]> git.karo-electronics.de Git - linux-beck.git/blob - block/genhd.c
block: fix synchronization and limit check in blk_alloc_devt()
[linux-beck.git] / block / genhd.c
1 /*
2  *  gendisk handling
3  */
4
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/init.h>
12 #include <linux/spinlock.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/kobj_map.h>
18 #include <linux/mutex.h>
19 #include <linux/idr.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22
23 #include "blk.h"
24
25 static DEFINE_MUTEX(block_class_lock);
26 struct kobject *block_depr;
27
28 /* for extended dynamic devt allocation, currently only one major is used */
29 #define NR_EXT_DEVT             (1 << MINORBITS)
30
31 /* For extended devt allocation.  ext_devt_mutex prevents look up
32  * results from going away underneath its user.
33  */
34 static DEFINE_MUTEX(ext_devt_mutex);
35 static DEFINE_IDR(ext_devt_idr);
36
37 static struct device_type disk_type;
38
39 static void disk_check_events(struct disk_events *ev,
40                               unsigned int *clearing_ptr);
41 static void disk_alloc_events(struct gendisk *disk);
42 static void disk_add_events(struct gendisk *disk);
43 static void disk_del_events(struct gendisk *disk);
44 static void disk_release_events(struct gendisk *disk);
45
46 /**
47  * disk_get_part - get partition
48  * @disk: disk to look partition from
49  * @partno: partition number
50  *
51  * Look for partition @partno from @disk.  If found, increment
52  * reference count and return it.
53  *
54  * CONTEXT:
55  * Don't care.
56  *
57  * RETURNS:
58  * Pointer to the found partition on success, NULL if not found.
59  */
60 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
61 {
62         struct hd_struct *part = NULL;
63         struct disk_part_tbl *ptbl;
64
65         if (unlikely(partno < 0))
66                 return NULL;
67
68         rcu_read_lock();
69
70         ptbl = rcu_dereference(disk->part_tbl);
71         if (likely(partno < ptbl->len)) {
72                 part = rcu_dereference(ptbl->part[partno]);
73                 if (part)
74                         get_device(part_to_dev(part));
75         }
76
77         rcu_read_unlock();
78
79         return part;
80 }
81 EXPORT_SYMBOL_GPL(disk_get_part);
82
83 /**
84  * disk_part_iter_init - initialize partition iterator
85  * @piter: iterator to initialize
86  * @disk: disk to iterate over
87  * @flags: DISK_PITER_* flags
88  *
89  * Initialize @piter so that it iterates over partitions of @disk.
90  *
91  * CONTEXT:
92  * Don't care.
93  */
94 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
95                           unsigned int flags)
96 {
97         struct disk_part_tbl *ptbl;
98
99         rcu_read_lock();
100         ptbl = rcu_dereference(disk->part_tbl);
101
102         piter->disk = disk;
103         piter->part = NULL;
104
105         if (flags & DISK_PITER_REVERSE)
106                 piter->idx = ptbl->len - 1;
107         else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
108                 piter->idx = 0;
109         else
110                 piter->idx = 1;
111
112         piter->flags = flags;
113
114         rcu_read_unlock();
115 }
116 EXPORT_SYMBOL_GPL(disk_part_iter_init);
117
118 /**
119  * disk_part_iter_next - proceed iterator to the next partition and return it
120  * @piter: iterator of interest
121  *
122  * Proceed @piter to the next partition and return it.
123  *
124  * CONTEXT:
125  * Don't care.
126  */
127 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
128 {
129         struct disk_part_tbl *ptbl;
130         int inc, end;
131
132         /* put the last partition */
133         disk_put_part(piter->part);
134         piter->part = NULL;
135
136         /* get part_tbl */
137         rcu_read_lock();
138         ptbl = rcu_dereference(piter->disk->part_tbl);
139
140         /* determine iteration parameters */
141         if (piter->flags & DISK_PITER_REVERSE) {
142                 inc = -1;
143                 if (piter->flags & (DISK_PITER_INCL_PART0 |
144                                     DISK_PITER_INCL_EMPTY_PART0))
145                         end = -1;
146                 else
147                         end = 0;
148         } else {
149                 inc = 1;
150                 end = ptbl->len;
151         }
152
153         /* iterate to the next partition */
154         for (; piter->idx != end; piter->idx += inc) {
155                 struct hd_struct *part;
156
157                 part = rcu_dereference(ptbl->part[piter->idx]);
158                 if (!part)
159                         continue;
160                 if (!part_nr_sects_read(part) &&
161                     !(piter->flags & DISK_PITER_INCL_EMPTY) &&
162                     !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
163                       piter->idx == 0))
164                         continue;
165
166                 get_device(part_to_dev(part));
167                 piter->part = part;
168                 piter->idx += inc;
169                 break;
170         }
171
172         rcu_read_unlock();
173
174         return piter->part;
175 }
176 EXPORT_SYMBOL_GPL(disk_part_iter_next);
177
178 /**
179  * disk_part_iter_exit - finish up partition iteration
180  * @piter: iter of interest
181  *
182  * Called when iteration is over.  Cleans up @piter.
183  *
184  * CONTEXT:
185  * Don't care.
186  */
187 void disk_part_iter_exit(struct disk_part_iter *piter)
188 {
189         disk_put_part(piter->part);
190         piter->part = NULL;
191 }
192 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
193
194 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
195 {
196         return part->start_sect <= sector &&
197                 sector < part->start_sect + part_nr_sects_read(part);
198 }
199
200 /**
201  * disk_map_sector_rcu - map sector to partition
202  * @disk: gendisk of interest
203  * @sector: sector to map
204  *
205  * Find out which partition @sector maps to on @disk.  This is
206  * primarily used for stats accounting.
207  *
208  * CONTEXT:
209  * RCU read locked.  The returned partition pointer is valid only
210  * while preemption is disabled.
211  *
212  * RETURNS:
213  * Found partition on success, part0 is returned if no partition matches
214  */
215 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
216 {
217         struct disk_part_tbl *ptbl;
218         struct hd_struct *part;
219         int i;
220
221         ptbl = rcu_dereference(disk->part_tbl);
222
223         part = rcu_dereference(ptbl->last_lookup);
224         if (part && sector_in_part(part, sector))
225                 return part;
226
227         for (i = 1; i < ptbl->len; i++) {
228                 part = rcu_dereference(ptbl->part[i]);
229
230                 if (part && sector_in_part(part, sector)) {
231                         rcu_assign_pointer(ptbl->last_lookup, part);
232                         return part;
233                 }
234         }
235         return &disk->part0;
236 }
237 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
238
239 /*
240  * Can be deleted altogether. Later.
241  *
242  */
243 static struct blk_major_name {
244         struct blk_major_name *next;
245         int major;
246         char name[16];
247 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
248
249 /* index in the above - for now: assume no multimajor ranges */
250 static inline int major_to_index(unsigned major)
251 {
252         return major % BLKDEV_MAJOR_HASH_SIZE;
253 }
254
255 #ifdef CONFIG_PROC_FS
256 void blkdev_show(struct seq_file *seqf, off_t offset)
257 {
258         struct blk_major_name *dp;
259
260         if (offset < BLKDEV_MAJOR_HASH_SIZE) {
261                 mutex_lock(&block_class_lock);
262                 for (dp = major_names[offset]; dp; dp = dp->next)
263                         seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
264                 mutex_unlock(&block_class_lock);
265         }
266 }
267 #endif /* CONFIG_PROC_FS */
268
269 /**
270  * register_blkdev - register a new block device
271  *
272  * @major: the requested major device number [1..255]. If @major=0, try to
273  *         allocate any unused major number.
274  * @name: the name of the new block device as a zero terminated string
275  *
276  * The @name must be unique within the system.
277  *
278  * The return value depends on the @major input parameter.
279  *  - if a major device number was requested in range [1..255] then the
280  *    function returns zero on success, or a negative error code
281  *  - if any unused major number was requested with @major=0 parameter
282  *    then the return value is the allocated major number in range
283  *    [1..255] or a negative error code otherwise
284  */
285 int register_blkdev(unsigned int major, const char *name)
286 {
287         struct blk_major_name **n, *p;
288         int index, ret = 0;
289
290         mutex_lock(&block_class_lock);
291
292         /* temporary */
293         if (major == 0) {
294                 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
295                         if (major_names[index] == NULL)
296                                 break;
297                 }
298
299                 if (index == 0) {
300                         printk("register_blkdev: failed to get major for %s\n",
301                                name);
302                         ret = -EBUSY;
303                         goto out;
304                 }
305                 major = index;
306                 ret = major;
307         }
308
309         p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
310         if (p == NULL) {
311                 ret = -ENOMEM;
312                 goto out;
313         }
314
315         p->major = major;
316         strlcpy(p->name, name, sizeof(p->name));
317         p->next = NULL;
318         index = major_to_index(major);
319
320         for (n = &major_names[index]; *n; n = &(*n)->next) {
321                 if ((*n)->major == major)
322                         break;
323         }
324         if (!*n)
325                 *n = p;
326         else
327                 ret = -EBUSY;
328
329         if (ret < 0) {
330                 printk("register_blkdev: cannot get major %d for %s\n",
331                        major, name);
332                 kfree(p);
333         }
334 out:
335         mutex_unlock(&block_class_lock);
336         return ret;
337 }
338
339 EXPORT_SYMBOL(register_blkdev);
340
341 void unregister_blkdev(unsigned int major, const char *name)
342 {
343         struct blk_major_name **n;
344         struct blk_major_name *p = NULL;
345         int index = major_to_index(major);
346
347         mutex_lock(&block_class_lock);
348         for (n = &major_names[index]; *n; n = &(*n)->next)
349                 if ((*n)->major == major)
350                         break;
351         if (!*n || strcmp((*n)->name, name)) {
352                 WARN_ON(1);
353         } else {
354                 p = *n;
355                 *n = p->next;
356         }
357         mutex_unlock(&block_class_lock);
358         kfree(p);
359 }
360
361 EXPORT_SYMBOL(unregister_blkdev);
362
363 static struct kobj_map *bdev_map;
364
365 /**
366  * blk_mangle_minor - scatter minor numbers apart
367  * @minor: minor number to mangle
368  *
369  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
370  * is enabled.  Mangling twice gives the original value.
371  *
372  * RETURNS:
373  * Mangled value.
374  *
375  * CONTEXT:
376  * Don't care.
377  */
378 static int blk_mangle_minor(int minor)
379 {
380 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
381         int i;
382
383         for (i = 0; i < MINORBITS / 2; i++) {
384                 int low = minor & (1 << i);
385                 int high = minor & (1 << (MINORBITS - 1 - i));
386                 int distance = MINORBITS - 1 - 2 * i;
387
388                 minor ^= low | high;    /* clear both bits */
389                 low <<= distance;       /* swap the positions */
390                 high >>= distance;
391                 minor |= low | high;    /* and set */
392         }
393 #endif
394         return minor;
395 }
396
397 /**
398  * blk_alloc_devt - allocate a dev_t for a partition
399  * @part: partition to allocate dev_t for
400  * @devt: out parameter for resulting dev_t
401  *
402  * Allocate a dev_t for block device.
403  *
404  * RETURNS:
405  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
406  * failure.
407  *
408  * CONTEXT:
409  * Might sleep.
410  */
411 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
412 {
413         struct gendisk *disk = part_to_disk(part);
414         int idx, rc;
415
416         /* in consecutive minor range? */
417         if (part->partno < disk->minors) {
418                 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
419                 return 0;
420         }
421
422         /* allocate ext devt */
423         do {
424                 if (!idr_pre_get(&ext_devt_idr, GFP_KERNEL))
425                         return -ENOMEM;
426                 mutex_lock(&ext_devt_mutex);
427                 rc = idr_get_new(&ext_devt_idr, part, &idx);
428                 if (!rc && idx >= NR_EXT_DEVT) {
429                         idr_remove(&ext_devt_idr, idx);
430                         rc = -EBUSY;
431                 }
432                 mutex_unlock(&ext_devt_mutex);
433         } while (rc == -EAGAIN);
434
435         if (rc)
436                 return rc;
437
438         *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
439         return 0;
440 }
441
442 /**
443  * blk_free_devt - free a dev_t
444  * @devt: dev_t to free
445  *
446  * Free @devt which was allocated using blk_alloc_devt().
447  *
448  * CONTEXT:
449  * Might sleep.
450  */
451 void blk_free_devt(dev_t devt)
452 {
453         might_sleep();
454
455         if (devt == MKDEV(0, 0))
456                 return;
457
458         if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
459                 mutex_lock(&ext_devt_mutex);
460                 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
461                 mutex_unlock(&ext_devt_mutex);
462         }
463 }
464
465 static char *bdevt_str(dev_t devt, char *buf)
466 {
467         if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
468                 char tbuf[BDEVT_SIZE];
469                 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
470                 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
471         } else
472                 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
473
474         return buf;
475 }
476
477 /*
478  * Register device numbers dev..(dev+range-1)
479  * range must be nonzero
480  * The hash chain is sorted on range, so that subranges can override.
481  */
482 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
483                          struct kobject *(*probe)(dev_t, int *, void *),
484                          int (*lock)(dev_t, void *), void *data)
485 {
486         kobj_map(bdev_map, devt, range, module, probe, lock, data);
487 }
488
489 EXPORT_SYMBOL(blk_register_region);
490
491 void blk_unregister_region(dev_t devt, unsigned long range)
492 {
493         kobj_unmap(bdev_map, devt, range);
494 }
495
496 EXPORT_SYMBOL(blk_unregister_region);
497
498 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
499 {
500         struct gendisk *p = data;
501
502         return &disk_to_dev(p)->kobj;
503 }
504
505 static int exact_lock(dev_t devt, void *data)
506 {
507         struct gendisk *p = data;
508
509         if (!get_disk(p))
510                 return -1;
511         return 0;
512 }
513
514 static void register_disk(struct gendisk *disk)
515 {
516         struct device *ddev = disk_to_dev(disk);
517         struct block_device *bdev;
518         struct disk_part_iter piter;
519         struct hd_struct *part;
520         int err;
521
522         ddev->parent = disk->driverfs_dev;
523
524         dev_set_name(ddev, disk->disk_name);
525
526         /* delay uevents, until we scanned partition table */
527         dev_set_uevent_suppress(ddev, 1);
528
529         if (device_add(ddev))
530                 return;
531         if (!sysfs_deprecated) {
532                 err = sysfs_create_link(block_depr, &ddev->kobj,
533                                         kobject_name(&ddev->kobj));
534                 if (err) {
535                         device_del(ddev);
536                         return;
537                 }
538         }
539
540         /*
541          * avoid probable deadlock caused by allocating memory with
542          * GFP_KERNEL in runtime_resume callback of its all ancestor
543          * devices
544          */
545         pm_runtime_set_memalloc_noio(ddev, true);
546
547         disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
548         disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
549
550         /* No minors to use for partitions */
551         if (!disk_part_scan_enabled(disk))
552                 goto exit;
553
554         /* No such device (e.g., media were just removed) */
555         if (!get_capacity(disk))
556                 goto exit;
557
558         bdev = bdget_disk(disk, 0);
559         if (!bdev)
560                 goto exit;
561
562         bdev->bd_invalidated = 1;
563         err = blkdev_get(bdev, FMODE_READ, NULL);
564         if (err < 0)
565                 goto exit;
566         blkdev_put(bdev, FMODE_READ);
567
568 exit:
569         /* announce disk after possible partitions are created */
570         dev_set_uevent_suppress(ddev, 0);
571         kobject_uevent(&ddev->kobj, KOBJ_ADD);
572
573         /* announce possible partitions */
574         disk_part_iter_init(&piter, disk, 0);
575         while ((part = disk_part_iter_next(&piter)))
576                 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
577         disk_part_iter_exit(&piter);
578 }
579
580 /**
581  * add_disk - add partitioning information to kernel list
582  * @disk: per-device partitioning information
583  *
584  * This function registers the partitioning information in @disk
585  * with the kernel.
586  *
587  * FIXME: error handling
588  */
589 void add_disk(struct gendisk *disk)
590 {
591         struct backing_dev_info *bdi;
592         dev_t devt;
593         int retval;
594
595         /* minors == 0 indicates to use ext devt from part0 and should
596          * be accompanied with EXT_DEVT flag.  Make sure all
597          * parameters make sense.
598          */
599         WARN_ON(disk->minors && !(disk->major || disk->first_minor));
600         WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT));
601
602         disk->flags |= GENHD_FL_UP;
603
604         retval = blk_alloc_devt(&disk->part0, &devt);
605         if (retval) {
606                 WARN_ON(1);
607                 return;
608         }
609         disk_to_dev(disk)->devt = devt;
610
611         /* ->major and ->first_minor aren't supposed to be
612          * dereferenced from here on, but set them just in case.
613          */
614         disk->major = MAJOR(devt);
615         disk->first_minor = MINOR(devt);
616
617         disk_alloc_events(disk);
618
619         /* Register BDI before referencing it from bdev */
620         bdi = &disk->queue->backing_dev_info;
621         bdi_register_dev(bdi, disk_devt(disk));
622
623         blk_register_region(disk_devt(disk), disk->minors, NULL,
624                             exact_match, exact_lock, disk);
625         register_disk(disk);
626         blk_register_queue(disk);
627
628         /*
629          * Take an extra ref on queue which will be put on disk_release()
630          * so that it sticks around as long as @disk is there.
631          */
632         WARN_ON_ONCE(!blk_get_queue(disk->queue));
633
634         retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj,
635                                    "bdi");
636         WARN_ON(retval);
637
638         disk_add_events(disk);
639 }
640 EXPORT_SYMBOL(add_disk);
641
642 void del_gendisk(struct gendisk *disk)
643 {
644         struct disk_part_iter piter;
645         struct hd_struct *part;
646
647         disk_del_events(disk);
648
649         /* invalidate stuff */
650         disk_part_iter_init(&piter, disk,
651                              DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
652         while ((part = disk_part_iter_next(&piter))) {
653                 invalidate_partition(disk, part->partno);
654                 delete_partition(disk, part->partno);
655         }
656         disk_part_iter_exit(&piter);
657
658         invalidate_partition(disk, 0);
659         set_capacity(disk, 0);
660         disk->flags &= ~GENHD_FL_UP;
661
662         sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
663         bdi_unregister(&disk->queue->backing_dev_info);
664         blk_unregister_queue(disk);
665         blk_unregister_region(disk_devt(disk), disk->minors);
666
667         part_stat_set_all(&disk->part0, 0);
668         disk->part0.stamp = 0;
669
670         kobject_put(disk->part0.holder_dir);
671         kobject_put(disk->slave_dir);
672         disk->driverfs_dev = NULL;
673         if (!sysfs_deprecated)
674                 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
675         pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
676         device_del(disk_to_dev(disk));
677         blk_free_devt(disk_to_dev(disk)->devt);
678 }
679 EXPORT_SYMBOL(del_gendisk);
680
681 /**
682  * get_gendisk - get partitioning information for a given device
683  * @devt: device to get partitioning information for
684  * @partno: returned partition index
685  *
686  * This function gets the structure containing partitioning
687  * information for the given device @devt.
688  */
689 struct gendisk *get_gendisk(dev_t devt, int *partno)
690 {
691         struct gendisk *disk = NULL;
692
693         if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
694                 struct kobject *kobj;
695
696                 kobj = kobj_lookup(bdev_map, devt, partno);
697                 if (kobj)
698                         disk = dev_to_disk(kobj_to_dev(kobj));
699         } else {
700                 struct hd_struct *part;
701
702                 mutex_lock(&ext_devt_mutex);
703                 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
704                 if (part && get_disk(part_to_disk(part))) {
705                         *partno = part->partno;
706                         disk = part_to_disk(part);
707                 }
708                 mutex_unlock(&ext_devt_mutex);
709         }
710
711         return disk;
712 }
713 EXPORT_SYMBOL(get_gendisk);
714
715 /**
716  * bdget_disk - do bdget() by gendisk and partition number
717  * @disk: gendisk of interest
718  * @partno: partition number
719  *
720  * Find partition @partno from @disk, do bdget() on it.
721  *
722  * CONTEXT:
723  * Don't care.
724  *
725  * RETURNS:
726  * Resulting block_device on success, NULL on failure.
727  */
728 struct block_device *bdget_disk(struct gendisk *disk, int partno)
729 {
730         struct hd_struct *part;
731         struct block_device *bdev = NULL;
732
733         part = disk_get_part(disk, partno);
734         if (part)
735                 bdev = bdget(part_devt(part));
736         disk_put_part(part);
737
738         return bdev;
739 }
740 EXPORT_SYMBOL(bdget_disk);
741
742 /*
743  * print a full list of all partitions - intended for places where the root
744  * filesystem can't be mounted and thus to give the victim some idea of what
745  * went wrong
746  */
747 void __init printk_all_partitions(void)
748 {
749         struct class_dev_iter iter;
750         struct device *dev;
751
752         class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
753         while ((dev = class_dev_iter_next(&iter))) {
754                 struct gendisk *disk = dev_to_disk(dev);
755                 struct disk_part_iter piter;
756                 struct hd_struct *part;
757                 char name_buf[BDEVNAME_SIZE];
758                 char devt_buf[BDEVT_SIZE];
759
760                 /*
761                  * Don't show empty devices or things that have been
762                  * suppressed
763                  */
764                 if (get_capacity(disk) == 0 ||
765                     (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
766                         continue;
767
768                 /*
769                  * Note, unlike /proc/partitions, I am showing the
770                  * numbers in hex - the same format as the root=
771                  * option takes.
772                  */
773                 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
774                 while ((part = disk_part_iter_next(&piter))) {
775                         bool is_part0 = part == &disk->part0;
776
777                         printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
778                                bdevt_str(part_devt(part), devt_buf),
779                                (unsigned long long)part_nr_sects_read(part) >> 1
780                                , disk_name(disk, part->partno, name_buf),
781                                part->info ? part->info->uuid : "");
782                         if (is_part0) {
783                                 if (disk->driverfs_dev != NULL &&
784                                     disk->driverfs_dev->driver != NULL)
785                                         printk(" driver: %s\n",
786                                               disk->driverfs_dev->driver->name);
787                                 else
788                                         printk(" (driver?)\n");
789                         } else
790                                 printk("\n");
791                 }
792                 disk_part_iter_exit(&piter);
793         }
794         class_dev_iter_exit(&iter);
795 }
796
797 #ifdef CONFIG_PROC_FS
798 /* iterator */
799 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
800 {
801         loff_t skip = *pos;
802         struct class_dev_iter *iter;
803         struct device *dev;
804
805         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
806         if (!iter)
807                 return ERR_PTR(-ENOMEM);
808
809         seqf->private = iter;
810         class_dev_iter_init(iter, &block_class, NULL, &disk_type);
811         do {
812                 dev = class_dev_iter_next(iter);
813                 if (!dev)
814                         return NULL;
815         } while (skip--);
816
817         return dev_to_disk(dev);
818 }
819
820 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
821 {
822         struct device *dev;
823
824         (*pos)++;
825         dev = class_dev_iter_next(seqf->private);
826         if (dev)
827                 return dev_to_disk(dev);
828
829         return NULL;
830 }
831
832 static void disk_seqf_stop(struct seq_file *seqf, void *v)
833 {
834         struct class_dev_iter *iter = seqf->private;
835
836         /* stop is called even after start failed :-( */
837         if (iter) {
838                 class_dev_iter_exit(iter);
839                 kfree(iter);
840         }
841 }
842
843 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
844 {
845         void *p;
846
847         p = disk_seqf_start(seqf, pos);
848         if (!IS_ERR_OR_NULL(p) && !*pos)
849                 seq_puts(seqf, "major minor  #blocks  name\n\n");
850         return p;
851 }
852
853 static int show_partition(struct seq_file *seqf, void *v)
854 {
855         struct gendisk *sgp = v;
856         struct disk_part_iter piter;
857         struct hd_struct *part;
858         char buf[BDEVNAME_SIZE];
859
860         /* Don't show non-partitionable removeable devices or empty devices */
861         if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
862                                    (sgp->flags & GENHD_FL_REMOVABLE)))
863                 return 0;
864         if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
865                 return 0;
866
867         /* show the full disk and all non-0 size partitions of it */
868         disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
869         while ((part = disk_part_iter_next(&piter)))
870                 seq_printf(seqf, "%4d  %7d %10llu %s\n",
871                            MAJOR(part_devt(part)), MINOR(part_devt(part)),
872                            (unsigned long long)part_nr_sects_read(part) >> 1,
873                            disk_name(sgp, part->partno, buf));
874         disk_part_iter_exit(&piter);
875
876         return 0;
877 }
878
879 static const struct seq_operations partitions_op = {
880         .start  = show_partition_start,
881         .next   = disk_seqf_next,
882         .stop   = disk_seqf_stop,
883         .show   = show_partition
884 };
885
886 static int partitions_open(struct inode *inode, struct file *file)
887 {
888         return seq_open(file, &partitions_op);
889 }
890
891 static const struct file_operations proc_partitions_operations = {
892         .open           = partitions_open,
893         .read           = seq_read,
894         .llseek         = seq_lseek,
895         .release        = seq_release,
896 };
897 #endif
898
899
900 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
901 {
902         if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
903                 /* Make old-style 2.4 aliases work */
904                 request_module("block-major-%d", MAJOR(devt));
905         return NULL;
906 }
907
908 static int __init genhd_device_init(void)
909 {
910         int error;
911
912         block_class.dev_kobj = sysfs_dev_block_kobj;
913         error = class_register(&block_class);
914         if (unlikely(error))
915                 return error;
916         bdev_map = kobj_map_init(base_probe, &block_class_lock);
917         blk_dev_init();
918
919         register_blkdev(BLOCK_EXT_MAJOR, "blkext");
920
921         /* create top-level block dir */
922         if (!sysfs_deprecated)
923                 block_depr = kobject_create_and_add("block", NULL);
924         return 0;
925 }
926
927 subsys_initcall(genhd_device_init);
928
929 static ssize_t disk_range_show(struct device *dev,
930                                struct device_attribute *attr, char *buf)
931 {
932         struct gendisk *disk = dev_to_disk(dev);
933
934         return sprintf(buf, "%d\n", disk->minors);
935 }
936
937 static ssize_t disk_ext_range_show(struct device *dev,
938                                    struct device_attribute *attr, char *buf)
939 {
940         struct gendisk *disk = dev_to_disk(dev);
941
942         return sprintf(buf, "%d\n", disk_max_parts(disk));
943 }
944
945 static ssize_t disk_removable_show(struct device *dev,
946                                    struct device_attribute *attr, char *buf)
947 {
948         struct gendisk *disk = dev_to_disk(dev);
949
950         return sprintf(buf, "%d\n",
951                        (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
952 }
953
954 static ssize_t disk_ro_show(struct device *dev,
955                                    struct device_attribute *attr, char *buf)
956 {
957         struct gendisk *disk = dev_to_disk(dev);
958
959         return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
960 }
961
962 static ssize_t disk_capability_show(struct device *dev,
963                                     struct device_attribute *attr, char *buf)
964 {
965         struct gendisk *disk = dev_to_disk(dev);
966
967         return sprintf(buf, "%x\n", disk->flags);
968 }
969
970 static ssize_t disk_alignment_offset_show(struct device *dev,
971                                           struct device_attribute *attr,
972                                           char *buf)
973 {
974         struct gendisk *disk = dev_to_disk(dev);
975
976         return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
977 }
978
979 static ssize_t disk_discard_alignment_show(struct device *dev,
980                                            struct device_attribute *attr,
981                                            char *buf)
982 {
983         struct gendisk *disk = dev_to_disk(dev);
984
985         return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
986 }
987
988 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL);
989 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL);
990 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL);
991 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL);
992 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
993 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL);
994 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show,
995                    NULL);
996 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL);
997 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
998 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
999 #ifdef CONFIG_FAIL_MAKE_REQUEST
1000 static struct device_attribute dev_attr_fail =
1001         __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
1002 #endif
1003 #ifdef CONFIG_FAIL_IO_TIMEOUT
1004 static struct device_attribute dev_attr_fail_timeout =
1005         __ATTR(io-timeout-fail,  S_IRUGO|S_IWUSR, part_timeout_show,
1006                 part_timeout_store);
1007 #endif
1008
1009 static struct attribute *disk_attrs[] = {
1010         &dev_attr_range.attr,
1011         &dev_attr_ext_range.attr,
1012         &dev_attr_removable.attr,
1013         &dev_attr_ro.attr,
1014         &dev_attr_size.attr,
1015         &dev_attr_alignment_offset.attr,
1016         &dev_attr_discard_alignment.attr,
1017         &dev_attr_capability.attr,
1018         &dev_attr_stat.attr,
1019         &dev_attr_inflight.attr,
1020 #ifdef CONFIG_FAIL_MAKE_REQUEST
1021         &dev_attr_fail.attr,
1022 #endif
1023 #ifdef CONFIG_FAIL_IO_TIMEOUT
1024         &dev_attr_fail_timeout.attr,
1025 #endif
1026         NULL
1027 };
1028
1029 static struct attribute_group disk_attr_group = {
1030         .attrs = disk_attrs,
1031 };
1032
1033 static const struct attribute_group *disk_attr_groups[] = {
1034         &disk_attr_group,
1035         NULL
1036 };
1037
1038 /**
1039  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1040  * @disk: disk to replace part_tbl for
1041  * @new_ptbl: new part_tbl to install
1042  *
1043  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1044  * original ptbl is freed using RCU callback.
1045  *
1046  * LOCKING:
1047  * Matching bd_mutx locked.
1048  */
1049 static void disk_replace_part_tbl(struct gendisk *disk,
1050                                   struct disk_part_tbl *new_ptbl)
1051 {
1052         struct disk_part_tbl *old_ptbl = disk->part_tbl;
1053
1054         rcu_assign_pointer(disk->part_tbl, new_ptbl);
1055
1056         if (old_ptbl) {
1057                 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1058                 kfree_rcu(old_ptbl, rcu_head);
1059         }
1060 }
1061
1062 /**
1063  * disk_expand_part_tbl - expand disk->part_tbl
1064  * @disk: disk to expand part_tbl for
1065  * @partno: expand such that this partno can fit in
1066  *
1067  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1068  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1069  *
1070  * LOCKING:
1071  * Matching bd_mutex locked, might sleep.
1072  *
1073  * RETURNS:
1074  * 0 on success, -errno on failure.
1075  */
1076 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1077 {
1078         struct disk_part_tbl *old_ptbl = disk->part_tbl;
1079         struct disk_part_tbl *new_ptbl;
1080         int len = old_ptbl ? old_ptbl->len : 0;
1081         int target = partno + 1;
1082         size_t size;
1083         int i;
1084
1085         /* disk_max_parts() is zero during initialization, ignore if so */
1086         if (disk_max_parts(disk) && target > disk_max_parts(disk))
1087                 return -EINVAL;
1088
1089         if (target <= len)
1090                 return 0;
1091
1092         size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1093         new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1094         if (!new_ptbl)
1095                 return -ENOMEM;
1096
1097         new_ptbl->len = target;
1098
1099         for (i = 0; i < len; i++)
1100                 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1101
1102         disk_replace_part_tbl(disk, new_ptbl);
1103         return 0;
1104 }
1105
1106 static void disk_release(struct device *dev)
1107 {
1108         struct gendisk *disk = dev_to_disk(dev);
1109
1110         disk_release_events(disk);
1111         kfree(disk->random);
1112         disk_replace_part_tbl(disk, NULL);
1113         free_part_stats(&disk->part0);
1114         free_part_info(&disk->part0);
1115         if (disk->queue)
1116                 blk_put_queue(disk->queue);
1117         kfree(disk);
1118 }
1119 struct class block_class = {
1120         .name           = "block",
1121 };
1122
1123 static char *block_devnode(struct device *dev, umode_t *mode)
1124 {
1125         struct gendisk *disk = dev_to_disk(dev);
1126
1127         if (disk->devnode)
1128                 return disk->devnode(disk, mode);
1129         return NULL;
1130 }
1131
1132 static struct device_type disk_type = {
1133         .name           = "disk",
1134         .groups         = disk_attr_groups,
1135         .release        = disk_release,
1136         .devnode        = block_devnode,
1137 };
1138
1139 #ifdef CONFIG_PROC_FS
1140 /*
1141  * aggregate disk stat collector.  Uses the same stats that the sysfs
1142  * entries do, above, but makes them available through one seq_file.
1143  *
1144  * The output looks suspiciously like /proc/partitions with a bunch of
1145  * extra fields.
1146  */
1147 static int diskstats_show(struct seq_file *seqf, void *v)
1148 {
1149         struct gendisk *gp = v;
1150         struct disk_part_iter piter;
1151         struct hd_struct *hd;
1152         char buf[BDEVNAME_SIZE];
1153         int cpu;
1154
1155         /*
1156         if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1157                 seq_puts(seqf,  "major minor name"
1158                                 "     rio rmerge rsect ruse wio wmerge "
1159                                 "wsect wuse running use aveq"
1160                                 "\n\n");
1161         */
1162
1163         disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1164         while ((hd = disk_part_iter_next(&piter))) {
1165                 cpu = part_stat_lock();
1166                 part_round_stats(cpu, hd);
1167                 part_stat_unlock();
1168                 seq_printf(seqf, "%4d %7d %s %lu %lu %lu "
1169                            "%u %lu %lu %lu %u %u %u %u\n",
1170                            MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1171                            disk_name(gp, hd->partno, buf),
1172                            part_stat_read(hd, ios[READ]),
1173                            part_stat_read(hd, merges[READ]),
1174                            part_stat_read(hd, sectors[READ]),
1175                            jiffies_to_msecs(part_stat_read(hd, ticks[READ])),
1176                            part_stat_read(hd, ios[WRITE]),
1177                            part_stat_read(hd, merges[WRITE]),
1178                            part_stat_read(hd, sectors[WRITE]),
1179                            jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])),
1180                            part_in_flight(hd),
1181                            jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1182                            jiffies_to_msecs(part_stat_read(hd, time_in_queue))
1183                         );
1184         }
1185         disk_part_iter_exit(&piter);
1186
1187         return 0;
1188 }
1189
1190 static const struct seq_operations diskstats_op = {
1191         .start  = disk_seqf_start,
1192         .next   = disk_seqf_next,
1193         .stop   = disk_seqf_stop,
1194         .show   = diskstats_show
1195 };
1196
1197 static int diskstats_open(struct inode *inode, struct file *file)
1198 {
1199         return seq_open(file, &diskstats_op);
1200 }
1201
1202 static const struct file_operations proc_diskstats_operations = {
1203         .open           = diskstats_open,
1204         .read           = seq_read,
1205         .llseek         = seq_lseek,
1206         .release        = seq_release,
1207 };
1208
1209 static int __init proc_genhd_init(void)
1210 {
1211         proc_create("diskstats", 0, NULL, &proc_diskstats_operations);
1212         proc_create("partitions", 0, NULL, &proc_partitions_operations);
1213         return 0;
1214 }
1215 module_init(proc_genhd_init);
1216 #endif /* CONFIG_PROC_FS */
1217
1218 dev_t blk_lookup_devt(const char *name, int partno)
1219 {
1220         dev_t devt = MKDEV(0, 0);
1221         struct class_dev_iter iter;
1222         struct device *dev;
1223
1224         class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1225         while ((dev = class_dev_iter_next(&iter))) {
1226                 struct gendisk *disk = dev_to_disk(dev);
1227                 struct hd_struct *part;
1228
1229                 if (strcmp(dev_name(dev), name))
1230                         continue;
1231
1232                 if (partno < disk->minors) {
1233                         /* We need to return the right devno, even
1234                          * if the partition doesn't exist yet.
1235                          */
1236                         devt = MKDEV(MAJOR(dev->devt),
1237                                      MINOR(dev->devt) + partno);
1238                         break;
1239                 }
1240                 part = disk_get_part(disk, partno);
1241                 if (part) {
1242                         devt = part_devt(part);
1243                         disk_put_part(part);
1244                         break;
1245                 }
1246                 disk_put_part(part);
1247         }
1248         class_dev_iter_exit(&iter);
1249         return devt;
1250 }
1251 EXPORT_SYMBOL(blk_lookup_devt);
1252
1253 struct gendisk *alloc_disk(int minors)
1254 {
1255         return alloc_disk_node(minors, NUMA_NO_NODE);
1256 }
1257 EXPORT_SYMBOL(alloc_disk);
1258
1259 struct gendisk *alloc_disk_node(int minors, int node_id)
1260 {
1261         struct gendisk *disk;
1262
1263         disk = kmalloc_node(sizeof(struct gendisk),
1264                                 GFP_KERNEL | __GFP_ZERO, node_id);
1265         if (disk) {
1266                 if (!init_part_stats(&disk->part0)) {
1267                         kfree(disk);
1268                         return NULL;
1269                 }
1270                 disk->node_id = node_id;
1271                 if (disk_expand_part_tbl(disk, 0)) {
1272                         free_part_stats(&disk->part0);
1273                         kfree(disk);
1274                         return NULL;
1275                 }
1276                 disk->part_tbl->part[0] = &disk->part0;
1277
1278                 /*
1279                  * set_capacity() and get_capacity() currently don't use
1280                  * seqcounter to read/update the part0->nr_sects. Still init
1281                  * the counter as we can read the sectors in IO submission
1282                  * patch using seqence counters.
1283                  *
1284                  * TODO: Ideally set_capacity() and get_capacity() should be
1285                  * converted to make use of bd_mutex and sequence counters.
1286                  */
1287                 seqcount_init(&disk->part0.nr_sects_seq);
1288                 hd_ref_init(&disk->part0);
1289
1290                 disk->minors = minors;
1291                 rand_initialize_disk(disk);
1292                 disk_to_dev(disk)->class = &block_class;
1293                 disk_to_dev(disk)->type = &disk_type;
1294                 device_initialize(disk_to_dev(disk));
1295         }
1296         return disk;
1297 }
1298 EXPORT_SYMBOL(alloc_disk_node);
1299
1300 struct kobject *get_disk(struct gendisk *disk)
1301 {
1302         struct module *owner;
1303         struct kobject *kobj;
1304
1305         if (!disk->fops)
1306                 return NULL;
1307         owner = disk->fops->owner;
1308         if (owner && !try_module_get(owner))
1309                 return NULL;
1310         kobj = kobject_get(&disk_to_dev(disk)->kobj);
1311         if (kobj == NULL) {
1312                 module_put(owner);
1313                 return NULL;
1314         }
1315         return kobj;
1316
1317 }
1318
1319 EXPORT_SYMBOL(get_disk);
1320
1321 void put_disk(struct gendisk *disk)
1322 {
1323         if (disk)
1324                 kobject_put(&disk_to_dev(disk)->kobj);
1325 }
1326
1327 EXPORT_SYMBOL(put_disk);
1328
1329 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1330 {
1331         char event[] = "DISK_RO=1";
1332         char *envp[] = { event, NULL };
1333
1334         if (!ro)
1335                 event[8] = '0';
1336         kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1337 }
1338
1339 void set_device_ro(struct block_device *bdev, int flag)
1340 {
1341         bdev->bd_part->policy = flag;
1342 }
1343
1344 EXPORT_SYMBOL(set_device_ro);
1345
1346 void set_disk_ro(struct gendisk *disk, int flag)
1347 {
1348         struct disk_part_iter piter;
1349         struct hd_struct *part;
1350
1351         if (disk->part0.policy != flag) {
1352                 set_disk_ro_uevent(disk, flag);
1353                 disk->part0.policy = flag;
1354         }
1355
1356         disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1357         while ((part = disk_part_iter_next(&piter)))
1358                 part->policy = flag;
1359         disk_part_iter_exit(&piter);
1360 }
1361
1362 EXPORT_SYMBOL(set_disk_ro);
1363
1364 int bdev_read_only(struct block_device *bdev)
1365 {
1366         if (!bdev)
1367                 return 0;
1368         return bdev->bd_part->policy;
1369 }
1370
1371 EXPORT_SYMBOL(bdev_read_only);
1372
1373 int invalidate_partition(struct gendisk *disk, int partno)
1374 {
1375         int res = 0;
1376         struct block_device *bdev = bdget_disk(disk, partno);
1377         if (bdev) {
1378                 fsync_bdev(bdev);
1379                 res = __invalidate_device(bdev, true);
1380                 bdput(bdev);
1381         }
1382         return res;
1383 }
1384
1385 EXPORT_SYMBOL(invalidate_partition);
1386
1387 /*
1388  * Disk events - monitor disk events like media change and eject request.
1389  */
1390 struct disk_events {
1391         struct list_head        node;           /* all disk_event's */
1392         struct gendisk          *disk;          /* the associated disk */
1393         spinlock_t              lock;
1394
1395         struct mutex            block_mutex;    /* protects blocking */
1396         int                     block;          /* event blocking depth */
1397         unsigned int            pending;        /* events already sent out */
1398         unsigned int            clearing;       /* events being cleared */
1399
1400         long                    poll_msecs;     /* interval, -1 for default */
1401         struct delayed_work     dwork;
1402 };
1403
1404 static const char *disk_events_strs[] = {
1405         [ilog2(DISK_EVENT_MEDIA_CHANGE)]        = "media_change",
1406         [ilog2(DISK_EVENT_EJECT_REQUEST)]       = "eject_request",
1407 };
1408
1409 static char *disk_uevents[] = {
1410         [ilog2(DISK_EVENT_MEDIA_CHANGE)]        = "DISK_MEDIA_CHANGE=1",
1411         [ilog2(DISK_EVENT_EJECT_REQUEST)]       = "DISK_EJECT_REQUEST=1",
1412 };
1413
1414 /* list of all disk_events */
1415 static DEFINE_MUTEX(disk_events_mutex);
1416 static LIST_HEAD(disk_events);
1417
1418 /* disable in-kernel polling by default */
1419 static unsigned long disk_events_dfl_poll_msecs = 0;
1420
1421 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1422 {
1423         struct disk_events *ev = disk->ev;
1424         long intv_msecs = 0;
1425
1426         /*
1427          * If device-specific poll interval is set, always use it.  If
1428          * the default is being used, poll iff there are events which
1429          * can't be monitored asynchronously.
1430          */
1431         if (ev->poll_msecs >= 0)
1432                 intv_msecs = ev->poll_msecs;
1433         else if (disk->events & ~disk->async_events)
1434                 intv_msecs = disk_events_dfl_poll_msecs;
1435
1436         return msecs_to_jiffies(intv_msecs);
1437 }
1438
1439 /**
1440  * disk_block_events - block and flush disk event checking
1441  * @disk: disk to block events for
1442  *
1443  * On return from this function, it is guaranteed that event checking
1444  * isn't in progress and won't happen until unblocked by
1445  * disk_unblock_events().  Events blocking is counted and the actual
1446  * unblocking happens after the matching number of unblocks are done.
1447  *
1448  * Note that this intentionally does not block event checking from
1449  * disk_clear_events().
1450  *
1451  * CONTEXT:
1452  * Might sleep.
1453  */
1454 void disk_block_events(struct gendisk *disk)
1455 {
1456         struct disk_events *ev = disk->ev;
1457         unsigned long flags;
1458         bool cancel;
1459
1460         if (!ev)
1461                 return;
1462
1463         /*
1464          * Outer mutex ensures that the first blocker completes canceling
1465          * the event work before further blockers are allowed to finish.
1466          */
1467         mutex_lock(&ev->block_mutex);
1468
1469         spin_lock_irqsave(&ev->lock, flags);
1470         cancel = !ev->block++;
1471         spin_unlock_irqrestore(&ev->lock, flags);
1472
1473         if (cancel)
1474                 cancel_delayed_work_sync(&disk->ev->dwork);
1475
1476         mutex_unlock(&ev->block_mutex);
1477 }
1478
1479 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1480 {
1481         struct disk_events *ev = disk->ev;
1482         unsigned long intv;
1483         unsigned long flags;
1484
1485         spin_lock_irqsave(&ev->lock, flags);
1486
1487         if (WARN_ON_ONCE(ev->block <= 0))
1488                 goto out_unlock;
1489
1490         if (--ev->block)
1491                 goto out_unlock;
1492
1493         /*
1494          * Not exactly a latency critical operation, set poll timer
1495          * slack to 25% and kick event check.
1496          */
1497         intv = disk_events_poll_jiffies(disk);
1498         set_timer_slack(&ev->dwork.timer, intv / 4);
1499         if (check_now)
1500                 queue_delayed_work(system_freezable_wq, &ev->dwork, 0);
1501         else if (intv)
1502                 queue_delayed_work(system_freezable_wq, &ev->dwork, intv);
1503 out_unlock:
1504         spin_unlock_irqrestore(&ev->lock, flags);
1505 }
1506
1507 /**
1508  * disk_unblock_events - unblock disk event checking
1509  * @disk: disk to unblock events for
1510  *
1511  * Undo disk_block_events().  When the block count reaches zero, it
1512  * starts events polling if configured.
1513  *
1514  * CONTEXT:
1515  * Don't care.  Safe to call from irq context.
1516  */
1517 void disk_unblock_events(struct gendisk *disk)
1518 {
1519         if (disk->ev)
1520                 __disk_unblock_events(disk, false);
1521 }
1522
1523 /**
1524  * disk_flush_events - schedule immediate event checking and flushing
1525  * @disk: disk to check and flush events for
1526  * @mask: events to flush
1527  *
1528  * Schedule immediate event checking on @disk if not blocked.  Events in
1529  * @mask are scheduled to be cleared from the driver.  Note that this
1530  * doesn't clear the events from @disk->ev.
1531  *
1532  * CONTEXT:
1533  * If @mask is non-zero must be called with bdev->bd_mutex held.
1534  */
1535 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1536 {
1537         struct disk_events *ev = disk->ev;
1538
1539         if (!ev)
1540                 return;
1541
1542         spin_lock_irq(&ev->lock);
1543         ev->clearing |= mask;
1544         if (!ev->block)
1545                 mod_delayed_work(system_freezable_wq, &ev->dwork, 0);
1546         spin_unlock_irq(&ev->lock);
1547 }
1548
1549 /**
1550  * disk_clear_events - synchronously check, clear and return pending events
1551  * @disk: disk to fetch and clear events from
1552  * @mask: mask of events to be fetched and clearted
1553  *
1554  * Disk events are synchronously checked and pending events in @mask
1555  * are cleared and returned.  This ignores the block count.
1556  *
1557  * CONTEXT:
1558  * Might sleep.
1559  */
1560 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1561 {
1562         const struct block_device_operations *bdops = disk->fops;
1563         struct disk_events *ev = disk->ev;
1564         unsigned int pending;
1565         unsigned int clearing = mask;
1566
1567         if (!ev) {
1568                 /* for drivers still using the old ->media_changed method */
1569                 if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1570                     bdops->media_changed && bdops->media_changed(disk))
1571                         return DISK_EVENT_MEDIA_CHANGE;
1572                 return 0;
1573         }
1574
1575         disk_block_events(disk);
1576
1577         /*
1578          * store the union of mask and ev->clearing on the stack so that the
1579          * race with disk_flush_events does not cause ambiguity (ev->clearing
1580          * can still be modified even if events are blocked).
1581          */
1582         spin_lock_irq(&ev->lock);
1583         clearing |= ev->clearing;
1584         ev->clearing = 0;
1585         spin_unlock_irq(&ev->lock);
1586
1587         disk_check_events(ev, &clearing);
1588         /*
1589          * if ev->clearing is not 0, the disk_flush_events got called in the
1590          * middle of this function, so we want to run the workfn without delay.
1591          */
1592         __disk_unblock_events(disk, ev->clearing ? true : false);
1593
1594         /* then, fetch and clear pending events */
1595         spin_lock_irq(&ev->lock);
1596         pending = ev->pending & mask;
1597         ev->pending &= ~mask;
1598         spin_unlock_irq(&ev->lock);
1599         WARN_ON_ONCE(clearing & mask);
1600
1601         return pending;
1602 }
1603
1604 /*
1605  * Separate this part out so that a different pointer for clearing_ptr can be
1606  * passed in for disk_clear_events.
1607  */
1608 static void disk_events_workfn(struct work_struct *work)
1609 {
1610         struct delayed_work *dwork = to_delayed_work(work);
1611         struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1612
1613         disk_check_events(ev, &ev->clearing);
1614 }
1615
1616 static void disk_check_events(struct disk_events *ev,
1617                               unsigned int *clearing_ptr)
1618 {
1619         struct gendisk *disk = ev->disk;
1620         char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1621         unsigned int clearing = *clearing_ptr;
1622         unsigned int events;
1623         unsigned long intv;
1624         int nr_events = 0, i;
1625
1626         /* check events */
1627         events = disk->fops->check_events(disk, clearing);
1628
1629         /* accumulate pending events and schedule next poll if necessary */
1630         spin_lock_irq(&ev->lock);
1631
1632         events &= ~ev->pending;
1633         ev->pending |= events;
1634         *clearing_ptr &= ~clearing;
1635
1636         intv = disk_events_poll_jiffies(disk);
1637         if (!ev->block && intv)
1638                 queue_delayed_work(system_freezable_wq, &ev->dwork, intv);
1639
1640         spin_unlock_irq(&ev->lock);
1641
1642         /*
1643          * Tell userland about new events.  Only the events listed in
1644          * @disk->events are reported.  Unlisted events are processed the
1645          * same internally but never get reported to userland.
1646          */
1647         for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1648                 if (events & disk->events & (1 << i))
1649                         envp[nr_events++] = disk_uevents[i];
1650
1651         if (nr_events)
1652                 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1653 }
1654
1655 /*
1656  * A disk events enabled device has the following sysfs nodes under
1657  * its /sys/block/X/ directory.
1658  *
1659  * events               : list of all supported events
1660  * events_async         : list of events which can be detected w/o polling
1661  * events_poll_msecs    : polling interval, 0: disable, -1: system default
1662  */
1663 static ssize_t __disk_events_show(unsigned int events, char *buf)
1664 {
1665         const char *delim = "";
1666         ssize_t pos = 0;
1667         int i;
1668
1669         for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1670                 if (events & (1 << i)) {
1671                         pos += sprintf(buf + pos, "%s%s",
1672                                        delim, disk_events_strs[i]);
1673                         delim = " ";
1674                 }
1675         if (pos)
1676                 pos += sprintf(buf + pos, "\n");
1677         return pos;
1678 }
1679
1680 static ssize_t disk_events_show(struct device *dev,
1681                                 struct device_attribute *attr, char *buf)
1682 {
1683         struct gendisk *disk = dev_to_disk(dev);
1684
1685         return __disk_events_show(disk->events, buf);
1686 }
1687
1688 static ssize_t disk_events_async_show(struct device *dev,
1689                                       struct device_attribute *attr, char *buf)
1690 {
1691         struct gendisk *disk = dev_to_disk(dev);
1692
1693         return __disk_events_show(disk->async_events, buf);
1694 }
1695
1696 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1697                                            struct device_attribute *attr,
1698                                            char *buf)
1699 {
1700         struct gendisk *disk = dev_to_disk(dev);
1701
1702         return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1703 }
1704
1705 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1706                                             struct device_attribute *attr,
1707                                             const char *buf, size_t count)
1708 {
1709         struct gendisk *disk = dev_to_disk(dev);
1710         long intv;
1711
1712         if (!count || !sscanf(buf, "%ld", &intv))
1713                 return -EINVAL;
1714
1715         if (intv < 0 && intv != -1)
1716                 return -EINVAL;
1717
1718         disk_block_events(disk);
1719         disk->ev->poll_msecs = intv;
1720         __disk_unblock_events(disk, true);
1721
1722         return count;
1723 }
1724
1725 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL);
1726 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL);
1727 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR,
1728                          disk_events_poll_msecs_show,
1729                          disk_events_poll_msecs_store);
1730
1731 static const struct attribute *disk_events_attrs[] = {
1732         &dev_attr_events.attr,
1733         &dev_attr_events_async.attr,
1734         &dev_attr_events_poll_msecs.attr,
1735         NULL,
1736 };
1737
1738 /*
1739  * The default polling interval can be specified by the kernel
1740  * parameter block.events_dfl_poll_msecs which defaults to 0
1741  * (disable).  This can also be modified runtime by writing to
1742  * /sys/module/block/events_dfl_poll_msecs.
1743  */
1744 static int disk_events_set_dfl_poll_msecs(const char *val,
1745                                           const struct kernel_param *kp)
1746 {
1747         struct disk_events *ev;
1748         int ret;
1749
1750         ret = param_set_ulong(val, kp);
1751         if (ret < 0)
1752                 return ret;
1753
1754         mutex_lock(&disk_events_mutex);
1755
1756         list_for_each_entry(ev, &disk_events, node)
1757                 disk_flush_events(ev->disk, 0);
1758
1759         mutex_unlock(&disk_events_mutex);
1760
1761         return 0;
1762 }
1763
1764 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1765         .set    = disk_events_set_dfl_poll_msecs,
1766         .get    = param_get_ulong,
1767 };
1768
1769 #undef MODULE_PARAM_PREFIX
1770 #define MODULE_PARAM_PREFIX     "block."
1771
1772 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1773                 &disk_events_dfl_poll_msecs, 0644);
1774
1775 /*
1776  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1777  */
1778 static void disk_alloc_events(struct gendisk *disk)
1779 {
1780         struct disk_events *ev;
1781
1782         if (!disk->fops->check_events)
1783                 return;
1784
1785         ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1786         if (!ev) {
1787                 pr_warn("%s: failed to initialize events\n", disk->disk_name);
1788                 return;
1789         }
1790
1791         INIT_LIST_HEAD(&ev->node);
1792         ev->disk = disk;
1793         spin_lock_init(&ev->lock);
1794         mutex_init(&ev->block_mutex);
1795         ev->block = 1;
1796         ev->poll_msecs = -1;
1797         INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
1798
1799         disk->ev = ev;
1800 }
1801
1802 static void disk_add_events(struct gendisk *disk)
1803 {
1804         if (!disk->ev)
1805                 return;
1806
1807         /* FIXME: error handling */
1808         if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
1809                 pr_warn("%s: failed to create sysfs files for events\n",
1810                         disk->disk_name);
1811
1812         mutex_lock(&disk_events_mutex);
1813         list_add_tail(&disk->ev->node, &disk_events);
1814         mutex_unlock(&disk_events_mutex);
1815
1816         /*
1817          * Block count is initialized to 1 and the following initial
1818          * unblock kicks it into action.
1819          */
1820         __disk_unblock_events(disk, true);
1821 }
1822
1823 static void disk_del_events(struct gendisk *disk)
1824 {
1825         if (!disk->ev)
1826                 return;
1827
1828         disk_block_events(disk);
1829
1830         mutex_lock(&disk_events_mutex);
1831         list_del_init(&disk->ev->node);
1832         mutex_unlock(&disk_events_mutex);
1833
1834         sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
1835 }
1836
1837 static void disk_release_events(struct gendisk *disk)
1838 {
1839         /* the block count should be 1 from disk_del_events() */
1840         WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
1841         kfree(disk->ev);
1842 }