]> git.karo-electronics.de Git - karo-tx-linux.git/blob - block/partition-generic.c
Linux 4.12-rc4
[karo-tx-linux.git] / block / partition-generic.c
1 /*
2  *  Code extracted from drivers/block/genhd.c
3  *  Copyright (C) 1991-1998  Linus Torvalds
4  *  Re-organised Feb 1998 Russell King
5  *
6  *  We now have independent partition support from the
7  *  block drivers, which allows all the partition code to
8  *  be grouped in one location, and it to be mostly self
9  *  contained.
10  */
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/ctype.h>
18 #include <linux/genhd.h>
19 #include <linux/blktrace_api.h>
20
21 #include "partitions/check.h"
22
23 #ifdef CONFIG_BLK_DEV_MD
24 extern void md_autodetect_dev(dev_t dev);
25 #endif
26  
27 /*
28  * disk_name() is used by partition check code and the genhd driver.
29  * It formats the devicename of the indicated disk into
30  * the supplied buffer (of size at least 32), and returns
31  * a pointer to that same buffer (for convenience).
32  */
33
34 char *disk_name(struct gendisk *hd, int partno, char *buf)
35 {
36         if (!partno)
37                 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
38         else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
39                 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
40         else
41                 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
42
43         return buf;
44 }
45
46 const char *bdevname(struct block_device *bdev, char *buf)
47 {
48         return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
49 }
50
51 EXPORT_SYMBOL(bdevname);
52
53 /*
54  * There's very little reason to use this, you should really
55  * have a struct block_device just about everywhere and use
56  * bdevname() instead.
57  */
58 const char *__bdevname(dev_t dev, char *buffer)
59 {
60         scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
61                                 MAJOR(dev), MINOR(dev));
62         return buffer;
63 }
64
65 EXPORT_SYMBOL(__bdevname);
66
67 static ssize_t part_partition_show(struct device *dev,
68                                    struct device_attribute *attr, char *buf)
69 {
70         struct hd_struct *p = dev_to_part(dev);
71
72         return sprintf(buf, "%d\n", p->partno);
73 }
74
75 static ssize_t part_start_show(struct device *dev,
76                                struct device_attribute *attr, char *buf)
77 {
78         struct hd_struct *p = dev_to_part(dev);
79
80         return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
81 }
82
83 ssize_t part_size_show(struct device *dev,
84                        struct device_attribute *attr, char *buf)
85 {
86         struct hd_struct *p = dev_to_part(dev);
87         return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
88 }
89
90 static ssize_t part_ro_show(struct device *dev,
91                             struct device_attribute *attr, char *buf)
92 {
93         struct hd_struct *p = dev_to_part(dev);
94         return sprintf(buf, "%d\n", p->policy ? 1 : 0);
95 }
96
97 static ssize_t part_alignment_offset_show(struct device *dev,
98                                           struct device_attribute *attr, char *buf)
99 {
100         struct hd_struct *p = dev_to_part(dev);
101         return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
102 }
103
104 static ssize_t part_discard_alignment_show(struct device *dev,
105                                            struct device_attribute *attr, char *buf)
106 {
107         struct hd_struct *p = dev_to_part(dev);
108         return sprintf(buf, "%u\n", p->discard_alignment);
109 }
110
111 ssize_t part_stat_show(struct device *dev,
112                        struct device_attribute *attr, char *buf)
113 {
114         struct hd_struct *p = dev_to_part(dev);
115         int cpu;
116
117         cpu = part_stat_lock();
118         part_round_stats(cpu, p);
119         part_stat_unlock();
120         return sprintf(buf,
121                 "%8lu %8lu %8llu %8u "
122                 "%8lu %8lu %8llu %8u "
123                 "%8u %8u %8u"
124                 "\n",
125                 part_stat_read(p, ios[READ]),
126                 part_stat_read(p, merges[READ]),
127                 (unsigned long long)part_stat_read(p, sectors[READ]),
128                 jiffies_to_msecs(part_stat_read(p, ticks[READ])),
129                 part_stat_read(p, ios[WRITE]),
130                 part_stat_read(p, merges[WRITE]),
131                 (unsigned long long)part_stat_read(p, sectors[WRITE]),
132                 jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
133                 part_in_flight(p),
134                 jiffies_to_msecs(part_stat_read(p, io_ticks)),
135                 jiffies_to_msecs(part_stat_read(p, time_in_queue)));
136 }
137
138 ssize_t part_inflight_show(struct device *dev,
139                         struct device_attribute *attr, char *buf)
140 {
141         struct hd_struct *p = dev_to_part(dev);
142
143         return sprintf(buf, "%8u %8u\n", atomic_read(&p->in_flight[0]),
144                 atomic_read(&p->in_flight[1]));
145 }
146
147 #ifdef CONFIG_FAIL_MAKE_REQUEST
148 ssize_t part_fail_show(struct device *dev,
149                        struct device_attribute *attr, char *buf)
150 {
151         struct hd_struct *p = dev_to_part(dev);
152
153         return sprintf(buf, "%d\n", p->make_it_fail);
154 }
155
156 ssize_t part_fail_store(struct device *dev,
157                         struct device_attribute *attr,
158                         const char *buf, size_t count)
159 {
160         struct hd_struct *p = dev_to_part(dev);
161         int i;
162
163         if (count > 0 && sscanf(buf, "%d", &i) > 0)
164                 p->make_it_fail = (i == 0) ? 0 : 1;
165
166         return count;
167 }
168 #endif
169
170 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
171 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
172 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
173 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
174 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
175 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
176                    NULL);
177 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
178 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
179 #ifdef CONFIG_FAIL_MAKE_REQUEST
180 static struct device_attribute dev_attr_fail =
181         __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
182 #endif
183
184 static struct attribute *part_attrs[] = {
185         &dev_attr_partition.attr,
186         &dev_attr_start.attr,
187         &dev_attr_size.attr,
188         &dev_attr_ro.attr,
189         &dev_attr_alignment_offset.attr,
190         &dev_attr_discard_alignment.attr,
191         &dev_attr_stat.attr,
192         &dev_attr_inflight.attr,
193 #ifdef CONFIG_FAIL_MAKE_REQUEST
194         &dev_attr_fail.attr,
195 #endif
196         NULL
197 };
198
199 static struct attribute_group part_attr_group = {
200         .attrs = part_attrs,
201 };
202
203 static const struct attribute_group *part_attr_groups[] = {
204         &part_attr_group,
205 #ifdef CONFIG_BLK_DEV_IO_TRACE
206         &blk_trace_attr_group,
207 #endif
208         NULL
209 };
210
211 static void part_release(struct device *dev)
212 {
213         struct hd_struct *p = dev_to_part(dev);
214         blk_free_devt(dev->devt);
215         hd_free_part(p);
216         kfree(p);
217 }
218
219 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
220 {
221         struct hd_struct *part = dev_to_part(dev);
222
223         add_uevent_var(env, "PARTN=%u", part->partno);
224         if (part->info && part->info->volname[0])
225                 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
226         return 0;
227 }
228
229 struct device_type part_type = {
230         .name           = "partition",
231         .groups         = part_attr_groups,
232         .release        = part_release,
233         .uevent         = part_uevent,
234 };
235
236 static void delete_partition_rcu_cb(struct rcu_head *head)
237 {
238         struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
239
240         part->start_sect = 0;
241         part->nr_sects = 0;
242         part_stat_set_all(part, 0);
243         put_device(part_to_dev(part));
244 }
245
246 void __delete_partition(struct percpu_ref *ref)
247 {
248         struct hd_struct *part = container_of(ref, struct hd_struct, ref);
249         call_rcu(&part->rcu_head, delete_partition_rcu_cb);
250 }
251
252 void delete_partition(struct gendisk *disk, int partno)
253 {
254         struct disk_part_tbl *ptbl = disk->part_tbl;
255         struct hd_struct *part;
256
257         if (partno >= ptbl->len)
258                 return;
259
260         part = ptbl->part[partno];
261         if (!part)
262                 return;
263
264         rcu_assign_pointer(ptbl->part[partno], NULL);
265         rcu_assign_pointer(ptbl->last_lookup, NULL);
266         kobject_put(part->holder_dir);
267         device_del(part_to_dev(part));
268
269         hd_struct_kill(part);
270 }
271
272 static ssize_t whole_disk_show(struct device *dev,
273                                struct device_attribute *attr, char *buf)
274 {
275         return 0;
276 }
277 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
278                    whole_disk_show, NULL);
279
280 struct hd_struct *add_partition(struct gendisk *disk, int partno,
281                                 sector_t start, sector_t len, int flags,
282                                 struct partition_meta_info *info)
283 {
284         struct hd_struct *p;
285         dev_t devt = MKDEV(0, 0);
286         struct device *ddev = disk_to_dev(disk);
287         struct device *pdev;
288         struct disk_part_tbl *ptbl;
289         const char *dname;
290         int err;
291
292         err = disk_expand_part_tbl(disk, partno);
293         if (err)
294                 return ERR_PTR(err);
295         ptbl = disk->part_tbl;
296
297         if (ptbl->part[partno])
298                 return ERR_PTR(-EBUSY);
299
300         p = kzalloc(sizeof(*p), GFP_KERNEL);
301         if (!p)
302                 return ERR_PTR(-EBUSY);
303
304         if (!init_part_stats(p)) {
305                 err = -ENOMEM;
306                 goto out_free;
307         }
308
309         seqcount_init(&p->nr_sects_seq);
310         pdev = part_to_dev(p);
311
312         p->start_sect = start;
313         p->alignment_offset =
314                 queue_limit_alignment_offset(&disk->queue->limits, start);
315         p->discard_alignment =
316                 queue_limit_discard_alignment(&disk->queue->limits, start);
317         p->nr_sects = len;
318         p->partno = partno;
319         p->policy = get_disk_ro(disk);
320
321         if (info) {
322                 struct partition_meta_info *pinfo = alloc_part_info(disk);
323                 if (!pinfo) {
324                         err = -ENOMEM;
325                         goto out_free_stats;
326                 }
327                 memcpy(pinfo, info, sizeof(*info));
328                 p->info = pinfo;
329         }
330
331         dname = dev_name(ddev);
332         if (isdigit(dname[strlen(dname) - 1]))
333                 dev_set_name(pdev, "%sp%d", dname, partno);
334         else
335                 dev_set_name(pdev, "%s%d", dname, partno);
336
337         device_initialize(pdev);
338         pdev->class = &block_class;
339         pdev->type = &part_type;
340         pdev->parent = ddev;
341
342         err = blk_alloc_devt(p, &devt);
343         if (err)
344                 goto out_free_info;
345         pdev->devt = devt;
346
347         /* delay uevent until 'holders' subdir is created */
348         dev_set_uevent_suppress(pdev, 1);
349         err = device_add(pdev);
350         if (err)
351                 goto out_put;
352
353         err = -ENOMEM;
354         p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
355         if (!p->holder_dir)
356                 goto out_del;
357
358         dev_set_uevent_suppress(pdev, 0);
359         if (flags & ADDPART_FLAG_WHOLEDISK) {
360                 err = device_create_file(pdev, &dev_attr_whole_disk);
361                 if (err)
362                         goto out_del;
363         }
364
365         err = hd_ref_init(p);
366         if (err) {
367                 if (flags & ADDPART_FLAG_WHOLEDISK)
368                         goto out_remove_file;
369                 goto out_del;
370         }
371
372         /* everything is up and running, commence */
373         rcu_assign_pointer(ptbl->part[partno], p);
374
375         /* suppress uevent if the disk suppresses it */
376         if (!dev_get_uevent_suppress(ddev))
377                 kobject_uevent(&pdev->kobj, KOBJ_ADD);
378         return p;
379
380 out_free_info:
381         free_part_info(p);
382 out_free_stats:
383         free_part_stats(p);
384 out_free:
385         kfree(p);
386         return ERR_PTR(err);
387 out_remove_file:
388         device_remove_file(pdev, &dev_attr_whole_disk);
389 out_del:
390         kobject_put(p->holder_dir);
391         device_del(pdev);
392 out_put:
393         put_device(pdev);
394         blk_free_devt(devt);
395         return ERR_PTR(err);
396 }
397
398 static bool disk_unlock_native_capacity(struct gendisk *disk)
399 {
400         const struct block_device_operations *bdops = disk->fops;
401
402         if (bdops->unlock_native_capacity &&
403             !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
404                 printk(KERN_CONT "enabling native capacity\n");
405                 bdops->unlock_native_capacity(disk);
406                 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
407                 return true;
408         } else {
409                 printk(KERN_CONT "truncated\n");
410                 return false;
411         }
412 }
413
414 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
415 {
416         struct disk_part_iter piter;
417         struct hd_struct *part;
418         int res;
419
420         if (bdev->bd_part_count || bdev->bd_super)
421                 return -EBUSY;
422         res = invalidate_partition(disk, 0);
423         if (res)
424                 return res;
425
426         disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
427         while ((part = disk_part_iter_next(&piter)))
428                 delete_partition(disk, part->partno);
429         disk_part_iter_exit(&piter);
430
431         return 0;
432 }
433
434 static bool part_zone_aligned(struct gendisk *disk,
435                               struct block_device *bdev,
436                               sector_t from, sector_t size)
437 {
438         unsigned int zone_sectors = bdev_zone_sectors(bdev);
439
440         /*
441          * If this function is called, then the disk is a zoned block device
442          * (host-aware or host-managed). This can be detected even if the
443          * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
444          * set). In this case, however, only host-aware devices will be seen
445          * as a block device is not created for host-managed devices. Without
446          * zoned block device support, host-aware drives can still be used as
447          * regular block devices (no zone operation) and their zone size will
448          * be reported as 0. Allow this case.
449          */
450         if (!zone_sectors)
451                 return true;
452
453         /*
454          * Check partition start and size alignement. If the drive has a
455          * smaller last runt zone, ignore it and allow the partition to
456          * use it. Check the zone size too: it should be a power of 2 number
457          * of sectors.
458          */
459         if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
460                 u32 rem;
461
462                 div_u64_rem(from, zone_sectors, &rem);
463                 if (rem)
464                         return false;
465                 if ((from + size) < get_capacity(disk)) {
466                         div_u64_rem(size, zone_sectors, &rem);
467                         if (rem)
468                                 return false;
469                 }
470
471         } else {
472
473                 if (from & (zone_sectors - 1))
474                         return false;
475                 if ((from + size) < get_capacity(disk) &&
476                     (size & (zone_sectors - 1)))
477                         return false;
478
479         }
480
481         return true;
482 }
483
484 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
485 {
486         struct parsed_partitions *state = NULL;
487         struct hd_struct *part;
488         int p, highest, res;
489 rescan:
490         if (state && !IS_ERR(state)) {
491                 free_partitions(state);
492                 state = NULL;
493         }
494
495         res = drop_partitions(disk, bdev);
496         if (res)
497                 return res;
498
499         if (disk->fops->revalidate_disk)
500                 disk->fops->revalidate_disk(disk);
501         check_disk_size_change(disk, bdev);
502         bdev->bd_invalidated = 0;
503         if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
504                 return 0;
505         if (IS_ERR(state)) {
506                 /*
507                  * I/O error reading the partition table.  If any
508                  * partition code tried to read beyond EOD, retry
509                  * after unlocking native capacity.
510                  */
511                 if (PTR_ERR(state) == -ENOSPC) {
512                         printk(KERN_WARNING "%s: partition table beyond EOD, ",
513                                disk->disk_name);
514                         if (disk_unlock_native_capacity(disk))
515                                 goto rescan;
516                 }
517                 return -EIO;
518         }
519         /*
520          * If any partition code tried to read beyond EOD, try
521          * unlocking native capacity even if partition table is
522          * successfully read as we could be missing some partitions.
523          */
524         if (state->access_beyond_eod) {
525                 printk(KERN_WARNING
526                        "%s: partition table partially beyond EOD, ",
527                        disk->disk_name);
528                 if (disk_unlock_native_capacity(disk))
529                         goto rescan;
530         }
531
532         /* tell userspace that the media / partition table may have changed */
533         kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
534
535         /* Detect the highest partition number and preallocate
536          * disk->part_tbl.  This is an optimization and not strictly
537          * necessary.
538          */
539         for (p = 1, highest = 0; p < state->limit; p++)
540                 if (state->parts[p].size)
541                         highest = p;
542
543         disk_expand_part_tbl(disk, highest);
544
545         /* add partitions */
546         for (p = 1; p < state->limit; p++) {
547                 sector_t size, from;
548
549                 size = state->parts[p].size;
550                 if (!size)
551                         continue;
552
553                 from = state->parts[p].from;
554                 if (from >= get_capacity(disk)) {
555                         printk(KERN_WARNING
556                                "%s: p%d start %llu is beyond EOD, ",
557                                disk->disk_name, p, (unsigned long long) from);
558                         if (disk_unlock_native_capacity(disk))
559                                 goto rescan;
560                         continue;
561                 }
562
563                 if (from + size > get_capacity(disk)) {
564                         printk(KERN_WARNING
565                                "%s: p%d size %llu extends beyond EOD, ",
566                                disk->disk_name, p, (unsigned long long) size);
567
568                         if (disk_unlock_native_capacity(disk)) {
569                                 /* free state and restart */
570                                 goto rescan;
571                         } else {
572                                 /*
573                                  * we can not ignore partitions of broken tables
574                                  * created by for example camera firmware, but
575                                  * we limit them to the end of the disk to avoid
576                                  * creating invalid block devices
577                                  */
578                                 size = get_capacity(disk) - from;
579                         }
580                 }
581
582                 /*
583                  * On a zoned block device, partitions should be aligned on the
584                  * device zone size (i.e. zone boundary crossing not allowed).
585                  * Otherwise, resetting the write pointer of the last zone of
586                  * one partition may impact the following partition.
587                  */
588                 if (bdev_is_zoned(bdev) &&
589                     !part_zone_aligned(disk, bdev, from, size)) {
590                         printk(KERN_WARNING
591                                "%s: p%d start %llu+%llu is not zone aligned\n",
592                                disk->disk_name, p, (unsigned long long) from,
593                                (unsigned long long) size);
594                         continue;
595                 }
596
597                 part = add_partition(disk, p, from, size,
598                                      state->parts[p].flags,
599                                      &state->parts[p].info);
600                 if (IS_ERR(part)) {
601                         printk(KERN_ERR " %s: p%d could not be added: %ld\n",
602                                disk->disk_name, p, -PTR_ERR(part));
603                         continue;
604                 }
605 #ifdef CONFIG_BLK_DEV_MD
606                 if (state->parts[p].flags & ADDPART_FLAG_RAID)
607                         md_autodetect_dev(part_to_dev(part)->devt);
608 #endif
609         }
610         free_partitions(state);
611         return 0;
612 }
613
614 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
615 {
616         int res;
617
618         if (!bdev->bd_invalidated)
619                 return 0;
620
621         res = drop_partitions(disk, bdev);
622         if (res)
623                 return res;
624
625         set_capacity(disk, 0);
626         check_disk_size_change(disk, bdev);
627         bdev->bd_invalidated = 0;
628         /* tell userspace that the media / partition table may have changed */
629         kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
630
631         return 0;
632 }
633
634 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
635 {
636         struct address_space *mapping = bdev->bd_inode->i_mapping;
637         struct page *page;
638
639         page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
640         if (!IS_ERR(page)) {
641                 if (PageError(page))
642                         goto fail;
643                 p->v = page;
644                 return (unsigned char *)page_address(page) +  ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
645 fail:
646                 put_page(page);
647         }
648         p->v = NULL;
649         return NULL;
650 }
651
652 EXPORT_SYMBOL(read_dev_sector);