]> git.karo-electronics.de Git - linux-beck.git/blob - crypto/drbg.c
ec6bffd77001e211f74166e2731989b5894ac4e3
[linux-beck.git] / crypto / drbg.c
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *              * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *              * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *              * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *              * with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99
100 #include <crypto/drbg.h>
101
102 /***************************************************************
103  * Backend cipher definitions available to DRBG
104  ***************************************************************/
105
106 /*
107  * The order of the DRBG definitions here matter: every DRBG is registered
108  * as stdrng. Each DRBG receives an increasing cra_priority values the later
109  * they are defined in this array (see drbg_fill_array).
110  *
111  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
112  * the SHA256 / AES 256 over other ciphers. Thus, the favored
113  * DRBGs are the latest entries in this array.
114  */
115 static const struct drbg_core drbg_cores[] = {
116 #ifdef CONFIG_CRYPTO_DRBG_CTR
117         {
118                 .flags = DRBG_CTR | DRBG_STRENGTH128,
119                 .statelen = 32, /* 256 bits as defined in 10.2.1 */
120                 .blocklen_bytes = 16,
121                 .cra_name = "ctr_aes128",
122                 .backend_cra_name = "aes",
123         }, {
124                 .flags = DRBG_CTR | DRBG_STRENGTH192,
125                 .statelen = 40, /* 320 bits as defined in 10.2.1 */
126                 .blocklen_bytes = 16,
127                 .cra_name = "ctr_aes192",
128                 .backend_cra_name = "aes",
129         }, {
130                 .flags = DRBG_CTR | DRBG_STRENGTH256,
131                 .statelen = 48, /* 384 bits as defined in 10.2.1 */
132                 .blocklen_bytes = 16,
133                 .cra_name = "ctr_aes256",
134                 .backend_cra_name = "aes",
135         },
136 #endif /* CONFIG_CRYPTO_DRBG_CTR */
137 #ifdef CONFIG_CRYPTO_DRBG_HASH
138         {
139                 .flags = DRBG_HASH | DRBG_STRENGTH128,
140                 .statelen = 55, /* 440 bits */
141                 .blocklen_bytes = 20,
142                 .cra_name = "sha1",
143                 .backend_cra_name = "sha1",
144         }, {
145                 .flags = DRBG_HASH | DRBG_STRENGTH256,
146                 .statelen = 111, /* 888 bits */
147                 .blocklen_bytes = 48,
148                 .cra_name = "sha384",
149                 .backend_cra_name = "sha384",
150         }, {
151                 .flags = DRBG_HASH | DRBG_STRENGTH256,
152                 .statelen = 111, /* 888 bits */
153                 .blocklen_bytes = 64,
154                 .cra_name = "sha512",
155                 .backend_cra_name = "sha512",
156         }, {
157                 .flags = DRBG_HASH | DRBG_STRENGTH256,
158                 .statelen = 55, /* 440 bits */
159                 .blocklen_bytes = 32,
160                 .cra_name = "sha256",
161                 .backend_cra_name = "sha256",
162         },
163 #endif /* CONFIG_CRYPTO_DRBG_HASH */
164 #ifdef CONFIG_CRYPTO_DRBG_HMAC
165         {
166                 .flags = DRBG_HMAC | DRBG_STRENGTH128,
167                 .statelen = 20, /* block length of cipher */
168                 .blocklen_bytes = 20,
169                 .cra_name = "hmac_sha1",
170                 .backend_cra_name = "hmac(sha1)",
171         }, {
172                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
173                 .statelen = 48, /* block length of cipher */
174                 .blocklen_bytes = 48,
175                 .cra_name = "hmac_sha384",
176                 .backend_cra_name = "hmac(sha384)",
177         }, {
178                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
179                 .statelen = 64, /* block length of cipher */
180                 .blocklen_bytes = 64,
181                 .cra_name = "hmac_sha512",
182                 .backend_cra_name = "hmac(sha512)",
183         }, {
184                 .flags = DRBG_HMAC | DRBG_STRENGTH256,
185                 .statelen = 32, /* block length of cipher */
186                 .blocklen_bytes = 32,
187                 .cra_name = "hmac_sha256",
188                 .backend_cra_name = "hmac(sha256)",
189         },
190 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
191 };
192
193 /******************************************************************
194  * Generic helper functions
195  ******************************************************************/
196
197 /*
198  * Return strength of DRBG according to SP800-90A section 8.4
199  *
200  * @flags DRBG flags reference
201  *
202  * Return: normalized strength in *bytes* value or 32 as default
203  *         to counter programming errors
204  */
205 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
206 {
207         switch (flags & DRBG_STRENGTH_MASK) {
208         case DRBG_STRENGTH128:
209                 return 16;
210         case DRBG_STRENGTH192:
211                 return 24;
212         case DRBG_STRENGTH256:
213                 return 32;
214         default:
215                 return 32;
216         }
217 }
218
219 /*
220  * FIPS 140-2 continuous self test
221  * The test is performed on the result of one round of the output
222  * function. Thus, the function implicitly knows the size of the
223  * buffer.
224  *
225  * @drbg DRBG handle
226  * @buf output buffer of random data to be checked
227  *
228  * return:
229  *      true on success
230  *      false on error
231  */
232 static bool drbg_fips_continuous_test(struct drbg_state *drbg,
233                                       const unsigned char *buf)
234 {
235 #ifdef CONFIG_CRYPTO_FIPS
236         int ret = 0;
237         /* skip test if we test the overall system */
238         if (list_empty(&drbg->test_data.list))
239                 return true;
240         /* only perform test in FIPS mode */
241         if (0 == fips_enabled)
242                 return true;
243         if (!drbg->fips_primed) {
244                 /* Priming of FIPS test */
245                 memcpy(drbg->prev, buf, drbg_blocklen(drbg));
246                 drbg->fips_primed = true;
247                 /* return false due to priming, i.e. another round is needed */
248                 return false;
249         }
250         ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
251         if (!ret)
252                 panic("DRBG continuous self test failed\n");
253         memcpy(drbg->prev, buf, drbg_blocklen(drbg));
254         /* the test shall pass when the two compared values are not equal */
255         return ret != 0;
256 #else
257         return true;
258 #endif /* CONFIG_CRYPTO_FIPS */
259 }
260
261 /*
262  * Convert an integer into a byte representation of this integer.
263  * The byte representation is big-endian
264  *
265  * @val value to be converted
266  * @buf buffer holding the converted integer -- caller must ensure that
267  *      buffer size is at least 32 bit
268  */
269 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
270 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
271 {
272         struct s {
273                 __be32 conv;
274         };
275         struct s *conversion = (struct s *) buf;
276
277         conversion->conv = cpu_to_be32(val);
278 }
279 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
280
281 /******************************************************************
282  * CTR DRBG callback functions
283  ******************************************************************/
284
285 #ifdef CONFIG_CRYPTO_DRBG_CTR
286 #define CRYPTO_DRBG_CTR_STRING "CTR "
287 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
288 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
289 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
290 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
291 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
292 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
293
294 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
295                           unsigned char *outval, const struct drbg_string *in);
296 static int drbg_init_sym_kernel(struct drbg_state *drbg);
297 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
298
299 /* BCC function for CTR DRBG as defined in 10.4.3 */
300 static int drbg_ctr_bcc(struct drbg_state *drbg,
301                         unsigned char *out, const unsigned char *key,
302                         struct list_head *in)
303 {
304         int ret = 0;
305         struct drbg_string *curr = NULL;
306         struct drbg_string data;
307         short cnt = 0;
308
309         drbg_string_fill(&data, out, drbg_blocklen(drbg));
310
311         /* 10.4.3 step 2 / 4 */
312         list_for_each_entry(curr, in, list) {
313                 const unsigned char *pos = curr->buf;
314                 size_t len = curr->len;
315                 /* 10.4.3 step 4.1 */
316                 while (len) {
317                         /* 10.4.3 step 4.2 */
318                         if (drbg_blocklen(drbg) == cnt) {
319                                 cnt = 0;
320                                 ret = drbg_kcapi_sym(drbg, key, out, &data);
321                                 if (ret)
322                                         return ret;
323                         }
324                         out[cnt] ^= *pos;
325                         pos++;
326                         cnt++;
327                         len--;
328                 }
329         }
330         /* 10.4.3 step 4.2 for last block */
331         if (cnt)
332                 ret = drbg_kcapi_sym(drbg, key, out, &data);
333
334         return ret;
335 }
336
337 /*
338  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
339  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
340  * the scratchpad is used as follows:
341  * drbg_ctr_update:
342  *      temp
343  *              start: drbg->scratchpad
344  *              length: drbg_statelen(drbg) + drbg_blocklen(drbg)
345  *                      note: the cipher writing into this variable works
346  *                      blocklen-wise. Now, when the statelen is not a multiple
347  *                      of blocklen, the generateion loop below "spills over"
348  *                      by at most blocklen. Thus, we need to give sufficient
349  *                      memory.
350  *      df_data
351  *              start: drbg->scratchpad +
352  *                              drbg_statelen(drbg) + drbg_blocklen(drbg)
353  *              length: drbg_statelen(drbg)
354  *
355  * drbg_ctr_df:
356  *      pad
357  *              start: df_data + drbg_statelen(drbg)
358  *              length: drbg_blocklen(drbg)
359  *      iv
360  *              start: pad + drbg_blocklen(drbg)
361  *              length: drbg_blocklen(drbg)
362  *      temp
363  *              start: iv + drbg_blocklen(drbg)
364  *              length: drbg_satelen(drbg) + drbg_blocklen(drbg)
365  *                      note: temp is the buffer that the BCC function operates
366  *                      on. BCC operates blockwise. drbg_statelen(drbg)
367  *                      is sufficient when the DRBG state length is a multiple
368  *                      of the block size. For AES192 (and maybe other ciphers)
369  *                      this is not correct and the length for temp is
370  *                      insufficient (yes, that also means for such ciphers,
371  *                      the final output of all BCC rounds are truncated).
372  *                      Therefore, add drbg_blocklen(drbg) to cover all
373  *                      possibilities.
374  */
375
376 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
377 static int drbg_ctr_df(struct drbg_state *drbg,
378                        unsigned char *df_data, size_t bytes_to_return,
379                        struct list_head *seedlist)
380 {
381         int ret = -EFAULT;
382         unsigned char L_N[8];
383         /* S3 is input */
384         struct drbg_string S1, S2, S4, cipherin;
385         LIST_HEAD(bcc_list);
386         unsigned char *pad = df_data + drbg_statelen(drbg);
387         unsigned char *iv = pad + drbg_blocklen(drbg);
388         unsigned char *temp = iv + drbg_blocklen(drbg);
389         size_t padlen = 0;
390         unsigned int templen = 0;
391         /* 10.4.2 step 7 */
392         unsigned int i = 0;
393         /* 10.4.2 step 8 */
394         const unsigned char *K = (unsigned char *)
395                            "\x00\x01\x02\x03\x04\x05\x06\x07"
396                            "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
397                            "\x10\x11\x12\x13\x14\x15\x16\x17"
398                            "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
399         unsigned char *X;
400         size_t generated_len = 0;
401         size_t inputlen = 0;
402         struct drbg_string *seed = NULL;
403
404         memset(pad, 0, drbg_blocklen(drbg));
405         memset(iv, 0, drbg_blocklen(drbg));
406
407         /* 10.4.2 step 1 is implicit as we work byte-wise */
408
409         /* 10.4.2 step 2 */
410         if ((512/8) < bytes_to_return)
411                 return -EINVAL;
412
413         /* 10.4.2 step 2 -- calculate the entire length of all input data */
414         list_for_each_entry(seed, seedlist, list)
415                 inputlen += seed->len;
416         drbg_cpu_to_be32(inputlen, &L_N[0]);
417
418         /* 10.4.2 step 3 */
419         drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
420
421         /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
422         padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
423         /* wrap the padlen appropriately */
424         if (padlen)
425                 padlen = drbg_blocklen(drbg) - padlen;
426         /*
427          * pad / padlen contains the 0x80 byte and the following zero bytes.
428          * As the calculated padlen value only covers the number of zero
429          * bytes, this value has to be incremented by one for the 0x80 byte.
430          */
431         padlen++;
432         pad[0] = 0x80;
433
434         /* 10.4.2 step 4 -- first fill the linked list and then order it */
435         drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
436         list_add_tail(&S1.list, &bcc_list);
437         drbg_string_fill(&S2, L_N, sizeof(L_N));
438         list_add_tail(&S2.list, &bcc_list);
439         list_splice_tail(seedlist, &bcc_list);
440         drbg_string_fill(&S4, pad, padlen);
441         list_add_tail(&S4.list, &bcc_list);
442
443         /* 10.4.2 step 9 */
444         while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
445                 /*
446                  * 10.4.2 step 9.1 - the padding is implicit as the buffer
447                  * holds zeros after allocation -- even the increment of i
448                  * is irrelevant as the increment remains within length of i
449                  */
450                 drbg_cpu_to_be32(i, iv);
451                 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
452                 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
453                 if (ret)
454                         goto out;
455                 /* 10.4.2 step 9.3 */
456                 i++;
457                 templen += drbg_blocklen(drbg);
458         }
459
460         /* 10.4.2 step 11 */
461         X = temp + (drbg_keylen(drbg));
462         drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
463
464         /* 10.4.2 step 12: overwriting of outval is implemented in next step */
465
466         /* 10.4.2 step 13 */
467         while (generated_len < bytes_to_return) {
468                 short blocklen = 0;
469                 /*
470                  * 10.4.2 step 13.1: the truncation of the key length is
471                  * implicit as the key is only drbg_blocklen in size based on
472                  * the implementation of the cipher function callback
473                  */
474                 ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
475                 if (ret)
476                         goto out;
477                 blocklen = (drbg_blocklen(drbg) <
478                                 (bytes_to_return - generated_len)) ?
479                             drbg_blocklen(drbg) :
480                                 (bytes_to_return - generated_len);
481                 /* 10.4.2 step 13.2 and 14 */
482                 memcpy(df_data + generated_len, X, blocklen);
483                 generated_len += blocklen;
484         }
485
486         ret = 0;
487
488 out:
489         memset(iv, 0, drbg_blocklen(drbg));
490         memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
491         memset(pad, 0, drbg_blocklen(drbg));
492         return ret;
493 }
494
495 /*
496  * update function of CTR DRBG as defined in 10.2.1.2
497  *
498  * The reseed variable has an enhanced meaning compared to the update
499  * functions of the other DRBGs as follows:
500  * 0 => initial seed from initialization
501  * 1 => reseed via drbg_seed
502  * 2 => first invocation from drbg_ctr_update when addtl is present. In
503  *      this case, the df_data scratchpad is not deleted so that it is
504  *      available for another calls to prevent calling the DF function
505  *      again.
506  * 3 => second invocation from drbg_ctr_update. When the update function
507  *      was called with addtl, the df_data memory already contains the
508  *      DFed addtl information and we do not need to call DF again.
509  */
510 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
511                            int reseed)
512 {
513         int ret = -EFAULT;
514         /* 10.2.1.2 step 1 */
515         unsigned char *temp = drbg->scratchpad;
516         unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
517                                  drbg_blocklen(drbg);
518         unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
519         unsigned int len = 0;
520         struct drbg_string cipherin;
521
522         if (3 > reseed)
523                 memset(df_data, 0, drbg_statelen(drbg));
524
525         /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
526         if (seed) {
527                 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
528                 if (ret)
529                         goto out;
530         }
531
532         drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
533         /*
534          * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
535          * zeroizes all memory during initialization
536          */
537         while (len < (drbg_statelen(drbg))) {
538                 /* 10.2.1.2 step 2.1 */
539                 crypto_inc(drbg->V, drbg_blocklen(drbg));
540                 /*
541                  * 10.2.1.2 step 2.2 */
542                 ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
543                 if (ret)
544                         goto out;
545                 /* 10.2.1.2 step 2.3 and 3 */
546                 len += drbg_blocklen(drbg);
547         }
548
549         /* 10.2.1.2 step 4 */
550         temp_p = temp;
551         df_data_p = df_data;
552         for (len = 0; len < drbg_statelen(drbg); len++) {
553                 *temp_p ^= *df_data_p;
554                 df_data_p++; temp_p++;
555         }
556
557         /* 10.2.1.2 step 5 */
558         memcpy(drbg->C, temp, drbg_keylen(drbg));
559         /* 10.2.1.2 step 6 */
560         memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
561         ret = 0;
562
563 out:
564         memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
565         if (2 != reseed)
566                 memset(df_data, 0, drbg_statelen(drbg));
567         return ret;
568 }
569
570 /*
571  * scratchpad use: drbg_ctr_update is called independently from
572  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
573  */
574 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
575 static int drbg_ctr_generate(struct drbg_state *drbg,
576                              unsigned char *buf, unsigned int buflen,
577                              struct list_head *addtl)
578 {
579         int len = 0;
580         int ret = 0;
581         struct drbg_string data;
582
583         /* 10.2.1.5.2 step 2 */
584         if (addtl && !list_empty(addtl)) {
585                 ret = drbg_ctr_update(drbg, addtl, 2);
586                 if (ret)
587                         return 0;
588         }
589
590         /* 10.2.1.5.2 step 4.1 */
591         crypto_inc(drbg->V, drbg_blocklen(drbg));
592         drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
593         while (len < buflen) {
594                 int outlen = 0;
595                 /* 10.2.1.5.2 step 4.2 */
596                 ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
597                 if (ret) {
598                         len = ret;
599                         goto out;
600                 }
601                 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
602                           drbg_blocklen(drbg) : (buflen - len);
603                 if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
604                         /* 10.2.1.5.2 step 6 */
605                         crypto_inc(drbg->V, drbg_blocklen(drbg));
606                         continue;
607                 }
608                 /* 10.2.1.5.2 step 4.3 */
609                 memcpy(buf + len, drbg->scratchpad, outlen);
610                 len += outlen;
611                 /* 10.2.1.5.2 step 6 */
612                 if (len < buflen)
613                         crypto_inc(drbg->V, drbg_blocklen(drbg));
614         }
615
616         /* 10.2.1.5.2 step 6 */
617         ret = drbg_ctr_update(drbg, NULL, 3);
618         if (ret)
619                 len = ret;
620
621 out:
622         memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
623         return len;
624 }
625
626 static struct drbg_state_ops drbg_ctr_ops = {
627         .update         = drbg_ctr_update,
628         .generate       = drbg_ctr_generate,
629         .crypto_init    = drbg_init_sym_kernel,
630         .crypto_fini    = drbg_fini_sym_kernel,
631 };
632 #endif /* CONFIG_CRYPTO_DRBG_CTR */
633
634 /******************************************************************
635  * HMAC DRBG callback functions
636  ******************************************************************/
637
638 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
639 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
640                            unsigned char *outval, const struct list_head *in);
641 static int drbg_init_hash_kernel(struct drbg_state *drbg);
642 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
643 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
644
645 #ifdef CONFIG_CRYPTO_DRBG_HMAC
646 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
647 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
648 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
649 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
650 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
651 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
652 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
653 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
654 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
655
656 /* update function of HMAC DRBG as defined in 10.1.2.2 */
657 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
658                             int reseed)
659 {
660         int ret = -EFAULT;
661         int i = 0;
662         struct drbg_string seed1, seed2, vdata;
663         LIST_HEAD(seedlist);
664         LIST_HEAD(vdatalist);
665
666         if (!reseed)
667                 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
668                 memset(drbg->V, 1, drbg_statelen(drbg));
669
670         drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
671         list_add_tail(&seed1.list, &seedlist);
672         /* buffer of seed2 will be filled in for loop below with one byte */
673         drbg_string_fill(&seed2, NULL, 1);
674         list_add_tail(&seed2.list, &seedlist);
675         /* input data of seed is allowed to be NULL at this point */
676         if (seed)
677                 list_splice_tail(seed, &seedlist);
678
679         drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
680         list_add_tail(&vdata.list, &vdatalist);
681         for (i = 2; 0 < i; i--) {
682                 /* first round uses 0x0, second 0x1 */
683                 unsigned char prefix = DRBG_PREFIX0;
684                 if (1 == i)
685                         prefix = DRBG_PREFIX1;
686                 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
687                 seed2.buf = &prefix;
688                 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
689                 if (ret)
690                         return ret;
691
692                 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
693                 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
694                 if (ret)
695                         return ret;
696
697                 /* 10.1.2.2 step 3 */
698                 if (!seed)
699                         return ret;
700         }
701
702         return 0;
703 }
704
705 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
706 static int drbg_hmac_generate(struct drbg_state *drbg,
707                               unsigned char *buf,
708                               unsigned int buflen,
709                               struct list_head *addtl)
710 {
711         int len = 0;
712         int ret = 0;
713         struct drbg_string data;
714         LIST_HEAD(datalist);
715
716         /* 10.1.2.5 step 2 */
717         if (addtl && !list_empty(addtl)) {
718                 ret = drbg_hmac_update(drbg, addtl, 1);
719                 if (ret)
720                         return ret;
721         }
722
723         drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
724         list_add_tail(&data.list, &datalist);
725         while (len < buflen) {
726                 unsigned int outlen = 0;
727                 /* 10.1.2.5 step 4.1 */
728                 ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
729                 if (ret)
730                         return ret;
731                 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
732                           drbg_blocklen(drbg) : (buflen - len);
733                 if (!drbg_fips_continuous_test(drbg, drbg->V))
734                         continue;
735
736                 /* 10.1.2.5 step 4.2 */
737                 memcpy(buf + len, drbg->V, outlen);
738                 len += outlen;
739         }
740
741         /* 10.1.2.5 step 6 */
742         if (addtl && !list_empty(addtl))
743                 ret = drbg_hmac_update(drbg, addtl, 1);
744         else
745                 ret = drbg_hmac_update(drbg, NULL, 1);
746         if (ret)
747                 return ret;
748
749         return len;
750 }
751
752 static struct drbg_state_ops drbg_hmac_ops = {
753         .update         = drbg_hmac_update,
754         .generate       = drbg_hmac_generate,
755         .crypto_init    = drbg_init_hash_kernel,
756         .crypto_fini    = drbg_fini_hash_kernel,
757 };
758 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
759
760 /******************************************************************
761  * Hash DRBG callback functions
762  ******************************************************************/
763
764 #ifdef CONFIG_CRYPTO_DRBG_HASH
765 #define CRYPTO_DRBG_HASH_STRING "HASH "
766 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
767 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
768 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
769 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
770 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
771 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
772 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
773 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
774
775 /*
776  * Increment buffer
777  *
778  * @dst buffer to increment
779  * @add value to add
780  */
781 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
782                                 const unsigned char *add, size_t addlen)
783 {
784         /* implied: dstlen > addlen */
785         unsigned char *dstptr;
786         const unsigned char *addptr;
787         unsigned int remainder = 0;
788         size_t len = addlen;
789
790         dstptr = dst + (dstlen-1);
791         addptr = add + (addlen-1);
792         while (len) {
793                 remainder += *dstptr + *addptr;
794                 *dstptr = remainder & 0xff;
795                 remainder >>= 8;
796                 len--; dstptr--; addptr--;
797         }
798         len = dstlen - addlen;
799         while (len && remainder > 0) {
800                 remainder = *dstptr + 1;
801                 *dstptr = remainder & 0xff;
802                 remainder >>= 8;
803                 len--; dstptr--;
804         }
805 }
806
807 /*
808  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
809  * interlinked, the scratchpad is used as follows:
810  * drbg_hash_update
811  *      start: drbg->scratchpad
812  *      length: drbg_statelen(drbg)
813  * drbg_hash_df:
814  *      start: drbg->scratchpad + drbg_statelen(drbg)
815  *      length: drbg_blocklen(drbg)
816  *
817  * drbg_hash_process_addtl uses the scratchpad, but fully completes
818  * before either of the functions mentioned before are invoked. Therefore,
819  * drbg_hash_process_addtl does not need to be specifically considered.
820  */
821
822 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
823 static int drbg_hash_df(struct drbg_state *drbg,
824                         unsigned char *outval, size_t outlen,
825                         struct list_head *entropylist)
826 {
827         int ret = 0;
828         size_t len = 0;
829         unsigned char input[5];
830         unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
831         struct drbg_string data;
832
833         /* 10.4.1 step 3 */
834         input[0] = 1;
835         drbg_cpu_to_be32((outlen * 8), &input[1]);
836
837         /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
838         drbg_string_fill(&data, input, 5);
839         list_add(&data.list, entropylist);
840
841         /* 10.4.1 step 4 */
842         while (len < outlen) {
843                 short blocklen = 0;
844                 /* 10.4.1 step 4.1 */
845                 ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
846                 if (ret)
847                         goto out;
848                 /* 10.4.1 step 4.2 */
849                 input[0]++;
850                 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
851                             drbg_blocklen(drbg) : (outlen - len);
852                 memcpy(outval + len, tmp, blocklen);
853                 len += blocklen;
854         }
855
856 out:
857         memset(tmp, 0, drbg_blocklen(drbg));
858         return ret;
859 }
860
861 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
862 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
863                             int reseed)
864 {
865         int ret = 0;
866         struct drbg_string data1, data2;
867         LIST_HEAD(datalist);
868         LIST_HEAD(datalist2);
869         unsigned char *V = drbg->scratchpad;
870         unsigned char prefix = DRBG_PREFIX1;
871
872         if (!seed)
873                 return -EINVAL;
874
875         if (reseed) {
876                 /* 10.1.1.3 step 1 */
877                 memcpy(V, drbg->V, drbg_statelen(drbg));
878                 drbg_string_fill(&data1, &prefix, 1);
879                 list_add_tail(&data1.list, &datalist);
880                 drbg_string_fill(&data2, V, drbg_statelen(drbg));
881                 list_add_tail(&data2.list, &datalist);
882         }
883         list_splice_tail(seed, &datalist);
884
885         /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
886         ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
887         if (ret)
888                 goto out;
889
890         /* 10.1.1.2 / 10.1.1.3 step 4  */
891         prefix = DRBG_PREFIX0;
892         drbg_string_fill(&data1, &prefix, 1);
893         list_add_tail(&data1.list, &datalist2);
894         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
895         list_add_tail(&data2.list, &datalist2);
896         /* 10.1.1.2 / 10.1.1.3 step 4 */
897         ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
898
899 out:
900         memset(drbg->scratchpad, 0, drbg_statelen(drbg));
901         return ret;
902 }
903
904 /* processing of additional information string for Hash DRBG */
905 static int drbg_hash_process_addtl(struct drbg_state *drbg,
906                                    struct list_head *addtl)
907 {
908         int ret = 0;
909         struct drbg_string data1, data2;
910         LIST_HEAD(datalist);
911         unsigned char prefix = DRBG_PREFIX2;
912
913         /* 10.1.1.4 step 2 */
914         if (!addtl || list_empty(addtl))
915                 return 0;
916
917         /* 10.1.1.4 step 2a */
918         drbg_string_fill(&data1, &prefix, 1);
919         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
920         list_add_tail(&data1.list, &datalist);
921         list_add_tail(&data2.list, &datalist);
922         list_splice_tail(addtl, &datalist);
923         ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
924         if (ret)
925                 goto out;
926
927         /* 10.1.1.4 step 2b */
928         drbg_add_buf(drbg->V, drbg_statelen(drbg),
929                      drbg->scratchpad, drbg_blocklen(drbg));
930
931 out:
932         memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
933         return ret;
934 }
935
936 /* Hashgen defined in 10.1.1.4 */
937 static int drbg_hash_hashgen(struct drbg_state *drbg,
938                              unsigned char *buf,
939                              unsigned int buflen)
940 {
941         int len = 0;
942         int ret = 0;
943         unsigned char *src = drbg->scratchpad;
944         unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
945         struct drbg_string data;
946         LIST_HEAD(datalist);
947
948         /* 10.1.1.4 step hashgen 2 */
949         memcpy(src, drbg->V, drbg_statelen(drbg));
950
951         drbg_string_fill(&data, src, drbg_statelen(drbg));
952         list_add_tail(&data.list, &datalist);
953         while (len < buflen) {
954                 unsigned int outlen = 0;
955                 /* 10.1.1.4 step hashgen 4.1 */
956                 ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
957                 if (ret) {
958                         len = ret;
959                         goto out;
960                 }
961                 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
962                           drbg_blocklen(drbg) : (buflen - len);
963                 if (!drbg_fips_continuous_test(drbg, dst)) {
964                         crypto_inc(src, drbg_statelen(drbg));
965                         continue;
966                 }
967                 /* 10.1.1.4 step hashgen 4.2 */
968                 memcpy(buf + len, dst, outlen);
969                 len += outlen;
970                 /* 10.1.1.4 hashgen step 4.3 */
971                 if (len < buflen)
972                         crypto_inc(src, drbg_statelen(drbg));
973         }
974
975 out:
976         memset(drbg->scratchpad, 0,
977                (drbg_statelen(drbg) + drbg_blocklen(drbg)));
978         return len;
979 }
980
981 /* generate function for Hash DRBG as defined in  10.1.1.4 */
982 static int drbg_hash_generate(struct drbg_state *drbg,
983                               unsigned char *buf, unsigned int buflen,
984                               struct list_head *addtl)
985 {
986         int len = 0;
987         int ret = 0;
988         union {
989                 unsigned char req[8];
990                 __be64 req_int;
991         } u;
992         unsigned char prefix = DRBG_PREFIX3;
993         struct drbg_string data1, data2;
994         LIST_HEAD(datalist);
995
996         /* 10.1.1.4 step 2 */
997         ret = drbg_hash_process_addtl(drbg, addtl);
998         if (ret)
999                 return ret;
1000         /* 10.1.1.4 step 3 */
1001         len = drbg_hash_hashgen(drbg, buf, buflen);
1002
1003         /* this is the value H as documented in 10.1.1.4 */
1004         /* 10.1.1.4 step 4 */
1005         drbg_string_fill(&data1, &prefix, 1);
1006         list_add_tail(&data1.list, &datalist);
1007         drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1008         list_add_tail(&data2.list, &datalist);
1009         ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1010         if (ret) {
1011                 len = ret;
1012                 goto out;
1013         }
1014
1015         /* 10.1.1.4 step 5 */
1016         drbg_add_buf(drbg->V, drbg_statelen(drbg),
1017                      drbg->scratchpad, drbg_blocklen(drbg));
1018         drbg_add_buf(drbg->V, drbg_statelen(drbg),
1019                      drbg->C, drbg_statelen(drbg));
1020         u.req_int = cpu_to_be64(drbg->reseed_ctr);
1021         drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1022
1023 out:
1024         memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1025         return len;
1026 }
1027
1028 /*
1029  * scratchpad usage: as update and generate are used isolated, both
1030  * can use the scratchpad
1031  */
1032 static struct drbg_state_ops drbg_hash_ops = {
1033         .update         = drbg_hash_update,
1034         .generate       = drbg_hash_generate,
1035         .crypto_init    = drbg_init_hash_kernel,
1036         .crypto_fini    = drbg_fini_hash_kernel,
1037 };
1038 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1039
1040 /******************************************************************
1041  * Functions common for DRBG implementations
1042  ******************************************************************/
1043
1044 /*
1045  * Seeding or reseeding of the DRBG
1046  *
1047  * @drbg: DRBG state struct
1048  * @pers: personalization / additional information buffer
1049  * @reseed: 0 for initial seed process, 1 for reseeding
1050  *
1051  * return:
1052  *      0 on success
1053  *      error value otherwise
1054  */
1055 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1056                      bool reseed)
1057 {
1058         int ret = 0;
1059         unsigned char *entropy = NULL;
1060         size_t entropylen = 0;
1061         struct drbg_string data1;
1062         LIST_HEAD(seedlist);
1063
1064         /* 9.1 / 9.2 / 9.3.1 step 3 */
1065         if (pers && pers->len > (drbg_max_addtl(drbg))) {
1066                 pr_devel("DRBG: personalization string too long %zu\n",
1067                          pers->len);
1068                 return -EINVAL;
1069         }
1070
1071         if (list_empty(&drbg->test_data.list)) {
1072                 drbg_string_fill(&data1, drbg->test_data.buf,
1073                                  drbg->test_data.len);
1074                 pr_devel("DRBG: using test entropy\n");
1075         } else {
1076                 /*
1077                  * Gather entropy equal to the security strength of the DRBG.
1078                  * With a derivation function, a nonce is required in addition
1079                  * to the entropy. A nonce must be at least 1/2 of the security
1080                  * strength of the DRBG in size. Thus, entropy * nonce is 3/2
1081                  * of the strength. The consideration of a nonce is only
1082                  * applicable during initial seeding.
1083                  */
1084                 entropylen = drbg_sec_strength(drbg->core->flags);
1085                 if (!entropylen)
1086                         return -EFAULT;
1087                 if (!reseed)
1088                         entropylen = ((entropylen + 1) / 2) * 3;
1089                 pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1090                          entropylen);
1091                 entropy = kzalloc(entropylen, GFP_KERNEL);
1092                 if (!entropy)
1093                         return -ENOMEM;
1094                 get_random_bytes(entropy, entropylen);
1095                 drbg_string_fill(&data1, entropy, entropylen);
1096         }
1097         list_add_tail(&data1.list, &seedlist);
1098
1099         /*
1100          * concatenation of entropy with personalization str / addtl input)
1101          * the variable pers is directly handed in by the caller, so check its
1102          * contents whether it is appropriate
1103          */
1104         if (pers && pers->buf && 0 < pers->len) {
1105                 list_add_tail(&pers->list, &seedlist);
1106                 pr_devel("DRBG: using personalization string\n");
1107         }
1108
1109         if (!reseed) {
1110                 memset(drbg->V, 0, drbg_statelen(drbg));
1111                 memset(drbg->C, 0, drbg_statelen(drbg));
1112         }
1113
1114         ret = drbg->d_ops->update(drbg, &seedlist, reseed);
1115         if (ret)
1116                 goto out;
1117
1118         drbg->seeded = true;
1119         /* 10.1.1.2 / 10.1.1.3 step 5 */
1120         drbg->reseed_ctr = 1;
1121
1122 out:
1123         kzfree(entropy);
1124         return ret;
1125 }
1126
1127 /* Free all substructures in a DRBG state without the DRBG state structure */
1128 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1129 {
1130         if (!drbg)
1131                 return;
1132         kzfree(drbg->V);
1133         drbg->V = NULL;
1134         kzfree(drbg->C);
1135         drbg->C = NULL;
1136         kzfree(drbg->scratchpad);
1137         drbg->scratchpad = NULL;
1138         drbg->reseed_ctr = 0;
1139         drbg->d_ops = NULL;
1140         drbg->core = NULL;
1141 #ifdef CONFIG_CRYPTO_FIPS
1142         kzfree(drbg->prev);
1143         drbg->prev = NULL;
1144         drbg->fips_primed = false;
1145 #endif
1146 }
1147
1148 /*
1149  * Allocate all sub-structures for a DRBG state.
1150  * The DRBG state structure must already be allocated.
1151  */
1152 static inline int drbg_alloc_state(struct drbg_state *drbg)
1153 {
1154         int ret = -ENOMEM;
1155         unsigned int sb_size = 0;
1156
1157         switch (drbg->core->flags & DRBG_TYPE_MASK) {
1158 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1159         case DRBG_HMAC:
1160                 drbg->d_ops = &drbg_hmac_ops;
1161                 break;
1162 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1163 #ifdef CONFIG_CRYPTO_DRBG_HASH
1164         case DRBG_HASH:
1165                 drbg->d_ops = &drbg_hash_ops;
1166                 break;
1167 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1168 #ifdef CONFIG_CRYPTO_DRBG_CTR
1169         case DRBG_CTR:
1170                 drbg->d_ops = &drbg_ctr_ops;
1171                 break;
1172 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1173         default:
1174                 ret = -EOPNOTSUPP;
1175                 goto err;
1176         }
1177
1178         drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1179         if (!drbg->V)
1180                 goto err;
1181         drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1182         if (!drbg->C)
1183                 goto err;
1184 #ifdef CONFIG_CRYPTO_FIPS
1185         drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1186         if (!drbg->prev)
1187                 goto err;
1188         drbg->fips_primed = false;
1189 #endif
1190         /* scratchpad is only generated for CTR and Hash */
1191         if (drbg->core->flags & DRBG_HMAC)
1192                 sb_size = 0;
1193         else if (drbg->core->flags & DRBG_CTR)
1194                 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1195                           drbg_statelen(drbg) + /* df_data */
1196                           drbg_blocklen(drbg) + /* pad */
1197                           drbg_blocklen(drbg) + /* iv */
1198                           drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1199         else
1200                 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1201
1202         if (0 < sb_size) {
1203                 drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1204                 if (!drbg->scratchpad)
1205                         goto err;
1206         }
1207         return 0;
1208
1209 err:
1210         drbg_dealloc_state(drbg);
1211         return ret;
1212 }
1213
1214 /*************************************************************************
1215  * DRBG interface functions
1216  *************************************************************************/
1217
1218 /*
1219  * DRBG generate function as required by SP800-90A - this function
1220  * generates random numbers
1221  *
1222  * @drbg DRBG state handle
1223  * @buf Buffer where to store the random numbers -- the buffer must already
1224  *      be pre-allocated by caller
1225  * @buflen Length of output buffer - this value defines the number of random
1226  *         bytes pulled from DRBG
1227  * @addtl Additional input that is mixed into state, may be NULL -- note
1228  *        the entropy is pulled by the DRBG internally unconditionally
1229  *        as defined in SP800-90A. The additional input is mixed into
1230  *        the state in addition to the pulled entropy.
1231  *
1232  * return: 0 when all bytes are generated; < 0 in case of an error
1233  */
1234 static int drbg_generate(struct drbg_state *drbg,
1235                          unsigned char *buf, unsigned int buflen,
1236                          struct drbg_string *addtl)
1237 {
1238         int len = 0;
1239         LIST_HEAD(addtllist);
1240
1241         if (!drbg->core) {
1242                 pr_devel("DRBG: not yet seeded\n");
1243                 return -EINVAL;
1244         }
1245         if (0 == buflen || !buf) {
1246                 pr_devel("DRBG: no output buffer provided\n");
1247                 return -EINVAL;
1248         }
1249         if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1250                 pr_devel("DRBG: wrong format of additional information\n");
1251                 return -EINVAL;
1252         }
1253
1254         /* 9.3.1 step 2 */
1255         len = -EINVAL;
1256         if (buflen > (drbg_max_request_bytes(drbg))) {
1257                 pr_devel("DRBG: requested random numbers too large %u\n",
1258                          buflen);
1259                 goto err;
1260         }
1261
1262         /* 9.3.1 step 3 is implicit with the chosen DRBG */
1263
1264         /* 9.3.1 step 4 */
1265         if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1266                 pr_devel("DRBG: additional information string too long %zu\n",
1267                          addtl->len);
1268                 goto err;
1269         }
1270         /* 9.3.1 step 5 is implicit with the chosen DRBG */
1271
1272         /*
1273          * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1274          * here. The spec is a bit convoluted here, we make it simpler.
1275          */
1276         if ((drbg_max_requests(drbg)) < drbg->reseed_ctr)
1277                 drbg->seeded = false;
1278
1279         if (drbg->pr || !drbg->seeded) {
1280                 pr_devel("DRBG: reseeding before generation (prediction "
1281                          "resistance: %s, state %s)\n",
1282                          drbg->pr ? "true" : "false",
1283                          drbg->seeded ? "seeded" : "unseeded");
1284                 /* 9.3.1 steps 7.1 through 7.3 */
1285                 len = drbg_seed(drbg, addtl, true);
1286                 if (len)
1287                         goto err;
1288                 /* 9.3.1 step 7.4 */
1289                 addtl = NULL;
1290         }
1291
1292         if (addtl && 0 < addtl->len)
1293                 list_add_tail(&addtl->list, &addtllist);
1294         /* 9.3.1 step 8 and 10 */
1295         len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1296
1297         /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1298         drbg->reseed_ctr++;
1299         if (0 >= len)
1300                 goto err;
1301
1302         /*
1303          * Section 11.3.3 requires to re-perform self tests after some
1304          * generated random numbers. The chosen value after which self
1305          * test is performed is arbitrary, but it should be reasonable.
1306          * However, we do not perform the self tests because of the following
1307          * reasons: it is mathematically impossible that the initial self tests
1308          * were successfully and the following are not. If the initial would
1309          * pass and the following would not, the kernel integrity is violated.
1310          * In this case, the entire kernel operation is questionable and it
1311          * is unlikely that the integrity violation only affects the
1312          * correct operation of the DRBG.
1313          *
1314          * Albeit the following code is commented out, it is provided in
1315          * case somebody has a need to implement the test of 11.3.3.
1316          */
1317 #if 0
1318         if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1319                 int err = 0;
1320                 pr_devel("DRBG: start to perform self test\n");
1321                 if (drbg->core->flags & DRBG_HMAC)
1322                         err = alg_test("drbg_pr_hmac_sha256",
1323                                        "drbg_pr_hmac_sha256", 0, 0);
1324                 else if (drbg->core->flags & DRBG_CTR)
1325                         err = alg_test("drbg_pr_ctr_aes128",
1326                                        "drbg_pr_ctr_aes128", 0, 0);
1327                 else
1328                         err = alg_test("drbg_pr_sha256",
1329                                        "drbg_pr_sha256", 0, 0);
1330                 if (err) {
1331                         pr_err("DRBG: periodical self test failed\n");
1332                         /*
1333                          * uninstantiate implies that from now on, only errors
1334                          * are returned when reusing this DRBG cipher handle
1335                          */
1336                         drbg_uninstantiate(drbg);
1337                         return 0;
1338                 } else {
1339                         pr_devel("DRBG: self test successful\n");
1340                 }
1341         }
1342 #endif
1343
1344         /*
1345          * All operations were successful, return 0 as mandated by
1346          * the kernel crypto API interface.
1347          */
1348         len = 0;
1349 err:
1350         return len;
1351 }
1352
1353 /*
1354  * Wrapper around drbg_generate which can pull arbitrary long strings
1355  * from the DRBG without hitting the maximum request limitation.
1356  *
1357  * Parameters: see drbg_generate
1358  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1359  *               the entire drbg_generate_long request fails
1360  */
1361 static int drbg_generate_long(struct drbg_state *drbg,
1362                               unsigned char *buf, unsigned int buflen,
1363                               struct drbg_string *addtl)
1364 {
1365         unsigned int len = 0;
1366         unsigned int slice = 0;
1367         do {
1368                 int err = 0;
1369                 unsigned int chunk = 0;
1370                 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1371                 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1372                 mutex_lock(&drbg->drbg_mutex);
1373                 err = drbg_generate(drbg, buf + len, chunk, addtl);
1374                 mutex_unlock(&drbg->drbg_mutex);
1375                 if (0 > err)
1376                         return err;
1377                 len += chunk;
1378         } while (slice > 0 && (len < buflen));
1379         return 0;
1380 }
1381
1382 /*
1383  * DRBG instantiation function as required by SP800-90A - this function
1384  * sets up the DRBG handle, performs the initial seeding and all sanity
1385  * checks required by SP800-90A
1386  *
1387  * @drbg memory of state -- if NULL, new memory is allocated
1388  * @pers Personalization string that is mixed into state, may be NULL -- note
1389  *       the entropy is pulled by the DRBG internally unconditionally
1390  *       as defined in SP800-90A. The additional input is mixed into
1391  *       the state in addition to the pulled entropy.
1392  * @coreref reference to core
1393  * @pr prediction resistance enabled
1394  *
1395  * return
1396  *      0 on success
1397  *      error value otherwise
1398  */
1399 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1400                             int coreref, bool pr)
1401 {
1402         int ret;
1403         bool reseed = true;
1404
1405         pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1406                  "%s\n", coreref, pr ? "enabled" : "disabled");
1407         mutex_lock(&drbg->drbg_mutex);
1408
1409         /* 9.1 step 1 is implicit with the selected DRBG type */
1410
1411         /*
1412          * 9.1 step 2 is implicit as caller can select prediction resistance
1413          * and the flag is copied into drbg->flags --
1414          * all DRBG types support prediction resistance
1415          */
1416
1417         /* 9.1 step 4 is implicit in  drbg_sec_strength */
1418
1419         if (!drbg->core) {
1420                 drbg->core = &drbg_cores[coreref];
1421                 drbg->pr = pr;
1422                 drbg->seeded = false;
1423
1424                 ret = drbg_alloc_state(drbg);
1425                 if (ret)
1426                         goto unlock;
1427
1428                 ret = -EFAULT;
1429                 if (drbg->d_ops->crypto_init(drbg))
1430                         goto err;
1431
1432                 reseed = false;
1433         }
1434
1435         ret = drbg_seed(drbg, pers, reseed);
1436
1437         if (ret && !reseed) {
1438                 drbg->d_ops->crypto_fini(drbg);
1439                 goto err;
1440         }
1441
1442         mutex_unlock(&drbg->drbg_mutex);
1443         return ret;
1444
1445 err:
1446         drbg_dealloc_state(drbg);
1447 unlock:
1448         mutex_unlock(&drbg->drbg_mutex);
1449         return ret;
1450 }
1451
1452 /*
1453  * DRBG uninstantiate function as required by SP800-90A - this function
1454  * frees all buffers and the DRBG handle
1455  *
1456  * @drbg DRBG state handle
1457  *
1458  * return
1459  *      0 on success
1460  */
1461 static int drbg_uninstantiate(struct drbg_state *drbg)
1462 {
1463         if (drbg->d_ops)
1464                 drbg->d_ops->crypto_fini(drbg);
1465         drbg_dealloc_state(drbg);
1466         /* no scrubbing of test_data -- this shall survive an uninstantiate */
1467         return 0;
1468 }
1469
1470 /*
1471  * Helper function for setting the test data in the DRBG
1472  *
1473  * @drbg DRBG state handle
1474  * @data test data
1475  * @len test data length
1476  */
1477 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1478                                    const u8 *data, unsigned int len)
1479 {
1480         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1481
1482         mutex_lock(&drbg->drbg_mutex);
1483         drbg_string_fill(&drbg->test_data, data, len);
1484         mutex_unlock(&drbg->drbg_mutex);
1485 }
1486
1487 /***************************************************************
1488  * Kernel crypto API cipher invocations requested by DRBG
1489  ***************************************************************/
1490
1491 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1492 struct sdesc {
1493         struct shash_desc shash;
1494         char ctx[];
1495 };
1496
1497 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1498 {
1499         struct sdesc *sdesc;
1500         struct crypto_shash *tfm;
1501
1502         tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1503         if (IS_ERR(tfm)) {
1504                 pr_info("DRBG: could not allocate digest TFM handle\n");
1505                 return PTR_ERR(tfm);
1506         }
1507         BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1508         sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1509                         GFP_KERNEL);
1510         if (!sdesc) {
1511                 crypto_free_shash(tfm);
1512                 return -ENOMEM;
1513         }
1514
1515         sdesc->shash.tfm = tfm;
1516         sdesc->shash.flags = 0;
1517         drbg->priv_data = sdesc;
1518         return 0;
1519 }
1520
1521 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1522 {
1523         struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1524         if (sdesc) {
1525                 crypto_free_shash(sdesc->shash.tfm);
1526                 kzfree(sdesc);
1527         }
1528         drbg->priv_data = NULL;
1529         return 0;
1530 }
1531
1532 static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1533                            unsigned char *outval, const struct list_head *in)
1534 {
1535         struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1536         struct drbg_string *input = NULL;
1537
1538         if (key)
1539                 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1540         crypto_shash_init(&sdesc->shash);
1541         list_for_each_entry(input, in, list)
1542                 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1543         return crypto_shash_final(&sdesc->shash, outval);
1544 }
1545 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1546
1547 #ifdef CONFIG_CRYPTO_DRBG_CTR
1548 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1549 {
1550         int ret = 0;
1551         struct crypto_cipher *tfm;
1552
1553         tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1554         if (IS_ERR(tfm)) {
1555                 pr_info("DRBG: could not allocate cipher TFM handle\n");
1556                 return PTR_ERR(tfm);
1557         }
1558         BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1559         drbg->priv_data = tfm;
1560         return ret;
1561 }
1562
1563 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1564 {
1565         struct crypto_cipher *tfm =
1566                 (struct crypto_cipher *)drbg->priv_data;
1567         if (tfm)
1568                 crypto_free_cipher(tfm);
1569         drbg->priv_data = NULL;
1570         return 0;
1571 }
1572
1573 static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1574                           unsigned char *outval, const struct drbg_string *in)
1575 {
1576         struct crypto_cipher *tfm =
1577                 (struct crypto_cipher *)drbg->priv_data;
1578
1579         crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1580         /* there is only component in *in */
1581         BUG_ON(in->len < drbg_blocklen(drbg));
1582         crypto_cipher_encrypt_one(tfm, outval, in->buf);
1583         return 0;
1584 }
1585 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1586
1587 /***************************************************************
1588  * Kernel crypto API interface to register DRBG
1589  ***************************************************************/
1590
1591 /*
1592  * Look up the DRBG flags by given kernel crypto API cra_name
1593  * The code uses the drbg_cores definition to do this
1594  *
1595  * @cra_name kernel crypto API cra_name
1596  * @coreref reference to integer which is filled with the pointer to
1597  *  the applicable core
1598  * @pr reference for setting prediction resistance
1599  *
1600  * return: flags
1601  */
1602 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1603                                          int *coreref, bool *pr)
1604 {
1605         int i = 0;
1606         size_t start = 0;
1607         int len = 0;
1608
1609         *pr = true;
1610         /* disassemble the names */
1611         if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1612                 start = 10;
1613                 *pr = false;
1614         } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1615                 start = 8;
1616         } else {
1617                 return;
1618         }
1619
1620         /* remove the first part */
1621         len = strlen(cra_driver_name) - start;
1622         for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1623                 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1624                             len)) {
1625                         *coreref = i;
1626                         return;
1627                 }
1628         }
1629 }
1630
1631 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1632 {
1633         struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1634
1635         mutex_init(&drbg->drbg_mutex);
1636
1637         return 0;
1638 }
1639
1640 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1641 {
1642         drbg_uninstantiate(crypto_tfm_ctx(tfm));
1643 }
1644
1645 /*
1646  * Generate random numbers invoked by the kernel crypto API:
1647  * The API of the kernel crypto API is extended as follows:
1648  *
1649  * src is additional input supplied to the RNG.
1650  * slen is the length of src.
1651  * dst is the output buffer where random data is to be stored.
1652  * dlen is the length of dst.
1653  */
1654 static int drbg_kcapi_random(struct crypto_rng *tfm,
1655                              const u8 *src, unsigned int slen,
1656                              u8 *dst, unsigned int dlen)
1657 {
1658         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1659         struct drbg_string *addtl = NULL;
1660         struct drbg_string string;
1661
1662         if (slen) {
1663                 /* linked list variable is now local to allow modification */
1664                 drbg_string_fill(&string, src, slen);
1665                 addtl = &string;
1666         }
1667
1668         return drbg_generate_long(drbg, dst, dlen, addtl);
1669 }
1670
1671 /*
1672  * Seed the DRBG invoked by the kernel crypto API
1673  */
1674 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1675                            const u8 *seed, unsigned int slen)
1676 {
1677         struct drbg_state *drbg = crypto_rng_ctx(tfm);
1678         struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1679         bool pr = false;
1680         struct drbg_string string;
1681         struct drbg_string *seed_string = NULL;
1682         int coreref = 0;
1683
1684         drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1685                               &pr);
1686         if (0 < slen) {
1687                 drbg_string_fill(&string, seed, slen);
1688                 seed_string = &string;
1689         }
1690
1691         return drbg_instantiate(drbg, seed_string, coreref, pr);
1692 }
1693
1694 /***************************************************************
1695  * Kernel module: code to load the module
1696  ***************************************************************/
1697
1698 /*
1699  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1700  * of the error handling.
1701  *
1702  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1703  * as seed source of get_random_bytes does not fail.
1704  *
1705  * Note 2: There is no sensible way of testing the reseed counter
1706  * enforcement, so skip it.
1707  */
1708 static inline int __init drbg_healthcheck_sanity(void)
1709 {
1710 #ifdef CONFIG_CRYPTO_FIPS
1711         int len = 0;
1712 #define OUTBUFLEN 16
1713         unsigned char buf[OUTBUFLEN];
1714         struct drbg_state *drbg = NULL;
1715         int ret = -EFAULT;
1716         int rc = -EFAULT;
1717         bool pr = false;
1718         int coreref = 0;
1719         struct drbg_string addtl;
1720         size_t max_addtllen, max_request_bytes;
1721
1722         /* only perform test in FIPS mode */
1723         if (!fips_enabled)
1724                 return 0;
1725
1726 #ifdef CONFIG_CRYPTO_DRBG_CTR
1727         drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1728 #elif defined CONFIG_CRYPTO_DRBG_HASH
1729         drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1730 #else
1731         drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1732 #endif
1733
1734         drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1735         if (!drbg)
1736                 return -ENOMEM;
1737
1738         mutex_init(&drbg->drbg_mutex);
1739
1740         /*
1741          * if the following tests fail, it is likely that there is a buffer
1742          * overflow as buf is much smaller than the requested or provided
1743          * string lengths -- in case the error handling does not succeed
1744          * we may get an OOPS. And we want to get an OOPS as this is a
1745          * grave bug.
1746          */
1747
1748         /* get a valid instance of DRBG for following tests */
1749         ret = drbg_instantiate(drbg, NULL, coreref, pr);
1750         if (ret) {
1751                 rc = ret;
1752                 goto outbuf;
1753         }
1754         max_addtllen = drbg_max_addtl(drbg);
1755         max_request_bytes = drbg_max_request_bytes(drbg);
1756         drbg_string_fill(&addtl, buf, max_addtllen + 1);
1757         /* overflow addtllen with additonal info string */
1758         len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1759         BUG_ON(0 < len);
1760         /* overflow max_bits */
1761         len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1762         BUG_ON(0 < len);
1763         drbg_uninstantiate(drbg);
1764
1765         /* overflow max addtllen with personalization string */
1766         ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1767         BUG_ON(0 == ret);
1768         /* all tests passed */
1769         rc = 0;
1770
1771         pr_devel("DRBG: Sanity tests for failure code paths successfully "
1772                  "completed\n");
1773
1774         drbg_uninstantiate(drbg);
1775 outbuf:
1776         kzfree(drbg);
1777         return rc;
1778 #else /* CONFIG_CRYPTO_FIPS */
1779         return 0;
1780 #endif /* CONFIG_CRYPTO_FIPS */
1781 }
1782
1783 static struct rng_alg drbg_algs[22];
1784
1785 /*
1786  * Fill the array drbg_algs used to register the different DRBGs
1787  * with the kernel crypto API. To fill the array, the information
1788  * from drbg_cores[] is used.
1789  */
1790 static inline void __init drbg_fill_array(struct rng_alg *alg,
1791                                           const struct drbg_core *core, int pr)
1792 {
1793         int pos = 0;
1794         static int priority = 100;
1795
1796         memcpy(alg->base.cra_name, "stdrng", 6);
1797         if (pr) {
1798                 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1799                 pos = 8;
1800         } else {
1801                 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1802                 pos = 10;
1803         }
1804         memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1805                strlen(core->cra_name));
1806
1807         alg->base.cra_priority = priority;
1808         priority++;
1809         /*
1810          * If FIPS mode enabled, the selected DRBG shall have the
1811          * highest cra_priority over other stdrng instances to ensure
1812          * it is selected.
1813          */
1814         if (fips_enabled)
1815                 alg->base.cra_priority += 200;
1816
1817         alg->base.cra_ctxsize   = sizeof(struct drbg_state);
1818         alg->base.cra_module    = THIS_MODULE;
1819         alg->base.cra_init      = drbg_kcapi_init;
1820         alg->base.cra_exit      = drbg_kcapi_cleanup;
1821         alg->generate           = drbg_kcapi_random;
1822         alg->seed               = drbg_kcapi_seed;
1823         alg->set_ent            = drbg_kcapi_set_entropy;
1824         alg->seedsize           = 0;
1825 }
1826
1827 static int __init drbg_init(void)
1828 {
1829         unsigned int i = 0; /* pointer to drbg_algs */
1830         unsigned int j = 0; /* pointer to drbg_cores */
1831         int ret = -EFAULT;
1832
1833         ret = drbg_healthcheck_sanity();
1834         if (ret)
1835                 return ret;
1836
1837         if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1838                 pr_info("DRBG: Cannot register all DRBG types"
1839                         "(slots needed: %zu, slots available: %zu)\n",
1840                         ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1841                 return ret;
1842         }
1843
1844         /*
1845          * each DRBG definition can be used with PR and without PR, thus
1846          * we instantiate each DRBG in drbg_cores[] twice.
1847          *
1848          * As the order of placing them into the drbg_algs array matters
1849          * (the later DRBGs receive a higher cra_priority) we register the
1850          * prediction resistance DRBGs first as the should not be too
1851          * interesting.
1852          */
1853         for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1854                 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1855         for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1856                 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1857         return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1858 }
1859
1860 static void __exit drbg_exit(void)
1861 {
1862         crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1863 }
1864
1865 module_init(drbg_init);
1866 module_exit(drbg_exit);
1867 #ifndef CRYPTO_DRBG_HASH_STRING
1868 #define CRYPTO_DRBG_HASH_STRING ""
1869 #endif
1870 #ifndef CRYPTO_DRBG_HMAC_STRING
1871 #define CRYPTO_DRBG_HMAC_STRING ""
1872 #endif
1873 #ifndef CRYPTO_DRBG_CTR_STRING
1874 #define CRYPTO_DRBG_CTR_STRING ""
1875 #endif
1876 MODULE_LICENSE("GPL");
1877 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
1878 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
1879                    "using following cores: "
1880                    CRYPTO_DRBG_HASH_STRING
1881                    CRYPTO_DRBG_HMAC_STRING
1882                    CRYPTO_DRBG_CTR_STRING);