]> git.karo-electronics.de Git - karo-tx-linux.git/blob - crypto/Kconfig
7c0a4c5de07599c9c2666b1a70e22e3d4bdcce17
[karo-tx-linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5         tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16         tristate "Cryptographic API"
17         help
18           This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25         bool "FIPS 200 compliance"
26         depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
27         help
28           This options enables the fips boot option which is
29           required if you want to system to operate in a FIPS 200
30           certification.  You should say no unless you know what
31           this is.
32
33 config CRYPTO_ALGAPI
34         tristate
35         select CRYPTO_ALGAPI2
36         help
37           This option provides the API for cryptographic algorithms.
38
39 config CRYPTO_ALGAPI2
40         tristate
41
42 config CRYPTO_AEAD
43         tristate
44         select CRYPTO_AEAD2
45         select CRYPTO_ALGAPI
46
47 config CRYPTO_AEAD2
48         tristate
49         select CRYPTO_ALGAPI2
50
51 config CRYPTO_BLKCIPHER
52         tristate
53         select CRYPTO_BLKCIPHER2
54         select CRYPTO_ALGAPI
55
56 config CRYPTO_BLKCIPHER2
57         tristate
58         select CRYPTO_ALGAPI2
59         select CRYPTO_RNG2
60         select CRYPTO_WORKQUEUE
61
62 config CRYPTO_HASH
63         tristate
64         select CRYPTO_HASH2
65         select CRYPTO_ALGAPI
66
67 config CRYPTO_HASH2
68         tristate
69         select CRYPTO_ALGAPI2
70
71 config CRYPTO_RNG
72         tristate
73         select CRYPTO_RNG2
74         select CRYPTO_ALGAPI
75
76 config CRYPTO_RNG2
77         tristate
78         select CRYPTO_ALGAPI2
79
80 config CRYPTO_PCOMP
81         tristate
82         select CRYPTO_PCOMP2
83         select CRYPTO_ALGAPI
84
85 config CRYPTO_PCOMP2
86         tristate
87         select CRYPTO_ALGAPI2
88
89 config CRYPTO_MANAGER
90         tristate "Cryptographic algorithm manager"
91         select CRYPTO_MANAGER2
92         help
93           Create default cryptographic template instantiations such as
94           cbc(aes).
95
96 config CRYPTO_MANAGER2
97         def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
98         select CRYPTO_AEAD2
99         select CRYPTO_HASH2
100         select CRYPTO_BLKCIPHER2
101         select CRYPTO_PCOMP2
102
103 config CRYPTO_USER
104         tristate "Userspace cryptographic algorithm configuration"
105         depends on NET
106         select CRYPTO_MANAGER
107         help
108           Userspace configuration for cryptographic instantiations such as
109           cbc(aes).
110
111 config CRYPTO_MANAGER_DISABLE_TESTS
112         bool "Disable run-time self tests"
113         default y
114         depends on CRYPTO_MANAGER2
115         help
116           Disable run-time self tests that normally take place at
117           algorithm registration.
118
119 config CRYPTO_GF128MUL
120         tristate "GF(2^128) multiplication functions"
121         help
122           Efficient table driven implementation of multiplications in the
123           field GF(2^128).  This is needed by some cypher modes. This
124           option will be selected automatically if you select such a
125           cipher mode.  Only select this option by hand if you expect to load
126           an external module that requires these functions.
127
128 config CRYPTO_NULL
129         tristate "Null algorithms"
130         select CRYPTO_ALGAPI
131         select CRYPTO_BLKCIPHER
132         select CRYPTO_HASH
133         help
134           These are 'Null' algorithms, used by IPsec, which do nothing.
135
136 config CRYPTO_PCRYPT
137         tristate "Parallel crypto engine"
138         depends on SMP
139         select PADATA
140         select CRYPTO_MANAGER
141         select CRYPTO_AEAD
142         help
143           This converts an arbitrary crypto algorithm into a parallel
144           algorithm that executes in kernel threads.
145
146 config CRYPTO_WORKQUEUE
147        tristate
148
149 config CRYPTO_CRYPTD
150         tristate "Software async crypto daemon"
151         select CRYPTO_BLKCIPHER
152         select CRYPTO_HASH
153         select CRYPTO_MANAGER
154         select CRYPTO_WORKQUEUE
155         help
156           This is a generic software asynchronous crypto daemon that
157           converts an arbitrary synchronous software crypto algorithm
158           into an asynchronous algorithm that executes in a kernel thread.
159
160 config CRYPTO_AUTHENC
161         tristate "Authenc support"
162         select CRYPTO_AEAD
163         select CRYPTO_BLKCIPHER
164         select CRYPTO_MANAGER
165         select CRYPTO_HASH
166         help
167           Authenc: Combined mode wrapper for IPsec.
168           This is required for IPSec.
169
170 config CRYPTO_TEST
171         tristate "Testing module"
172         depends on m
173         select CRYPTO_MANAGER
174         help
175           Quick & dirty crypto test module.
176
177 config CRYPTO_ABLK_HELPER
178         tristate
179         select CRYPTO_CRYPTD
180
181 config CRYPTO_GLUE_HELPER_X86
182         tristate
183         depends on X86
184         select CRYPTO_ALGAPI
185
186 comment "Authenticated Encryption with Associated Data"
187
188 config CRYPTO_CCM
189         tristate "CCM support"
190         select CRYPTO_CTR
191         select CRYPTO_AEAD
192         help
193           Support for Counter with CBC MAC. Required for IPsec.
194
195 config CRYPTO_GCM
196         tristate "GCM/GMAC support"
197         select CRYPTO_CTR
198         select CRYPTO_AEAD
199         select CRYPTO_GHASH
200         select CRYPTO_NULL
201         help
202           Support for Galois/Counter Mode (GCM) and Galois Message
203           Authentication Code (GMAC). Required for IPSec.
204
205 config CRYPTO_SEQIV
206         tristate "Sequence Number IV Generator"
207         select CRYPTO_AEAD
208         select CRYPTO_BLKCIPHER
209         select CRYPTO_RNG
210         help
211           This IV generator generates an IV based on a sequence number by
212           xoring it with a salt.  This algorithm is mainly useful for CTR
213
214 comment "Block modes"
215
216 config CRYPTO_CBC
217         tristate "CBC support"
218         select CRYPTO_BLKCIPHER
219         select CRYPTO_MANAGER
220         help
221           CBC: Cipher Block Chaining mode
222           This block cipher algorithm is required for IPSec.
223
224 config CRYPTO_CTR
225         tristate "CTR support"
226         select CRYPTO_BLKCIPHER
227         select CRYPTO_SEQIV
228         select CRYPTO_MANAGER
229         help
230           CTR: Counter mode
231           This block cipher algorithm is required for IPSec.
232
233 config CRYPTO_CTS
234         tristate "CTS support"
235         select CRYPTO_BLKCIPHER
236         help
237           CTS: Cipher Text Stealing
238           This is the Cipher Text Stealing mode as described by
239           Section 8 of rfc2040 and referenced by rfc3962.
240           (rfc3962 includes errata information in its Appendix A)
241           This mode is required for Kerberos gss mechanism support
242           for AES encryption.
243
244 config CRYPTO_ECB
245         tristate "ECB support"
246         select CRYPTO_BLKCIPHER
247         select CRYPTO_MANAGER
248         help
249           ECB: Electronic CodeBook mode
250           This is the simplest block cipher algorithm.  It simply encrypts
251           the input block by block.
252
253 config CRYPTO_LRW
254         tristate "LRW support"
255         select CRYPTO_BLKCIPHER
256         select CRYPTO_MANAGER
257         select CRYPTO_GF128MUL
258         help
259           LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
260           narrow block cipher mode for dm-crypt.  Use it with cipher
261           specification string aes-lrw-benbi, the key must be 256, 320 or 384.
262           The first 128, 192 or 256 bits in the key are used for AES and the
263           rest is used to tie each cipher block to its logical position.
264
265 config CRYPTO_PCBC
266         tristate "PCBC support"
267         select CRYPTO_BLKCIPHER
268         select CRYPTO_MANAGER
269         help
270           PCBC: Propagating Cipher Block Chaining mode
271           This block cipher algorithm is required for RxRPC.
272
273 config CRYPTO_XTS
274         tristate "XTS support"
275         select CRYPTO_BLKCIPHER
276         select CRYPTO_MANAGER
277         select CRYPTO_GF128MUL
278         help
279           XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
280           key size 256, 384 or 512 bits. This implementation currently
281           can't handle a sectorsize which is not a multiple of 16 bytes.
282
283 comment "Hash modes"
284
285 config CRYPTO_CMAC
286         tristate "CMAC support"
287         select CRYPTO_HASH
288         select CRYPTO_MANAGER
289         help
290           Cipher-based Message Authentication Code (CMAC) specified by
291           The National Institute of Standards and Technology (NIST).
292
293           https://tools.ietf.org/html/rfc4493
294           http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
295
296 config CRYPTO_HMAC
297         tristate "HMAC support"
298         select CRYPTO_HASH
299         select CRYPTO_MANAGER
300         help
301           HMAC: Keyed-Hashing for Message Authentication (RFC2104).
302           This is required for IPSec.
303
304 config CRYPTO_XCBC
305         tristate "XCBC support"
306         select CRYPTO_HASH
307         select CRYPTO_MANAGER
308         help
309           XCBC: Keyed-Hashing with encryption algorithm
310                 http://www.ietf.org/rfc/rfc3566.txt
311                 http://csrc.nist.gov/encryption/modes/proposedmodes/
312                  xcbc-mac/xcbc-mac-spec.pdf
313
314 config CRYPTO_VMAC
315         tristate "VMAC support"
316         select CRYPTO_HASH
317         select CRYPTO_MANAGER
318         help
319           VMAC is a message authentication algorithm designed for
320           very high speed on 64-bit architectures.
321
322           See also:
323           <http://fastcrypto.org/vmac>
324
325 comment "Digest"
326
327 config CRYPTO_CRC32C
328         tristate "CRC32c CRC algorithm"
329         select CRYPTO_HASH
330         select CRC32
331         help
332           Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
333           by iSCSI for header and data digests and by others.
334           See Castagnoli93.  Module will be crc32c.
335
336 config CRYPTO_CRC32C_INTEL
337         tristate "CRC32c INTEL hardware acceleration"
338         depends on X86
339         select CRYPTO_HASH
340         help
341           In Intel processor with SSE4.2 supported, the processor will
342           support CRC32C implementation using hardware accelerated CRC32
343           instruction. This option will create 'crc32c-intel' module,
344           which will enable any routine to use the CRC32 instruction to
345           gain performance compared with software implementation.
346           Module will be crc32c-intel.
347
348 config CRYPTO_CRC32C_SPARC64
349         tristate "CRC32c CRC algorithm (SPARC64)"
350         depends on SPARC64
351         select CRYPTO_HASH
352         select CRC32
353         help
354           CRC32c CRC algorithm implemented using sparc64 crypto instructions,
355           when available.
356
357 config CRYPTO_CRC32
358         tristate "CRC32 CRC algorithm"
359         select CRYPTO_HASH
360         select CRC32
361         help
362           CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
363           Shash crypto api wrappers to crc32_le function.
364
365 config CRYPTO_CRC32_PCLMUL
366         tristate "CRC32 PCLMULQDQ hardware acceleration"
367         depends on X86
368         select CRYPTO_HASH
369         select CRC32
370         help
371           From Intel Westmere and AMD Bulldozer processor with SSE4.2
372           and PCLMULQDQ supported, the processor will support
373           CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
374           instruction. This option will create 'crc32-plcmul' module,
375           which will enable any routine to use the CRC-32-IEEE 802.3 checksum
376           and gain better performance as compared with the table implementation.
377
378 config CRYPTO_CRCT10DIF
379         tristate "CRCT10DIF algorithm"
380         select CRYPTO_HASH
381         help
382           CRC T10 Data Integrity Field computation is being cast as
383           a crypto transform.  This allows for faster crc t10 diff
384           transforms to be used if they are available.
385
386 config CRYPTO_CRCT10DIF_PCLMUL
387         tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
388         depends on X86 && 64BIT && CRC_T10DIF
389         select CRYPTO_HASH
390         help
391           For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
392           CRC T10 DIF PCLMULQDQ computation can be hardware
393           accelerated PCLMULQDQ instruction. This option will create
394           'crct10dif-plcmul' module, which is faster when computing the
395           crct10dif checksum as compared with the generic table implementation.
396
397 config CRYPTO_GHASH
398         tristate "GHASH digest algorithm"
399         select CRYPTO_GF128MUL
400         help
401           GHASH is message digest algorithm for GCM (Galois/Counter Mode).
402
403 config CRYPTO_MD4
404         tristate "MD4 digest algorithm"
405         select CRYPTO_HASH
406         help
407           MD4 message digest algorithm (RFC1320).
408
409 config CRYPTO_MD5
410         tristate "MD5 digest algorithm"
411         select CRYPTO_HASH
412         help
413           MD5 message digest algorithm (RFC1321).
414
415 config CRYPTO_MD5_SPARC64
416         tristate "MD5 digest algorithm (SPARC64)"
417         depends on SPARC64
418         select CRYPTO_MD5
419         select CRYPTO_HASH
420         help
421           MD5 message digest algorithm (RFC1321) implemented
422           using sparc64 crypto instructions, when available.
423
424 config CRYPTO_MICHAEL_MIC
425         tristate "Michael MIC keyed digest algorithm"
426         select CRYPTO_HASH
427         help
428           Michael MIC is used for message integrity protection in TKIP
429           (IEEE 802.11i). This algorithm is required for TKIP, but it
430           should not be used for other purposes because of the weakness
431           of the algorithm.
432
433 config CRYPTO_RMD128
434         tristate "RIPEMD-128 digest algorithm"
435         select CRYPTO_HASH
436         help
437           RIPEMD-128 (ISO/IEC 10118-3:2004).
438
439           RIPEMD-128 is a 128-bit cryptographic hash function. It should only
440           be used as a secure replacement for RIPEMD. For other use cases,
441           RIPEMD-160 should be used.
442
443           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
444           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
445
446 config CRYPTO_RMD160
447         tristate "RIPEMD-160 digest algorithm"
448         select CRYPTO_HASH
449         help
450           RIPEMD-160 (ISO/IEC 10118-3:2004).
451
452           RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
453           to be used as a secure replacement for the 128-bit hash functions
454           MD4, MD5 and it's predecessor RIPEMD
455           (not to be confused with RIPEMD-128).
456
457           It's speed is comparable to SHA1 and there are no known attacks
458           against RIPEMD-160.
459
460           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
461           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
462
463 config CRYPTO_RMD256
464         tristate "RIPEMD-256 digest algorithm"
465         select CRYPTO_HASH
466         help
467           RIPEMD-256 is an optional extension of RIPEMD-128 with a
468           256 bit hash. It is intended for applications that require
469           longer hash-results, without needing a larger security level
470           (than RIPEMD-128).
471
472           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
473           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
474
475 config CRYPTO_RMD320
476         tristate "RIPEMD-320 digest algorithm"
477         select CRYPTO_HASH
478         help
479           RIPEMD-320 is an optional extension of RIPEMD-160 with a
480           320 bit hash. It is intended for applications that require
481           longer hash-results, without needing a larger security level
482           (than RIPEMD-160).
483
484           Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
485           See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
486
487 config CRYPTO_SHA1
488         tristate "SHA1 digest algorithm"
489         select CRYPTO_HASH
490         help
491           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
492
493 config CRYPTO_SHA1_SSSE3
494         tristate "SHA1 digest algorithm (SSSE3/AVX)"
495         depends on X86 && 64BIT
496         select CRYPTO_SHA1
497         select CRYPTO_HASH
498         help
499           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
500           using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
501           Extensions (AVX), when available.
502
503 config CRYPTO_SHA256_SSSE3
504         tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2)"
505         depends on X86 && 64BIT
506         select CRYPTO_SHA256
507         select CRYPTO_HASH
508         help
509           SHA-256 secure hash standard (DFIPS 180-2) implemented
510           using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
511           Extensions version 1 (AVX1), or Advanced Vector Extensions
512           version 2 (AVX2) instructions, when available.
513
514 config CRYPTO_SHA512_SSSE3
515         tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
516         depends on X86 && 64BIT
517         select CRYPTO_SHA512
518         select CRYPTO_HASH
519         help
520           SHA-512 secure hash standard (DFIPS 180-2) implemented
521           using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
522           Extensions version 1 (AVX1), or Advanced Vector Extensions
523           version 2 (AVX2) instructions, when available.
524
525 config CRYPTO_SHA1_SPARC64
526         tristate "SHA1 digest algorithm (SPARC64)"
527         depends on SPARC64
528         select CRYPTO_SHA1
529         select CRYPTO_HASH
530         help
531           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
532           using sparc64 crypto instructions, when available.
533
534 config CRYPTO_SHA1_ARM
535         tristate "SHA1 digest algorithm (ARM-asm)"
536         depends on ARM
537         select CRYPTO_SHA1
538         select CRYPTO_HASH
539         help
540           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
541           using optimized ARM assembler.
542
543 config CRYPTO_SHA1_PPC
544         tristate "SHA1 digest algorithm (powerpc)"
545         depends on PPC
546         help
547           This is the powerpc hardware accelerated implementation of the
548           SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
549
550 config CRYPTO_SHA256
551         tristate "SHA224 and SHA256 digest algorithm"
552         select CRYPTO_HASH
553         help
554           SHA256 secure hash standard (DFIPS 180-2).
555
556           This version of SHA implements a 256 bit hash with 128 bits of
557           security against collision attacks.
558
559           This code also includes SHA-224, a 224 bit hash with 112 bits
560           of security against collision attacks.
561
562 config CRYPTO_SHA256_SPARC64
563         tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
564         depends on SPARC64
565         select CRYPTO_SHA256
566         select CRYPTO_HASH
567         help
568           SHA-256 secure hash standard (DFIPS 180-2) implemented
569           using sparc64 crypto instructions, when available.
570
571 config CRYPTO_SHA512
572         tristate "SHA384 and SHA512 digest algorithms"
573         select CRYPTO_HASH
574         help
575           SHA512 secure hash standard (DFIPS 180-2).
576
577           This version of SHA implements a 512 bit hash with 256 bits of
578           security against collision attacks.
579
580           This code also includes SHA-384, a 384 bit hash with 192 bits
581           of security against collision attacks.
582
583 config CRYPTO_SHA512_SPARC64
584         tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
585         depends on SPARC64
586         select CRYPTO_SHA512
587         select CRYPTO_HASH
588         help
589           SHA-512 secure hash standard (DFIPS 180-2) implemented
590           using sparc64 crypto instructions, when available.
591
592 config CRYPTO_TGR192
593         tristate "Tiger digest algorithms"
594         select CRYPTO_HASH
595         help
596           Tiger hash algorithm 192, 160 and 128-bit hashes
597
598           Tiger is a hash function optimized for 64-bit processors while
599           still having decent performance on 32-bit processors.
600           Tiger was developed by Ross Anderson and Eli Biham.
601
602           See also:
603           <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
604
605 config CRYPTO_WP512
606         tristate "Whirlpool digest algorithms"
607         select CRYPTO_HASH
608         help
609           Whirlpool hash algorithm 512, 384 and 256-bit hashes
610
611           Whirlpool-512 is part of the NESSIE cryptographic primitives.
612           Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
613
614           See also:
615           <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
616
617 config CRYPTO_GHASH_CLMUL_NI_INTEL
618         tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
619         depends on X86 && 64BIT
620         select CRYPTO_CRYPTD
621         help
622           GHASH is message digest algorithm for GCM (Galois/Counter Mode).
623           The implementation is accelerated by CLMUL-NI of Intel.
624
625 comment "Ciphers"
626
627 config CRYPTO_AES
628         tristate "AES cipher algorithms"
629         select CRYPTO_ALGAPI
630         help
631           AES cipher algorithms (FIPS-197). AES uses the Rijndael
632           algorithm.
633
634           Rijndael appears to be consistently a very good performer in
635           both hardware and software across a wide range of computing
636           environments regardless of its use in feedback or non-feedback
637           modes. Its key setup time is excellent, and its key agility is
638           good. Rijndael's very low memory requirements make it very well
639           suited for restricted-space environments, in which it also
640           demonstrates excellent performance. Rijndael's operations are
641           among the easiest to defend against power and timing attacks.
642
643           The AES specifies three key sizes: 128, 192 and 256 bits
644
645           See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
646
647 config CRYPTO_AES_586
648         tristate "AES cipher algorithms (i586)"
649         depends on (X86 || UML_X86) && !64BIT
650         select CRYPTO_ALGAPI
651         select CRYPTO_AES
652         help
653           AES cipher algorithms (FIPS-197). AES uses the Rijndael
654           algorithm.
655
656           Rijndael appears to be consistently a very good performer in
657           both hardware and software across a wide range of computing
658           environments regardless of its use in feedback or non-feedback
659           modes. Its key setup time is excellent, and its key agility is
660           good. Rijndael's very low memory requirements make it very well
661           suited for restricted-space environments, in which it also
662           demonstrates excellent performance. Rijndael's operations are
663           among the easiest to defend against power and timing attacks.
664
665           The AES specifies three key sizes: 128, 192 and 256 bits
666
667           See <http://csrc.nist.gov/encryption/aes/> for more information.
668
669 config CRYPTO_AES_X86_64
670         tristate "AES cipher algorithms (x86_64)"
671         depends on (X86 || UML_X86) && 64BIT
672         select CRYPTO_ALGAPI
673         select CRYPTO_AES
674         help
675           AES cipher algorithms (FIPS-197). AES uses the Rijndael
676           algorithm.
677
678           Rijndael appears to be consistently a very good performer in
679           both hardware and software across a wide range of computing
680           environments regardless of its use in feedback or non-feedback
681           modes. Its key setup time is excellent, and its key agility is
682           good. Rijndael's very low memory requirements make it very well
683           suited for restricted-space environments, in which it also
684           demonstrates excellent performance. Rijndael's operations are
685           among the easiest to defend against power and timing attacks.
686
687           The AES specifies three key sizes: 128, 192 and 256 bits
688
689           See <http://csrc.nist.gov/encryption/aes/> for more information.
690
691 config CRYPTO_AES_NI_INTEL
692         tristate "AES cipher algorithms (AES-NI)"
693         depends on X86
694         select CRYPTO_AES_X86_64 if 64BIT
695         select CRYPTO_AES_586 if !64BIT
696         select CRYPTO_CRYPTD
697         select CRYPTO_ABLK_HELPER
698         select CRYPTO_ALGAPI
699         select CRYPTO_GLUE_HELPER_X86 if 64BIT
700         select CRYPTO_LRW
701         select CRYPTO_XTS
702         help
703           Use Intel AES-NI instructions for AES algorithm.
704
705           AES cipher algorithms (FIPS-197). AES uses the Rijndael
706           algorithm.
707
708           Rijndael appears to be consistently a very good performer in
709           both hardware and software across a wide range of computing
710           environments regardless of its use in feedback or non-feedback
711           modes. Its key setup time is excellent, and its key agility is
712           good. Rijndael's very low memory requirements make it very well
713           suited for restricted-space environments, in which it also
714           demonstrates excellent performance. Rijndael's operations are
715           among the easiest to defend against power and timing attacks.
716
717           The AES specifies three key sizes: 128, 192 and 256 bits
718
719           See <http://csrc.nist.gov/encryption/aes/> for more information.
720
721           In addition to AES cipher algorithm support, the acceleration
722           for some popular block cipher mode is supported too, including
723           ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
724           acceleration for CTR.
725
726 config CRYPTO_AES_SPARC64
727         tristate "AES cipher algorithms (SPARC64)"
728         depends on SPARC64
729         select CRYPTO_CRYPTD
730         select CRYPTO_ALGAPI
731         help
732           Use SPARC64 crypto opcodes for AES algorithm.
733
734           AES cipher algorithms (FIPS-197). AES uses the Rijndael
735           algorithm.
736
737           Rijndael appears to be consistently a very good performer in
738           both hardware and software across a wide range of computing
739           environments regardless of its use in feedback or non-feedback
740           modes. Its key setup time is excellent, and its key agility is
741           good. Rijndael's very low memory requirements make it very well
742           suited for restricted-space environments, in which it also
743           demonstrates excellent performance. Rijndael's operations are
744           among the easiest to defend against power and timing attacks.
745
746           The AES specifies three key sizes: 128, 192 and 256 bits
747
748           See <http://csrc.nist.gov/encryption/aes/> for more information.
749
750           In addition to AES cipher algorithm support, the acceleration
751           for some popular block cipher mode is supported too, including
752           ECB and CBC.
753
754 config CRYPTO_AES_ARM
755         tristate "AES cipher algorithms (ARM-asm)"
756         depends on ARM
757         select CRYPTO_ALGAPI
758         select CRYPTO_AES
759         help
760           Use optimized AES assembler routines for ARM platforms.
761
762           AES cipher algorithms (FIPS-197). AES uses the Rijndael
763           algorithm.
764
765           Rijndael appears to be consistently a very good performer in
766           both hardware and software across a wide range of computing
767           environments regardless of its use in feedback or non-feedback
768           modes. Its key setup time is excellent, and its key agility is
769           good. Rijndael's very low memory requirements make it very well
770           suited for restricted-space environments, in which it also
771           demonstrates excellent performance. Rijndael's operations are
772           among the easiest to defend against power and timing attacks.
773
774           The AES specifies three key sizes: 128, 192 and 256 bits
775
776           See <http://csrc.nist.gov/encryption/aes/> for more information.
777
778 config CRYPTO_ANUBIS
779         tristate "Anubis cipher algorithm"
780         select CRYPTO_ALGAPI
781         help
782           Anubis cipher algorithm.
783
784           Anubis is a variable key length cipher which can use keys from
785           128 bits to 320 bits in length.  It was evaluated as a entrant
786           in the NESSIE competition.
787
788           See also:
789           <https://www.cosic.esat.kuleuven.be/nessie/reports/>
790           <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
791
792 config CRYPTO_ARC4
793         tristate "ARC4 cipher algorithm"
794         select CRYPTO_BLKCIPHER
795         help
796           ARC4 cipher algorithm.
797
798           ARC4 is a stream cipher using keys ranging from 8 bits to 2048
799           bits in length.  This algorithm is required for driver-based
800           WEP, but it should not be for other purposes because of the
801           weakness of the algorithm.
802
803 config CRYPTO_BLOWFISH
804         tristate "Blowfish cipher algorithm"
805         select CRYPTO_ALGAPI
806         select CRYPTO_BLOWFISH_COMMON
807         help
808           Blowfish cipher algorithm, by Bruce Schneier.
809
810           This is a variable key length cipher which can use keys from 32
811           bits to 448 bits in length.  It's fast, simple and specifically
812           designed for use on "large microprocessors".
813
814           See also:
815           <http://www.schneier.com/blowfish.html>
816
817 config CRYPTO_BLOWFISH_COMMON
818         tristate
819         help
820           Common parts of the Blowfish cipher algorithm shared by the
821           generic c and the assembler implementations.
822
823           See also:
824           <http://www.schneier.com/blowfish.html>
825
826 config CRYPTO_BLOWFISH_X86_64
827         tristate "Blowfish cipher algorithm (x86_64)"
828         depends on X86 && 64BIT
829         select CRYPTO_ALGAPI
830         select CRYPTO_BLOWFISH_COMMON
831         help
832           Blowfish cipher algorithm (x86_64), by Bruce Schneier.
833
834           This is a variable key length cipher which can use keys from 32
835           bits to 448 bits in length.  It's fast, simple and specifically
836           designed for use on "large microprocessors".
837
838           See also:
839           <http://www.schneier.com/blowfish.html>
840
841 config CRYPTO_CAMELLIA
842         tristate "Camellia cipher algorithms"
843         depends on CRYPTO
844         select CRYPTO_ALGAPI
845         help
846           Camellia cipher algorithms module.
847
848           Camellia is a symmetric key block cipher developed jointly
849           at NTT and Mitsubishi Electric Corporation.
850
851           The Camellia specifies three key sizes: 128, 192 and 256 bits.
852
853           See also:
854           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
855
856 config CRYPTO_CAMELLIA_X86_64
857         tristate "Camellia cipher algorithm (x86_64)"
858         depends on X86 && 64BIT
859         depends on CRYPTO
860         select CRYPTO_ALGAPI
861         select CRYPTO_GLUE_HELPER_X86
862         select CRYPTO_LRW
863         select CRYPTO_XTS
864         help
865           Camellia cipher algorithm module (x86_64).
866
867           Camellia is a symmetric key block cipher developed jointly
868           at NTT and Mitsubishi Electric Corporation.
869
870           The Camellia specifies three key sizes: 128, 192 and 256 bits.
871
872           See also:
873           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
874
875 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
876         tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
877         depends on X86 && 64BIT
878         depends on CRYPTO
879         select CRYPTO_ALGAPI
880         select CRYPTO_CRYPTD
881         select CRYPTO_ABLK_HELPER
882         select CRYPTO_GLUE_HELPER_X86
883         select CRYPTO_CAMELLIA_X86_64
884         select CRYPTO_LRW
885         select CRYPTO_XTS
886         help
887           Camellia cipher algorithm module (x86_64/AES-NI/AVX).
888
889           Camellia is a symmetric key block cipher developed jointly
890           at NTT and Mitsubishi Electric Corporation.
891
892           The Camellia specifies three key sizes: 128, 192 and 256 bits.
893
894           See also:
895           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
896
897 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
898         tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
899         depends on X86 && 64BIT
900         depends on CRYPTO
901         select CRYPTO_ALGAPI
902         select CRYPTO_CRYPTD
903         select CRYPTO_ABLK_HELPER
904         select CRYPTO_GLUE_HELPER_X86
905         select CRYPTO_CAMELLIA_X86_64
906         select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
907         select CRYPTO_LRW
908         select CRYPTO_XTS
909         help
910           Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
911
912           Camellia is a symmetric key block cipher developed jointly
913           at NTT and Mitsubishi Electric Corporation.
914
915           The Camellia specifies three key sizes: 128, 192 and 256 bits.
916
917           See also:
918           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
919
920 config CRYPTO_CAMELLIA_SPARC64
921         tristate "Camellia cipher algorithm (SPARC64)"
922         depends on SPARC64
923         depends on CRYPTO
924         select CRYPTO_ALGAPI
925         help
926           Camellia cipher algorithm module (SPARC64).
927
928           Camellia is a symmetric key block cipher developed jointly
929           at NTT and Mitsubishi Electric Corporation.
930
931           The Camellia specifies three key sizes: 128, 192 and 256 bits.
932
933           See also:
934           <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
935
936 config CRYPTO_CAST_COMMON
937         tristate
938         help
939           Common parts of the CAST cipher algorithms shared by the
940           generic c and the assembler implementations.
941
942 config CRYPTO_CAST5
943         tristate "CAST5 (CAST-128) cipher algorithm"
944         select CRYPTO_ALGAPI
945         select CRYPTO_CAST_COMMON
946         help
947           The CAST5 encryption algorithm (synonymous with CAST-128) is
948           described in RFC2144.
949
950 config CRYPTO_CAST5_AVX_X86_64
951         tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
952         depends on X86 && 64BIT
953         select CRYPTO_ALGAPI
954         select CRYPTO_CRYPTD
955         select CRYPTO_ABLK_HELPER
956         select CRYPTO_CAST_COMMON
957         select CRYPTO_CAST5
958         help
959           The CAST5 encryption algorithm (synonymous with CAST-128) is
960           described in RFC2144.
961
962           This module provides the Cast5 cipher algorithm that processes
963           sixteen blocks parallel using the AVX instruction set.
964
965 config CRYPTO_CAST6
966         tristate "CAST6 (CAST-256) cipher algorithm"
967         select CRYPTO_ALGAPI
968         select CRYPTO_CAST_COMMON
969         help
970           The CAST6 encryption algorithm (synonymous with CAST-256) is
971           described in RFC2612.
972
973 config CRYPTO_CAST6_AVX_X86_64
974         tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
975         depends on X86 && 64BIT
976         select CRYPTO_ALGAPI
977         select CRYPTO_CRYPTD
978         select CRYPTO_ABLK_HELPER
979         select CRYPTO_GLUE_HELPER_X86
980         select CRYPTO_CAST_COMMON
981         select CRYPTO_CAST6
982         select CRYPTO_LRW
983         select CRYPTO_XTS
984         help
985           The CAST6 encryption algorithm (synonymous with CAST-256) is
986           described in RFC2612.
987
988           This module provides the Cast6 cipher algorithm that processes
989           eight blocks parallel using the AVX instruction set.
990
991 config CRYPTO_DES
992         tristate "DES and Triple DES EDE cipher algorithms"
993         select CRYPTO_ALGAPI
994         help
995           DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
996
997 config CRYPTO_DES_SPARC64
998         tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
999         depends on SPARC64
1000         select CRYPTO_ALGAPI
1001         select CRYPTO_DES
1002         help
1003           DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1004           optimized using SPARC64 crypto opcodes.
1005
1006 config CRYPTO_FCRYPT
1007         tristate "FCrypt cipher algorithm"
1008         select CRYPTO_ALGAPI
1009         select CRYPTO_BLKCIPHER
1010         help
1011           FCrypt algorithm used by RxRPC.
1012
1013 config CRYPTO_KHAZAD
1014         tristate "Khazad cipher algorithm"
1015         select CRYPTO_ALGAPI
1016         help
1017           Khazad cipher algorithm.
1018
1019           Khazad was a finalist in the initial NESSIE competition.  It is
1020           an algorithm optimized for 64-bit processors with good performance
1021           on 32-bit processors.  Khazad uses an 128 bit key size.
1022
1023           See also:
1024           <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1025
1026 config CRYPTO_SALSA20
1027         tristate "Salsa20 stream cipher algorithm"
1028         select CRYPTO_BLKCIPHER
1029         help
1030           Salsa20 stream cipher algorithm.
1031
1032           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1033           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1034
1035           The Salsa20 stream cipher algorithm is designed by Daniel J.
1036           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1037
1038 config CRYPTO_SALSA20_586
1039         tristate "Salsa20 stream cipher algorithm (i586)"
1040         depends on (X86 || UML_X86) && !64BIT
1041         select CRYPTO_BLKCIPHER
1042         help
1043           Salsa20 stream cipher algorithm.
1044
1045           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1046           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1047
1048           The Salsa20 stream cipher algorithm is designed by Daniel J.
1049           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1050
1051 config CRYPTO_SALSA20_X86_64
1052         tristate "Salsa20 stream cipher algorithm (x86_64)"
1053         depends on (X86 || UML_X86) && 64BIT
1054         select CRYPTO_BLKCIPHER
1055         help
1056           Salsa20 stream cipher algorithm.
1057
1058           Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1059           Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1060
1061           The Salsa20 stream cipher algorithm is designed by Daniel J.
1062           Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1063
1064 config CRYPTO_SEED
1065         tristate "SEED cipher algorithm"
1066         select CRYPTO_ALGAPI
1067         help
1068           SEED cipher algorithm (RFC4269).
1069
1070           SEED is a 128-bit symmetric key block cipher that has been
1071           developed by KISA (Korea Information Security Agency) as a
1072           national standard encryption algorithm of the Republic of Korea.
1073           It is a 16 round block cipher with the key size of 128 bit.
1074
1075           See also:
1076           <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1077
1078 config CRYPTO_SERPENT
1079         tristate "Serpent cipher algorithm"
1080         select CRYPTO_ALGAPI
1081         help
1082           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1083
1084           Keys are allowed to be from 0 to 256 bits in length, in steps
1085           of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1086           variant of Serpent for compatibility with old kerneli.org code.
1087
1088           See also:
1089           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1090
1091 config CRYPTO_SERPENT_SSE2_X86_64
1092         tristate "Serpent cipher algorithm (x86_64/SSE2)"
1093         depends on X86 && 64BIT
1094         select CRYPTO_ALGAPI
1095         select CRYPTO_CRYPTD
1096         select CRYPTO_ABLK_HELPER
1097         select CRYPTO_GLUE_HELPER_X86
1098         select CRYPTO_SERPENT
1099         select CRYPTO_LRW
1100         select CRYPTO_XTS
1101         help
1102           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1103
1104           Keys are allowed to be from 0 to 256 bits in length, in steps
1105           of 8 bits.
1106
1107           This module provides Serpent cipher algorithm that processes eigth
1108           blocks parallel using SSE2 instruction set.
1109
1110           See also:
1111           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1112
1113 config CRYPTO_SERPENT_SSE2_586
1114         tristate "Serpent cipher algorithm (i586/SSE2)"
1115         depends on X86 && !64BIT
1116         select CRYPTO_ALGAPI
1117         select CRYPTO_CRYPTD
1118         select CRYPTO_ABLK_HELPER
1119         select CRYPTO_GLUE_HELPER_X86
1120         select CRYPTO_SERPENT
1121         select CRYPTO_LRW
1122         select CRYPTO_XTS
1123         help
1124           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1125
1126           Keys are allowed to be from 0 to 256 bits in length, in steps
1127           of 8 bits.
1128
1129           This module provides Serpent cipher algorithm that processes four
1130           blocks parallel using SSE2 instruction set.
1131
1132           See also:
1133           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1134
1135 config CRYPTO_SERPENT_AVX_X86_64
1136         tristate "Serpent cipher algorithm (x86_64/AVX)"
1137         depends on X86 && 64BIT
1138         select CRYPTO_ALGAPI
1139         select CRYPTO_CRYPTD
1140         select CRYPTO_ABLK_HELPER
1141         select CRYPTO_GLUE_HELPER_X86
1142         select CRYPTO_SERPENT
1143         select CRYPTO_LRW
1144         select CRYPTO_XTS
1145         help
1146           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1147
1148           Keys are allowed to be from 0 to 256 bits in length, in steps
1149           of 8 bits.
1150
1151           This module provides the Serpent cipher algorithm that processes
1152           eight blocks parallel using the AVX instruction set.
1153
1154           See also:
1155           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1156
1157 config CRYPTO_SERPENT_AVX2_X86_64
1158         tristate "Serpent cipher algorithm (x86_64/AVX2)"
1159         depends on X86 && 64BIT
1160         select CRYPTO_ALGAPI
1161         select CRYPTO_CRYPTD
1162         select CRYPTO_ABLK_HELPER
1163         select CRYPTO_GLUE_HELPER_X86
1164         select CRYPTO_SERPENT
1165         select CRYPTO_SERPENT_AVX_X86_64
1166         select CRYPTO_LRW
1167         select CRYPTO_XTS
1168         help
1169           Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1170
1171           Keys are allowed to be from 0 to 256 bits in length, in steps
1172           of 8 bits.
1173
1174           This module provides Serpent cipher algorithm that processes 16
1175           blocks parallel using AVX2 instruction set.
1176
1177           See also:
1178           <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1179
1180 config CRYPTO_TEA
1181         tristate "TEA, XTEA and XETA cipher algorithms"
1182         select CRYPTO_ALGAPI
1183         help
1184           TEA cipher algorithm.
1185
1186           Tiny Encryption Algorithm is a simple cipher that uses
1187           many rounds for security.  It is very fast and uses
1188           little memory.
1189
1190           Xtendend Tiny Encryption Algorithm is a modification to
1191           the TEA algorithm to address a potential key weakness
1192           in the TEA algorithm.
1193
1194           Xtendend Encryption Tiny Algorithm is a mis-implementation
1195           of the XTEA algorithm for compatibility purposes.
1196
1197 config CRYPTO_TWOFISH
1198         tristate "Twofish cipher algorithm"
1199         select CRYPTO_ALGAPI
1200         select CRYPTO_TWOFISH_COMMON
1201         help
1202           Twofish cipher algorithm.
1203
1204           Twofish was submitted as an AES (Advanced Encryption Standard)
1205           candidate cipher by researchers at CounterPane Systems.  It is a
1206           16 round block cipher supporting key sizes of 128, 192, and 256
1207           bits.
1208
1209           See also:
1210           <http://www.schneier.com/twofish.html>
1211
1212 config CRYPTO_TWOFISH_COMMON
1213         tristate
1214         help
1215           Common parts of the Twofish cipher algorithm shared by the
1216           generic c and the assembler implementations.
1217
1218 config CRYPTO_TWOFISH_586
1219         tristate "Twofish cipher algorithms (i586)"
1220         depends on (X86 || UML_X86) && !64BIT
1221         select CRYPTO_ALGAPI
1222         select CRYPTO_TWOFISH_COMMON
1223         help
1224           Twofish cipher algorithm.
1225
1226           Twofish was submitted as an AES (Advanced Encryption Standard)
1227           candidate cipher by researchers at CounterPane Systems.  It is a
1228           16 round block cipher supporting key sizes of 128, 192, and 256
1229           bits.
1230
1231           See also:
1232           <http://www.schneier.com/twofish.html>
1233
1234 config CRYPTO_TWOFISH_X86_64
1235         tristate "Twofish cipher algorithm (x86_64)"
1236         depends on (X86 || UML_X86) && 64BIT
1237         select CRYPTO_ALGAPI
1238         select CRYPTO_TWOFISH_COMMON
1239         help
1240           Twofish cipher algorithm (x86_64).
1241
1242           Twofish was submitted as an AES (Advanced Encryption Standard)
1243           candidate cipher by researchers at CounterPane Systems.  It is a
1244           16 round block cipher supporting key sizes of 128, 192, and 256
1245           bits.
1246
1247           See also:
1248           <http://www.schneier.com/twofish.html>
1249
1250 config CRYPTO_TWOFISH_X86_64_3WAY
1251         tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1252         depends on X86 && 64BIT
1253         select CRYPTO_ALGAPI
1254         select CRYPTO_TWOFISH_COMMON
1255         select CRYPTO_TWOFISH_X86_64
1256         select CRYPTO_GLUE_HELPER_X86
1257         select CRYPTO_LRW
1258         select CRYPTO_XTS
1259         help
1260           Twofish cipher algorithm (x86_64, 3-way parallel).
1261
1262           Twofish was submitted as an AES (Advanced Encryption Standard)
1263           candidate cipher by researchers at CounterPane Systems.  It is a
1264           16 round block cipher supporting key sizes of 128, 192, and 256
1265           bits.
1266
1267           This module provides Twofish cipher algorithm that processes three
1268           blocks parallel, utilizing resources of out-of-order CPUs better.
1269
1270           See also:
1271           <http://www.schneier.com/twofish.html>
1272
1273 config CRYPTO_TWOFISH_AVX_X86_64
1274         tristate "Twofish cipher algorithm (x86_64/AVX)"
1275         depends on X86 && 64BIT
1276         select CRYPTO_ALGAPI
1277         select CRYPTO_CRYPTD
1278         select CRYPTO_ABLK_HELPER
1279         select CRYPTO_GLUE_HELPER_X86
1280         select CRYPTO_TWOFISH_COMMON
1281         select CRYPTO_TWOFISH_X86_64
1282         select CRYPTO_TWOFISH_X86_64_3WAY
1283         select CRYPTO_LRW
1284         select CRYPTO_XTS
1285         help
1286           Twofish cipher algorithm (x86_64/AVX).
1287
1288           Twofish was submitted as an AES (Advanced Encryption Standard)
1289           candidate cipher by researchers at CounterPane Systems.  It is a
1290           16 round block cipher supporting key sizes of 128, 192, and 256
1291           bits.
1292
1293           This module provides the Twofish cipher algorithm that processes
1294           eight blocks parallel using the AVX Instruction Set.
1295
1296           See also:
1297           <http://www.schneier.com/twofish.html>
1298
1299 comment "Compression"
1300
1301 config CRYPTO_DEFLATE
1302         tristate "Deflate compression algorithm"
1303         select CRYPTO_ALGAPI
1304         select ZLIB_INFLATE
1305         select ZLIB_DEFLATE
1306         help
1307           This is the Deflate algorithm (RFC1951), specified for use in
1308           IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1309
1310           You will most probably want this if using IPSec.
1311
1312 config CRYPTO_ZLIB
1313         tristate "Zlib compression algorithm"
1314         select CRYPTO_PCOMP
1315         select ZLIB_INFLATE
1316         select ZLIB_DEFLATE
1317         select NLATTR
1318         help
1319           This is the zlib algorithm.
1320
1321 config CRYPTO_LZO
1322         tristate "LZO compression algorithm"
1323         select CRYPTO_ALGAPI
1324         select LZO_COMPRESS
1325         select LZO_DECOMPRESS
1326         help
1327           This is the LZO algorithm.
1328
1329 config CRYPTO_842
1330         tristate "842 compression algorithm"
1331         depends on CRYPTO_DEV_NX_COMPRESS
1332         # 842 uses lzo if the hardware becomes unavailable
1333         select LZO_COMPRESS
1334         select LZO_DECOMPRESS
1335         help
1336           This is the 842 algorithm.
1337
1338 config CRYPTO_LZ4
1339         tristate "LZ4 compression algorithm"
1340         select CRYPTO_ALGAPI
1341         select LZ4_COMPRESS
1342         select LZ4_DECOMPRESS
1343         help
1344           This is the LZ4 algorithm.
1345
1346 config CRYPTO_LZ4HC
1347         tristate "LZ4HC compression algorithm"
1348         select CRYPTO_ALGAPI
1349         select LZ4HC_COMPRESS
1350         select LZ4_DECOMPRESS
1351         help
1352           This is the LZ4 high compression mode algorithm.
1353
1354 comment "Random Number Generation"
1355
1356 config CRYPTO_ANSI_CPRNG
1357         tristate "Pseudo Random Number Generation for Cryptographic modules"
1358         default m
1359         select CRYPTO_AES
1360         select CRYPTO_RNG
1361         help
1362           This option enables the generic pseudo random number generator
1363           for cryptographic modules.  Uses the Algorithm specified in
1364           ANSI X9.31 A.2.4. Note that this option must be enabled if
1365           CRYPTO_FIPS is selected
1366
1367 config CRYPTO_USER_API
1368         tristate
1369
1370 config CRYPTO_USER_API_HASH
1371         tristate "User-space interface for hash algorithms"
1372         depends on NET
1373         select CRYPTO_HASH
1374         select CRYPTO_USER_API
1375         help
1376           This option enables the user-spaces interface for hash
1377           algorithms.
1378
1379 config CRYPTO_USER_API_SKCIPHER
1380         tristate "User-space interface for symmetric key cipher algorithms"
1381         depends on NET
1382         select CRYPTO_BLKCIPHER
1383         select CRYPTO_USER_API
1384         help
1385           This option enables the user-spaces interface for symmetric
1386           key cipher algorithms.
1387
1388 source "drivers/crypto/Kconfig"
1389 source crypto/asymmetric_keys/Kconfig
1390
1391 endif   # if CRYPTO