]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/cfq-iosched.c
Merge branches 'acpi-button', 'acpica' and 'acpi-sysfs'
[karo-tx-linux.git] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/sched/clock.h>
12 #include <linux/blkdev.h>
13 #include <linux/elevator.h>
14 #include <linux/ktime.h>
15 #include <linux/rbtree.h>
16 #include <linux/ioprio.h>
17 #include <linux/blktrace_api.h>
18 #include <linux/blk-cgroup.h>
19 #include "blk.h"
20 #include "blk-wbt.h"
21
22 /*
23  * tunables
24  */
25 /* max queue in one round of service */
26 static const int cfq_quantum = 8;
27 static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
28 /* maximum backwards seek, in KiB */
29 static const int cfq_back_max = 16 * 1024;
30 /* penalty of a backwards seek */
31 static const int cfq_back_penalty = 2;
32 static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
33 static u64 cfq_slice_async = NSEC_PER_SEC / 25;
34 static const int cfq_slice_async_rq = 2;
35 static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
36 static u64 cfq_group_idle = NSEC_PER_SEC / 125;
37 static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
38 static const int cfq_hist_divisor = 4;
39
40 /*
41  * offset from end of service tree
42  */
43 #define CFQ_IDLE_DELAY          (NSEC_PER_SEC / 5)
44
45 /*
46  * below this threshold, we consider thinktime immediate
47  */
48 #define CFQ_MIN_TT              (2 * NSEC_PER_SEC / HZ)
49
50 #define CFQ_SLICE_SCALE         (5)
51 #define CFQ_HW_QUEUE_MIN        (5)
52 #define CFQ_SERVICE_SHIFT       12
53
54 #define CFQQ_SEEK_THR           (sector_t)(8 * 100)
55 #define CFQQ_CLOSE_THR          (sector_t)(8 * 1024)
56 #define CFQQ_SECT_THR_NONROT    (sector_t)(2 * 32)
57 #define CFQQ_SEEKY(cfqq)        (hweight32(cfqq->seek_history) > 32/8)
58
59 #define RQ_CIC(rq)              icq_to_cic((rq)->elv.icq)
60 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elv.priv[0])
61 #define RQ_CFQG(rq)             (struct cfq_group *) ((rq)->elv.priv[1])
62
63 static struct kmem_cache *cfq_pool;
64
65 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
66 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69 #define sample_valid(samples)   ((samples) > 80)
70 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
71
72 /* blkio-related constants */
73 #define CFQ_WEIGHT_LEGACY_MIN   10
74 #define CFQ_WEIGHT_LEGACY_DFL   500
75 #define CFQ_WEIGHT_LEGACY_MAX   1000
76
77 struct cfq_ttime {
78         u64 last_end_request;
79
80         u64 ttime_total;
81         u64 ttime_mean;
82         unsigned long ttime_samples;
83 };
84
85 /*
86  * Most of our rbtree usage is for sorting with min extraction, so
87  * if we cache the leftmost node we don't have to walk down the tree
88  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
89  * move this into the elevator for the rq sorting as well.
90  */
91 struct cfq_rb_root {
92         struct rb_root rb;
93         struct rb_node *left;
94         unsigned count;
95         u64 min_vdisktime;
96         struct cfq_ttime ttime;
97 };
98 #define CFQ_RB_ROOT     (struct cfq_rb_root) { .rb = RB_ROOT, \
99                         .ttime = {.last_end_request = ktime_get_ns(),},}
100
101 /*
102  * Per process-grouping structure
103  */
104 struct cfq_queue {
105         /* reference count */
106         int ref;
107         /* various state flags, see below */
108         unsigned int flags;
109         /* parent cfq_data */
110         struct cfq_data *cfqd;
111         /* service_tree member */
112         struct rb_node rb_node;
113         /* service_tree key */
114         u64 rb_key;
115         /* prio tree member */
116         struct rb_node p_node;
117         /* prio tree root we belong to, if any */
118         struct rb_root *p_root;
119         /* sorted list of pending requests */
120         struct rb_root sort_list;
121         /* if fifo isn't expired, next request to serve */
122         struct request *next_rq;
123         /* requests queued in sort_list */
124         int queued[2];
125         /* currently allocated requests */
126         int allocated[2];
127         /* fifo list of requests in sort_list */
128         struct list_head fifo;
129
130         /* time when queue got scheduled in to dispatch first request. */
131         u64 dispatch_start;
132         u64 allocated_slice;
133         u64 slice_dispatch;
134         /* time when first request from queue completed and slice started. */
135         u64 slice_start;
136         u64 slice_end;
137         s64 slice_resid;
138
139         /* pending priority requests */
140         int prio_pending;
141         /* number of requests that are on the dispatch list or inside driver */
142         int dispatched;
143
144         /* io prio of this group */
145         unsigned short ioprio, org_ioprio;
146         unsigned short ioprio_class, org_ioprio_class;
147
148         pid_t pid;
149
150         u32 seek_history;
151         sector_t last_request_pos;
152
153         struct cfq_rb_root *service_tree;
154         struct cfq_queue *new_cfqq;
155         struct cfq_group *cfqg;
156         /* Number of sectors dispatched from queue in single dispatch round */
157         unsigned long nr_sectors;
158 };
159
160 /*
161  * First index in the service_trees.
162  * IDLE is handled separately, so it has negative index
163  */
164 enum wl_class_t {
165         BE_WORKLOAD = 0,
166         RT_WORKLOAD = 1,
167         IDLE_WORKLOAD = 2,
168         CFQ_PRIO_NR,
169 };
170
171 /*
172  * Second index in the service_trees.
173  */
174 enum wl_type_t {
175         ASYNC_WORKLOAD = 0,
176         SYNC_NOIDLE_WORKLOAD = 1,
177         SYNC_WORKLOAD = 2
178 };
179
180 struct cfqg_stats {
181 #ifdef CONFIG_CFQ_GROUP_IOSCHED
182         /* number of ios merged */
183         struct blkg_rwstat              merged;
184         /* total time spent on device in ns, may not be accurate w/ queueing */
185         struct blkg_rwstat              service_time;
186         /* total time spent waiting in scheduler queue in ns */
187         struct blkg_rwstat              wait_time;
188         /* number of IOs queued up */
189         struct blkg_rwstat              queued;
190         /* total disk time and nr sectors dispatched by this group */
191         struct blkg_stat                time;
192 #ifdef CONFIG_DEBUG_BLK_CGROUP
193         /* time not charged to this cgroup */
194         struct blkg_stat                unaccounted_time;
195         /* sum of number of ios queued across all samples */
196         struct blkg_stat                avg_queue_size_sum;
197         /* count of samples taken for average */
198         struct blkg_stat                avg_queue_size_samples;
199         /* how many times this group has been removed from service tree */
200         struct blkg_stat                dequeue;
201         /* total time spent waiting for it to be assigned a timeslice. */
202         struct blkg_stat                group_wait_time;
203         /* time spent idling for this blkcg_gq */
204         struct blkg_stat                idle_time;
205         /* total time with empty current active q with other requests queued */
206         struct blkg_stat                empty_time;
207         /* fields after this shouldn't be cleared on stat reset */
208         uint64_t                        start_group_wait_time;
209         uint64_t                        start_idle_time;
210         uint64_t                        start_empty_time;
211         uint16_t                        flags;
212 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
213 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
214 };
215
216 /* Per-cgroup data */
217 struct cfq_group_data {
218         /* must be the first member */
219         struct blkcg_policy_data cpd;
220
221         unsigned int weight;
222         unsigned int leaf_weight;
223 };
224
225 /* This is per cgroup per device grouping structure */
226 struct cfq_group {
227         /* must be the first member */
228         struct blkg_policy_data pd;
229
230         /* group service_tree member */
231         struct rb_node rb_node;
232
233         /* group service_tree key */
234         u64 vdisktime;
235
236         /*
237          * The number of active cfqgs and sum of their weights under this
238          * cfqg.  This covers this cfqg's leaf_weight and all children's
239          * weights, but does not cover weights of further descendants.
240          *
241          * If a cfqg is on the service tree, it's active.  An active cfqg
242          * also activates its parent and contributes to the children_weight
243          * of the parent.
244          */
245         int nr_active;
246         unsigned int children_weight;
247
248         /*
249          * vfraction is the fraction of vdisktime that the tasks in this
250          * cfqg are entitled to.  This is determined by compounding the
251          * ratios walking up from this cfqg to the root.
252          *
253          * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
254          * vfractions on a service tree is approximately 1.  The sum may
255          * deviate a bit due to rounding errors and fluctuations caused by
256          * cfqgs entering and leaving the service tree.
257          */
258         unsigned int vfraction;
259
260         /*
261          * There are two weights - (internal) weight is the weight of this
262          * cfqg against the sibling cfqgs.  leaf_weight is the wight of
263          * this cfqg against the child cfqgs.  For the root cfqg, both
264          * weights are kept in sync for backward compatibility.
265          */
266         unsigned int weight;
267         unsigned int new_weight;
268         unsigned int dev_weight;
269
270         unsigned int leaf_weight;
271         unsigned int new_leaf_weight;
272         unsigned int dev_leaf_weight;
273
274         /* number of cfqq currently on this group */
275         int nr_cfqq;
276
277         /*
278          * Per group busy queues average. Useful for workload slice calc. We
279          * create the array for each prio class but at run time it is used
280          * only for RT and BE class and slot for IDLE class remains unused.
281          * This is primarily done to avoid confusion and a gcc warning.
282          */
283         unsigned int busy_queues_avg[CFQ_PRIO_NR];
284         /*
285          * rr lists of queues with requests. We maintain service trees for
286          * RT and BE classes. These trees are subdivided in subclasses
287          * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
288          * class there is no subclassification and all the cfq queues go on
289          * a single tree service_tree_idle.
290          * Counts are embedded in the cfq_rb_root
291          */
292         struct cfq_rb_root service_trees[2][3];
293         struct cfq_rb_root service_tree_idle;
294
295         u64 saved_wl_slice;
296         enum wl_type_t saved_wl_type;
297         enum wl_class_t saved_wl_class;
298
299         /* number of requests that are on the dispatch list or inside driver */
300         int dispatched;
301         struct cfq_ttime ttime;
302         struct cfqg_stats stats;        /* stats for this cfqg */
303
304         /* async queue for each priority case */
305         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
306         struct cfq_queue *async_idle_cfqq;
307
308 };
309
310 struct cfq_io_cq {
311         struct io_cq            icq;            /* must be the first member */
312         struct cfq_queue        *cfqq[2];
313         struct cfq_ttime        ttime;
314         int                     ioprio;         /* the current ioprio */
315 #ifdef CONFIG_CFQ_GROUP_IOSCHED
316         uint64_t                blkcg_serial_nr; /* the current blkcg serial */
317 #endif
318 };
319
320 /*
321  * Per block device queue structure
322  */
323 struct cfq_data {
324         struct request_queue *queue;
325         /* Root service tree for cfq_groups */
326         struct cfq_rb_root grp_service_tree;
327         struct cfq_group *root_group;
328
329         /*
330          * The priority currently being served
331          */
332         enum wl_class_t serving_wl_class;
333         enum wl_type_t serving_wl_type;
334         u64 workload_expires;
335         struct cfq_group *serving_group;
336
337         /*
338          * Each priority tree is sorted by next_request position.  These
339          * trees are used when determining if two or more queues are
340          * interleaving requests (see cfq_close_cooperator).
341          */
342         struct rb_root prio_trees[CFQ_PRIO_LISTS];
343
344         unsigned int busy_queues;
345         unsigned int busy_sync_queues;
346
347         int rq_in_driver;
348         int rq_in_flight[2];
349
350         /*
351          * queue-depth detection
352          */
353         int rq_queued;
354         int hw_tag;
355         /*
356          * hw_tag can be
357          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
358          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
359          *  0 => no NCQ
360          */
361         int hw_tag_est_depth;
362         unsigned int hw_tag_samples;
363
364         /*
365          * idle window management
366          */
367         struct hrtimer idle_slice_timer;
368         struct work_struct unplug_work;
369
370         struct cfq_queue *active_queue;
371         struct cfq_io_cq *active_cic;
372
373         sector_t last_position;
374
375         /*
376          * tunables, see top of file
377          */
378         unsigned int cfq_quantum;
379         unsigned int cfq_back_penalty;
380         unsigned int cfq_back_max;
381         unsigned int cfq_slice_async_rq;
382         unsigned int cfq_latency;
383         u64 cfq_fifo_expire[2];
384         u64 cfq_slice[2];
385         u64 cfq_slice_idle;
386         u64 cfq_group_idle;
387         u64 cfq_target_latency;
388
389         /*
390          * Fallback dummy cfqq for extreme OOM conditions
391          */
392         struct cfq_queue oom_cfqq;
393
394         u64 last_delayed_sync;
395 };
396
397 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
398 static void cfq_put_queue(struct cfq_queue *cfqq);
399
400 static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
401                                             enum wl_class_t class,
402                                             enum wl_type_t type)
403 {
404         if (!cfqg)
405                 return NULL;
406
407         if (class == IDLE_WORKLOAD)
408                 return &cfqg->service_tree_idle;
409
410         return &cfqg->service_trees[class][type];
411 }
412
413 enum cfqq_state_flags {
414         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
415         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
416         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
417         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
418         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
419         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
420         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
421         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
422         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
423         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
424         CFQ_CFQQ_FLAG_split_coop,       /* shared cfqq will be splitted */
425         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
426         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
427 };
428
429 #define CFQ_CFQQ_FNS(name)                                              \
430 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
431 {                                                                       \
432         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
433 }                                                                       \
434 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
435 {                                                                       \
436         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
437 }                                                                       \
438 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
439 {                                                                       \
440         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
441 }
442
443 CFQ_CFQQ_FNS(on_rr);
444 CFQ_CFQQ_FNS(wait_request);
445 CFQ_CFQQ_FNS(must_dispatch);
446 CFQ_CFQQ_FNS(must_alloc_slice);
447 CFQ_CFQQ_FNS(fifo_expire);
448 CFQ_CFQQ_FNS(idle_window);
449 CFQ_CFQQ_FNS(prio_changed);
450 CFQ_CFQQ_FNS(slice_new);
451 CFQ_CFQQ_FNS(sync);
452 CFQ_CFQQ_FNS(coop);
453 CFQ_CFQQ_FNS(split_coop);
454 CFQ_CFQQ_FNS(deep);
455 CFQ_CFQQ_FNS(wait_busy);
456 #undef CFQ_CFQQ_FNS
457
458 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
459
460 /* cfqg stats flags */
461 enum cfqg_stats_flags {
462         CFQG_stats_waiting = 0,
463         CFQG_stats_idling,
464         CFQG_stats_empty,
465 };
466
467 #define CFQG_FLAG_FNS(name)                                             \
468 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)     \
469 {                                                                       \
470         stats->flags |= (1 << CFQG_stats_##name);                       \
471 }                                                                       \
472 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)    \
473 {                                                                       \
474         stats->flags &= ~(1 << CFQG_stats_##name);                      \
475 }                                                                       \
476 static inline int cfqg_stats_##name(struct cfqg_stats *stats)           \
477 {                                                                       \
478         return (stats->flags & (1 << CFQG_stats_##name)) != 0;          \
479 }                                                                       \
480
481 CFQG_FLAG_FNS(waiting)
482 CFQG_FLAG_FNS(idling)
483 CFQG_FLAG_FNS(empty)
484 #undef CFQG_FLAG_FNS
485
486 /* This should be called with the queue_lock held. */
487 static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
488 {
489         unsigned long long now;
490
491         if (!cfqg_stats_waiting(stats))
492                 return;
493
494         now = sched_clock();
495         if (time_after64(now, stats->start_group_wait_time))
496                 blkg_stat_add(&stats->group_wait_time,
497                               now - stats->start_group_wait_time);
498         cfqg_stats_clear_waiting(stats);
499 }
500
501 /* This should be called with the queue_lock held. */
502 static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
503                                                  struct cfq_group *curr_cfqg)
504 {
505         struct cfqg_stats *stats = &cfqg->stats;
506
507         if (cfqg_stats_waiting(stats))
508                 return;
509         if (cfqg == curr_cfqg)
510                 return;
511         stats->start_group_wait_time = sched_clock();
512         cfqg_stats_mark_waiting(stats);
513 }
514
515 /* This should be called with the queue_lock held. */
516 static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
517 {
518         unsigned long long now;
519
520         if (!cfqg_stats_empty(stats))
521                 return;
522
523         now = sched_clock();
524         if (time_after64(now, stats->start_empty_time))
525                 blkg_stat_add(&stats->empty_time,
526                               now - stats->start_empty_time);
527         cfqg_stats_clear_empty(stats);
528 }
529
530 static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
531 {
532         blkg_stat_add(&cfqg->stats.dequeue, 1);
533 }
534
535 static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
536 {
537         struct cfqg_stats *stats = &cfqg->stats;
538
539         if (blkg_rwstat_total(&stats->queued))
540                 return;
541
542         /*
543          * group is already marked empty. This can happen if cfqq got new
544          * request in parent group and moved to this group while being added
545          * to service tree. Just ignore the event and move on.
546          */
547         if (cfqg_stats_empty(stats))
548                 return;
549
550         stats->start_empty_time = sched_clock();
551         cfqg_stats_mark_empty(stats);
552 }
553
554 static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
555 {
556         struct cfqg_stats *stats = &cfqg->stats;
557
558         if (cfqg_stats_idling(stats)) {
559                 unsigned long long now = sched_clock();
560
561                 if (time_after64(now, stats->start_idle_time))
562                         blkg_stat_add(&stats->idle_time,
563                                       now - stats->start_idle_time);
564                 cfqg_stats_clear_idling(stats);
565         }
566 }
567
568 static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
569 {
570         struct cfqg_stats *stats = &cfqg->stats;
571
572         BUG_ON(cfqg_stats_idling(stats));
573
574         stats->start_idle_time = sched_clock();
575         cfqg_stats_mark_idling(stats);
576 }
577
578 static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
579 {
580         struct cfqg_stats *stats = &cfqg->stats;
581
582         blkg_stat_add(&stats->avg_queue_size_sum,
583                       blkg_rwstat_total(&stats->queued));
584         blkg_stat_add(&stats->avg_queue_size_samples, 1);
585         cfqg_stats_update_group_wait_time(stats);
586 }
587
588 #else   /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
589
590 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
591 static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
592 static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
593 static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
594 static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
595 static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
596 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
597
598 #endif  /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
599
600 #ifdef CONFIG_CFQ_GROUP_IOSCHED
601
602 static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
603 {
604         return pd ? container_of(pd, struct cfq_group, pd) : NULL;
605 }
606
607 static struct cfq_group_data
608 *cpd_to_cfqgd(struct blkcg_policy_data *cpd)
609 {
610         return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
611 }
612
613 static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
614 {
615         return pd_to_blkg(&cfqg->pd);
616 }
617
618 static struct blkcg_policy blkcg_policy_cfq;
619
620 static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
621 {
622         return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
623 }
624
625 static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
626 {
627         return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
628 }
629
630 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
631 {
632         struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
633
634         return pblkg ? blkg_to_cfqg(pblkg) : NULL;
635 }
636
637 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
638                                       struct cfq_group *ancestor)
639 {
640         return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
641                                     cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
642 }
643
644 static inline void cfqg_get(struct cfq_group *cfqg)
645 {
646         return blkg_get(cfqg_to_blkg(cfqg));
647 }
648
649 static inline void cfqg_put(struct cfq_group *cfqg)
650 {
651         return blkg_put(cfqg_to_blkg(cfqg));
652 }
653
654 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  do {                    \
655         char __pbuf[128];                                               \
656                                                                         \
657         blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));  \
658         blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
659                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A',              \
660                         cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
661                           __pbuf, ##args);                              \
662 } while (0)
663
664 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)  do {                    \
665         char __pbuf[128];                                               \
666                                                                         \
667         blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));          \
668         blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);    \
669 } while (0)
670
671 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
672                                             struct cfq_group *curr_cfqg,
673                                             unsigned int op)
674 {
675         blkg_rwstat_add(&cfqg->stats.queued, op, 1);
676         cfqg_stats_end_empty_time(&cfqg->stats);
677         cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
678 }
679
680 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
681                         uint64_t time, unsigned long unaccounted_time)
682 {
683         blkg_stat_add(&cfqg->stats.time, time);
684 #ifdef CONFIG_DEBUG_BLK_CGROUP
685         blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
686 #endif
687 }
688
689 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
690                                                unsigned int op)
691 {
692         blkg_rwstat_add(&cfqg->stats.queued, op, -1);
693 }
694
695 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
696                                                unsigned int op)
697 {
698         blkg_rwstat_add(&cfqg->stats.merged, op, 1);
699 }
700
701 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
702                         uint64_t start_time, uint64_t io_start_time,
703                         unsigned int op)
704 {
705         struct cfqg_stats *stats = &cfqg->stats;
706         unsigned long long now = sched_clock();
707
708         if (time_after64(now, io_start_time))
709                 blkg_rwstat_add(&stats->service_time, op, now - io_start_time);
710         if (time_after64(io_start_time, start_time))
711                 blkg_rwstat_add(&stats->wait_time, op,
712                                 io_start_time - start_time);
713 }
714
715 /* @stats = 0 */
716 static void cfqg_stats_reset(struct cfqg_stats *stats)
717 {
718         /* queued stats shouldn't be cleared */
719         blkg_rwstat_reset(&stats->merged);
720         blkg_rwstat_reset(&stats->service_time);
721         blkg_rwstat_reset(&stats->wait_time);
722         blkg_stat_reset(&stats->time);
723 #ifdef CONFIG_DEBUG_BLK_CGROUP
724         blkg_stat_reset(&stats->unaccounted_time);
725         blkg_stat_reset(&stats->avg_queue_size_sum);
726         blkg_stat_reset(&stats->avg_queue_size_samples);
727         blkg_stat_reset(&stats->dequeue);
728         blkg_stat_reset(&stats->group_wait_time);
729         blkg_stat_reset(&stats->idle_time);
730         blkg_stat_reset(&stats->empty_time);
731 #endif
732 }
733
734 /* @to += @from */
735 static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
736 {
737         /* queued stats shouldn't be cleared */
738         blkg_rwstat_add_aux(&to->merged, &from->merged);
739         blkg_rwstat_add_aux(&to->service_time, &from->service_time);
740         blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
741         blkg_stat_add_aux(&from->time, &from->time);
742 #ifdef CONFIG_DEBUG_BLK_CGROUP
743         blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
744         blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
745         blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
746         blkg_stat_add_aux(&to->dequeue, &from->dequeue);
747         blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
748         blkg_stat_add_aux(&to->idle_time, &from->idle_time);
749         blkg_stat_add_aux(&to->empty_time, &from->empty_time);
750 #endif
751 }
752
753 /*
754  * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
755  * recursive stats can still account for the amount used by this cfqg after
756  * it's gone.
757  */
758 static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
759 {
760         struct cfq_group *parent = cfqg_parent(cfqg);
761
762         lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
763
764         if (unlikely(!parent))
765                 return;
766
767         cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
768         cfqg_stats_reset(&cfqg->stats);
769 }
770
771 #else   /* CONFIG_CFQ_GROUP_IOSCHED */
772
773 static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
774 static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
775                                       struct cfq_group *ancestor)
776 {
777         return true;
778 }
779 static inline void cfqg_get(struct cfq_group *cfqg) { }
780 static inline void cfqg_put(struct cfq_group *cfqg) { }
781
782 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
783         blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
784                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A',              \
785                         cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
786                                 ##args)
787 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0)
788
789 static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
790                         struct cfq_group *curr_cfqg, unsigned int op) { }
791 static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
792                         uint64_t time, unsigned long unaccounted_time) { }
793 static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg,
794                         unsigned int op) { }
795 static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg,
796                         unsigned int op) { }
797 static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
798                         uint64_t start_time, uint64_t io_start_time,
799                         unsigned int op) { }
800
801 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
802
803 #define cfq_log(cfqd, fmt, args...)     \
804         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
805
806 /* Traverses through cfq group service trees */
807 #define for_each_cfqg_st(cfqg, i, j, st) \
808         for (i = 0; i <= IDLE_WORKLOAD; i++) \
809                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
810                         : &cfqg->service_tree_idle; \
811                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
812                         (i == IDLE_WORKLOAD && j == 0); \
813                         j++, st = i < IDLE_WORKLOAD ? \
814                         &cfqg->service_trees[i][j]: NULL) \
815
816 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
817         struct cfq_ttime *ttime, bool group_idle)
818 {
819         u64 slice;
820         if (!sample_valid(ttime->ttime_samples))
821                 return false;
822         if (group_idle)
823                 slice = cfqd->cfq_group_idle;
824         else
825                 slice = cfqd->cfq_slice_idle;
826         return ttime->ttime_mean > slice;
827 }
828
829 static inline bool iops_mode(struct cfq_data *cfqd)
830 {
831         /*
832          * If we are not idling on queues and it is a NCQ drive, parallel
833          * execution of requests is on and measuring time is not possible
834          * in most of the cases until and unless we drive shallower queue
835          * depths and that becomes a performance bottleneck. In such cases
836          * switch to start providing fairness in terms of number of IOs.
837          */
838         if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
839                 return true;
840         else
841                 return false;
842 }
843
844 static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
845 {
846         if (cfq_class_idle(cfqq))
847                 return IDLE_WORKLOAD;
848         if (cfq_class_rt(cfqq))
849                 return RT_WORKLOAD;
850         return BE_WORKLOAD;
851 }
852
853
854 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
855 {
856         if (!cfq_cfqq_sync(cfqq))
857                 return ASYNC_WORKLOAD;
858         if (!cfq_cfqq_idle_window(cfqq))
859                 return SYNC_NOIDLE_WORKLOAD;
860         return SYNC_WORKLOAD;
861 }
862
863 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
864                                         struct cfq_data *cfqd,
865                                         struct cfq_group *cfqg)
866 {
867         if (wl_class == IDLE_WORKLOAD)
868                 return cfqg->service_tree_idle.count;
869
870         return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
871                 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
872                 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
873 }
874
875 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
876                                         struct cfq_group *cfqg)
877 {
878         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
879                 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
880 }
881
882 static void cfq_dispatch_insert(struct request_queue *, struct request *);
883 static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
884                                        struct cfq_io_cq *cic, struct bio *bio);
885
886 static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
887 {
888         /* cic->icq is the first member, %NULL will convert to %NULL */
889         return container_of(icq, struct cfq_io_cq, icq);
890 }
891
892 static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
893                                                struct io_context *ioc)
894 {
895         if (ioc)
896                 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
897         return NULL;
898 }
899
900 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
901 {
902         return cic->cfqq[is_sync];
903 }
904
905 static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
906                                 bool is_sync)
907 {
908         cic->cfqq[is_sync] = cfqq;
909 }
910
911 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
912 {
913         return cic->icq.q->elevator->elevator_data;
914 }
915
916 /*
917  * scheduler run of queue, if there are requests pending and no one in the
918  * driver that will restart queueing
919  */
920 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
921 {
922         if (cfqd->busy_queues) {
923                 cfq_log(cfqd, "schedule dispatch");
924                 kblockd_schedule_work(&cfqd->unplug_work);
925         }
926 }
927
928 /*
929  * Scale schedule slice based on io priority. Use the sync time slice only
930  * if a queue is marked sync and has sync io queued. A sync queue with async
931  * io only, should not get full sync slice length.
932  */
933 static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
934                                  unsigned short prio)
935 {
936         u64 base_slice = cfqd->cfq_slice[sync];
937         u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
938
939         WARN_ON(prio >= IOPRIO_BE_NR);
940
941         return base_slice + (slice * (4 - prio));
942 }
943
944 static inline u64
945 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
946 {
947         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
948 }
949
950 /**
951  * cfqg_scale_charge - scale disk time charge according to cfqg weight
952  * @charge: disk time being charged
953  * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
954  *
955  * Scale @charge according to @vfraction, which is in range (0, 1].  The
956  * scaling is inversely proportional.
957  *
958  * scaled = charge / vfraction
959  *
960  * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
961  */
962 static inline u64 cfqg_scale_charge(u64 charge,
963                                     unsigned int vfraction)
964 {
965         u64 c = charge << CFQ_SERVICE_SHIFT;    /* make it fixed point */
966
967         /* charge / vfraction */
968         c <<= CFQ_SERVICE_SHIFT;
969         return div_u64(c, vfraction);
970 }
971
972 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
973 {
974         s64 delta = (s64)(vdisktime - min_vdisktime);
975         if (delta > 0)
976                 min_vdisktime = vdisktime;
977
978         return min_vdisktime;
979 }
980
981 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
982 {
983         s64 delta = (s64)(vdisktime - min_vdisktime);
984         if (delta < 0)
985                 min_vdisktime = vdisktime;
986
987         return min_vdisktime;
988 }
989
990 static void update_min_vdisktime(struct cfq_rb_root *st)
991 {
992         struct cfq_group *cfqg;
993
994         if (st->left) {
995                 cfqg = rb_entry_cfqg(st->left);
996                 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
997                                                   cfqg->vdisktime);
998         }
999 }
1000
1001 /*
1002  * get averaged number of queues of RT/BE priority.
1003  * average is updated, with a formula that gives more weight to higher numbers,
1004  * to quickly follows sudden increases and decrease slowly
1005  */
1006
1007 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1008                                         struct cfq_group *cfqg, bool rt)
1009 {
1010         unsigned min_q, max_q;
1011         unsigned mult  = cfq_hist_divisor - 1;
1012         unsigned round = cfq_hist_divisor / 2;
1013         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1014
1015         min_q = min(cfqg->busy_queues_avg[rt], busy);
1016         max_q = max(cfqg->busy_queues_avg[rt], busy);
1017         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1018                 cfq_hist_divisor;
1019         return cfqg->busy_queues_avg[rt];
1020 }
1021
1022 static inline u64
1023 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1024 {
1025         return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1026 }
1027
1028 static inline u64
1029 cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1030 {
1031         u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1032         if (cfqd->cfq_latency) {
1033                 /*
1034                  * interested queues (we consider only the ones with the same
1035                  * priority class in the cfq group)
1036                  */
1037                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1038                                                 cfq_class_rt(cfqq));
1039                 u64 sync_slice = cfqd->cfq_slice[1];
1040                 u64 expect_latency = sync_slice * iq;
1041                 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1042
1043                 if (expect_latency > group_slice) {
1044                         u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1045                         u64 low_slice;
1046
1047                         /* scale low_slice according to IO priority
1048                          * and sync vs async */
1049                         low_slice = div64_u64(base_low_slice*slice, sync_slice);
1050                         low_slice = min(slice, low_slice);
1051                         /* the adapted slice value is scaled to fit all iqs
1052                          * into the target latency */
1053                         slice = div64_u64(slice*group_slice, expect_latency);
1054                         slice = max(slice, low_slice);
1055                 }
1056         }
1057         return slice;
1058 }
1059
1060 static inline void
1061 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1062 {
1063         u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1064         u64 now = ktime_get_ns();
1065
1066         cfqq->slice_start = now;
1067         cfqq->slice_end = now + slice;
1068         cfqq->allocated_slice = slice;
1069         cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1070 }
1071
1072 /*
1073  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1074  * isn't valid until the first request from the dispatch is activated
1075  * and the slice time set.
1076  */
1077 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1078 {
1079         if (cfq_cfqq_slice_new(cfqq))
1080                 return false;
1081         if (ktime_get_ns() < cfqq->slice_end)
1082                 return false;
1083
1084         return true;
1085 }
1086
1087 /*
1088  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1089  * We choose the request that is closest to the head right now. Distance
1090  * behind the head is penalized and only allowed to a certain extent.
1091  */
1092 static struct request *
1093 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1094 {
1095         sector_t s1, s2, d1 = 0, d2 = 0;
1096         unsigned long back_max;
1097 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
1098 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
1099         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1100
1101         if (rq1 == NULL || rq1 == rq2)
1102                 return rq2;
1103         if (rq2 == NULL)
1104                 return rq1;
1105
1106         if (rq_is_sync(rq1) != rq_is_sync(rq2))
1107                 return rq_is_sync(rq1) ? rq1 : rq2;
1108
1109         if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1110                 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1111
1112         s1 = blk_rq_pos(rq1);
1113         s2 = blk_rq_pos(rq2);
1114
1115         /*
1116          * by definition, 1KiB is 2 sectors
1117          */
1118         back_max = cfqd->cfq_back_max * 2;
1119
1120         /*
1121          * Strict one way elevator _except_ in the case where we allow
1122          * short backward seeks which are biased as twice the cost of a
1123          * similar forward seek.
1124          */
1125         if (s1 >= last)
1126                 d1 = s1 - last;
1127         else if (s1 + back_max >= last)
1128                 d1 = (last - s1) * cfqd->cfq_back_penalty;
1129         else
1130                 wrap |= CFQ_RQ1_WRAP;
1131
1132         if (s2 >= last)
1133                 d2 = s2 - last;
1134         else if (s2 + back_max >= last)
1135                 d2 = (last - s2) * cfqd->cfq_back_penalty;
1136         else
1137                 wrap |= CFQ_RQ2_WRAP;
1138
1139         /* Found required data */
1140
1141         /*
1142          * By doing switch() on the bit mask "wrap" we avoid having to
1143          * check two variables for all permutations: --> faster!
1144          */
1145         switch (wrap) {
1146         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1147                 if (d1 < d2)
1148                         return rq1;
1149                 else if (d2 < d1)
1150                         return rq2;
1151                 else {
1152                         if (s1 >= s2)
1153                                 return rq1;
1154                         else
1155                                 return rq2;
1156                 }
1157
1158         case CFQ_RQ2_WRAP:
1159                 return rq1;
1160         case CFQ_RQ1_WRAP:
1161                 return rq2;
1162         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1163         default:
1164                 /*
1165                  * Since both rqs are wrapped,
1166                  * start with the one that's further behind head
1167                  * (--> only *one* back seek required),
1168                  * since back seek takes more time than forward.
1169                  */
1170                 if (s1 <= s2)
1171                         return rq1;
1172                 else
1173                         return rq2;
1174         }
1175 }
1176
1177 /*
1178  * The below is leftmost cache rbtree addon
1179  */
1180 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1181 {
1182         /* Service tree is empty */
1183         if (!root->count)
1184                 return NULL;
1185
1186         if (!root->left)
1187                 root->left = rb_first(&root->rb);
1188
1189         if (root->left)
1190                 return rb_entry(root->left, struct cfq_queue, rb_node);
1191
1192         return NULL;
1193 }
1194
1195 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1196 {
1197         if (!root->left)
1198                 root->left = rb_first(&root->rb);
1199
1200         if (root->left)
1201                 return rb_entry_cfqg(root->left);
1202
1203         return NULL;
1204 }
1205
1206 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1207 {
1208         rb_erase(n, root);
1209         RB_CLEAR_NODE(n);
1210 }
1211
1212 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1213 {
1214         if (root->left == n)
1215                 root->left = NULL;
1216         rb_erase_init(n, &root->rb);
1217         --root->count;
1218 }
1219
1220 /*
1221  * would be nice to take fifo expire time into account as well
1222  */
1223 static struct request *
1224 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1225                   struct request *last)
1226 {
1227         struct rb_node *rbnext = rb_next(&last->rb_node);
1228         struct rb_node *rbprev = rb_prev(&last->rb_node);
1229         struct request *next = NULL, *prev = NULL;
1230
1231         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1232
1233         if (rbprev)
1234                 prev = rb_entry_rq(rbprev);
1235
1236         if (rbnext)
1237                 next = rb_entry_rq(rbnext);
1238         else {
1239                 rbnext = rb_first(&cfqq->sort_list);
1240                 if (rbnext && rbnext != &last->rb_node)
1241                         next = rb_entry_rq(rbnext);
1242         }
1243
1244         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1245 }
1246
1247 static u64 cfq_slice_offset(struct cfq_data *cfqd,
1248                             struct cfq_queue *cfqq)
1249 {
1250         /*
1251          * just an approximation, should be ok.
1252          */
1253         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1254                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1255 }
1256
1257 static inline s64
1258 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1259 {
1260         return cfqg->vdisktime - st->min_vdisktime;
1261 }
1262
1263 static void
1264 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1265 {
1266         struct rb_node **node = &st->rb.rb_node;
1267         struct rb_node *parent = NULL;
1268         struct cfq_group *__cfqg;
1269         s64 key = cfqg_key(st, cfqg);
1270         int left = 1;
1271
1272         while (*node != NULL) {
1273                 parent = *node;
1274                 __cfqg = rb_entry_cfqg(parent);
1275
1276                 if (key < cfqg_key(st, __cfqg))
1277                         node = &parent->rb_left;
1278                 else {
1279                         node = &parent->rb_right;
1280                         left = 0;
1281                 }
1282         }
1283
1284         if (left)
1285                 st->left = &cfqg->rb_node;
1286
1287         rb_link_node(&cfqg->rb_node, parent, node);
1288         rb_insert_color(&cfqg->rb_node, &st->rb);
1289 }
1290
1291 /*
1292  * This has to be called only on activation of cfqg
1293  */
1294 static void
1295 cfq_update_group_weight(struct cfq_group *cfqg)
1296 {
1297         if (cfqg->new_weight) {
1298                 cfqg->weight = cfqg->new_weight;
1299                 cfqg->new_weight = 0;
1300         }
1301 }
1302
1303 static void
1304 cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1305 {
1306         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1307
1308         if (cfqg->new_leaf_weight) {
1309                 cfqg->leaf_weight = cfqg->new_leaf_weight;
1310                 cfqg->new_leaf_weight = 0;
1311         }
1312 }
1313
1314 static void
1315 cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1316 {
1317         unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;      /* start with 1 */
1318         struct cfq_group *pos = cfqg;
1319         struct cfq_group *parent;
1320         bool propagate;
1321
1322         /* add to the service tree */
1323         BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1324
1325         /*
1326          * Update leaf_weight.  We cannot update weight at this point
1327          * because cfqg might already have been activated and is
1328          * contributing its current weight to the parent's child_weight.
1329          */
1330         cfq_update_group_leaf_weight(cfqg);
1331         __cfq_group_service_tree_add(st, cfqg);
1332
1333         /*
1334          * Activate @cfqg and calculate the portion of vfraction @cfqg is
1335          * entitled to.  vfraction is calculated by walking the tree
1336          * towards the root calculating the fraction it has at each level.
1337          * The compounded ratio is how much vfraction @cfqg owns.
1338          *
1339          * Start with the proportion tasks in this cfqg has against active
1340          * children cfqgs - its leaf_weight against children_weight.
1341          */
1342         propagate = !pos->nr_active++;
1343         pos->children_weight += pos->leaf_weight;
1344         vfr = vfr * pos->leaf_weight / pos->children_weight;
1345
1346         /*
1347          * Compound ->weight walking up the tree.  Both activation and
1348          * vfraction calculation are done in the same loop.  Propagation
1349          * stops once an already activated node is met.  vfraction
1350          * calculation should always continue to the root.
1351          */
1352         while ((parent = cfqg_parent(pos))) {
1353                 if (propagate) {
1354                         cfq_update_group_weight(pos);
1355                         propagate = !parent->nr_active++;
1356                         parent->children_weight += pos->weight;
1357                 }
1358                 vfr = vfr * pos->weight / parent->children_weight;
1359                 pos = parent;
1360         }
1361
1362         cfqg->vfraction = max_t(unsigned, vfr, 1);
1363 }
1364
1365 static void
1366 cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1367 {
1368         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1369         struct cfq_group *__cfqg;
1370         struct rb_node *n;
1371
1372         cfqg->nr_cfqq++;
1373         if (!RB_EMPTY_NODE(&cfqg->rb_node))
1374                 return;
1375
1376         /*
1377          * Currently put the group at the end. Later implement something
1378          * so that groups get lesser vtime based on their weights, so that
1379          * if group does not loose all if it was not continuously backlogged.
1380          */
1381         n = rb_last(&st->rb);
1382         if (n) {
1383                 __cfqg = rb_entry_cfqg(n);
1384                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1385         } else
1386                 cfqg->vdisktime = st->min_vdisktime;
1387         cfq_group_service_tree_add(st, cfqg);
1388 }
1389
1390 static void
1391 cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1392 {
1393         struct cfq_group *pos = cfqg;
1394         bool propagate;
1395
1396         /*
1397          * Undo activation from cfq_group_service_tree_add().  Deactivate
1398          * @cfqg and propagate deactivation upwards.
1399          */
1400         propagate = !--pos->nr_active;
1401         pos->children_weight -= pos->leaf_weight;
1402
1403         while (propagate) {
1404                 struct cfq_group *parent = cfqg_parent(pos);
1405
1406                 /* @pos has 0 nr_active at this point */
1407                 WARN_ON_ONCE(pos->children_weight);
1408                 pos->vfraction = 0;
1409
1410                 if (!parent)
1411                         break;
1412
1413                 propagate = !--parent->nr_active;
1414                 parent->children_weight -= pos->weight;
1415                 pos = parent;
1416         }
1417
1418         /* remove from the service tree */
1419         if (!RB_EMPTY_NODE(&cfqg->rb_node))
1420                 cfq_rb_erase(&cfqg->rb_node, st);
1421 }
1422
1423 static void
1424 cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1425 {
1426         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1427
1428         BUG_ON(cfqg->nr_cfqq < 1);
1429         cfqg->nr_cfqq--;
1430
1431         /* If there are other cfq queues under this group, don't delete it */
1432         if (cfqg->nr_cfqq)
1433                 return;
1434
1435         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1436         cfq_group_service_tree_del(st, cfqg);
1437         cfqg->saved_wl_slice = 0;
1438         cfqg_stats_update_dequeue(cfqg);
1439 }
1440
1441 static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1442                                        u64 *unaccounted_time)
1443 {
1444         u64 slice_used;
1445         u64 now = ktime_get_ns();
1446
1447         /*
1448          * Queue got expired before even a single request completed or
1449          * got expired immediately after first request completion.
1450          */
1451         if (!cfqq->slice_start || cfqq->slice_start == now) {
1452                 /*
1453                  * Also charge the seek time incurred to the group, otherwise
1454                  * if there are mutiple queues in the group, each can dispatch
1455                  * a single request on seeky media and cause lots of seek time
1456                  * and group will never know it.
1457                  */
1458                 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1459                                         jiffies_to_nsecs(1));
1460         } else {
1461                 slice_used = now - cfqq->slice_start;
1462                 if (slice_used > cfqq->allocated_slice) {
1463                         *unaccounted_time = slice_used - cfqq->allocated_slice;
1464                         slice_used = cfqq->allocated_slice;
1465                 }
1466                 if (cfqq->slice_start > cfqq->dispatch_start)
1467                         *unaccounted_time += cfqq->slice_start -
1468                                         cfqq->dispatch_start;
1469         }
1470
1471         return slice_used;
1472 }
1473
1474 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1475                                 struct cfq_queue *cfqq)
1476 {
1477         struct cfq_rb_root *st = &cfqd->grp_service_tree;
1478         u64 used_sl, charge, unaccounted_sl = 0;
1479         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1480                         - cfqg->service_tree_idle.count;
1481         unsigned int vfr;
1482         u64 now = ktime_get_ns();
1483
1484         BUG_ON(nr_sync < 0);
1485         used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1486
1487         if (iops_mode(cfqd))
1488                 charge = cfqq->slice_dispatch;
1489         else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1490                 charge = cfqq->allocated_slice;
1491
1492         /*
1493          * Can't update vdisktime while on service tree and cfqg->vfraction
1494          * is valid only while on it.  Cache vfr, leave the service tree,
1495          * update vdisktime and go back on.  The re-addition to the tree
1496          * will also update the weights as necessary.
1497          */
1498         vfr = cfqg->vfraction;
1499         cfq_group_service_tree_del(st, cfqg);
1500         cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1501         cfq_group_service_tree_add(st, cfqg);
1502
1503         /* This group is being expired. Save the context */
1504         if (cfqd->workload_expires > now) {
1505                 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1506                 cfqg->saved_wl_type = cfqd->serving_wl_type;
1507                 cfqg->saved_wl_class = cfqd->serving_wl_class;
1508         } else
1509                 cfqg->saved_wl_slice = 0;
1510
1511         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1512                                         st->min_vdisktime);
1513         cfq_log_cfqq(cfqq->cfqd, cfqq,
1514                      "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1515                      used_sl, cfqq->slice_dispatch, charge,
1516                      iops_mode(cfqd), cfqq->nr_sectors);
1517         cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1518         cfqg_stats_set_start_empty_time(cfqg);
1519 }
1520
1521 /**
1522  * cfq_init_cfqg_base - initialize base part of a cfq_group
1523  * @cfqg: cfq_group to initialize
1524  *
1525  * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1526  * is enabled or not.
1527  */
1528 static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1529 {
1530         struct cfq_rb_root *st;
1531         int i, j;
1532
1533         for_each_cfqg_st(cfqg, i, j, st)
1534                 *st = CFQ_RB_ROOT;
1535         RB_CLEAR_NODE(&cfqg->rb_node);
1536
1537         cfqg->ttime.last_end_request = ktime_get_ns();
1538 }
1539
1540 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1541 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1542                             bool on_dfl, bool reset_dev, bool is_leaf_weight);
1543
1544 static void cfqg_stats_exit(struct cfqg_stats *stats)
1545 {
1546         blkg_rwstat_exit(&stats->merged);
1547         blkg_rwstat_exit(&stats->service_time);
1548         blkg_rwstat_exit(&stats->wait_time);
1549         blkg_rwstat_exit(&stats->queued);
1550         blkg_stat_exit(&stats->time);
1551 #ifdef CONFIG_DEBUG_BLK_CGROUP
1552         blkg_stat_exit(&stats->unaccounted_time);
1553         blkg_stat_exit(&stats->avg_queue_size_sum);
1554         blkg_stat_exit(&stats->avg_queue_size_samples);
1555         blkg_stat_exit(&stats->dequeue);
1556         blkg_stat_exit(&stats->group_wait_time);
1557         blkg_stat_exit(&stats->idle_time);
1558         blkg_stat_exit(&stats->empty_time);
1559 #endif
1560 }
1561
1562 static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1563 {
1564         if (blkg_rwstat_init(&stats->merged, gfp) ||
1565             blkg_rwstat_init(&stats->service_time, gfp) ||
1566             blkg_rwstat_init(&stats->wait_time, gfp) ||
1567             blkg_rwstat_init(&stats->queued, gfp) ||
1568             blkg_stat_init(&stats->time, gfp))
1569                 goto err;
1570
1571 #ifdef CONFIG_DEBUG_BLK_CGROUP
1572         if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1573             blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1574             blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1575             blkg_stat_init(&stats->dequeue, gfp) ||
1576             blkg_stat_init(&stats->group_wait_time, gfp) ||
1577             blkg_stat_init(&stats->idle_time, gfp) ||
1578             blkg_stat_init(&stats->empty_time, gfp))
1579                 goto err;
1580 #endif
1581         return 0;
1582 err:
1583         cfqg_stats_exit(stats);
1584         return -ENOMEM;
1585 }
1586
1587 static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1588 {
1589         struct cfq_group_data *cgd;
1590
1591         cgd = kzalloc(sizeof(*cgd), gfp);
1592         if (!cgd)
1593                 return NULL;
1594         return &cgd->cpd;
1595 }
1596
1597 static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1598 {
1599         struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1600         unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1601                               CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1602
1603         if (cpd_to_blkcg(cpd) == &blkcg_root)
1604                 weight *= 2;
1605
1606         cgd->weight = weight;
1607         cgd->leaf_weight = weight;
1608 }
1609
1610 static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1611 {
1612         kfree(cpd_to_cfqgd(cpd));
1613 }
1614
1615 static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1616 {
1617         struct blkcg *blkcg = cpd_to_blkcg(cpd);
1618         bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1619         unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1620
1621         if (blkcg == &blkcg_root)
1622                 weight *= 2;
1623
1624         WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1625         WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1626 }
1627
1628 static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1629 {
1630         struct cfq_group *cfqg;
1631
1632         cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1633         if (!cfqg)
1634                 return NULL;
1635
1636         cfq_init_cfqg_base(cfqg);
1637         if (cfqg_stats_init(&cfqg->stats, gfp)) {
1638                 kfree(cfqg);
1639                 return NULL;
1640         }
1641
1642         return &cfqg->pd;
1643 }
1644
1645 static void cfq_pd_init(struct blkg_policy_data *pd)
1646 {
1647         struct cfq_group *cfqg = pd_to_cfqg(pd);
1648         struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1649
1650         cfqg->weight = cgd->weight;
1651         cfqg->leaf_weight = cgd->leaf_weight;
1652 }
1653
1654 static void cfq_pd_offline(struct blkg_policy_data *pd)
1655 {
1656         struct cfq_group *cfqg = pd_to_cfqg(pd);
1657         int i;
1658
1659         for (i = 0; i < IOPRIO_BE_NR; i++) {
1660                 if (cfqg->async_cfqq[0][i])
1661                         cfq_put_queue(cfqg->async_cfqq[0][i]);
1662                 if (cfqg->async_cfqq[1][i])
1663                         cfq_put_queue(cfqg->async_cfqq[1][i]);
1664         }
1665
1666         if (cfqg->async_idle_cfqq)
1667                 cfq_put_queue(cfqg->async_idle_cfqq);
1668
1669         /*
1670          * @blkg is going offline and will be ignored by
1671          * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1672          * that they don't get lost.  If IOs complete after this point, the
1673          * stats for them will be lost.  Oh well...
1674          */
1675         cfqg_stats_xfer_dead(cfqg);
1676 }
1677
1678 static void cfq_pd_free(struct blkg_policy_data *pd)
1679 {
1680         struct cfq_group *cfqg = pd_to_cfqg(pd);
1681
1682         cfqg_stats_exit(&cfqg->stats);
1683         return kfree(cfqg);
1684 }
1685
1686 static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1687 {
1688         struct cfq_group *cfqg = pd_to_cfqg(pd);
1689
1690         cfqg_stats_reset(&cfqg->stats);
1691 }
1692
1693 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1694                                          struct blkcg *blkcg)
1695 {
1696         struct blkcg_gq *blkg;
1697
1698         blkg = blkg_lookup(blkcg, cfqd->queue);
1699         if (likely(blkg))
1700                 return blkg_to_cfqg(blkg);
1701         return NULL;
1702 }
1703
1704 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1705 {
1706         cfqq->cfqg = cfqg;
1707         /* cfqq reference on cfqg */
1708         cfqg_get(cfqg);
1709 }
1710
1711 static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1712                                      struct blkg_policy_data *pd, int off)
1713 {
1714         struct cfq_group *cfqg = pd_to_cfqg(pd);
1715
1716         if (!cfqg->dev_weight)
1717                 return 0;
1718         return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1719 }
1720
1721 static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1722 {
1723         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1724                           cfqg_prfill_weight_device, &blkcg_policy_cfq,
1725                           0, false);
1726         return 0;
1727 }
1728
1729 static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1730                                           struct blkg_policy_data *pd, int off)
1731 {
1732         struct cfq_group *cfqg = pd_to_cfqg(pd);
1733
1734         if (!cfqg->dev_leaf_weight)
1735                 return 0;
1736         return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1737 }
1738
1739 static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1740 {
1741         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1742                           cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1743                           0, false);
1744         return 0;
1745 }
1746
1747 static int cfq_print_weight(struct seq_file *sf, void *v)
1748 {
1749         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1750         struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1751         unsigned int val = 0;
1752
1753         if (cgd)
1754                 val = cgd->weight;
1755
1756         seq_printf(sf, "%u\n", val);
1757         return 0;
1758 }
1759
1760 static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1761 {
1762         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1763         struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1764         unsigned int val = 0;
1765
1766         if (cgd)
1767                 val = cgd->leaf_weight;
1768
1769         seq_printf(sf, "%u\n", val);
1770         return 0;
1771 }
1772
1773 static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1774                                         char *buf, size_t nbytes, loff_t off,
1775                                         bool on_dfl, bool is_leaf_weight)
1776 {
1777         unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1778         unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1779         struct blkcg *blkcg = css_to_blkcg(of_css(of));
1780         struct blkg_conf_ctx ctx;
1781         struct cfq_group *cfqg;
1782         struct cfq_group_data *cfqgd;
1783         int ret;
1784         u64 v;
1785
1786         ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1787         if (ret)
1788                 return ret;
1789
1790         if (sscanf(ctx.body, "%llu", &v) == 1) {
1791                 /* require "default" on dfl */
1792                 ret = -ERANGE;
1793                 if (!v && on_dfl)
1794                         goto out_finish;
1795         } else if (!strcmp(strim(ctx.body), "default")) {
1796                 v = 0;
1797         } else {
1798                 ret = -EINVAL;
1799                 goto out_finish;
1800         }
1801
1802         cfqg = blkg_to_cfqg(ctx.blkg);
1803         cfqgd = blkcg_to_cfqgd(blkcg);
1804
1805         ret = -ERANGE;
1806         if (!v || (v >= min && v <= max)) {
1807                 if (!is_leaf_weight) {
1808                         cfqg->dev_weight = v;
1809                         cfqg->new_weight = v ?: cfqgd->weight;
1810                 } else {
1811                         cfqg->dev_leaf_weight = v;
1812                         cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1813                 }
1814                 ret = 0;
1815         }
1816 out_finish:
1817         blkg_conf_finish(&ctx);
1818         return ret ?: nbytes;
1819 }
1820
1821 static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1822                                       char *buf, size_t nbytes, loff_t off)
1823 {
1824         return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1825 }
1826
1827 static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1828                                            char *buf, size_t nbytes, loff_t off)
1829 {
1830         return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1831 }
1832
1833 static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1834                             bool on_dfl, bool reset_dev, bool is_leaf_weight)
1835 {
1836         unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1837         unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1838         struct blkcg *blkcg = css_to_blkcg(css);
1839         struct blkcg_gq *blkg;
1840         struct cfq_group_data *cfqgd;
1841         int ret = 0;
1842
1843         if (val < min || val > max)
1844                 return -ERANGE;
1845
1846         spin_lock_irq(&blkcg->lock);
1847         cfqgd = blkcg_to_cfqgd(blkcg);
1848         if (!cfqgd) {
1849                 ret = -EINVAL;
1850                 goto out;
1851         }
1852
1853         if (!is_leaf_weight)
1854                 cfqgd->weight = val;
1855         else
1856                 cfqgd->leaf_weight = val;
1857
1858         hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1859                 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1860
1861                 if (!cfqg)
1862                         continue;
1863
1864                 if (!is_leaf_weight) {
1865                         if (reset_dev)
1866                                 cfqg->dev_weight = 0;
1867                         if (!cfqg->dev_weight)
1868                                 cfqg->new_weight = cfqgd->weight;
1869                 } else {
1870                         if (reset_dev)
1871                                 cfqg->dev_leaf_weight = 0;
1872                         if (!cfqg->dev_leaf_weight)
1873                                 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1874                 }
1875         }
1876
1877 out:
1878         spin_unlock_irq(&blkcg->lock);
1879         return ret;
1880 }
1881
1882 static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1883                           u64 val)
1884 {
1885         return __cfq_set_weight(css, val, false, false, false);
1886 }
1887
1888 static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1889                                struct cftype *cft, u64 val)
1890 {
1891         return __cfq_set_weight(css, val, false, false, true);
1892 }
1893
1894 static int cfqg_print_stat(struct seq_file *sf, void *v)
1895 {
1896         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1897                           &blkcg_policy_cfq, seq_cft(sf)->private, false);
1898         return 0;
1899 }
1900
1901 static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1902 {
1903         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1904                           &blkcg_policy_cfq, seq_cft(sf)->private, true);
1905         return 0;
1906 }
1907
1908 static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1909                                       struct blkg_policy_data *pd, int off)
1910 {
1911         u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1912                                           &blkcg_policy_cfq, off);
1913         return __blkg_prfill_u64(sf, pd, sum);
1914 }
1915
1916 static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1917                                         struct blkg_policy_data *pd, int off)
1918 {
1919         struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
1920                                                         &blkcg_policy_cfq, off);
1921         return __blkg_prfill_rwstat(sf, pd, &sum);
1922 }
1923
1924 static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
1925 {
1926         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1927                           cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
1928                           seq_cft(sf)->private, false);
1929         return 0;
1930 }
1931
1932 static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
1933 {
1934         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1935                           cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
1936                           seq_cft(sf)->private, true);
1937         return 0;
1938 }
1939
1940 static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
1941                                int off)
1942 {
1943         u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
1944
1945         return __blkg_prfill_u64(sf, pd, sum >> 9);
1946 }
1947
1948 static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
1949 {
1950         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1951                           cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
1952         return 0;
1953 }
1954
1955 static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
1956                                          struct blkg_policy_data *pd, int off)
1957 {
1958         struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
1959                                         offsetof(struct blkcg_gq, stat_bytes));
1960         u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
1961                 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
1962
1963         return __blkg_prfill_u64(sf, pd, sum >> 9);
1964 }
1965
1966 static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
1967 {
1968         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1969                           cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
1970                           false);
1971         return 0;
1972 }
1973
1974 #ifdef CONFIG_DEBUG_BLK_CGROUP
1975 static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1976                                       struct blkg_policy_data *pd, int off)
1977 {
1978         struct cfq_group *cfqg = pd_to_cfqg(pd);
1979         u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1980         u64 v = 0;
1981
1982         if (samples) {
1983                 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1984                 v = div64_u64(v, samples);
1985         }
1986         __blkg_prfill_u64(sf, pd, v);
1987         return 0;
1988 }
1989
1990 /* print avg_queue_size */
1991 static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
1992 {
1993         blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1994                           cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
1995                           0, false);
1996         return 0;
1997 }
1998 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
1999
2000 static struct cftype cfq_blkcg_legacy_files[] = {
2001         /* on root, weight is mapped to leaf_weight */
2002         {
2003                 .name = "weight_device",
2004                 .flags = CFTYPE_ONLY_ON_ROOT,
2005                 .seq_show = cfqg_print_leaf_weight_device,
2006                 .write = cfqg_set_leaf_weight_device,
2007         },
2008         {
2009                 .name = "weight",
2010                 .flags = CFTYPE_ONLY_ON_ROOT,
2011                 .seq_show = cfq_print_leaf_weight,
2012                 .write_u64 = cfq_set_leaf_weight,
2013         },
2014
2015         /* no such mapping necessary for !roots */
2016         {
2017                 .name = "weight_device",
2018                 .flags = CFTYPE_NOT_ON_ROOT,
2019                 .seq_show = cfqg_print_weight_device,
2020                 .write = cfqg_set_weight_device,
2021         },
2022         {
2023                 .name = "weight",
2024                 .flags = CFTYPE_NOT_ON_ROOT,
2025                 .seq_show = cfq_print_weight,
2026                 .write_u64 = cfq_set_weight,
2027         },
2028
2029         {
2030                 .name = "leaf_weight_device",
2031                 .seq_show = cfqg_print_leaf_weight_device,
2032                 .write = cfqg_set_leaf_weight_device,
2033         },
2034         {
2035                 .name = "leaf_weight",
2036                 .seq_show = cfq_print_leaf_weight,
2037                 .write_u64 = cfq_set_leaf_weight,
2038         },
2039
2040         /* statistics, covers only the tasks in the cfqg */
2041         {
2042                 .name = "time",
2043                 .private = offsetof(struct cfq_group, stats.time),
2044                 .seq_show = cfqg_print_stat,
2045         },
2046         {
2047                 .name = "sectors",
2048                 .seq_show = cfqg_print_stat_sectors,
2049         },
2050         {
2051                 .name = "io_service_bytes",
2052                 .private = (unsigned long)&blkcg_policy_cfq,
2053                 .seq_show = blkg_print_stat_bytes,
2054         },
2055         {
2056                 .name = "io_serviced",
2057                 .private = (unsigned long)&blkcg_policy_cfq,
2058                 .seq_show = blkg_print_stat_ios,
2059         },
2060         {
2061                 .name = "io_service_time",
2062                 .private = offsetof(struct cfq_group, stats.service_time),
2063                 .seq_show = cfqg_print_rwstat,
2064         },
2065         {
2066                 .name = "io_wait_time",
2067                 .private = offsetof(struct cfq_group, stats.wait_time),
2068                 .seq_show = cfqg_print_rwstat,
2069         },
2070         {
2071                 .name = "io_merged",
2072                 .private = offsetof(struct cfq_group, stats.merged),
2073                 .seq_show = cfqg_print_rwstat,
2074         },
2075         {
2076                 .name = "io_queued",
2077                 .private = offsetof(struct cfq_group, stats.queued),
2078                 .seq_show = cfqg_print_rwstat,
2079         },
2080
2081         /* the same statictics which cover the cfqg and its descendants */
2082         {
2083                 .name = "time_recursive",
2084                 .private = offsetof(struct cfq_group, stats.time),
2085                 .seq_show = cfqg_print_stat_recursive,
2086         },
2087         {
2088                 .name = "sectors_recursive",
2089                 .seq_show = cfqg_print_stat_sectors_recursive,
2090         },
2091         {
2092                 .name = "io_service_bytes_recursive",
2093                 .private = (unsigned long)&blkcg_policy_cfq,
2094                 .seq_show = blkg_print_stat_bytes_recursive,
2095         },
2096         {
2097                 .name = "io_serviced_recursive",
2098                 .private = (unsigned long)&blkcg_policy_cfq,
2099                 .seq_show = blkg_print_stat_ios_recursive,
2100         },
2101         {
2102                 .name = "io_service_time_recursive",
2103                 .private = offsetof(struct cfq_group, stats.service_time),
2104                 .seq_show = cfqg_print_rwstat_recursive,
2105         },
2106         {
2107                 .name = "io_wait_time_recursive",
2108                 .private = offsetof(struct cfq_group, stats.wait_time),
2109                 .seq_show = cfqg_print_rwstat_recursive,
2110         },
2111         {
2112                 .name = "io_merged_recursive",
2113                 .private = offsetof(struct cfq_group, stats.merged),
2114                 .seq_show = cfqg_print_rwstat_recursive,
2115         },
2116         {
2117                 .name = "io_queued_recursive",
2118                 .private = offsetof(struct cfq_group, stats.queued),
2119                 .seq_show = cfqg_print_rwstat_recursive,
2120         },
2121 #ifdef CONFIG_DEBUG_BLK_CGROUP
2122         {
2123                 .name = "avg_queue_size",
2124                 .seq_show = cfqg_print_avg_queue_size,
2125         },
2126         {
2127                 .name = "group_wait_time",
2128                 .private = offsetof(struct cfq_group, stats.group_wait_time),
2129                 .seq_show = cfqg_print_stat,
2130         },
2131         {
2132                 .name = "idle_time",
2133                 .private = offsetof(struct cfq_group, stats.idle_time),
2134                 .seq_show = cfqg_print_stat,
2135         },
2136         {
2137                 .name = "empty_time",
2138                 .private = offsetof(struct cfq_group, stats.empty_time),
2139                 .seq_show = cfqg_print_stat,
2140         },
2141         {
2142                 .name = "dequeue",
2143                 .private = offsetof(struct cfq_group, stats.dequeue),
2144                 .seq_show = cfqg_print_stat,
2145         },
2146         {
2147                 .name = "unaccounted_time",
2148                 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2149                 .seq_show = cfqg_print_stat,
2150         },
2151 #endif  /* CONFIG_DEBUG_BLK_CGROUP */
2152         { }     /* terminate */
2153 };
2154
2155 static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2156 {
2157         struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2158         struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2159
2160         seq_printf(sf, "default %u\n", cgd->weight);
2161         blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2162                           &blkcg_policy_cfq, 0, false);
2163         return 0;
2164 }
2165
2166 static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2167                                      char *buf, size_t nbytes, loff_t off)
2168 {
2169         char *endp;
2170         int ret;
2171         u64 v;
2172
2173         buf = strim(buf);
2174
2175         /* "WEIGHT" or "default WEIGHT" sets the default weight */
2176         v = simple_strtoull(buf, &endp, 0);
2177         if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2178                 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2179                 return ret ?: nbytes;
2180         }
2181
2182         /* "MAJ:MIN WEIGHT" */
2183         return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2184 }
2185
2186 static struct cftype cfq_blkcg_files[] = {
2187         {
2188                 .name = "weight",
2189                 .flags = CFTYPE_NOT_ON_ROOT,
2190                 .seq_show = cfq_print_weight_on_dfl,
2191                 .write = cfq_set_weight_on_dfl,
2192         },
2193         { }     /* terminate */
2194 };
2195
2196 #else /* GROUP_IOSCHED */
2197 static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2198                                          struct blkcg *blkcg)
2199 {
2200         return cfqd->root_group;
2201 }
2202
2203 static inline void
2204 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2205         cfqq->cfqg = cfqg;
2206 }
2207
2208 #endif /* GROUP_IOSCHED */
2209
2210 /*
2211  * The cfqd->service_trees holds all pending cfq_queue's that have
2212  * requests waiting to be processed. It is sorted in the order that
2213  * we will service the queues.
2214  */
2215 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2216                                  bool add_front)
2217 {
2218         struct rb_node **p, *parent;
2219         struct cfq_queue *__cfqq;
2220         u64 rb_key;
2221         struct cfq_rb_root *st;
2222         int left;
2223         int new_cfqq = 1;
2224         u64 now = ktime_get_ns();
2225
2226         st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2227         if (cfq_class_idle(cfqq)) {
2228                 rb_key = CFQ_IDLE_DELAY;
2229                 parent = rb_last(&st->rb);
2230                 if (parent && parent != &cfqq->rb_node) {
2231                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2232                         rb_key += __cfqq->rb_key;
2233                 } else
2234                         rb_key += now;
2235         } else if (!add_front) {
2236                 /*
2237                  * Get our rb key offset. Subtract any residual slice
2238                  * value carried from last service. A negative resid
2239                  * count indicates slice overrun, and this should position
2240                  * the next service time further away in the tree.
2241                  */
2242                 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2243                 rb_key -= cfqq->slice_resid;
2244                 cfqq->slice_resid = 0;
2245         } else {
2246                 rb_key = -NSEC_PER_SEC;
2247                 __cfqq = cfq_rb_first(st);
2248                 rb_key += __cfqq ? __cfqq->rb_key : now;
2249         }
2250
2251         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2252                 new_cfqq = 0;
2253                 /*
2254                  * same position, nothing more to do
2255                  */
2256                 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2257                         return;
2258
2259                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2260                 cfqq->service_tree = NULL;
2261         }
2262
2263         left = 1;
2264         parent = NULL;
2265         cfqq->service_tree = st;
2266         p = &st->rb.rb_node;
2267         while (*p) {
2268                 parent = *p;
2269                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2270
2271                 /*
2272                  * sort by key, that represents service time.
2273                  */
2274                 if (rb_key < __cfqq->rb_key)
2275                         p = &parent->rb_left;
2276                 else {
2277                         p = &parent->rb_right;
2278                         left = 0;
2279                 }
2280         }
2281
2282         if (left)
2283                 st->left = &cfqq->rb_node;
2284
2285         cfqq->rb_key = rb_key;
2286         rb_link_node(&cfqq->rb_node, parent, p);
2287         rb_insert_color(&cfqq->rb_node, &st->rb);
2288         st->count++;
2289         if (add_front || !new_cfqq)
2290                 return;
2291         cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2292 }
2293
2294 static struct cfq_queue *
2295 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2296                      sector_t sector, struct rb_node **ret_parent,
2297                      struct rb_node ***rb_link)
2298 {
2299         struct rb_node **p, *parent;
2300         struct cfq_queue *cfqq = NULL;
2301
2302         parent = NULL;
2303         p = &root->rb_node;
2304         while (*p) {
2305                 struct rb_node **n;
2306
2307                 parent = *p;
2308                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2309
2310                 /*
2311                  * Sort strictly based on sector.  Smallest to the left,
2312                  * largest to the right.
2313                  */
2314                 if (sector > blk_rq_pos(cfqq->next_rq))
2315                         n = &(*p)->rb_right;
2316                 else if (sector < blk_rq_pos(cfqq->next_rq))
2317                         n = &(*p)->rb_left;
2318                 else
2319                         break;
2320                 p = n;
2321                 cfqq = NULL;
2322         }
2323
2324         *ret_parent = parent;
2325         if (rb_link)
2326                 *rb_link = p;
2327         return cfqq;
2328 }
2329
2330 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2331 {
2332         struct rb_node **p, *parent;
2333         struct cfq_queue *__cfqq;
2334
2335         if (cfqq->p_root) {
2336                 rb_erase(&cfqq->p_node, cfqq->p_root);
2337                 cfqq->p_root = NULL;
2338         }
2339
2340         if (cfq_class_idle(cfqq))
2341                 return;
2342         if (!cfqq->next_rq)
2343                 return;
2344
2345         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2346         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2347                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
2348         if (!__cfqq) {
2349                 rb_link_node(&cfqq->p_node, parent, p);
2350                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2351         } else
2352                 cfqq->p_root = NULL;
2353 }
2354
2355 /*
2356  * Update cfqq's position in the service tree.
2357  */
2358 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2359 {
2360         /*
2361          * Resorting requires the cfqq to be on the RR list already.
2362          */
2363         if (cfq_cfqq_on_rr(cfqq)) {
2364                 cfq_service_tree_add(cfqd, cfqq, 0);
2365                 cfq_prio_tree_add(cfqd, cfqq);
2366         }
2367 }
2368
2369 /*
2370  * add to busy list of queues for service, trying to be fair in ordering
2371  * the pending list according to last request service
2372  */
2373 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2374 {
2375         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2376         BUG_ON(cfq_cfqq_on_rr(cfqq));
2377         cfq_mark_cfqq_on_rr(cfqq);
2378         cfqd->busy_queues++;
2379         if (cfq_cfqq_sync(cfqq))
2380                 cfqd->busy_sync_queues++;
2381
2382         cfq_resort_rr_list(cfqd, cfqq);
2383 }
2384
2385 /*
2386  * Called when the cfqq no longer has requests pending, remove it from
2387  * the service tree.
2388  */
2389 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2390 {
2391         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2392         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2393         cfq_clear_cfqq_on_rr(cfqq);
2394
2395         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2396                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2397                 cfqq->service_tree = NULL;
2398         }
2399         if (cfqq->p_root) {
2400                 rb_erase(&cfqq->p_node, cfqq->p_root);
2401                 cfqq->p_root = NULL;
2402         }
2403
2404         cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2405         BUG_ON(!cfqd->busy_queues);
2406         cfqd->busy_queues--;
2407         if (cfq_cfqq_sync(cfqq))
2408                 cfqd->busy_sync_queues--;
2409 }
2410
2411 /*
2412  * rb tree support functions
2413  */
2414 static void cfq_del_rq_rb(struct request *rq)
2415 {
2416         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2417         const int sync = rq_is_sync(rq);
2418
2419         BUG_ON(!cfqq->queued[sync]);
2420         cfqq->queued[sync]--;
2421
2422         elv_rb_del(&cfqq->sort_list, rq);
2423
2424         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2425                 /*
2426                  * Queue will be deleted from service tree when we actually
2427                  * expire it later. Right now just remove it from prio tree
2428                  * as it is empty.
2429                  */
2430                 if (cfqq->p_root) {
2431                         rb_erase(&cfqq->p_node, cfqq->p_root);
2432                         cfqq->p_root = NULL;
2433                 }
2434         }
2435 }
2436
2437 static void cfq_add_rq_rb(struct request *rq)
2438 {
2439         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2440         struct cfq_data *cfqd = cfqq->cfqd;
2441         struct request *prev;
2442
2443         cfqq->queued[rq_is_sync(rq)]++;
2444
2445         elv_rb_add(&cfqq->sort_list, rq);
2446
2447         if (!cfq_cfqq_on_rr(cfqq))
2448                 cfq_add_cfqq_rr(cfqd, cfqq);
2449
2450         /*
2451          * check if this request is a better next-serve candidate
2452          */
2453         prev = cfqq->next_rq;
2454         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2455
2456         /*
2457          * adjust priority tree position, if ->next_rq changes
2458          */
2459         if (prev != cfqq->next_rq)
2460                 cfq_prio_tree_add(cfqd, cfqq);
2461
2462         BUG_ON(!cfqq->next_rq);
2463 }
2464
2465 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2466 {
2467         elv_rb_del(&cfqq->sort_list, rq);
2468         cfqq->queued[rq_is_sync(rq)]--;
2469         cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2470         cfq_add_rq_rb(rq);
2471         cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2472                                  rq->cmd_flags);
2473 }
2474
2475 static struct request *
2476 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2477 {
2478         struct task_struct *tsk = current;
2479         struct cfq_io_cq *cic;
2480         struct cfq_queue *cfqq;
2481
2482         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2483         if (!cic)
2484                 return NULL;
2485
2486         cfqq = cic_to_cfqq(cic, op_is_sync(bio->bi_opf));
2487         if (cfqq)
2488                 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2489
2490         return NULL;
2491 }
2492
2493 static void cfq_activate_request(struct request_queue *q, struct request *rq)
2494 {
2495         struct cfq_data *cfqd = q->elevator->elevator_data;
2496
2497         cfqd->rq_in_driver++;
2498         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2499                                                 cfqd->rq_in_driver);
2500
2501         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2502 }
2503
2504 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2505 {
2506         struct cfq_data *cfqd = q->elevator->elevator_data;
2507
2508         WARN_ON(!cfqd->rq_in_driver);
2509         cfqd->rq_in_driver--;
2510         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2511                                                 cfqd->rq_in_driver);
2512 }
2513
2514 static void cfq_remove_request(struct request *rq)
2515 {
2516         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2517
2518         if (cfqq->next_rq == rq)
2519                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2520
2521         list_del_init(&rq->queuelist);
2522         cfq_del_rq_rb(rq);
2523
2524         cfqq->cfqd->rq_queued--;
2525         cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2526         if (rq->cmd_flags & REQ_PRIO) {
2527                 WARN_ON(!cfqq->prio_pending);
2528                 cfqq->prio_pending--;
2529         }
2530 }
2531
2532 static enum elv_merge cfq_merge(struct request_queue *q, struct request **req,
2533                      struct bio *bio)
2534 {
2535         struct cfq_data *cfqd = q->elevator->elevator_data;
2536         struct request *__rq;
2537
2538         __rq = cfq_find_rq_fmerge(cfqd, bio);
2539         if (__rq && elv_bio_merge_ok(__rq, bio)) {
2540                 *req = __rq;
2541                 return ELEVATOR_FRONT_MERGE;
2542         }
2543
2544         return ELEVATOR_NO_MERGE;
2545 }
2546
2547 static void cfq_merged_request(struct request_queue *q, struct request *req,
2548                                enum elv_merge type)
2549 {
2550         if (type == ELEVATOR_FRONT_MERGE) {
2551                 struct cfq_queue *cfqq = RQ_CFQQ(req);
2552
2553                 cfq_reposition_rq_rb(cfqq, req);
2554         }
2555 }
2556
2557 static void cfq_bio_merged(struct request_queue *q, struct request *req,
2558                                 struct bio *bio)
2559 {
2560         cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_opf);
2561 }
2562
2563 static void
2564 cfq_merged_requests(struct request_queue *q, struct request *rq,
2565                     struct request *next)
2566 {
2567         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2568         struct cfq_data *cfqd = q->elevator->elevator_data;
2569
2570         /*
2571          * reposition in fifo if next is older than rq
2572          */
2573         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2574             next->fifo_time < rq->fifo_time &&
2575             cfqq == RQ_CFQQ(next)) {
2576                 list_move(&rq->queuelist, &next->queuelist);
2577                 rq->fifo_time = next->fifo_time;
2578         }
2579
2580         if (cfqq->next_rq == next)
2581                 cfqq->next_rq = rq;
2582         cfq_remove_request(next);
2583         cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2584
2585         cfqq = RQ_CFQQ(next);
2586         /*
2587          * all requests of this queue are merged to other queues, delete it
2588          * from the service tree. If it's the active_queue,
2589          * cfq_dispatch_requests() will choose to expire it or do idle
2590          */
2591         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2592             cfqq != cfqd->active_queue)
2593                 cfq_del_cfqq_rr(cfqd, cfqq);
2594 }
2595
2596 static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2597                                struct bio *bio)
2598 {
2599         struct cfq_data *cfqd = q->elevator->elevator_data;
2600         bool is_sync = op_is_sync(bio->bi_opf);
2601         struct cfq_io_cq *cic;
2602         struct cfq_queue *cfqq;
2603
2604         /*
2605          * Disallow merge of a sync bio into an async request.
2606          */
2607         if (is_sync && !rq_is_sync(rq))
2608                 return false;
2609
2610         /*
2611          * Lookup the cfqq that this bio will be queued with and allow
2612          * merge only if rq is queued there.
2613          */
2614         cic = cfq_cic_lookup(cfqd, current->io_context);
2615         if (!cic)
2616                 return false;
2617
2618         cfqq = cic_to_cfqq(cic, is_sync);
2619         return cfqq == RQ_CFQQ(rq);
2620 }
2621
2622 static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2623                               struct request *next)
2624 {
2625         return RQ_CFQQ(rq) == RQ_CFQQ(next);
2626 }
2627
2628 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2629 {
2630         hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2631         cfqg_stats_update_idle_time(cfqq->cfqg);
2632 }
2633
2634 static void __cfq_set_active_queue(struct cfq_data *cfqd,
2635                                    struct cfq_queue *cfqq)
2636 {
2637         if (cfqq) {
2638                 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2639                                 cfqd->serving_wl_class, cfqd->serving_wl_type);
2640                 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2641                 cfqq->slice_start = 0;
2642                 cfqq->dispatch_start = ktime_get_ns();
2643                 cfqq->allocated_slice = 0;
2644                 cfqq->slice_end = 0;
2645                 cfqq->slice_dispatch = 0;
2646                 cfqq->nr_sectors = 0;
2647
2648                 cfq_clear_cfqq_wait_request(cfqq);
2649                 cfq_clear_cfqq_must_dispatch(cfqq);
2650                 cfq_clear_cfqq_must_alloc_slice(cfqq);
2651                 cfq_clear_cfqq_fifo_expire(cfqq);
2652                 cfq_mark_cfqq_slice_new(cfqq);
2653
2654                 cfq_del_timer(cfqd, cfqq);
2655         }
2656
2657         cfqd->active_queue = cfqq;
2658 }
2659
2660 /*
2661  * current cfqq expired its slice (or was too idle), select new one
2662  */
2663 static void
2664 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2665                     bool timed_out)
2666 {
2667         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2668
2669         if (cfq_cfqq_wait_request(cfqq))
2670                 cfq_del_timer(cfqd, cfqq);
2671
2672         cfq_clear_cfqq_wait_request(cfqq);
2673         cfq_clear_cfqq_wait_busy(cfqq);
2674
2675         /*
2676          * If this cfqq is shared between multiple processes, check to
2677          * make sure that those processes are still issuing I/Os within
2678          * the mean seek distance.  If not, it may be time to break the
2679          * queues apart again.
2680          */
2681         if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2682                 cfq_mark_cfqq_split_coop(cfqq);
2683
2684         /*
2685          * store what was left of this slice, if the queue idled/timed out
2686          */
2687         if (timed_out) {
2688                 if (cfq_cfqq_slice_new(cfqq))
2689                         cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2690                 else
2691                         cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2692                 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2693         }
2694
2695         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2696
2697         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2698                 cfq_del_cfqq_rr(cfqd, cfqq);
2699
2700         cfq_resort_rr_list(cfqd, cfqq);
2701
2702         if (cfqq == cfqd->active_queue)
2703                 cfqd->active_queue = NULL;
2704
2705         if (cfqd->active_cic) {
2706                 put_io_context(cfqd->active_cic->icq.ioc);
2707                 cfqd->active_cic = NULL;
2708         }
2709 }
2710
2711 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2712 {
2713         struct cfq_queue *cfqq = cfqd->active_queue;
2714
2715         if (cfqq)
2716                 __cfq_slice_expired(cfqd, cfqq, timed_out);
2717 }
2718
2719 /*
2720  * Get next queue for service. Unless we have a queue preemption,
2721  * we'll simply select the first cfqq in the service tree.
2722  */
2723 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2724 {
2725         struct cfq_rb_root *st = st_for(cfqd->serving_group,
2726                         cfqd->serving_wl_class, cfqd->serving_wl_type);
2727
2728         if (!cfqd->rq_queued)
2729                 return NULL;
2730
2731         /* There is nothing to dispatch */
2732         if (!st)
2733                 return NULL;
2734         if (RB_EMPTY_ROOT(&st->rb))
2735                 return NULL;
2736         return cfq_rb_first(st);
2737 }
2738
2739 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2740 {
2741         struct cfq_group *cfqg;
2742         struct cfq_queue *cfqq;
2743         int i, j;
2744         struct cfq_rb_root *st;
2745
2746         if (!cfqd->rq_queued)
2747                 return NULL;
2748
2749         cfqg = cfq_get_next_cfqg(cfqd);
2750         if (!cfqg)
2751                 return NULL;
2752
2753         for_each_cfqg_st(cfqg, i, j, st) {
2754                 cfqq = cfq_rb_first(st);
2755                 if (cfqq)
2756                         return cfqq;
2757         }
2758         return NULL;
2759 }
2760
2761 /*
2762  * Get and set a new active queue for service.
2763  */
2764 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2765                                               struct cfq_queue *cfqq)
2766 {
2767         if (!cfqq)
2768                 cfqq = cfq_get_next_queue(cfqd);
2769
2770         __cfq_set_active_queue(cfqd, cfqq);
2771         return cfqq;
2772 }
2773
2774 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2775                                           struct request *rq)
2776 {
2777         if (blk_rq_pos(rq) >= cfqd->last_position)
2778                 return blk_rq_pos(rq) - cfqd->last_position;
2779         else
2780                 return cfqd->last_position - blk_rq_pos(rq);
2781 }
2782
2783 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2784                                struct request *rq)
2785 {
2786         return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2787 }
2788
2789 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2790                                     struct cfq_queue *cur_cfqq)
2791 {
2792         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2793         struct rb_node *parent, *node;
2794         struct cfq_queue *__cfqq;
2795         sector_t sector = cfqd->last_position;
2796
2797         if (RB_EMPTY_ROOT(root))
2798                 return NULL;
2799
2800         /*
2801          * First, if we find a request starting at the end of the last
2802          * request, choose it.
2803          */
2804         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2805         if (__cfqq)
2806                 return __cfqq;
2807
2808         /*
2809          * If the exact sector wasn't found, the parent of the NULL leaf
2810          * will contain the closest sector.
2811          */
2812         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2813         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2814                 return __cfqq;
2815
2816         if (blk_rq_pos(__cfqq->next_rq) < sector)
2817                 node = rb_next(&__cfqq->p_node);
2818         else
2819                 node = rb_prev(&__cfqq->p_node);
2820         if (!node)
2821                 return NULL;
2822
2823         __cfqq = rb_entry(node, struct cfq_queue, p_node);
2824         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2825                 return __cfqq;
2826
2827         return NULL;
2828 }
2829
2830 /*
2831  * cfqd - obvious
2832  * cur_cfqq - passed in so that we don't decide that the current queue is
2833  *            closely cooperating with itself.
2834  *
2835  * So, basically we're assuming that that cur_cfqq has dispatched at least
2836  * one request, and that cfqd->last_position reflects a position on the disk
2837  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2838  * assumption.
2839  */
2840 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2841                                               struct cfq_queue *cur_cfqq)
2842 {
2843         struct cfq_queue *cfqq;
2844
2845         if (cfq_class_idle(cur_cfqq))
2846                 return NULL;
2847         if (!cfq_cfqq_sync(cur_cfqq))
2848                 return NULL;
2849         if (CFQQ_SEEKY(cur_cfqq))
2850                 return NULL;
2851
2852         /*
2853          * Don't search priority tree if it's the only queue in the group.
2854          */
2855         if (cur_cfqq->cfqg->nr_cfqq == 1)
2856                 return NULL;
2857
2858         /*
2859          * We should notice if some of the queues are cooperating, eg
2860          * working closely on the same area of the disk. In that case,
2861          * we can group them together and don't waste time idling.
2862          */
2863         cfqq = cfqq_close(cfqd, cur_cfqq);
2864         if (!cfqq)
2865                 return NULL;
2866
2867         /* If new queue belongs to different cfq_group, don't choose it */
2868         if (cur_cfqq->cfqg != cfqq->cfqg)
2869                 return NULL;
2870
2871         /*
2872          * It only makes sense to merge sync queues.
2873          */
2874         if (!cfq_cfqq_sync(cfqq))
2875                 return NULL;
2876         if (CFQQ_SEEKY(cfqq))
2877                 return NULL;
2878
2879         /*
2880          * Do not merge queues of different priority classes
2881          */
2882         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2883                 return NULL;
2884
2885         return cfqq;
2886 }
2887
2888 /*
2889  * Determine whether we should enforce idle window for this queue.
2890  */
2891
2892 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2893 {
2894         enum wl_class_t wl_class = cfqq_class(cfqq);
2895         struct cfq_rb_root *st = cfqq->service_tree;
2896
2897         BUG_ON(!st);
2898         BUG_ON(!st->count);
2899
2900         if (!cfqd->cfq_slice_idle)
2901                 return false;
2902
2903         /* We never do for idle class queues. */
2904         if (wl_class == IDLE_WORKLOAD)
2905                 return false;
2906
2907         /* We do for queues that were marked with idle window flag. */
2908         if (cfq_cfqq_idle_window(cfqq) &&
2909            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2910                 return true;
2911
2912         /*
2913          * Otherwise, we do only if they are the last ones
2914          * in their service tree.
2915          */
2916         if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2917            !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2918                 return true;
2919         cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2920         return false;
2921 }
2922
2923 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2924 {
2925         struct cfq_queue *cfqq = cfqd->active_queue;
2926         struct cfq_rb_root *st = cfqq->service_tree;
2927         struct cfq_io_cq *cic;
2928         u64 sl, group_idle = 0;
2929         u64 now = ktime_get_ns();
2930
2931         /*
2932          * SSD device without seek penalty, disable idling. But only do so
2933          * for devices that support queuing, otherwise we still have a problem
2934          * with sync vs async workloads.
2935          */
2936         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2937                 return;
2938
2939         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2940         WARN_ON(cfq_cfqq_slice_new(cfqq));
2941
2942         /*
2943          * idle is disabled, either manually or by past process history
2944          */
2945         if (!cfq_should_idle(cfqd, cfqq)) {
2946                 /* no queue idling. Check for group idling */
2947                 if (cfqd->cfq_group_idle)
2948                         group_idle = cfqd->cfq_group_idle;
2949                 else
2950                         return;
2951         }
2952
2953         /*
2954          * still active requests from this queue, don't idle
2955          */
2956         if (cfqq->dispatched)
2957                 return;
2958
2959         /*
2960          * task has exited, don't wait
2961          */
2962         cic = cfqd->active_cic;
2963         if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2964                 return;
2965
2966         /*
2967          * If our average think time is larger than the remaining time
2968          * slice, then don't idle. This avoids overrunning the allotted
2969          * time slice.
2970          */
2971         if (sample_valid(cic->ttime.ttime_samples) &&
2972             (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
2973                 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
2974                              cic->ttime.ttime_mean);
2975                 return;
2976         }
2977
2978         /*
2979          * There are other queues in the group or this is the only group and
2980          * it has too big thinktime, don't do group idle.
2981          */
2982         if (group_idle &&
2983             (cfqq->cfqg->nr_cfqq > 1 ||
2984              cfq_io_thinktime_big(cfqd, &st->ttime, true)))
2985                 return;
2986
2987         cfq_mark_cfqq_wait_request(cfqq);
2988
2989         if (group_idle)
2990                 sl = cfqd->cfq_group_idle;
2991         else
2992                 sl = cfqd->cfq_slice_idle;
2993
2994         hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
2995                       HRTIMER_MODE_REL);
2996         cfqg_stats_set_start_idle_time(cfqq->cfqg);
2997         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
2998                         group_idle ? 1 : 0);
2999 }
3000
3001 /*
3002  * Move request from internal lists to the request queue dispatch list.
3003  */
3004 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
3005 {
3006         struct cfq_data *cfqd = q->elevator->elevator_data;
3007         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3008
3009         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3010
3011         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3012         cfq_remove_request(rq);
3013         cfqq->dispatched++;
3014         (RQ_CFQG(rq))->dispatched++;
3015         elv_dispatch_sort(q, rq);
3016
3017         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3018         cfqq->nr_sectors += blk_rq_sectors(rq);
3019 }
3020
3021 /*
3022  * return expired entry, or NULL to just start from scratch in rbtree
3023  */
3024 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3025 {
3026         struct request *rq = NULL;
3027
3028         if (cfq_cfqq_fifo_expire(cfqq))
3029                 return NULL;
3030
3031         cfq_mark_cfqq_fifo_expire(cfqq);
3032
3033         if (list_empty(&cfqq->fifo))
3034                 return NULL;
3035
3036         rq = rq_entry_fifo(cfqq->fifo.next);
3037         if (ktime_get_ns() < rq->fifo_time)
3038                 rq = NULL;
3039
3040         return rq;
3041 }
3042
3043 static inline int
3044 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3045 {
3046         const int base_rq = cfqd->cfq_slice_async_rq;
3047
3048         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3049
3050         return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3051 }
3052
3053 /*
3054  * Must be called with the queue_lock held.
3055  */
3056 static int cfqq_process_refs(struct cfq_queue *cfqq)
3057 {
3058         int process_refs, io_refs;
3059
3060         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3061         process_refs = cfqq->ref - io_refs;
3062         BUG_ON(process_refs < 0);
3063         return process_refs;
3064 }
3065
3066 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3067 {
3068         int process_refs, new_process_refs;
3069         struct cfq_queue *__cfqq;
3070
3071         /*
3072          * If there are no process references on the new_cfqq, then it is
3073          * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3074          * chain may have dropped their last reference (not just their
3075          * last process reference).
3076          */
3077         if (!cfqq_process_refs(new_cfqq))
3078                 return;
3079
3080         /* Avoid a circular list and skip interim queue merges */
3081         while ((__cfqq = new_cfqq->new_cfqq)) {
3082                 if (__cfqq == cfqq)
3083                         return;
3084                 new_cfqq = __cfqq;
3085         }
3086
3087         process_refs = cfqq_process_refs(cfqq);
3088         new_process_refs = cfqq_process_refs(new_cfqq);
3089         /*
3090          * If the process for the cfqq has gone away, there is no
3091          * sense in merging the queues.
3092          */
3093         if (process_refs == 0 || new_process_refs == 0)
3094                 return;
3095
3096         /*
3097          * Merge in the direction of the lesser amount of work.
3098          */
3099         if (new_process_refs >= process_refs) {
3100                 cfqq->new_cfqq = new_cfqq;
3101                 new_cfqq->ref += process_refs;
3102         } else {
3103                 new_cfqq->new_cfqq = cfqq;
3104                 cfqq->ref += new_process_refs;
3105         }
3106 }
3107
3108 static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3109                         struct cfq_group *cfqg, enum wl_class_t wl_class)
3110 {
3111         struct cfq_queue *queue;
3112         int i;
3113         bool key_valid = false;
3114         u64 lowest_key = 0;
3115         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3116
3117         for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3118                 /* select the one with lowest rb_key */
3119                 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3120                 if (queue &&
3121                     (!key_valid || queue->rb_key < lowest_key)) {
3122                         lowest_key = queue->rb_key;
3123                         cur_best = i;
3124                         key_valid = true;
3125                 }
3126         }
3127
3128         return cur_best;
3129 }
3130
3131 static void
3132 choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3133 {
3134         u64 slice;
3135         unsigned count;
3136         struct cfq_rb_root *st;
3137         u64 group_slice;
3138         enum wl_class_t original_class = cfqd->serving_wl_class;
3139         u64 now = ktime_get_ns();
3140
3141         /* Choose next priority. RT > BE > IDLE */
3142         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3143                 cfqd->serving_wl_class = RT_WORKLOAD;
3144         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3145                 cfqd->serving_wl_class = BE_WORKLOAD;
3146         else {
3147                 cfqd->serving_wl_class = IDLE_WORKLOAD;
3148                 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3149                 return;
3150         }
3151
3152         if (original_class != cfqd->serving_wl_class)
3153                 goto new_workload;
3154
3155         /*
3156          * For RT and BE, we have to choose also the type
3157          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3158          * expiration time
3159          */
3160         st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3161         count = st->count;
3162
3163         /*
3164          * check workload expiration, and that we still have other queues ready
3165          */
3166         if (count && !(now > cfqd->workload_expires))
3167                 return;
3168
3169 new_workload:
3170         /* otherwise select new workload type */
3171         cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3172                                         cfqd->serving_wl_class);
3173         st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3174         count = st->count;
3175
3176         /*
3177          * the workload slice is computed as a fraction of target latency
3178          * proportional to the number of queues in that workload, over
3179          * all the queues in the same priority class
3180          */
3181         group_slice = cfq_group_slice(cfqd, cfqg);
3182
3183         slice = div_u64(group_slice * count,
3184                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3185                       cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3186                                         cfqg)));
3187
3188         if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3189                 u64 tmp;
3190
3191                 /*
3192                  * Async queues are currently system wide. Just taking
3193                  * proportion of queues with-in same group will lead to higher
3194                  * async ratio system wide as generally root group is going
3195                  * to have higher weight. A more accurate thing would be to
3196                  * calculate system wide asnc/sync ratio.
3197                  */
3198                 tmp = cfqd->cfq_target_latency *
3199                         cfqg_busy_async_queues(cfqd, cfqg);
3200                 tmp = div_u64(tmp, cfqd->busy_queues);
3201                 slice = min_t(u64, slice, tmp);
3202
3203                 /* async workload slice is scaled down according to
3204                  * the sync/async slice ratio. */
3205                 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3206         } else
3207                 /* sync workload slice is at least 2 * cfq_slice_idle */
3208                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3209
3210         slice = max_t(u64, slice, CFQ_MIN_TT);
3211         cfq_log(cfqd, "workload slice:%llu", slice);
3212         cfqd->workload_expires = now + slice;
3213 }
3214
3215 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3216 {
3217         struct cfq_rb_root *st = &cfqd->grp_service_tree;
3218         struct cfq_group *cfqg;
3219
3220         if (RB_EMPTY_ROOT(&st->rb))
3221                 return NULL;
3222         cfqg = cfq_rb_first_group(st);
3223         update_min_vdisktime(st);
3224         return cfqg;
3225 }
3226
3227 static void cfq_choose_cfqg(struct cfq_data *cfqd)
3228 {
3229         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3230         u64 now = ktime_get_ns();
3231
3232         cfqd->serving_group = cfqg;
3233
3234         /* Restore the workload type data */
3235         if (cfqg->saved_wl_slice) {
3236                 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3237                 cfqd->serving_wl_type = cfqg->saved_wl_type;
3238                 cfqd->serving_wl_class = cfqg->saved_wl_class;
3239         } else
3240                 cfqd->workload_expires = now - 1;
3241
3242         choose_wl_class_and_type(cfqd, cfqg);
3243 }
3244
3245 /*
3246  * Select a queue for service. If we have a current active queue,
3247  * check whether to continue servicing it, or retrieve and set a new one.
3248  */
3249 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3250 {
3251         struct cfq_queue *cfqq, *new_cfqq = NULL;
3252         u64 now = ktime_get_ns();
3253
3254         cfqq = cfqd->active_queue;
3255         if (!cfqq)
3256                 goto new_queue;
3257
3258         if (!cfqd->rq_queued)
3259                 return NULL;
3260
3261         /*
3262          * We were waiting for group to get backlogged. Expire the queue
3263          */
3264         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3265                 goto expire;
3266
3267         /*
3268          * The active queue has run out of time, expire it and select new.
3269          */
3270         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3271                 /*
3272                  * If slice had not expired at the completion of last request
3273                  * we might not have turned on wait_busy flag. Don't expire
3274                  * the queue yet. Allow the group to get backlogged.
3275                  *
3276                  * The very fact that we have used the slice, that means we
3277                  * have been idling all along on this queue and it should be
3278                  * ok to wait for this request to complete.
3279                  */
3280                 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3281                     && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3282                         cfqq = NULL;
3283                         goto keep_queue;
3284                 } else
3285                         goto check_group_idle;
3286         }
3287
3288         /*
3289          * The active queue has requests and isn't expired, allow it to
3290          * dispatch.
3291          */
3292         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3293                 goto keep_queue;
3294
3295         /*
3296          * If another queue has a request waiting within our mean seek
3297          * distance, let it run.  The expire code will check for close
3298          * cooperators and put the close queue at the front of the service
3299          * tree.  If possible, merge the expiring queue with the new cfqq.
3300          */
3301         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3302         if (new_cfqq) {
3303                 if (!cfqq->new_cfqq)
3304                         cfq_setup_merge(cfqq, new_cfqq);
3305                 goto expire;
3306         }
3307
3308         /*
3309          * No requests pending. If the active queue still has requests in
3310          * flight or is idling for a new request, allow either of these
3311          * conditions to happen (or time out) before selecting a new queue.
3312          */
3313         if (hrtimer_active(&cfqd->idle_slice_timer)) {
3314                 cfqq = NULL;
3315                 goto keep_queue;
3316         }
3317
3318         /*
3319          * This is a deep seek queue, but the device is much faster than
3320          * the queue can deliver, don't idle
3321          **/
3322         if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3323             (cfq_cfqq_slice_new(cfqq) ||
3324             (cfqq->slice_end - now > now - cfqq->slice_start))) {
3325                 cfq_clear_cfqq_deep(cfqq);
3326                 cfq_clear_cfqq_idle_window(cfqq);
3327         }
3328
3329         if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3330                 cfqq = NULL;
3331                 goto keep_queue;
3332         }
3333
3334         /*
3335          * If group idle is enabled and there are requests dispatched from
3336          * this group, wait for requests to complete.
3337          */
3338 check_group_idle:
3339         if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3340             cfqq->cfqg->dispatched &&
3341             !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3342                 cfqq = NULL;
3343                 goto keep_queue;
3344         }
3345
3346 expire:
3347         cfq_slice_expired(cfqd, 0);
3348 new_queue:
3349         /*
3350          * Current queue expired. Check if we have to switch to a new
3351          * service tree
3352          */
3353         if (!new_cfqq)
3354                 cfq_choose_cfqg(cfqd);
3355
3356         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3357 keep_queue:
3358         return cfqq;
3359 }
3360
3361 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3362 {
3363         int dispatched = 0;
3364
3365         while (cfqq->next_rq) {
3366                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3367                 dispatched++;
3368         }
3369
3370         BUG_ON(!list_empty(&cfqq->fifo));
3371
3372         /* By default cfqq is not expired if it is empty. Do it explicitly */
3373         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3374         return dispatched;
3375 }
3376
3377 /*
3378  * Drain our current requests. Used for barriers and when switching
3379  * io schedulers on-the-fly.
3380  */
3381 static int cfq_forced_dispatch(struct cfq_data *cfqd)
3382 {
3383         struct cfq_queue *cfqq;
3384         int dispatched = 0;
3385
3386         /* Expire the timeslice of the current active queue first */
3387         cfq_slice_expired(cfqd, 0);
3388         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3389                 __cfq_set_active_queue(cfqd, cfqq);
3390                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3391         }
3392
3393         BUG_ON(cfqd->busy_queues);
3394
3395         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3396         return dispatched;
3397 }
3398
3399 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3400         struct cfq_queue *cfqq)
3401 {
3402         u64 now = ktime_get_ns();
3403
3404         /* the queue hasn't finished any request, can't estimate */
3405         if (cfq_cfqq_slice_new(cfqq))
3406                 return true;
3407         if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3408                 return true;
3409
3410         return false;
3411 }
3412
3413 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3414 {
3415         unsigned int max_dispatch;
3416
3417         if (cfq_cfqq_must_dispatch(cfqq))
3418                 return true;
3419
3420         /*
3421          * Drain async requests before we start sync IO
3422          */
3423         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3424                 return false;
3425
3426         /*
3427          * If this is an async queue and we have sync IO in flight, let it wait
3428          */
3429         if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3430                 return false;
3431
3432         max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3433         if (cfq_class_idle(cfqq))
3434                 max_dispatch = 1;
3435
3436         /*
3437          * Does this cfqq already have too much IO in flight?
3438          */
3439         if (cfqq->dispatched >= max_dispatch) {
3440                 bool promote_sync = false;
3441                 /*
3442                  * idle queue must always only have a single IO in flight
3443                  */
3444                 if (cfq_class_idle(cfqq))
3445                         return false;
3446
3447                 /*
3448                  * If there is only one sync queue
3449                  * we can ignore async queue here and give the sync
3450                  * queue no dispatch limit. The reason is a sync queue can
3451                  * preempt async queue, limiting the sync queue doesn't make
3452                  * sense. This is useful for aiostress test.
3453                  */
3454                 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3455                         promote_sync = true;
3456
3457                 /*
3458                  * We have other queues, don't allow more IO from this one
3459                  */
3460                 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3461                                 !promote_sync)
3462                         return false;
3463
3464                 /*
3465                  * Sole queue user, no limit
3466                  */
3467                 if (cfqd->busy_queues == 1 || promote_sync)
3468                         max_dispatch = -1;
3469                 else
3470                         /*
3471                          * Normally we start throttling cfqq when cfq_quantum/2
3472                          * requests have been dispatched. But we can drive
3473                          * deeper queue depths at the beginning of slice
3474                          * subjected to upper limit of cfq_quantum.
3475                          * */
3476                         max_dispatch = cfqd->cfq_quantum;
3477         }
3478
3479         /*
3480          * Async queues must wait a bit before being allowed dispatch.
3481          * We also ramp up the dispatch depth gradually for async IO,
3482          * based on the last sync IO we serviced
3483          */
3484         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3485                 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3486                 unsigned int depth;
3487
3488                 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3489                 if (!depth && !cfqq->dispatched)
3490                         depth = 1;
3491                 if (depth < max_dispatch)
3492                         max_dispatch = depth;
3493         }
3494
3495         /*
3496          * If we're below the current max, allow a dispatch
3497          */
3498         return cfqq->dispatched < max_dispatch;
3499 }
3500
3501 /*
3502  * Dispatch a request from cfqq, moving them to the request queue
3503  * dispatch list.
3504  */
3505 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3506 {
3507         struct request *rq;
3508
3509         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3510
3511         rq = cfq_check_fifo(cfqq);
3512         if (rq)
3513                 cfq_mark_cfqq_must_dispatch(cfqq);
3514
3515         if (!cfq_may_dispatch(cfqd, cfqq))
3516                 return false;
3517
3518         /*
3519          * follow expired path, else get first next available
3520          */
3521         if (!rq)
3522                 rq = cfqq->next_rq;
3523         else
3524                 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3525
3526         /*
3527          * insert request into driver dispatch list
3528          */
3529         cfq_dispatch_insert(cfqd->queue, rq);
3530
3531         if (!cfqd->active_cic) {
3532                 struct cfq_io_cq *cic = RQ_CIC(rq);
3533
3534                 atomic_long_inc(&cic->icq.ioc->refcount);
3535                 cfqd->active_cic = cic;
3536         }
3537
3538         return true;
3539 }
3540
3541 /*
3542  * Find the cfqq that we need to service and move a request from that to the
3543  * dispatch list
3544  */
3545 static int cfq_dispatch_requests(struct request_queue *q, int force)
3546 {
3547         struct cfq_data *cfqd = q->elevator->elevator_data;
3548         struct cfq_queue *cfqq;
3549
3550         if (!cfqd->busy_queues)
3551                 return 0;
3552
3553         if (unlikely(force))
3554                 return cfq_forced_dispatch(cfqd);
3555
3556         cfqq = cfq_select_queue(cfqd);
3557         if (!cfqq)
3558                 return 0;
3559
3560         /*
3561          * Dispatch a request from this cfqq, if it is allowed
3562          */
3563         if (!cfq_dispatch_request(cfqd, cfqq))
3564                 return 0;
3565
3566         cfqq->slice_dispatch++;
3567         cfq_clear_cfqq_must_dispatch(cfqq);
3568
3569         /*
3570          * expire an async queue immediately if it has used up its slice. idle
3571          * queue always expire after 1 dispatch round.
3572          */
3573         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3574             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3575             cfq_class_idle(cfqq))) {
3576                 cfqq->slice_end = ktime_get_ns() + 1;
3577                 cfq_slice_expired(cfqd, 0);
3578         }
3579
3580         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3581         return 1;
3582 }
3583
3584 /*
3585  * task holds one reference to the queue, dropped when task exits. each rq
3586  * in-flight on this queue also holds a reference, dropped when rq is freed.
3587  *
3588  * Each cfq queue took a reference on the parent group. Drop it now.
3589  * queue lock must be held here.
3590  */
3591 static void cfq_put_queue(struct cfq_queue *cfqq)
3592 {
3593         struct cfq_data *cfqd = cfqq->cfqd;
3594         struct cfq_group *cfqg;
3595
3596         BUG_ON(cfqq->ref <= 0);
3597
3598         cfqq->ref--;
3599         if (cfqq->ref)
3600                 return;
3601
3602         cfq_log_cfqq(cfqd, cfqq, "put_queue");
3603         BUG_ON(rb_first(&cfqq->sort_list));
3604         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3605         cfqg = cfqq->cfqg;
3606
3607         if (unlikely(cfqd->active_queue == cfqq)) {
3608                 __cfq_slice_expired(cfqd, cfqq, 0);
3609                 cfq_schedule_dispatch(cfqd);
3610         }
3611
3612         BUG_ON(cfq_cfqq_on_rr(cfqq));
3613         kmem_cache_free(cfq_pool, cfqq);
3614         cfqg_put(cfqg);
3615 }
3616
3617 static void cfq_put_cooperator(struct cfq_queue *cfqq)
3618 {
3619         struct cfq_queue *__cfqq, *next;
3620
3621         /*
3622          * If this queue was scheduled to merge with another queue, be
3623          * sure to drop the reference taken on that queue (and others in
3624          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3625          */
3626         __cfqq = cfqq->new_cfqq;
3627         while (__cfqq) {
3628                 if (__cfqq == cfqq) {
3629                         WARN(1, "cfqq->new_cfqq loop detected\n");
3630                         break;
3631                 }
3632                 next = __cfqq->new_cfqq;
3633                 cfq_put_queue(__cfqq);
3634                 __cfqq = next;
3635         }
3636 }
3637
3638 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3639 {
3640         if (unlikely(cfqq == cfqd->active_queue)) {
3641                 __cfq_slice_expired(cfqd, cfqq, 0);
3642                 cfq_schedule_dispatch(cfqd);
3643         }
3644
3645         cfq_put_cooperator(cfqq);
3646
3647         cfq_put_queue(cfqq);
3648 }
3649
3650 static void cfq_init_icq(struct io_cq *icq)
3651 {
3652         struct cfq_io_cq *cic = icq_to_cic(icq);
3653
3654         cic->ttime.last_end_request = ktime_get_ns();
3655 }
3656
3657 static void cfq_exit_icq(struct io_cq *icq)
3658 {
3659         struct cfq_io_cq *cic = icq_to_cic(icq);
3660         struct cfq_data *cfqd = cic_to_cfqd(cic);
3661
3662         if (cic_to_cfqq(cic, false)) {
3663                 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3664                 cic_set_cfqq(cic, NULL, false);
3665         }
3666
3667         if (cic_to_cfqq(cic, true)) {
3668                 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3669                 cic_set_cfqq(cic, NULL, true);
3670         }
3671 }
3672
3673 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3674 {
3675         struct task_struct *tsk = current;
3676         int ioprio_class;
3677
3678         if (!cfq_cfqq_prio_changed(cfqq))
3679                 return;
3680
3681         ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3682         switch (ioprio_class) {
3683         default:
3684                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3685         case IOPRIO_CLASS_NONE:
3686                 /*
3687                  * no prio set, inherit CPU scheduling settings
3688                  */
3689                 cfqq->ioprio = task_nice_ioprio(tsk);
3690                 cfqq->ioprio_class = task_nice_ioclass(tsk);
3691                 break;
3692         case IOPRIO_CLASS_RT:
3693                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3694                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3695                 break;
3696         case IOPRIO_CLASS_BE:
3697                 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3698                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3699                 break;
3700         case IOPRIO_CLASS_IDLE:
3701                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3702                 cfqq->ioprio = 7;
3703                 cfq_clear_cfqq_idle_window(cfqq);
3704                 break;
3705         }
3706
3707         /*
3708          * keep track of original prio settings in case we have to temporarily
3709          * elevate the priority of this queue
3710          */
3711         cfqq->org_ioprio = cfqq->ioprio;
3712         cfqq->org_ioprio_class = cfqq->ioprio_class;
3713         cfq_clear_cfqq_prio_changed(cfqq);
3714 }
3715
3716 static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3717 {
3718         int ioprio = cic->icq.ioc->ioprio;
3719         struct cfq_data *cfqd = cic_to_cfqd(cic);
3720         struct cfq_queue *cfqq;
3721
3722         /*
3723          * Check whether ioprio has changed.  The condition may trigger
3724          * spuriously on a newly created cic but there's no harm.
3725          */
3726         if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3727                 return;
3728
3729         cfqq = cic_to_cfqq(cic, false);
3730         if (cfqq) {
3731                 cfq_put_queue(cfqq);
3732                 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3733                 cic_set_cfqq(cic, cfqq, false);
3734         }
3735
3736         cfqq = cic_to_cfqq(cic, true);
3737         if (cfqq)
3738                 cfq_mark_cfqq_prio_changed(cfqq);
3739
3740         cic->ioprio = ioprio;
3741 }
3742
3743 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3744                           pid_t pid, bool is_sync)
3745 {
3746         RB_CLEAR_NODE(&cfqq->rb_node);
3747         RB_CLEAR_NODE(&cfqq->p_node);
3748         INIT_LIST_HEAD(&cfqq->fifo);
3749
3750         cfqq->ref = 0;
3751         cfqq->cfqd = cfqd;
3752
3753         cfq_mark_cfqq_prio_changed(cfqq);
3754
3755         if (is_sync) {
3756                 if (!cfq_class_idle(cfqq))
3757                         cfq_mark_cfqq_idle_window(cfqq);
3758                 cfq_mark_cfqq_sync(cfqq);
3759         }
3760         cfqq->pid = pid;
3761 }
3762
3763 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3764 static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3765 {
3766         struct cfq_data *cfqd = cic_to_cfqd(cic);
3767         struct cfq_queue *cfqq;
3768         uint64_t serial_nr;
3769
3770         rcu_read_lock();
3771         serial_nr = bio_blkcg(bio)->css.serial_nr;
3772         rcu_read_unlock();
3773
3774         /*
3775          * Check whether blkcg has changed.  The condition may trigger
3776          * spuriously on a newly created cic but there's no harm.
3777          */
3778         if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3779                 return;
3780
3781         /*
3782          * Drop reference to queues.  New queues will be assigned in new
3783          * group upon arrival of fresh requests.
3784          */
3785         cfqq = cic_to_cfqq(cic, false);
3786         if (cfqq) {
3787                 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3788                 cic_set_cfqq(cic, NULL, false);
3789                 cfq_put_queue(cfqq);
3790         }
3791
3792         cfqq = cic_to_cfqq(cic, true);
3793         if (cfqq) {
3794                 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3795                 cic_set_cfqq(cic, NULL, true);
3796                 cfq_put_queue(cfqq);
3797         }
3798
3799         cic->blkcg_serial_nr = serial_nr;
3800 }
3801 #else
3802 static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3803 {
3804 }
3805 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3806
3807 static struct cfq_queue **
3808 cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3809 {
3810         switch (ioprio_class) {
3811         case IOPRIO_CLASS_RT:
3812                 return &cfqg->async_cfqq[0][ioprio];
3813         case IOPRIO_CLASS_NONE:
3814                 ioprio = IOPRIO_NORM;
3815                 /* fall through */
3816         case IOPRIO_CLASS_BE:
3817                 return &cfqg->async_cfqq[1][ioprio];
3818         case IOPRIO_CLASS_IDLE:
3819                 return &cfqg->async_idle_cfqq;
3820         default:
3821                 BUG();
3822         }
3823 }
3824
3825 static struct cfq_queue *
3826 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3827               struct bio *bio)
3828 {
3829         int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3830         int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3831         struct cfq_queue **async_cfqq = NULL;
3832         struct cfq_queue *cfqq;
3833         struct cfq_group *cfqg;
3834
3835         rcu_read_lock();
3836         cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3837         if (!cfqg) {
3838                 cfqq = &cfqd->oom_cfqq;
3839                 goto out;
3840         }
3841
3842         if (!is_sync) {
3843                 if (!ioprio_valid(cic->ioprio)) {
3844                         struct task_struct *tsk = current;
3845                         ioprio = task_nice_ioprio(tsk);
3846                         ioprio_class = task_nice_ioclass(tsk);
3847                 }
3848                 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3849                 cfqq = *async_cfqq;
3850                 if (cfqq)
3851                         goto out;
3852         }
3853
3854         cfqq = kmem_cache_alloc_node(cfq_pool,
3855                                      GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3856                                      cfqd->queue->node);
3857         if (!cfqq) {
3858                 cfqq = &cfqd->oom_cfqq;
3859                 goto out;
3860         }
3861
3862         /* cfq_init_cfqq() assumes cfqq->ioprio_class is initialized. */
3863         cfqq->ioprio_class = IOPRIO_CLASS_NONE;
3864         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3865         cfq_init_prio_data(cfqq, cic);
3866         cfq_link_cfqq_cfqg(cfqq, cfqg);
3867         cfq_log_cfqq(cfqd, cfqq, "alloced");
3868
3869         if (async_cfqq) {
3870                 /* a new async queue is created, pin and remember */
3871                 cfqq->ref++;
3872                 *async_cfqq = cfqq;
3873         }
3874 out:
3875         cfqq->ref++;
3876         rcu_read_unlock();
3877         return cfqq;
3878 }
3879
3880 static void
3881 __cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3882 {
3883         u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3884         elapsed = min(elapsed, 2UL * slice_idle);
3885
3886         ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3887         ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
3888         ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3889                                      ttime->ttime_samples);
3890 }
3891
3892 static void
3893 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3894                         struct cfq_io_cq *cic)
3895 {
3896         if (cfq_cfqq_sync(cfqq)) {
3897                 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3898                 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3899                         cfqd->cfq_slice_idle);
3900         }
3901 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3902         __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3903 #endif
3904 }
3905
3906 static void
3907 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3908                        struct request *rq)
3909 {
3910         sector_t sdist = 0;
3911         sector_t n_sec = blk_rq_sectors(rq);
3912         if (cfqq->last_request_pos) {
3913                 if (cfqq->last_request_pos < blk_rq_pos(rq))
3914                         sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3915                 else
3916                         sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3917         }
3918
3919         cfqq->seek_history <<= 1;
3920         if (blk_queue_nonrot(cfqd->queue))
3921                 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3922         else
3923                 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3924 }
3925
3926 static inline bool req_noidle(struct request *req)
3927 {
3928         return req_op(req) == REQ_OP_WRITE &&
3929                 (req->cmd_flags & (REQ_SYNC | REQ_IDLE)) == REQ_SYNC;
3930 }
3931
3932 /*
3933  * Disable idle window if the process thinks too long or seeks so much that
3934  * it doesn't matter
3935  */
3936 static void
3937 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3938                        struct cfq_io_cq *cic)
3939 {
3940         int old_idle, enable_idle;
3941
3942         /*
3943          * Don't idle for async or idle io prio class
3944          */
3945         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3946                 return;
3947
3948         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3949
3950         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3951                 cfq_mark_cfqq_deep(cfqq);
3952
3953         if (cfqq->next_rq && req_noidle(cfqq->next_rq))
3954                 enable_idle = 0;
3955         else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3956                  !cfqd->cfq_slice_idle ||
3957                  (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3958                 enable_idle = 0;
3959         else if (sample_valid(cic->ttime.ttime_samples)) {
3960                 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3961                         enable_idle = 0;
3962                 else
3963                         enable_idle = 1;
3964         }
3965
3966         if (old_idle != enable_idle) {
3967                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3968                 if (enable_idle)
3969                         cfq_mark_cfqq_idle_window(cfqq);
3970                 else
3971                         cfq_clear_cfqq_idle_window(cfqq);
3972         }
3973 }
3974
3975 /*
3976  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3977  * no or if we aren't sure, a 1 will cause a preempt.
3978  */
3979 static bool
3980 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3981                    struct request *rq)
3982 {
3983         struct cfq_queue *cfqq;
3984
3985         cfqq = cfqd->active_queue;
3986         if (!cfqq)
3987                 return false;
3988
3989         if (cfq_class_idle(new_cfqq))
3990                 return false;
3991
3992         if (cfq_class_idle(cfqq))
3993                 return true;
3994
3995         /*
3996          * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3997          */
3998         if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3999                 return false;
4000
4001         /*
4002          * if the new request is sync, but the currently running queue is
4003          * not, let the sync request have priority.
4004          */
4005         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
4006                 return true;
4007
4008         /*
4009          * Treat ancestors of current cgroup the same way as current cgroup.
4010          * For anybody else we disallow preemption to guarantee service
4011          * fairness among cgroups.
4012          */
4013         if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
4014                 return false;
4015
4016         if (cfq_slice_used(cfqq))
4017                 return true;
4018
4019         /*
4020          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4021          */
4022         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4023                 return true;
4024
4025         WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4026         /* Allow preemption only if we are idling on sync-noidle tree */
4027         if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4028             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4029             RB_EMPTY_ROOT(&cfqq->sort_list))
4030                 return true;
4031
4032         /*
4033          * So both queues are sync. Let the new request get disk time if
4034          * it's a metadata request and the current queue is doing regular IO.
4035          */
4036         if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4037                 return true;
4038
4039         /* An idle queue should not be idle now for some reason */
4040         if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4041                 return true;
4042
4043         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4044                 return false;
4045
4046         /*
4047          * if this request is as-good as one we would expect from the
4048          * current cfqq, let it preempt
4049          */
4050         if (cfq_rq_close(cfqd, cfqq, rq))
4051                 return true;
4052
4053         return false;
4054 }
4055
4056 /*
4057  * cfqq preempts the active queue. if we allowed preempt with no slice left,
4058  * let it have half of its nominal slice.
4059  */
4060 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4061 {
4062         enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4063
4064         cfq_log_cfqq(cfqd, cfqq, "preempt");
4065         cfq_slice_expired(cfqd, 1);
4066
4067         /*
4068          * workload type is changed, don't save slice, otherwise preempt
4069          * doesn't happen
4070          */
4071         if (old_type != cfqq_type(cfqq))
4072                 cfqq->cfqg->saved_wl_slice = 0;
4073
4074         /*
4075          * Put the new queue at the front of the of the current list,
4076          * so we know that it will be selected next.
4077          */
4078         BUG_ON(!cfq_cfqq_on_rr(cfqq));
4079
4080         cfq_service_tree_add(cfqd, cfqq, 1);
4081
4082         cfqq->slice_end = 0;
4083         cfq_mark_cfqq_slice_new(cfqq);
4084 }
4085
4086 /*
4087  * Called when a new fs request (rq) is added (to cfqq). Check if there's
4088  * something we should do about it
4089  */
4090 static void
4091 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4092                 struct request *rq)
4093 {
4094         struct cfq_io_cq *cic = RQ_CIC(rq);
4095
4096         cfqd->rq_queued++;
4097         if (rq->cmd_flags & REQ_PRIO)
4098                 cfqq->prio_pending++;
4099
4100         cfq_update_io_thinktime(cfqd, cfqq, cic);
4101         cfq_update_io_seektime(cfqd, cfqq, rq);
4102         cfq_update_idle_window(cfqd, cfqq, cic);
4103
4104         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4105
4106         if (cfqq == cfqd->active_queue) {
4107                 /*
4108                  * Remember that we saw a request from this process, but
4109                  * don't start queuing just yet. Otherwise we risk seeing lots
4110                  * of tiny requests, because we disrupt the normal plugging
4111                  * and merging. If the request is already larger than a single
4112                  * page, let it rip immediately. For that case we assume that
4113                  * merging is already done. Ditto for a busy system that
4114                  * has other work pending, don't risk delaying until the
4115                  * idle timer unplug to continue working.
4116                  */
4117                 if (cfq_cfqq_wait_request(cfqq)) {
4118                         if (blk_rq_bytes(rq) > PAGE_SIZE ||
4119                             cfqd->busy_queues > 1) {
4120                                 cfq_del_timer(cfqd, cfqq);
4121                                 cfq_clear_cfqq_wait_request(cfqq);
4122                                 __blk_run_queue(cfqd->queue);
4123                         } else {
4124                                 cfqg_stats_update_idle_time(cfqq->cfqg);
4125                                 cfq_mark_cfqq_must_dispatch(cfqq);
4126                         }
4127                 }
4128         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4129                 /*
4130                  * not the active queue - expire current slice if it is
4131                  * idle and has expired it's mean thinktime or this new queue
4132                  * has some old slice time left and is of higher priority or
4133                  * this new queue is RT and the current one is BE
4134                  */
4135                 cfq_preempt_queue(cfqd, cfqq);
4136                 __blk_run_queue(cfqd->queue);
4137         }
4138 }
4139
4140 static void cfq_insert_request(struct request_queue *q, struct request *rq)
4141 {
4142         struct cfq_data *cfqd = q->elevator->elevator_data;
4143         struct cfq_queue *cfqq = RQ_CFQQ(rq);
4144
4145         cfq_log_cfqq(cfqd, cfqq, "insert_request");
4146         cfq_init_prio_data(cfqq, RQ_CIC(rq));
4147
4148         rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4149         list_add_tail(&rq->queuelist, &cfqq->fifo);
4150         cfq_add_rq_rb(rq);
4151         cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
4152                                  rq->cmd_flags);
4153         cfq_rq_enqueued(cfqd, cfqq, rq);
4154 }
4155
4156 /*
4157  * Update hw_tag based on peak queue depth over 50 samples under
4158  * sufficient load.
4159  */
4160 static void cfq_update_hw_tag(struct cfq_data *cfqd)
4161 {
4162         struct cfq_queue *cfqq = cfqd->active_queue;
4163
4164         if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4165                 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4166
4167         if (cfqd->hw_tag == 1)
4168                 return;
4169
4170         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4171             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4172                 return;
4173
4174         /*
4175          * If active queue hasn't enough requests and can idle, cfq might not
4176          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4177          * case
4178          */
4179         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4180             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4181             CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4182                 return;
4183
4184         if (cfqd->hw_tag_samples++ < 50)
4185                 return;
4186
4187         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4188                 cfqd->hw_tag = 1;
4189         else
4190                 cfqd->hw_tag = 0;
4191 }
4192
4193 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4194 {
4195         struct cfq_io_cq *cic = cfqd->active_cic;
4196         u64 now = ktime_get_ns();
4197
4198         /* If the queue already has requests, don't wait */
4199         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4200                 return false;
4201
4202         /* If there are other queues in the group, don't wait */
4203         if (cfqq->cfqg->nr_cfqq > 1)
4204                 return false;
4205
4206         /* the only queue in the group, but think time is big */
4207         if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4208                 return false;
4209
4210         if (cfq_slice_used(cfqq))
4211                 return true;
4212
4213         /* if slice left is less than think time, wait busy */
4214         if (cic && sample_valid(cic->ttime.ttime_samples)
4215             && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4216                 return true;
4217
4218         /*
4219          * If think times is less than a jiffy than ttime_mean=0 and above
4220          * will not be true. It might happen that slice has not expired yet
4221          * but will expire soon (4-5 ns) during select_queue(). To cover the
4222          * case where think time is less than a jiffy, mark the queue wait
4223          * busy if only 1 jiffy is left in the slice.
4224          */
4225         if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4226                 return true;
4227
4228         return false;
4229 }
4230
4231 static void cfq_completed_request(struct request_queue *q, struct request *rq)
4232 {
4233         struct cfq_queue *cfqq = RQ_CFQQ(rq);
4234         struct cfq_data *cfqd = cfqq->cfqd;
4235         const int sync = rq_is_sync(rq);
4236         u64 now = ktime_get_ns();
4237
4238         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", req_noidle(rq));
4239
4240         cfq_update_hw_tag(cfqd);
4241
4242         WARN_ON(!cfqd->rq_in_driver);
4243         WARN_ON(!cfqq->dispatched);
4244         cfqd->rq_in_driver--;
4245         cfqq->dispatched--;
4246         (RQ_CFQG(rq))->dispatched--;
4247         cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4248                                      rq_io_start_time_ns(rq), rq->cmd_flags);
4249
4250         cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4251
4252         if (sync) {
4253                 struct cfq_rb_root *st;
4254
4255                 RQ_CIC(rq)->ttime.last_end_request = now;
4256
4257                 if (cfq_cfqq_on_rr(cfqq))
4258                         st = cfqq->service_tree;
4259                 else
4260                         st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4261                                         cfqq_type(cfqq));
4262
4263                 st->ttime.last_end_request = now;
4264                 /*
4265                  * We have to do this check in jiffies since start_time is in
4266                  * jiffies and it is not trivial to convert to ns. If
4267                  * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4268                  * will become problematic but so far we are fine (the default
4269                  * is 128 ms).
4270                  */
4271                 if (!time_after(rq->start_time +
4272                                   nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4273                                 jiffies))
4274                         cfqd->last_delayed_sync = now;
4275         }
4276
4277 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4278         cfqq->cfqg->ttime.last_end_request = now;
4279 #endif
4280
4281         /*
4282          * If this is the active queue, check if it needs to be expired,
4283          * or if we want to idle in case it has no pending requests.
4284          */
4285         if (cfqd->active_queue == cfqq) {
4286                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4287
4288                 if (cfq_cfqq_slice_new(cfqq)) {
4289                         cfq_set_prio_slice(cfqd, cfqq);
4290                         cfq_clear_cfqq_slice_new(cfqq);
4291                 }
4292
4293                 /*
4294                  * Should we wait for next request to come in before we expire
4295                  * the queue.
4296                  */
4297                 if (cfq_should_wait_busy(cfqd, cfqq)) {
4298                         u64 extend_sl = cfqd->cfq_slice_idle;
4299                         if (!cfqd->cfq_slice_idle)
4300                                 extend_sl = cfqd->cfq_group_idle;
4301                         cfqq->slice_end = now + extend_sl;
4302                         cfq_mark_cfqq_wait_busy(cfqq);
4303                         cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4304                 }
4305
4306                 /*
4307                  * Idling is not enabled on:
4308                  * - expired queues
4309                  * - idle-priority queues
4310                  * - async queues
4311                  * - queues with still some requests queued
4312                  * - when there is a close cooperator
4313                  */
4314                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4315                         cfq_slice_expired(cfqd, 1);
4316                 else if (sync && cfqq_empty &&
4317                          !cfq_close_cooperator(cfqd, cfqq)) {
4318                         cfq_arm_slice_timer(cfqd);
4319                 }
4320         }
4321
4322         if (!cfqd->rq_in_driver)
4323                 cfq_schedule_dispatch(cfqd);
4324 }
4325
4326 static void cfqq_boost_on_prio(struct cfq_queue *cfqq, unsigned int op)
4327 {
4328         /*
4329          * If REQ_PRIO is set, boost class and prio level, if it's below
4330          * BE/NORM. If prio is not set, restore the potentially boosted
4331          * class/prio level.
4332          */
4333         if (!(op & REQ_PRIO)) {
4334                 cfqq->ioprio_class = cfqq->org_ioprio_class;
4335                 cfqq->ioprio = cfqq->org_ioprio;
4336         } else {
4337                 if (cfq_class_idle(cfqq))
4338                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
4339                 if (cfqq->ioprio > IOPRIO_NORM)
4340                         cfqq->ioprio = IOPRIO_NORM;
4341         }
4342 }
4343
4344 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4345 {
4346         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4347                 cfq_mark_cfqq_must_alloc_slice(cfqq);
4348                 return ELV_MQUEUE_MUST;
4349         }
4350
4351         return ELV_MQUEUE_MAY;
4352 }
4353
4354 static int cfq_may_queue(struct request_queue *q, unsigned int op)
4355 {
4356         struct cfq_data *cfqd = q->elevator->elevator_data;
4357         struct task_struct *tsk = current;
4358         struct cfq_io_cq *cic;
4359         struct cfq_queue *cfqq;
4360
4361         /*
4362          * don't force setup of a queue from here, as a call to may_queue
4363          * does not necessarily imply that a request actually will be queued.
4364          * so just lookup a possibly existing queue, or return 'may queue'
4365          * if that fails
4366          */
4367         cic = cfq_cic_lookup(cfqd, tsk->io_context);
4368         if (!cic)
4369                 return ELV_MQUEUE_MAY;
4370
4371         cfqq = cic_to_cfqq(cic, op_is_sync(op));
4372         if (cfqq) {
4373                 cfq_init_prio_data(cfqq, cic);
4374                 cfqq_boost_on_prio(cfqq, op);
4375
4376                 return __cfq_may_queue(cfqq);
4377         }
4378
4379         return ELV_MQUEUE_MAY;
4380 }
4381
4382 /*
4383  * queue lock held here
4384  */
4385 static void cfq_put_request(struct request *rq)
4386 {
4387         struct cfq_queue *cfqq = RQ_CFQQ(rq);
4388
4389         if (cfqq) {
4390                 const int rw = rq_data_dir(rq);
4391
4392                 BUG_ON(!cfqq->allocated[rw]);
4393                 cfqq->allocated[rw]--;
4394
4395                 /* Put down rq reference on cfqg */
4396                 cfqg_put(RQ_CFQG(rq));
4397                 rq->elv.priv[0] = NULL;
4398                 rq->elv.priv[1] = NULL;
4399
4400                 cfq_put_queue(cfqq);
4401         }
4402 }
4403
4404 static struct cfq_queue *
4405 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4406                 struct cfq_queue *cfqq)
4407 {
4408         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4409         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4410         cfq_mark_cfqq_coop(cfqq->new_cfqq);
4411         cfq_put_queue(cfqq);
4412         return cic_to_cfqq(cic, 1);
4413 }
4414
4415 /*
4416  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4417  * was the last process referring to said cfqq.
4418  */
4419 static struct cfq_queue *
4420 split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4421 {
4422         if (cfqq_process_refs(cfqq) == 1) {
4423                 cfqq->pid = current->pid;
4424                 cfq_clear_cfqq_coop(cfqq);
4425                 cfq_clear_cfqq_split_coop(cfqq);
4426                 return cfqq;
4427         }
4428
4429         cic_set_cfqq(cic, NULL, 1);
4430
4431         cfq_put_cooperator(cfqq);
4432
4433         cfq_put_queue(cfqq);
4434         return NULL;
4435 }
4436 /*
4437  * Allocate cfq data structures associated with this request.
4438  */
4439 static int
4440 cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4441                 gfp_t gfp_mask)
4442 {
4443         struct cfq_data *cfqd = q->elevator->elevator_data;
4444         struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4445         const int rw = rq_data_dir(rq);
4446         const bool is_sync = rq_is_sync(rq);
4447         struct cfq_queue *cfqq;
4448
4449         spin_lock_irq(q->queue_lock);
4450
4451         check_ioprio_changed(cic, bio);
4452         check_blkcg_changed(cic, bio);
4453 new_queue:
4454         cfqq = cic_to_cfqq(cic, is_sync);
4455         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4456                 if (cfqq)
4457                         cfq_put_queue(cfqq);
4458                 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4459                 cic_set_cfqq(cic, cfqq, is_sync);
4460         } else {
4461                 /*
4462                  * If the queue was seeky for too long, break it apart.
4463                  */
4464                 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4465                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4466                         cfqq = split_cfqq(cic, cfqq);
4467                         if (!cfqq)
4468                                 goto new_queue;
4469                 }
4470
4471                 /*
4472                  * Check to see if this queue is scheduled to merge with
4473                  * another, closely cooperating queue.  The merging of
4474                  * queues happens here as it must be done in process context.
4475                  * The reference on new_cfqq was taken in merge_cfqqs.
4476                  */
4477                 if (cfqq->new_cfqq)
4478                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4479         }
4480
4481         cfqq->allocated[rw]++;
4482
4483         cfqq->ref++;
4484         cfqg_get(cfqq->cfqg);
4485         rq->elv.priv[0] = cfqq;
4486         rq->elv.priv[1] = cfqq->cfqg;
4487         spin_unlock_irq(q->queue_lock);
4488
4489         return 0;
4490 }
4491
4492 static void cfq_kick_queue(struct work_struct *work)
4493 {
4494         struct cfq_data *cfqd =
4495                 container_of(work, struct cfq_data, unplug_work);
4496         struct request_queue *q = cfqd->queue;
4497
4498         spin_lock_irq(q->queue_lock);
4499         __blk_run_queue(cfqd->queue);
4500         spin_unlock_irq(q->queue_lock);
4501 }
4502
4503 /*
4504  * Timer running if the active_queue is currently idling inside its time slice
4505  */
4506 static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4507 {
4508         struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4509                                              idle_slice_timer);
4510         struct cfq_queue *cfqq;
4511         unsigned long flags;
4512         int timed_out = 1;
4513
4514         cfq_log(cfqd, "idle timer fired");
4515
4516         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4517
4518         cfqq = cfqd->active_queue;
4519         if (cfqq) {
4520                 timed_out = 0;
4521
4522                 /*
4523                  * We saw a request before the queue expired, let it through
4524                  */
4525                 if (cfq_cfqq_must_dispatch(cfqq))
4526                         goto out_kick;
4527
4528                 /*
4529                  * expired
4530                  */
4531                 if (cfq_slice_used(cfqq))
4532                         goto expire;
4533
4534                 /*
4535                  * only expire and reinvoke request handler, if there are
4536                  * other queues with pending requests
4537                  */
4538                 if (!cfqd->busy_queues)
4539                         goto out_cont;
4540
4541                 /*
4542                  * not expired and it has a request pending, let it dispatch
4543                  */
4544                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4545                         goto out_kick;
4546
4547                 /*
4548                  * Queue depth flag is reset only when the idle didn't succeed
4549                  */
4550                 cfq_clear_cfqq_deep(cfqq);
4551         }
4552 expire:
4553         cfq_slice_expired(cfqd, timed_out);
4554 out_kick:
4555         cfq_schedule_dispatch(cfqd);
4556 out_cont:
4557         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4558         return HRTIMER_NORESTART;
4559 }
4560
4561 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4562 {
4563         hrtimer_cancel(&cfqd->idle_slice_timer);
4564         cancel_work_sync(&cfqd->unplug_work);
4565 }
4566
4567 static void cfq_exit_queue(struct elevator_queue *e)
4568 {
4569         struct cfq_data *cfqd = e->elevator_data;
4570         struct request_queue *q = cfqd->queue;
4571
4572         cfq_shutdown_timer_wq(cfqd);
4573
4574         spin_lock_irq(q->queue_lock);
4575
4576         if (cfqd->active_queue)
4577                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4578
4579         spin_unlock_irq(q->queue_lock);
4580
4581         cfq_shutdown_timer_wq(cfqd);
4582
4583 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4584         blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4585 #else
4586         kfree(cfqd->root_group);
4587 #endif
4588         kfree(cfqd);
4589 }
4590
4591 static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4592 {
4593         struct cfq_data *cfqd;
4594         struct blkcg_gq *blkg __maybe_unused;
4595         int i, ret;
4596         struct elevator_queue *eq;
4597
4598         eq = elevator_alloc(q, e);
4599         if (!eq)
4600                 return -ENOMEM;
4601
4602         cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4603         if (!cfqd) {
4604                 kobject_put(&eq->kobj);
4605                 return -ENOMEM;
4606         }
4607         eq->elevator_data = cfqd;
4608
4609         cfqd->queue = q;
4610         spin_lock_irq(q->queue_lock);
4611         q->elevator = eq;
4612         spin_unlock_irq(q->queue_lock);
4613
4614         /* Init root service tree */
4615         cfqd->grp_service_tree = CFQ_RB_ROOT;
4616
4617         /* Init root group and prefer root group over other groups by default */
4618 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4619         ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4620         if (ret)
4621                 goto out_free;
4622
4623         cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4624 #else
4625         ret = -ENOMEM;
4626         cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4627                                         GFP_KERNEL, cfqd->queue->node);
4628         if (!cfqd->root_group)
4629                 goto out_free;
4630
4631         cfq_init_cfqg_base(cfqd->root_group);
4632         cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4633         cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4634 #endif
4635
4636         /*
4637          * Not strictly needed (since RB_ROOT just clears the node and we
4638          * zeroed cfqd on alloc), but better be safe in case someone decides
4639          * to add magic to the rb code
4640          */
4641         for (i = 0; i < CFQ_PRIO_LISTS; i++)
4642                 cfqd->prio_trees[i] = RB_ROOT;
4643
4644         /*
4645          * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4646          * Grab a permanent reference to it, so that the normal code flow
4647          * will not attempt to free it.  oom_cfqq is linked to root_group
4648          * but shouldn't hold a reference as it'll never be unlinked.  Lose
4649          * the reference from linking right away.
4650          */
4651         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4652         cfqd->oom_cfqq.ref++;
4653
4654         spin_lock_irq(q->queue_lock);
4655         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4656         cfqg_put(cfqd->root_group);
4657         spin_unlock_irq(q->queue_lock);
4658
4659         hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4660                      HRTIMER_MODE_REL);
4661         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4662
4663         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4664
4665         cfqd->cfq_quantum = cfq_quantum;
4666         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4667         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4668         cfqd->cfq_back_max = cfq_back_max;
4669         cfqd->cfq_back_penalty = cfq_back_penalty;
4670         cfqd->cfq_slice[0] = cfq_slice_async;
4671         cfqd->cfq_slice[1] = cfq_slice_sync;
4672         cfqd->cfq_target_latency = cfq_target_latency;
4673         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4674         cfqd->cfq_slice_idle = cfq_slice_idle;
4675         cfqd->cfq_group_idle = cfq_group_idle;
4676         cfqd->cfq_latency = 1;
4677         cfqd->hw_tag = -1;
4678         /*
4679          * we optimistically start assuming sync ops weren't delayed in last
4680          * second, in order to have larger depth for async operations.
4681          */
4682         cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4683         return 0;
4684
4685 out_free:
4686         kfree(cfqd);
4687         kobject_put(&eq->kobj);
4688         return ret;
4689 }
4690
4691 static void cfq_registered_queue(struct request_queue *q)
4692 {
4693         struct elevator_queue *e = q->elevator;
4694         struct cfq_data *cfqd = e->elevator_data;
4695
4696         /*
4697          * Default to IOPS mode with no idling for SSDs
4698          */
4699         if (blk_queue_nonrot(q))
4700                 cfqd->cfq_slice_idle = 0;
4701         wbt_disable_default(q);
4702 }
4703
4704 /*
4705  * sysfs parts below -->
4706  */
4707 static ssize_t
4708 cfq_var_show(unsigned int var, char *page)
4709 {
4710         return sprintf(page, "%u\n", var);
4711 }
4712
4713 static ssize_t
4714 cfq_var_store(unsigned int *var, const char *page, size_t count)
4715 {
4716         char *p = (char *) page;
4717
4718         *var = simple_strtoul(p, &p, 10);
4719         return count;
4720 }
4721
4722 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
4723 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4724 {                                                                       \
4725         struct cfq_data *cfqd = e->elevator_data;                       \
4726         u64 __data = __VAR;                                             \
4727         if (__CONV)                                                     \
4728                 __data = div_u64(__data, NSEC_PER_MSEC);                        \
4729         return cfq_var_show(__data, (page));                            \
4730 }
4731 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4732 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4733 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4734 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4735 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4736 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4737 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4738 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4739 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4740 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4741 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4742 SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4743 #undef SHOW_FUNCTION
4744
4745 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)                               \
4746 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
4747 {                                                                       \
4748         struct cfq_data *cfqd = e->elevator_data;                       \
4749         u64 __data = __VAR;                                             \
4750         __data = div_u64(__data, NSEC_PER_USEC);                        \
4751         return cfq_var_show(__data, (page));                            \
4752 }
4753 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4754 USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4755 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4756 USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4757 USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4758 #undef USEC_SHOW_FUNCTION
4759
4760 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
4761 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4762 {                                                                       \
4763         struct cfq_data *cfqd = e->elevator_data;                       \
4764         unsigned int __data;                                            \
4765         int ret = cfq_var_store(&__data, (page), count);                \
4766         if (__data < (MIN))                                             \
4767                 __data = (MIN);                                         \
4768         else if (__data > (MAX))                                        \
4769                 __data = (MAX);                                         \
4770         if (__CONV)                                                     \
4771                 *(__PTR) = (u64)__data * NSEC_PER_MSEC;                 \
4772         else                                                            \
4773                 *(__PTR) = __data;                                      \
4774         return ret;                                                     \
4775 }
4776 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4777 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4778                 UINT_MAX, 1);
4779 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4780                 UINT_MAX, 1);
4781 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4782 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4783                 UINT_MAX, 0);
4784 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4785 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4786 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4787 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4788 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4789                 UINT_MAX, 0);
4790 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4791 STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4792 #undef STORE_FUNCTION
4793
4794 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)                    \
4795 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4796 {                                                                       \
4797         struct cfq_data *cfqd = e->elevator_data;                       \
4798         unsigned int __data;                                            \
4799         int ret = cfq_var_store(&__data, (page), count);                \
4800         if (__data < (MIN))                                             \
4801                 __data = (MIN);                                         \
4802         else if (__data > (MAX))                                        \
4803                 __data = (MAX);                                         \
4804         *(__PTR) = (u64)__data * NSEC_PER_USEC;                         \
4805         return ret;                                                     \
4806 }
4807 USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4808 USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4809 USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4810 USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4811 USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4812 #undef USEC_STORE_FUNCTION
4813
4814 #define CFQ_ATTR(name) \
4815         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4816
4817 static struct elv_fs_entry cfq_attrs[] = {
4818         CFQ_ATTR(quantum),
4819         CFQ_ATTR(fifo_expire_sync),
4820         CFQ_ATTR(fifo_expire_async),
4821         CFQ_ATTR(back_seek_max),
4822         CFQ_ATTR(back_seek_penalty),
4823         CFQ_ATTR(slice_sync),
4824         CFQ_ATTR(slice_sync_us),
4825         CFQ_ATTR(slice_async),
4826         CFQ_ATTR(slice_async_us),
4827         CFQ_ATTR(slice_async_rq),
4828         CFQ_ATTR(slice_idle),
4829         CFQ_ATTR(slice_idle_us),
4830         CFQ_ATTR(group_idle),
4831         CFQ_ATTR(group_idle_us),
4832         CFQ_ATTR(low_latency),
4833         CFQ_ATTR(target_latency),
4834         CFQ_ATTR(target_latency_us),
4835         __ATTR_NULL
4836 };
4837
4838 static struct elevator_type iosched_cfq = {
4839         .ops.sq = {
4840                 .elevator_merge_fn =            cfq_merge,
4841                 .elevator_merged_fn =           cfq_merged_request,
4842                 .elevator_merge_req_fn =        cfq_merged_requests,
4843                 .elevator_allow_bio_merge_fn =  cfq_allow_bio_merge,
4844                 .elevator_allow_rq_merge_fn =   cfq_allow_rq_merge,
4845                 .elevator_bio_merged_fn =       cfq_bio_merged,
4846                 .elevator_dispatch_fn =         cfq_dispatch_requests,
4847                 .elevator_add_req_fn =          cfq_insert_request,
4848                 .elevator_activate_req_fn =     cfq_activate_request,
4849                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
4850                 .elevator_completed_req_fn =    cfq_completed_request,
4851                 .elevator_former_req_fn =       elv_rb_former_request,
4852                 .elevator_latter_req_fn =       elv_rb_latter_request,
4853                 .elevator_init_icq_fn =         cfq_init_icq,
4854                 .elevator_exit_icq_fn =         cfq_exit_icq,
4855                 .elevator_set_req_fn =          cfq_set_request,
4856                 .elevator_put_req_fn =          cfq_put_request,
4857                 .elevator_may_queue_fn =        cfq_may_queue,
4858                 .elevator_init_fn =             cfq_init_queue,
4859                 .elevator_exit_fn =             cfq_exit_queue,
4860                 .elevator_registered_fn =       cfq_registered_queue,
4861         },
4862         .icq_size       =       sizeof(struct cfq_io_cq),
4863         .icq_align      =       __alignof__(struct cfq_io_cq),
4864         .elevator_attrs =       cfq_attrs,
4865         .elevator_name  =       "cfq",
4866         .elevator_owner =       THIS_MODULE,
4867 };
4868
4869 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4870 static struct blkcg_policy blkcg_policy_cfq = {
4871         .dfl_cftypes            = cfq_blkcg_files,
4872         .legacy_cftypes         = cfq_blkcg_legacy_files,
4873
4874         .cpd_alloc_fn           = cfq_cpd_alloc,
4875         .cpd_init_fn            = cfq_cpd_init,
4876         .cpd_free_fn            = cfq_cpd_free,
4877         .cpd_bind_fn            = cfq_cpd_bind,
4878
4879         .pd_alloc_fn            = cfq_pd_alloc,
4880         .pd_init_fn             = cfq_pd_init,
4881         .pd_offline_fn          = cfq_pd_offline,
4882         .pd_free_fn             = cfq_pd_free,
4883         .pd_reset_stats_fn      = cfq_pd_reset_stats,
4884 };
4885 #endif
4886
4887 static int __init cfq_init(void)
4888 {
4889         int ret;
4890
4891 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4892         ret = blkcg_policy_register(&blkcg_policy_cfq);
4893         if (ret)
4894                 return ret;
4895 #else
4896         cfq_group_idle = 0;
4897 #endif
4898
4899         ret = -ENOMEM;
4900         cfq_pool = KMEM_CACHE(cfq_queue, 0);
4901         if (!cfq_pool)
4902                 goto err_pol_unreg;
4903
4904         ret = elv_register(&iosched_cfq);
4905         if (ret)
4906                 goto err_free_pool;
4907
4908         return 0;
4909
4910 err_free_pool:
4911         kmem_cache_destroy(cfq_pool);
4912 err_pol_unreg:
4913 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4914         blkcg_policy_unregister(&blkcg_policy_cfq);
4915 #endif
4916         return ret;
4917 }
4918
4919 static void __exit cfq_exit(void)
4920 {
4921 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4922         blkcg_policy_unregister(&blkcg_policy_cfq);
4923 #endif
4924         elv_unregister(&iosched_cfq);
4925         kmem_cache_destroy(cfq_pool);
4926 }
4927
4928 module_init(cfq_init);
4929 module_exit(cfq_exit);
4930
4931 MODULE_AUTHOR("Jens Axboe");
4932 MODULE_LICENSE("GPL");
4933 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");