]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/elevator.c
elevator: make elevator_init_fn() return 0/-errno
[karo-tx-linux.git] / block / elevator.c
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/blktrace_api.h>
35 #include <linux/hash.h>
36 #include <linux/uaccess.h>
37
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41
42 static DEFINE_SPINLOCK(elv_list_lock);
43 static LIST_HEAD(elv_list);
44
45 /*
46  * Merge hash stuff.
47  */
48 static const int elv_hash_shift = 6;
49 #define ELV_HASH_BLOCK(sec)     ((sec) >> 3)
50 #define ELV_HASH_FN(sec)        \
51                 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
52 #define ELV_HASH_ENTRIES        (1 << elv_hash_shift)
53 #define rq_hash_key(rq)         (blk_rq_pos(rq) + blk_rq_sectors(rq))
54
55 /*
56  * Query io scheduler to see if the current process issuing bio may be
57  * merged with rq.
58  */
59 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
60 {
61         struct request_queue *q = rq->q;
62         struct elevator_queue *e = q->elevator;
63
64         if (e->type->ops.elevator_allow_merge_fn)
65                 return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
66
67         return 1;
68 }
69
70 /*
71  * can we safely merge with this request?
72  */
73 bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
74 {
75         if (!blk_rq_merge_ok(rq, bio))
76                 return 0;
77
78         if (!elv_iosched_allow_merge(rq, bio))
79                 return 0;
80
81         return 1;
82 }
83 EXPORT_SYMBOL(elv_rq_merge_ok);
84
85 static struct elevator_type *elevator_find(const char *name)
86 {
87         struct elevator_type *e;
88
89         list_for_each_entry(e, &elv_list, list) {
90                 if (!strcmp(e->elevator_name, name))
91                         return e;
92         }
93
94         return NULL;
95 }
96
97 static void elevator_put(struct elevator_type *e)
98 {
99         module_put(e->elevator_owner);
100 }
101
102 static struct elevator_type *elevator_get(const char *name)
103 {
104         struct elevator_type *e;
105
106         spin_lock(&elv_list_lock);
107
108         e = elevator_find(name);
109         if (!e) {
110                 spin_unlock(&elv_list_lock);
111                 request_module("%s-iosched", name);
112                 spin_lock(&elv_list_lock);
113                 e = elevator_find(name);
114         }
115
116         if (e && !try_module_get(e->elevator_owner))
117                 e = NULL;
118
119         spin_unlock(&elv_list_lock);
120
121         return e;
122 }
123
124 static char chosen_elevator[ELV_NAME_MAX];
125
126 static int __init elevator_setup(char *str)
127 {
128         /*
129          * Be backwards-compatible with previous kernels, so users
130          * won't get the wrong elevator.
131          */
132         strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
133         return 1;
134 }
135
136 __setup("elevator=", elevator_setup);
137
138 static struct kobj_type elv_ktype;
139
140 static struct elevator_queue *elevator_alloc(struct request_queue *q,
141                                   struct elevator_type *e)
142 {
143         struct elevator_queue *eq;
144         int i;
145
146         eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
147         if (unlikely(!eq))
148                 goto err;
149
150         eq->type = e;
151         kobject_init(&eq->kobj, &elv_ktype);
152         mutex_init(&eq->sysfs_lock);
153
154         eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
155                                         GFP_KERNEL, q->node);
156         if (!eq->hash)
157                 goto err;
158
159         for (i = 0; i < ELV_HASH_ENTRIES; i++)
160                 INIT_HLIST_HEAD(&eq->hash[i]);
161
162         return eq;
163 err:
164         kfree(eq);
165         elevator_put(e);
166         return NULL;
167 }
168
169 static void elevator_release(struct kobject *kobj)
170 {
171         struct elevator_queue *e;
172
173         e = container_of(kobj, struct elevator_queue, kobj);
174         elevator_put(e->type);
175         kfree(e->hash);
176         kfree(e);
177 }
178
179 int elevator_init(struct request_queue *q, char *name)
180 {
181         struct elevator_type *e = NULL;
182         int err;
183
184         if (unlikely(q->elevator))
185                 return 0;
186
187         INIT_LIST_HEAD(&q->queue_head);
188         q->last_merge = NULL;
189         q->end_sector = 0;
190         q->boundary_rq = NULL;
191
192         if (name) {
193                 e = elevator_get(name);
194                 if (!e)
195                         return -EINVAL;
196         }
197
198         if (!e && *chosen_elevator) {
199                 e = elevator_get(chosen_elevator);
200                 if (!e)
201                         printk(KERN_ERR "I/O scheduler %s not found\n",
202                                                         chosen_elevator);
203         }
204
205         if (!e) {
206                 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
207                 if (!e) {
208                         printk(KERN_ERR
209                                 "Default I/O scheduler not found. " \
210                                 "Using noop.\n");
211                         e = elevator_get("noop");
212                 }
213         }
214
215         q->elevator = elevator_alloc(q, e);
216         if (!q->elevator)
217                 return -ENOMEM;
218
219         err = e->ops.elevator_init_fn(q);
220         if (err) {
221                 kobject_put(&q->elevator->kobj);
222                 return err;
223         }
224
225         return 0;
226 }
227 EXPORT_SYMBOL(elevator_init);
228
229 void elevator_exit(struct elevator_queue *e)
230 {
231         mutex_lock(&e->sysfs_lock);
232         if (e->type->ops.elevator_exit_fn)
233                 e->type->ops.elevator_exit_fn(e);
234         mutex_unlock(&e->sysfs_lock);
235
236         kobject_put(&e->kobj);
237 }
238 EXPORT_SYMBOL(elevator_exit);
239
240 static inline void __elv_rqhash_del(struct request *rq)
241 {
242         hlist_del_init(&rq->hash);
243 }
244
245 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
246 {
247         if (ELV_ON_HASH(rq))
248                 __elv_rqhash_del(rq);
249 }
250
251 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
252 {
253         struct elevator_queue *e = q->elevator;
254
255         BUG_ON(ELV_ON_HASH(rq));
256         hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
257 }
258
259 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
260 {
261         __elv_rqhash_del(rq);
262         elv_rqhash_add(q, rq);
263 }
264
265 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
266 {
267         struct elevator_queue *e = q->elevator;
268         struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
269         struct hlist_node *entry, *next;
270         struct request *rq;
271
272         hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
273                 BUG_ON(!ELV_ON_HASH(rq));
274
275                 if (unlikely(!rq_mergeable(rq))) {
276                         __elv_rqhash_del(rq);
277                         continue;
278                 }
279
280                 if (rq_hash_key(rq) == offset)
281                         return rq;
282         }
283
284         return NULL;
285 }
286
287 /*
288  * RB-tree support functions for inserting/lookup/removal of requests
289  * in a sorted RB tree.
290  */
291 void elv_rb_add(struct rb_root *root, struct request *rq)
292 {
293         struct rb_node **p = &root->rb_node;
294         struct rb_node *parent = NULL;
295         struct request *__rq;
296
297         while (*p) {
298                 parent = *p;
299                 __rq = rb_entry(parent, struct request, rb_node);
300
301                 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
302                         p = &(*p)->rb_left;
303                 else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
304                         p = &(*p)->rb_right;
305         }
306
307         rb_link_node(&rq->rb_node, parent, p);
308         rb_insert_color(&rq->rb_node, root);
309 }
310 EXPORT_SYMBOL(elv_rb_add);
311
312 void elv_rb_del(struct rb_root *root, struct request *rq)
313 {
314         BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
315         rb_erase(&rq->rb_node, root);
316         RB_CLEAR_NODE(&rq->rb_node);
317 }
318 EXPORT_SYMBOL(elv_rb_del);
319
320 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
321 {
322         struct rb_node *n = root->rb_node;
323         struct request *rq;
324
325         while (n) {
326                 rq = rb_entry(n, struct request, rb_node);
327
328                 if (sector < blk_rq_pos(rq))
329                         n = n->rb_left;
330                 else if (sector > blk_rq_pos(rq))
331                         n = n->rb_right;
332                 else
333                         return rq;
334         }
335
336         return NULL;
337 }
338 EXPORT_SYMBOL(elv_rb_find);
339
340 /*
341  * Insert rq into dispatch queue of q.  Queue lock must be held on
342  * entry.  rq is sort instead into the dispatch queue. To be used by
343  * specific elevators.
344  */
345 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
346 {
347         sector_t boundary;
348         struct list_head *entry;
349         int stop_flags;
350
351         if (q->last_merge == rq)
352                 q->last_merge = NULL;
353
354         elv_rqhash_del(q, rq);
355
356         q->nr_sorted--;
357
358         boundary = q->end_sector;
359         stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
360         list_for_each_prev(entry, &q->queue_head) {
361                 struct request *pos = list_entry_rq(entry);
362
363                 if ((rq->cmd_flags & REQ_DISCARD) !=
364                     (pos->cmd_flags & REQ_DISCARD))
365                         break;
366                 if (rq_data_dir(rq) != rq_data_dir(pos))
367                         break;
368                 if (pos->cmd_flags & stop_flags)
369                         break;
370                 if (blk_rq_pos(rq) >= boundary) {
371                         if (blk_rq_pos(pos) < boundary)
372                                 continue;
373                 } else {
374                         if (blk_rq_pos(pos) >= boundary)
375                                 break;
376                 }
377                 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
378                         break;
379         }
380
381         list_add(&rq->queuelist, entry);
382 }
383 EXPORT_SYMBOL(elv_dispatch_sort);
384
385 /*
386  * Insert rq into dispatch queue of q.  Queue lock must be held on
387  * entry.  rq is added to the back of the dispatch queue. To be used by
388  * specific elevators.
389  */
390 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
391 {
392         if (q->last_merge == rq)
393                 q->last_merge = NULL;
394
395         elv_rqhash_del(q, rq);
396
397         q->nr_sorted--;
398
399         q->end_sector = rq_end_sector(rq);
400         q->boundary_rq = rq;
401         list_add_tail(&rq->queuelist, &q->queue_head);
402 }
403 EXPORT_SYMBOL(elv_dispatch_add_tail);
404
405 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
406 {
407         struct elevator_queue *e = q->elevator;
408         struct request *__rq;
409         int ret;
410
411         /*
412          * Levels of merges:
413          *      nomerges:  No merges at all attempted
414          *      noxmerges: Only simple one-hit cache try
415          *      merges:    All merge tries attempted
416          */
417         if (blk_queue_nomerges(q))
418                 return ELEVATOR_NO_MERGE;
419
420         /*
421          * First try one-hit cache.
422          */
423         if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
424                 ret = blk_try_merge(q->last_merge, bio);
425                 if (ret != ELEVATOR_NO_MERGE) {
426                         *req = q->last_merge;
427                         return ret;
428                 }
429         }
430
431         if (blk_queue_noxmerges(q))
432                 return ELEVATOR_NO_MERGE;
433
434         /*
435          * See if our hash lookup can find a potential backmerge.
436          */
437         __rq = elv_rqhash_find(q, bio->bi_sector);
438         if (__rq && elv_rq_merge_ok(__rq, bio)) {
439                 *req = __rq;
440                 return ELEVATOR_BACK_MERGE;
441         }
442
443         if (e->type->ops.elevator_merge_fn)
444                 return e->type->ops.elevator_merge_fn(q, req, bio);
445
446         return ELEVATOR_NO_MERGE;
447 }
448
449 /*
450  * Attempt to do an insertion back merge. Only check for the case where
451  * we can append 'rq' to an existing request, so we can throw 'rq' away
452  * afterwards.
453  *
454  * Returns true if we merged, false otherwise
455  */
456 static bool elv_attempt_insert_merge(struct request_queue *q,
457                                      struct request *rq)
458 {
459         struct request *__rq;
460
461         if (blk_queue_nomerges(q))
462                 return false;
463
464         /*
465          * First try one-hit cache.
466          */
467         if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
468                 return true;
469
470         if (blk_queue_noxmerges(q))
471                 return false;
472
473         /*
474          * See if our hash lookup can find a potential backmerge.
475          */
476         __rq = elv_rqhash_find(q, blk_rq_pos(rq));
477         if (__rq && blk_attempt_req_merge(q, __rq, rq))
478                 return true;
479
480         return false;
481 }
482
483 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
484 {
485         struct elevator_queue *e = q->elevator;
486
487         if (e->type->ops.elevator_merged_fn)
488                 e->type->ops.elevator_merged_fn(q, rq, type);
489
490         if (type == ELEVATOR_BACK_MERGE)
491                 elv_rqhash_reposition(q, rq);
492
493         q->last_merge = rq;
494 }
495
496 void elv_merge_requests(struct request_queue *q, struct request *rq,
497                              struct request *next)
498 {
499         struct elevator_queue *e = q->elevator;
500         const int next_sorted = next->cmd_flags & REQ_SORTED;
501
502         if (next_sorted && e->type->ops.elevator_merge_req_fn)
503                 e->type->ops.elevator_merge_req_fn(q, rq, next);
504
505         elv_rqhash_reposition(q, rq);
506
507         if (next_sorted) {
508                 elv_rqhash_del(q, next);
509                 q->nr_sorted--;
510         }
511
512         q->last_merge = rq;
513 }
514
515 void elv_bio_merged(struct request_queue *q, struct request *rq,
516                         struct bio *bio)
517 {
518         struct elevator_queue *e = q->elevator;
519
520         if (e->type->ops.elevator_bio_merged_fn)
521                 e->type->ops.elevator_bio_merged_fn(q, rq, bio);
522 }
523
524 void elv_requeue_request(struct request_queue *q, struct request *rq)
525 {
526         /*
527          * it already went through dequeue, we need to decrement the
528          * in_flight count again
529          */
530         if (blk_account_rq(rq)) {
531                 q->in_flight[rq_is_sync(rq)]--;
532                 if (rq->cmd_flags & REQ_SORTED)
533                         elv_deactivate_rq(q, rq);
534         }
535
536         rq->cmd_flags &= ~REQ_STARTED;
537
538         __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
539 }
540
541 void elv_drain_elevator(struct request_queue *q)
542 {
543         static int printed;
544
545         lockdep_assert_held(q->queue_lock);
546
547         while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
548                 ;
549         if (q->nr_sorted && printed++ < 10) {
550                 printk(KERN_ERR "%s: forced dispatching is broken "
551                        "(nr_sorted=%u), please report this\n",
552                        q->elevator->type->elevator_name, q->nr_sorted);
553         }
554 }
555
556 void elv_quiesce_start(struct request_queue *q)
557 {
558         if (!q->elevator)
559                 return;
560
561         spin_lock_irq(q->queue_lock);
562         queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
563         spin_unlock_irq(q->queue_lock);
564
565         blk_drain_queue(q, false);
566 }
567
568 void elv_quiesce_end(struct request_queue *q)
569 {
570         spin_lock_irq(q->queue_lock);
571         queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
572         spin_unlock_irq(q->queue_lock);
573 }
574
575 void __elv_add_request(struct request_queue *q, struct request *rq, int where)
576 {
577         trace_block_rq_insert(q, rq);
578
579         rq->q = q;
580
581         if (rq->cmd_flags & REQ_SOFTBARRIER) {
582                 /* barriers are scheduling boundary, update end_sector */
583                 if (rq->cmd_type == REQ_TYPE_FS ||
584                     (rq->cmd_flags & REQ_DISCARD)) {
585                         q->end_sector = rq_end_sector(rq);
586                         q->boundary_rq = rq;
587                 }
588         } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
589                     (where == ELEVATOR_INSERT_SORT ||
590                      where == ELEVATOR_INSERT_SORT_MERGE))
591                 where = ELEVATOR_INSERT_BACK;
592
593         switch (where) {
594         case ELEVATOR_INSERT_REQUEUE:
595         case ELEVATOR_INSERT_FRONT:
596                 rq->cmd_flags |= REQ_SOFTBARRIER;
597                 list_add(&rq->queuelist, &q->queue_head);
598                 break;
599
600         case ELEVATOR_INSERT_BACK:
601                 rq->cmd_flags |= REQ_SOFTBARRIER;
602                 elv_drain_elevator(q);
603                 list_add_tail(&rq->queuelist, &q->queue_head);
604                 /*
605                  * We kick the queue here for the following reasons.
606                  * - The elevator might have returned NULL previously
607                  *   to delay requests and returned them now.  As the
608                  *   queue wasn't empty before this request, ll_rw_blk
609                  *   won't run the queue on return, resulting in hang.
610                  * - Usually, back inserted requests won't be merged
611                  *   with anything.  There's no point in delaying queue
612                  *   processing.
613                  */
614                 __blk_run_queue(q);
615                 break;
616
617         case ELEVATOR_INSERT_SORT_MERGE:
618                 /*
619                  * If we succeed in merging this request with one in the
620                  * queue already, we are done - rq has now been freed,
621                  * so no need to do anything further.
622                  */
623                 if (elv_attempt_insert_merge(q, rq))
624                         break;
625         case ELEVATOR_INSERT_SORT:
626                 BUG_ON(rq->cmd_type != REQ_TYPE_FS &&
627                        !(rq->cmd_flags & REQ_DISCARD));
628                 rq->cmd_flags |= REQ_SORTED;
629                 q->nr_sorted++;
630                 if (rq_mergeable(rq)) {
631                         elv_rqhash_add(q, rq);
632                         if (!q->last_merge)
633                                 q->last_merge = rq;
634                 }
635
636                 /*
637                  * Some ioscheds (cfq) run q->request_fn directly, so
638                  * rq cannot be accessed after calling
639                  * elevator_add_req_fn.
640                  */
641                 q->elevator->type->ops.elevator_add_req_fn(q, rq);
642                 break;
643
644         case ELEVATOR_INSERT_FLUSH:
645                 rq->cmd_flags |= REQ_SOFTBARRIER;
646                 blk_insert_flush(rq);
647                 break;
648         default:
649                 printk(KERN_ERR "%s: bad insertion point %d\n",
650                        __func__, where);
651                 BUG();
652         }
653 }
654 EXPORT_SYMBOL(__elv_add_request);
655
656 void elv_add_request(struct request_queue *q, struct request *rq, int where)
657 {
658         unsigned long flags;
659
660         spin_lock_irqsave(q->queue_lock, flags);
661         __elv_add_request(q, rq, where);
662         spin_unlock_irqrestore(q->queue_lock, flags);
663 }
664 EXPORT_SYMBOL(elv_add_request);
665
666 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
667 {
668         struct elevator_queue *e = q->elevator;
669
670         if (e->type->ops.elevator_latter_req_fn)
671                 return e->type->ops.elevator_latter_req_fn(q, rq);
672         return NULL;
673 }
674
675 struct request *elv_former_request(struct request_queue *q, struct request *rq)
676 {
677         struct elevator_queue *e = q->elevator;
678
679         if (e->type->ops.elevator_former_req_fn)
680                 return e->type->ops.elevator_former_req_fn(q, rq);
681         return NULL;
682 }
683
684 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
685 {
686         struct elevator_queue *e = q->elevator;
687
688         if (e->type->ops.elevator_set_req_fn)
689                 return e->type->ops.elevator_set_req_fn(q, rq, gfp_mask);
690         return 0;
691 }
692
693 void elv_put_request(struct request_queue *q, struct request *rq)
694 {
695         struct elevator_queue *e = q->elevator;
696
697         if (e->type->ops.elevator_put_req_fn)
698                 e->type->ops.elevator_put_req_fn(rq);
699 }
700
701 int elv_may_queue(struct request_queue *q, int rw)
702 {
703         struct elevator_queue *e = q->elevator;
704
705         if (e->type->ops.elevator_may_queue_fn)
706                 return e->type->ops.elevator_may_queue_fn(q, rw);
707
708         return ELV_MQUEUE_MAY;
709 }
710
711 void elv_abort_queue(struct request_queue *q)
712 {
713         struct request *rq;
714
715         blk_abort_flushes(q);
716
717         while (!list_empty(&q->queue_head)) {
718                 rq = list_entry_rq(q->queue_head.next);
719                 rq->cmd_flags |= REQ_QUIET;
720                 trace_block_rq_abort(q, rq);
721                 /*
722                  * Mark this request as started so we don't trigger
723                  * any debug logic in the end I/O path.
724                  */
725                 blk_start_request(rq);
726                 __blk_end_request_all(rq, -EIO);
727         }
728 }
729 EXPORT_SYMBOL(elv_abort_queue);
730
731 void elv_completed_request(struct request_queue *q, struct request *rq)
732 {
733         struct elevator_queue *e = q->elevator;
734
735         /*
736          * request is released from the driver, io must be done
737          */
738         if (blk_account_rq(rq)) {
739                 q->in_flight[rq_is_sync(rq)]--;
740                 if ((rq->cmd_flags & REQ_SORTED) &&
741                     e->type->ops.elevator_completed_req_fn)
742                         e->type->ops.elevator_completed_req_fn(q, rq);
743         }
744 }
745
746 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
747
748 static ssize_t
749 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
750 {
751         struct elv_fs_entry *entry = to_elv(attr);
752         struct elevator_queue *e;
753         ssize_t error;
754
755         if (!entry->show)
756                 return -EIO;
757
758         e = container_of(kobj, struct elevator_queue, kobj);
759         mutex_lock(&e->sysfs_lock);
760         error = e->type ? entry->show(e, page) : -ENOENT;
761         mutex_unlock(&e->sysfs_lock);
762         return error;
763 }
764
765 static ssize_t
766 elv_attr_store(struct kobject *kobj, struct attribute *attr,
767                const char *page, size_t length)
768 {
769         struct elv_fs_entry *entry = to_elv(attr);
770         struct elevator_queue *e;
771         ssize_t error;
772
773         if (!entry->store)
774                 return -EIO;
775
776         e = container_of(kobj, struct elevator_queue, kobj);
777         mutex_lock(&e->sysfs_lock);
778         error = e->type ? entry->store(e, page, length) : -ENOENT;
779         mutex_unlock(&e->sysfs_lock);
780         return error;
781 }
782
783 static const struct sysfs_ops elv_sysfs_ops = {
784         .show   = elv_attr_show,
785         .store  = elv_attr_store,
786 };
787
788 static struct kobj_type elv_ktype = {
789         .sysfs_ops      = &elv_sysfs_ops,
790         .release        = elevator_release,
791 };
792
793 int elv_register_queue(struct request_queue *q)
794 {
795         struct elevator_queue *e = q->elevator;
796         int error;
797
798         error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
799         if (!error) {
800                 struct elv_fs_entry *attr = e->type->elevator_attrs;
801                 if (attr) {
802                         while (attr->attr.name) {
803                                 if (sysfs_create_file(&e->kobj, &attr->attr))
804                                         break;
805                                 attr++;
806                         }
807                 }
808                 kobject_uevent(&e->kobj, KOBJ_ADD);
809                 e->registered = 1;
810         }
811         return error;
812 }
813 EXPORT_SYMBOL(elv_register_queue);
814
815 void elv_unregister_queue(struct request_queue *q)
816 {
817         if (q) {
818                 struct elevator_queue *e = q->elevator;
819
820                 kobject_uevent(&e->kobj, KOBJ_REMOVE);
821                 kobject_del(&e->kobj);
822                 e->registered = 0;
823         }
824 }
825 EXPORT_SYMBOL(elv_unregister_queue);
826
827 int elv_register(struct elevator_type *e)
828 {
829         char *def = "";
830
831         /* create icq_cache if requested */
832         if (e->icq_size) {
833                 if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
834                     WARN_ON(e->icq_align < __alignof__(struct io_cq)))
835                         return -EINVAL;
836
837                 snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
838                          "%s_io_cq", e->elevator_name);
839                 e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
840                                                  e->icq_align, 0, NULL);
841                 if (!e->icq_cache)
842                         return -ENOMEM;
843         }
844
845         /* register, don't allow duplicate names */
846         spin_lock(&elv_list_lock);
847         if (elevator_find(e->elevator_name)) {
848                 spin_unlock(&elv_list_lock);
849                 if (e->icq_cache)
850                         kmem_cache_destroy(e->icq_cache);
851                 return -EBUSY;
852         }
853         list_add_tail(&e->list, &elv_list);
854         spin_unlock(&elv_list_lock);
855
856         /* print pretty message */
857         if (!strcmp(e->elevator_name, chosen_elevator) ||
858                         (!*chosen_elevator &&
859                          !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
860                                 def = " (default)";
861
862         printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
863                                                                 def);
864         return 0;
865 }
866 EXPORT_SYMBOL_GPL(elv_register);
867
868 void elv_unregister(struct elevator_type *e)
869 {
870         /* unregister */
871         spin_lock(&elv_list_lock);
872         list_del_init(&e->list);
873         spin_unlock(&elv_list_lock);
874
875         /*
876          * Destroy icq_cache if it exists.  icq's are RCU managed.  Make
877          * sure all RCU operations are complete before proceeding.
878          */
879         if (e->icq_cache) {
880                 rcu_barrier();
881                 kmem_cache_destroy(e->icq_cache);
882                 e->icq_cache = NULL;
883         }
884 }
885 EXPORT_SYMBOL_GPL(elv_unregister);
886
887 /*
888  * switch to new_e io scheduler. be careful not to introduce deadlocks -
889  * we don't free the old io scheduler, before we have allocated what we
890  * need for the new one. this way we have a chance of going back to the old
891  * one, if the new one fails init for some reason.
892  */
893 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
894 {
895         struct elevator_queue *old = q->elevator;
896         bool registered = old->registered;
897         int err;
898
899         /*
900          * Turn on BYPASS and drain all requests w/ elevator private data.
901          * Block layer doesn't call into a quiesced elevator - all requests
902          * are directly put on the dispatch list without elevator data
903          * using INSERT_BACK.  All requests have SOFTBARRIER set and no
904          * merge happens either.
905          */
906         elv_quiesce_start(q);
907
908         /* unregister and clear all auxiliary data of the old elevator */
909         if (registered)
910                 elv_unregister_queue(q);
911
912         spin_lock_irq(q->queue_lock);
913         ioc_clear_queue(q);
914         spin_unlock_irq(q->queue_lock);
915
916         /* allocate, init and register new elevator */
917         err = -ENOMEM;
918         q->elevator = elevator_alloc(q, new_e);
919         if (!q->elevator)
920                 goto fail_init;
921
922         err = new_e->ops.elevator_init_fn(q);
923         if (err) {
924                 kobject_put(&q->elevator->kobj);
925                 goto fail_init;
926         }
927
928         if (registered) {
929                 err = elv_register_queue(q);
930                 if (err)
931                         goto fail_register;
932         }
933
934         /* done, kill the old one and finish */
935         elevator_exit(old);
936         elv_quiesce_end(q);
937
938         blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
939
940         return 0;
941
942 fail_register:
943         elevator_exit(q->elevator);
944 fail_init:
945         /* switch failed, restore and re-register old elevator */
946         q->elevator = old;
947         elv_register_queue(q);
948         elv_quiesce_end(q);
949
950         return err;
951 }
952
953 /*
954  * Switch this queue to the given IO scheduler.
955  */
956 int elevator_change(struct request_queue *q, const char *name)
957 {
958         char elevator_name[ELV_NAME_MAX];
959         struct elevator_type *e;
960
961         if (!q->elevator)
962                 return -ENXIO;
963
964         strlcpy(elevator_name, name, sizeof(elevator_name));
965         e = elevator_get(strstrip(elevator_name));
966         if (!e) {
967                 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
968                 return -EINVAL;
969         }
970
971         if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
972                 elevator_put(e);
973                 return 0;
974         }
975
976         return elevator_switch(q, e);
977 }
978 EXPORT_SYMBOL(elevator_change);
979
980 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
981                           size_t count)
982 {
983         int ret;
984
985         if (!q->elevator)
986                 return count;
987
988         ret = elevator_change(q, name);
989         if (!ret)
990                 return count;
991
992         printk(KERN_ERR "elevator: switch to %s failed\n", name);
993         return ret;
994 }
995
996 ssize_t elv_iosched_show(struct request_queue *q, char *name)
997 {
998         struct elevator_queue *e = q->elevator;
999         struct elevator_type *elv;
1000         struct elevator_type *__e;
1001         int len = 0;
1002
1003         if (!q->elevator || !blk_queue_stackable(q))
1004                 return sprintf(name, "none\n");
1005
1006         elv = e->type;
1007
1008         spin_lock(&elv_list_lock);
1009         list_for_each_entry(__e, &elv_list, list) {
1010                 if (!strcmp(elv->elevator_name, __e->elevator_name))
1011                         len += sprintf(name+len, "[%s] ", elv->elevator_name);
1012                 else
1013                         len += sprintf(name+len, "%s ", __e->elevator_name);
1014         }
1015         spin_unlock(&elv_list_lock);
1016
1017         len += sprintf(len+name, "\n");
1018         return len;
1019 }
1020
1021 struct request *elv_rb_former_request(struct request_queue *q,
1022                                       struct request *rq)
1023 {
1024         struct rb_node *rbprev = rb_prev(&rq->rb_node);
1025
1026         if (rbprev)
1027                 return rb_entry_rq(rbprev);
1028
1029         return NULL;
1030 }
1031 EXPORT_SYMBOL(elv_rb_former_request);
1032
1033 struct request *elv_rb_latter_request(struct request_queue *q,
1034                                       struct request *rq)
1035 {
1036         struct rb_node *rbnext = rb_next(&rq->rb_node);
1037
1038         if (rbnext)
1039                 return rb_entry_rq(rbnext);
1040
1041         return NULL;
1042 }
1043 EXPORT_SYMBOL(elv_rb_latter_request);