
3715          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3716          * Grab a permanent reference to it, so that the normal code flow
3717          * will not attempt to free it.
3718          */
3719         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3720         atomic_inc(&cfqd->oom_cfqq.ref);
3721         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3722
3723         INIT_LIST_HEAD(&cfqd->cic_list);
3724
3725         cfqd->queue = q;
3726
3727         init_timer(&cfqd->idle_slice_timer);
3728         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3729         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3730
3731         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3732
3733         cfqd->cfq_quantum = cfq_quantum;
3734         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3735         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3736         cfqd->cfq_back_max = cfq_back_max;
3737         cfqd->cfq_back_penalty = cfq_back_penalty;
3738         cfqd->cfq_slice[0] = cfq_slice_async;
3739         cfqd->cfq_slice[1] = cfq_slice_sync;
3740         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3741         cfqd->cfq_slice_idle = cfq_slice_idle;
3742         cfqd->cfq_latency = 1;
3743         cfqd->cfq_group_isolation = 0;
3744         cfqd->hw_tag = -1;
3745         /*
3746          * we optimistically start assuming sync ops weren't delayed in last
3747          * second, in order to have larger depth for async operations.
3748          */
3749         cfqd->last_delayed_sync = jiffies - HZ;
3750         INIT_RCU_HEAD(&cfqd->rcu);
3751         return cfqd;
3752 }
3753
3754 static void cfq_slab_kill(void)
3755 {
3756         /*
3757          * Caller already ensured that pending RCU callbacks are completed,
3758          * so we should have no busy allocations at this point.
3759          */
3760         if (cfq_pool)
3761                 kmem_cache_destroy(cfq_pool);
3762         if (cfq_ioc_pool)
3763                 kmem_cache_destroy(cfq_ioc_pool);
3764 }
3765
3766 static int __init cfq_slab_setup(void)
3767 {
3768         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3769         if (!cfq_pool)
3770                 goto fail;
3771
3772         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3773         if (!cfq_ioc_pool)
3774                 goto fail;
3775
3776         return 0;
3777 fail:
3778         cfq_slab_kill();
3779         return -ENOMEM;
3780 }
3781
3782 /*
3783  * sysfs parts below -->
3784  */
3785 static ssize_t
3786 cfq_var_show(unsigned int var, char *page)
3787 {
3788         return sprintf(page, "%d\n", var);
3789 }
3790
3791 static ssize_t
3792 cfq_var_store(unsigned int *var, const char *page, size_t count)
3793 {
3794         char *p = (char *) page;
3795
3796         *var = simple_strtoul(p, &p, 10);
3797         return count;
3798 }
3799
3800 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3801 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3802 {                                                                       \
3803         struct cfq_data *cfqd = e->elevator_data;                       \
3804         unsigned int __data = __VAR;                                    \
3805         if (__CONV)                                                     \
3806                 __data = jiffies_to_msecs(__data);                      \
3807         return cfq_var_show(__data, (page));                            \
3808 }
3809 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3810 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3811 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3812 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3813 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3814 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3815 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3816 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3817 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3818 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3819 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3820 #undef SHOW_FUNCTION
3821
3822 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3823 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3824 {                                                                       \
3825         struct cfq_data *cfqd = e->elevator_data;                       \
3826         unsigned int __data;                                            \
3827         int ret = cfq_var_store(&__data, (page), count);                \
3828         if (__data < (MIN))                                             \
3829                 __data = (MIN);                                         \
3830         else if (__data > (MAX))                                        \
3831                 __data = (MAX);                                         \
3832         if (__CONV)                                                     \
3833                 *(__PTR) = msecs_to_jiffies(__data);                    \
3834         else                                                            \
3835                 *(__PTR) = __data;                                      \
3836         return ret;                                                     \
3837 }
3838 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3839 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3840                 UINT_MAX, 1);
3841 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3842                 UINT_MAX, 1);
3843 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3844 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3845                 UINT_MAX, 0);
3846 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3847 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3848 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3849 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3850                 UINT_MAX, 0);
3851 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3852 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3853 #undef STORE_FUNCTION
3854
3855 #define CFQ_ATTR(name) \
3856         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3857
3858 static struct elv_fs_entry cfq_attrs[] = {
3859         CFQ_ATTR(quantum),
3860         CFQ_ATTR(fifo_expire_sync),
3861         CFQ_ATTR(fifo_expire_async),
3862         CFQ_ATTR(back_seek_max),
3863         CFQ_ATTR(back_seek_penalty),
3864         CFQ_ATTR(slice_sync),
3865         CFQ_ATTR(slice_async),
3866         CFQ_ATTR(slice_async_rq),
3867         CFQ_ATTR(slice_idle),
3868         CFQ_ATTR(low_latency),
3869         CFQ_ATTR(group_isolation),
3870         __ATTR_NULL
3871 };
3872
3873 static struct elevator_type iosched_cfq = {
3874         .ops = {
3875                 .elevator_merge_fn =            cfq_merge,
3876                 .elevator_merged_fn =           cfq_merged_request,
3877                 .elevator_merge_req_fn =        cfq_merged_requests,
3878                 .elevator_allow_merge_fn =      cfq_allow_merge,
3879                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3880                 .elevator_add_req_fn =          cfq_insert_request,
3881                 .elevator_activate_req_fn =     cfq_activate_request,
3882                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3883                 .elevator_queue_empty_fn =      cfq_queue_empty,
3884                 .elevator_completed_req_fn =    cfq_completed_request,
3885                 .elevator_former_req_fn =       elv_rb_former_request,
3886                 .elevator_latter_req_fn =       elv_rb_latter_request,
3887                 .elevator_set_req_fn =          cfq_set_request,
3888                 .elevator_put_req_fn =          cfq_put_request,
3889                 .elevator_may_queue_fn =        cfq_may_queue,
3890                 .elevator_init_fn =             cfq_init_queue,
3891                 .elevator_exit_fn =             cfq_exit_queue,
3892                 .trim =                         cfq_free_io_context,
3893         },
3894         .elevator_attrs =       cfq_attrs,
3895         .elevator_name =        "cfq",
3896         .elevator_owner =       THIS_MODULE,
3897 };
3898
3899 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3900 static struct blkio_policy_type blkio_policy_cfq = {
3901         .ops = {
3902                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3903                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3904         },
3905 };
3906 #else
3907 static struct blkio_policy_type blkio_policy_cfq;
3908 #endif
3909
3910 static int __init cfq_init(void)
3911 {
3912         /*
3913          * could be 0 on HZ < 1000 setups
3914          */
3915         if (!cfq_slice_async)
3916                 cfq_slice_async = 1;
3917         if (!cfq_slice_idle)
3918                 cfq_slice_idle = 1;
3919
3920         if (cfq_slab_setup())
3921                 return -ENOMEM;
3922
3923         elv_register(&iosched_cfq);
3924         blkio_policy_register(&blkio_policy_cfq);
3925
3926         return 0;
3927 }
3928
3929 static void __exit cfq_exit(void)
3930 {
3931         DECLARE_COMPLETION_ONSTACK(all_gone);
3932         blkio_policy_unregister(&blkio_policy_cfq);
3933         elv_unregister(&iosched_cfq);
3934         ioc_gone = &all_gone;
3935         /* ioc_gone's update must be visible before reading ioc_count */
3936         smp_wmb();
3937
3938         /*
3939          * this also protects us from entering cfq_slab_kill() with
3940          * pending RCU callbacks
3941          */
3942         if (elv_ioc_count_read(cfq_ioc_count))
3943                 wait_for_completion(&all_gone);
3944         cfq_slab_kill();
3945 }
3946
3947 module_init(cfq_init);
3948 module_exit(cfq_exit);
3949
3950 MODULE_AUTHOR("Jens Axboe");
3951 MODULE_LICENSE("GPL");
3952 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");