]> git.karo-electronics.de Git - karo-tx-linux.git/blob - crypto/jitterentropy.c
Merge branch 'cls_flower-ARP'
[karo-tx-linux.git] / crypto / jitterentropy.c
1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015
6  *
7  * Design
8  * ======
9  *
10  * See http://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 1.1.0 provided at http://www.chronox.de/jent.html
51  */
52
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56
57 typedef unsigned long long      __u64;
58 typedef long long               __s64;
59 typedef unsigned int            __u32;
60 #define NULL    ((void *) 0)
61
62 /* The entropy pool */
63 struct rand_data {
64         /* all data values that are vital to maintain the security
65          * of the RNG are marked as SENSITIVE. A user must not
66          * access that information while the RNG executes its loops to
67          * calculate the next random value. */
68         __u64 data;             /* SENSITIVE Actual random number */
69         __u64 old_data;         /* SENSITIVE Previous random number */
70         __u64 prev_time;        /* SENSITIVE Previous time stamp */
71 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
72         __u64 last_delta;       /* SENSITIVE stuck test */
73         __s64 last_delta2;      /* SENSITIVE stuck test */
74         unsigned int stuck:1;   /* Time measurement stuck */
75         unsigned int osr;       /* Oversample rate */
76         unsigned int stir:1;            /* Post-processing stirring */
77         unsigned int disable_unbias:1;  /* Deactivate Von-Neuman unbias */
78 #define JENT_MEMORY_BLOCKS 64
79 #define JENT_MEMORY_BLOCKSIZE 32
80 #define JENT_MEMORY_ACCESSLOOPS 128
81 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
82         unsigned char *mem;     /* Memory access location with size of
83                                  * memblocks * memblocksize */
84         unsigned int memlocation; /* Pointer to byte in *mem */
85         unsigned int memblocks; /* Number of memory blocks in *mem */
86         unsigned int memblocksize; /* Size of one memory block in bytes */
87         unsigned int memaccessloops; /* Number of memory accesses per random
88                                       * bit generation */
89 };
90
91 /* Flags that can be used to initialize the RNG */
92 #define JENT_DISABLE_STIR (1<<0) /* Disable stirring the entropy pool */
93 #define JENT_DISABLE_UNBIAS (1<<1) /* Disable the Von-Neuman Unbiaser */
94 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
95                                            * entropy, saves MEMORY_SIZE RAM for
96                                            * entropy collector */
97
98 /* -- error codes for init function -- */
99 #define JENT_ENOTIME            1 /* Timer service not available */
100 #define JENT_ECOARSETIME        2 /* Timer too coarse for RNG */
101 #define JENT_ENOMONOTONIC       3 /* Timer is not monotonic increasing */
102 #define JENT_EMINVARIATION      4 /* Timer variations too small for RNG */
103 #define JENT_EVARVAR            5 /* Timer does not produce variations of
104                                    * variations (2nd derivation of time is
105                                    * zero). */
106 #define JENT_EMINVARVAR         6 /* Timer variations of variations is tooi
107                                    * small. */
108
109 /***************************************************************************
110  * Helper functions
111  ***************************************************************************/
112
113 void jent_get_nstime(__u64 *out);
114 __u64 jent_rol64(__u64 word, unsigned int shift);
115 void *jent_zalloc(unsigned int len);
116 void jent_zfree(void *ptr);
117 int jent_fips_enabled(void);
118 void jent_panic(char *s);
119 void jent_memcpy(void *dest, const void *src, unsigned int n);
120
121 /**
122  * Update of the loop count used for the next round of
123  * an entropy collection.
124  *
125  * Input:
126  * @ec entropy collector struct -- may be NULL
127  * @bits is the number of low bits of the timer to consider
128  * @min is the number of bits we shift the timer value to the right at
129  *      the end to make sure we have a guaranteed minimum value
130  *
131  * @return Newly calculated loop counter
132  */
133 static __u64 jent_loop_shuffle(struct rand_data *ec,
134                                unsigned int bits, unsigned int min)
135 {
136         __u64 time = 0;
137         __u64 shuffle = 0;
138         unsigned int i = 0;
139         unsigned int mask = (1<<bits) - 1;
140
141         jent_get_nstime(&time);
142         /*
143          * mix the current state of the random number into the shuffle
144          * calculation to balance that shuffle a bit more
145          */
146         if (ec)
147                 time ^= ec->data;
148         /*
149          * we fold the time value as much as possible to ensure that as many
150          * bits of the time stamp are included as possible
151          */
152         for (i = 0; (DATA_SIZE_BITS / bits) > i; i++) {
153                 shuffle ^= time & mask;
154                 time = time >> bits;
155         }
156
157         /*
158          * We add a lower boundary value to ensure we have a minimum
159          * RNG loop count.
160          */
161         return (shuffle + (1<<min));
162 }
163
164 /***************************************************************************
165  * Noise sources
166  ***************************************************************************/
167
168 /**
169  * CPU Jitter noise source -- this is the noise source based on the CPU
170  *                            execution time jitter
171  *
172  * This function folds the time into one bit units by iterating
173  * through the DATA_SIZE_BITS bit time value as follows: assume our time value
174  * is 0xabcd
175  * 1st loop, 1st shift generates 0xd000
176  * 1st loop, 2nd shift generates 0x000d
177  * 2nd loop, 1st shift generates 0xcd00
178  * 2nd loop, 2nd shift generates 0x000c
179  * 3rd loop, 1st shift generates 0xbcd0
180  * 3rd loop, 2nd shift generates 0x000b
181  * 4th loop, 1st shift generates 0xabcd
182  * 4th loop, 2nd shift generates 0x000a
183  * Now, the values at the end of the 2nd shifts are XORed together.
184  *
185  * The code is deliberately inefficient and shall stay that way. This function
186  * is the root cause why the code shall be compiled without optimization. This
187  * function not only acts as folding operation, but this function's execution
188  * is used to measure the CPU execution time jitter. Any change to the loop in
189  * this function implies that careful retesting must be done.
190  *
191  * Input:
192  * @ec entropy collector struct -- may be NULL
193  * @time time stamp to be folded
194  * @loop_cnt if a value not equal to 0 is set, use the given value as number of
195  *           loops to perform the folding
196  *
197  * Output:
198  * @folded result of folding operation
199  *
200  * @return Number of loops the folding operation is performed
201  */
202 static __u64 jent_fold_time(struct rand_data *ec, __u64 time,
203                             __u64 *folded, __u64 loop_cnt)
204 {
205         unsigned int i;
206         __u64 j = 0;
207         __u64 new = 0;
208 #define MAX_FOLD_LOOP_BIT 4
209 #define MIN_FOLD_LOOP_BIT 0
210         __u64 fold_loop_cnt =
211                 jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
212
213         /*
214          * testing purposes -- allow test app to set the counter, not
215          * needed during runtime
216          */
217         if (loop_cnt)
218                 fold_loop_cnt = loop_cnt;
219         for (j = 0; j < fold_loop_cnt; j++) {
220                 new = 0;
221                 for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
222                         __u64 tmp = time << (DATA_SIZE_BITS - i);
223
224                         tmp = tmp >> (DATA_SIZE_BITS - 1);
225                         new ^= tmp;
226                 }
227         }
228         *folded = new;
229         return fold_loop_cnt;
230 }
231
232 /**
233  * Memory Access noise source -- this is a noise source based on variations in
234  *                               memory access times
235  *
236  * This function performs memory accesses which will add to the timing
237  * variations due to an unknown amount of CPU wait states that need to be
238  * added when accessing memory. The memory size should be larger than the L1
239  * caches as outlined in the documentation and the associated testing.
240  *
241  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
242  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
243  * variations as the CPU has hardly to wait. Starting with L2, significant
244  * variations are added because L2 typically does not belong to the CPU any more
245  * and therefore a wider range of CPU wait states is necessary for accesses.
246  * L3 and real memory accesses have even a wider range of wait states. However,
247  * to reliably access either L3 or memory, the ec->mem memory must be quite
248  * large which is usually not desirable.
249  *
250  * Input:
251  * @ec Reference to the entropy collector with the memory access data -- if
252  *     the reference to the memory block to be accessed is NULL, this noise
253  *     source is disabled
254  * @loop_cnt if a value not equal to 0 is set, use the given value as number of
255  *           loops to perform the folding
256  *
257  * @return Number of memory access operations
258  */
259 static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
260 {
261         unsigned char *tmpval = NULL;
262         unsigned int wrap = 0;
263         __u64 i = 0;
264 #define MAX_ACC_LOOP_BIT 7
265 #define MIN_ACC_LOOP_BIT 0
266         __u64 acc_loop_cnt =
267                 jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
268
269         if (NULL == ec || NULL == ec->mem)
270                 return 0;
271         wrap = ec->memblocksize * ec->memblocks;
272
273         /*
274          * testing purposes -- allow test app to set the counter, not
275          * needed during runtime
276          */
277         if (loop_cnt)
278                 acc_loop_cnt = loop_cnt;
279
280         for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
281                 tmpval = ec->mem + ec->memlocation;
282                 /*
283                  * memory access: just add 1 to one byte,
284                  * wrap at 255 -- memory access implies read
285                  * from and write to memory location
286                  */
287                 *tmpval = (*tmpval + 1) & 0xff;
288                 /*
289                  * Addition of memblocksize - 1 to pointer
290                  * with wrap around logic to ensure that every
291                  * memory location is hit evenly
292                  */
293                 ec->memlocation = ec->memlocation + ec->memblocksize - 1;
294                 ec->memlocation = ec->memlocation % wrap;
295         }
296         return i;
297 }
298
299 /***************************************************************************
300  * Start of entropy processing logic
301  ***************************************************************************/
302
303 /**
304  * Stuck test by checking the:
305  *      1st derivation of the jitter measurement (time delta)
306  *      2nd derivation of the jitter measurement (delta of time deltas)
307  *      3rd derivation of the jitter measurement (delta of delta of time deltas)
308  *
309  * All values must always be non-zero.
310  *
311  * Input:
312  * @ec Reference to entropy collector
313  * @current_delta Jitter time delta
314  *
315  * @return
316  *      0 jitter measurement not stuck (good bit)
317  *      1 jitter measurement stuck (reject bit)
318  */
319 static void jent_stuck(struct rand_data *ec, __u64 current_delta)
320 {
321         __s64 delta2 = ec->last_delta - current_delta;
322         __s64 delta3 = delta2 - ec->last_delta2;
323
324         ec->last_delta = current_delta;
325         ec->last_delta2 = delta2;
326
327         if (!current_delta || !delta2 || !delta3)
328                 ec->stuck = 1;
329 }
330
331 /**
332  * This is the heart of the entropy generation: calculate time deltas and
333  * use the CPU jitter in the time deltas. The jitter is folded into one
334  * bit. You can call this function the "random bit generator" as it
335  * produces one random bit per invocation.
336  *
337  * WARNING: ensure that ->prev_time is primed before using the output
338  *          of this function! This can be done by calling this function
339  *          and not using its result.
340  *
341  * Input:
342  * @entropy_collector Reference to entropy collector
343  *
344  * @return One random bit
345  */
346 static __u64 jent_measure_jitter(struct rand_data *ec)
347 {
348         __u64 time = 0;
349         __u64 data = 0;
350         __u64 current_delta = 0;
351
352         /* Invoke one noise source before time measurement to add variations */
353         jent_memaccess(ec, 0);
354
355         /*
356          * Get time stamp and calculate time delta to previous
357          * invocation to measure the timing variations
358          */
359         jent_get_nstime(&time);
360         current_delta = time - ec->prev_time;
361         ec->prev_time = time;
362
363         /* Now call the next noise sources which also folds the data */
364         jent_fold_time(ec, current_delta, &data, 0);
365
366         /*
367          * Check whether we have a stuck measurement. The enforcement
368          * is performed after the stuck value has been mixed into the
369          * entropy pool.
370          */
371         jent_stuck(ec, current_delta);
372
373         return data;
374 }
375
376 /**
377  * Von Neuman unbias as explained in RFC 4086 section 4.2. As shown in the
378  * documentation of that RNG, the bits from jent_measure_jitter are considered
379  * independent which implies that the Von Neuman unbias operation is applicable.
380  * A proof of the Von-Neumann unbias operation to remove skews is given in the
381  * document "A proposal for: Functionality classes for random number
382  * generators", version 2.0 by Werner Schindler, section 5.4.1.
383  *
384  * Input:
385  * @entropy_collector Reference to entropy collector
386  *
387  * @return One random bit
388  */
389 static __u64 jent_unbiased_bit(struct rand_data *entropy_collector)
390 {
391         do {
392                 __u64 a = jent_measure_jitter(entropy_collector);
393                 __u64 b = jent_measure_jitter(entropy_collector);
394
395                 if (a == b)
396                         continue;
397                 if (1 == a)
398                         return 1;
399                 else
400                         return 0;
401         } while (1);
402 }
403
404 /**
405  * Shuffle the pool a bit by mixing some value with a bijective function (XOR)
406  * into the pool.
407  *
408  * The function generates a mixer value that depends on the bits set and the
409  * location of the set bits in the random number generated by the entropy
410  * source. Therefore, based on the generated random number, this mixer value
411  * can have 2**64 different values. That mixer value is initialized with the
412  * first two SHA-1 constants. After obtaining the mixer value, it is XORed into
413  * the random number.
414  *
415  * The mixer value is not assumed to contain any entropy. But due to the XOR
416  * operation, it can also not destroy any entropy present in the entropy pool.
417  *
418  * Input:
419  * @entropy_collector Reference to entropy collector
420  */
421 static void jent_stir_pool(struct rand_data *entropy_collector)
422 {
423         /*
424          * to shut up GCC on 32 bit, we have to initialize the 64 variable
425          * with two 32 bit variables
426          */
427         union c {
428                 __u64 u64;
429                 __u32 u32[2];
430         };
431         /*
432          * This constant is derived from the first two 32 bit initialization
433          * vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
434          */
435         union c constant;
436         /*
437          * The start value of the mixer variable is derived from the third
438          * and fourth 32 bit initialization vector of SHA-1 as defined in
439          * FIPS 180-4 section 5.3.1
440          */
441         union c mixer;
442         unsigned int i = 0;
443
444         /*
445          * Store the SHA-1 constants in reverse order to make up the 64 bit
446          * value -- this applies to a little endian system, on a big endian
447          * system, it reverses as expected. But this really does not matter
448          * as we do not rely on the specific numbers. We just pick the SHA-1
449          * constants as they have a good mix of bit set and unset.
450          */
451         constant.u32[1] = 0x67452301;
452         constant.u32[0] = 0xefcdab89;
453         mixer.u32[1] = 0x98badcfe;
454         mixer.u32[0] = 0x10325476;
455
456         for (i = 0; i < DATA_SIZE_BITS; i++) {
457                 /*
458                  * get the i-th bit of the input random number and only XOR
459                  * the constant into the mixer value when that bit is set
460                  */
461                 if ((entropy_collector->data >> i) & 1)
462                         mixer.u64 ^= constant.u64;
463                 mixer.u64 = jent_rol64(mixer.u64, 1);
464         }
465         entropy_collector->data ^= mixer.u64;
466 }
467
468 /**
469  * Generator of one 64 bit random number
470  * Function fills rand_data->data
471  *
472  * Input:
473  * @ec Reference to entropy collector
474  */
475 static void jent_gen_entropy(struct rand_data *ec)
476 {
477         unsigned int k = 0;
478
479         /* priming of the ->prev_time value */
480         jent_measure_jitter(ec);
481
482         while (1) {
483                 __u64 data = 0;
484
485                 if (ec->disable_unbias == 1)
486                         data = jent_measure_jitter(ec);
487                 else
488                         data = jent_unbiased_bit(ec);
489
490                 /* enforcement of the jent_stuck test */
491                 if (ec->stuck) {
492                         /*
493                          * We only mix in the bit considered not appropriate
494                          * without the LSFR. The reason is that if we apply
495                          * the LSFR and we do not rotate, the 2nd bit with LSFR
496                          * will cancel out the first LSFR application on the
497                          * bad bit.
498                          *
499                          * And we do not rotate as we apply the next bit to the
500                          * current bit location again.
501                          */
502                         ec->data ^= data;
503                         ec->stuck = 0;
504                         continue;
505                 }
506
507                 /*
508                  * Fibonacci LSFR with polynom of
509                  *  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
510                  *  primitive according to
511                  *   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
512                  * (the shift values are the polynom values minus one
513                  * due to counting bits from 0 to 63). As the current
514                  * position is always the LSB, the polynom only needs
515                  * to shift data in from the left without wrap.
516                  */
517                 ec->data ^= data;
518                 ec->data ^= ((ec->data >> 63) & 1);
519                 ec->data ^= ((ec->data >> 60) & 1);
520                 ec->data ^= ((ec->data >> 55) & 1);
521                 ec->data ^= ((ec->data >> 30) & 1);
522                 ec->data ^= ((ec->data >> 27) & 1);
523                 ec->data ^= ((ec->data >> 22) & 1);
524                 ec->data = jent_rol64(ec->data, 1);
525
526                 /*
527                  * We multiply the loop value with ->osr to obtain the
528                  * oversampling rate requested by the caller
529                  */
530                 if (++k >= (DATA_SIZE_BITS * ec->osr))
531                         break;
532         }
533         if (ec->stir)
534                 jent_stir_pool(ec);
535 }
536
537 /**
538  * The continuous test required by FIPS 140-2 -- the function automatically
539  * primes the test if needed.
540  *
541  * Return:
542  * 0 if FIPS test passed
543  * < 0 if FIPS test failed
544  */
545 static void jent_fips_test(struct rand_data *ec)
546 {
547         if (!jent_fips_enabled())
548                 return;
549
550         /* prime the FIPS test */
551         if (!ec->old_data) {
552                 ec->old_data = ec->data;
553                 jent_gen_entropy(ec);
554         }
555
556         if (ec->data == ec->old_data)
557                 jent_panic("jitterentropy: Duplicate output detected\n");
558
559         ec->old_data = ec->data;
560 }
561
562 /**
563  * Entry function: Obtain entropy for the caller.
564  *
565  * This function invokes the entropy gathering logic as often to generate
566  * as many bytes as requested by the caller. The entropy gathering logic
567  * creates 64 bit per invocation.
568  *
569  * This function truncates the last 64 bit entropy value output to the exact
570  * size specified by the caller.
571  *
572  * Input:
573  * @ec Reference to entropy collector
574  * @data pointer to buffer for storing random data -- buffer must already
575  *       exist
576  * @len size of the buffer, specifying also the requested number of random
577  *      in bytes
578  *
579  * @return 0 when request is fulfilled or an error
580  *
581  * The following error codes can occur:
582  *      -1      entropy_collector is NULL
583  */
584 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
585                       unsigned int len)
586 {
587         unsigned char *p = data;
588
589         if (!ec)
590                 return -1;
591
592         while (0 < len) {
593                 unsigned int tocopy;
594
595                 jent_gen_entropy(ec);
596                 jent_fips_test(ec);
597                 if ((DATA_SIZE_BITS / 8) < len)
598                         tocopy = (DATA_SIZE_BITS / 8);
599                 else
600                         tocopy = len;
601                 jent_memcpy(p, &ec->data, tocopy);
602
603                 len -= tocopy;
604                 p += tocopy;
605         }
606
607         return 0;
608 }
609
610 /***************************************************************************
611  * Initialization logic
612  ***************************************************************************/
613
614 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
615                                                unsigned int flags)
616 {
617         struct rand_data *entropy_collector;
618
619         entropy_collector = jent_zalloc(sizeof(struct rand_data));
620         if (!entropy_collector)
621                 return NULL;
622
623         if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
624                 /* Allocate memory for adding variations based on memory
625                  * access
626                  */
627                 entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
628                 if (!entropy_collector->mem) {
629                         jent_zfree(entropy_collector);
630                         return NULL;
631                 }
632                 entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
633                 entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
634                 entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
635         }
636
637         /* verify and set the oversampling rate */
638         if (0 == osr)
639                 osr = 1; /* minimum sampling rate is 1 */
640         entropy_collector->osr = osr;
641
642         entropy_collector->stir = 1;
643         if (flags & JENT_DISABLE_STIR)
644                 entropy_collector->stir = 0;
645         if (flags & JENT_DISABLE_UNBIAS)
646                 entropy_collector->disable_unbias = 1;
647
648         /* fill the data pad with non-zero values */
649         jent_gen_entropy(entropy_collector);
650
651         return entropy_collector;
652 }
653
654 void jent_entropy_collector_free(struct rand_data *entropy_collector)
655 {
656         jent_zfree(entropy_collector->mem);
657         entropy_collector->mem = NULL;
658         jent_zfree(entropy_collector);
659         entropy_collector = NULL;
660 }
661
662 int jent_entropy_init(void)
663 {
664         int i;
665         __u64 delta_sum = 0;
666         __u64 old_delta = 0;
667         int time_backwards = 0;
668         int count_var = 0;
669         int count_mod = 0;
670
671         /* We could perform statistical tests here, but the problem is
672          * that we only have a few loop counts to do testing. These
673          * loop counts may show some slight skew and we produce
674          * false positives.
675          *
676          * Moreover, only old systems show potentially problematic
677          * jitter entropy that could potentially be caught here. But
678          * the RNG is intended for hardware that is available or widely
679          * used, but not old systems that are long out of favor. Thus,
680          * no statistical tests.
681          */
682
683         /*
684          * We could add a check for system capabilities such as clock_getres or
685          * check for CONFIG_X86_TSC, but it does not make much sense as the
686          * following sanity checks verify that we have a high-resolution
687          * timer.
688          */
689         /*
690          * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
691          * definitely too little.
692          */
693 #define TESTLOOPCOUNT 300
694 #define CLEARCACHE 100
695         for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
696                 __u64 time = 0;
697                 __u64 time2 = 0;
698                 __u64 folded = 0;
699                 __u64 delta = 0;
700                 unsigned int lowdelta = 0;
701
702                 jent_get_nstime(&time);
703                 jent_fold_time(NULL, time, &folded, 1<<MIN_FOLD_LOOP_BIT);
704                 jent_get_nstime(&time2);
705
706                 /* test whether timer works */
707                 if (!time || !time2)
708                         return JENT_ENOTIME;
709                 delta = time2 - time;
710                 /*
711                  * test whether timer is fine grained enough to provide
712                  * delta even when called shortly after each other -- this
713                  * implies that we also have a high resolution timer
714                  */
715                 if (!delta)
716                         return JENT_ECOARSETIME;
717
718                 /*
719                  * up to here we did not modify any variable that will be
720                  * evaluated later, but we already performed some work. Thus we
721                  * already have had an impact on the caches, branch prediction,
722                  * etc. with the goal to clear it to get the worst case
723                  * measurements.
724                  */
725                 if (CLEARCACHE > i)
726                         continue;
727
728                 /* test whether we have an increasing timer */
729                 if (!(time2 > time))
730                         time_backwards++;
731
732                 /*
733                  * Avoid modulo of 64 bit integer to allow code to compile
734                  * on 32 bit architectures.
735                  */
736                 lowdelta = time2 - time;
737                 if (!(lowdelta % 100))
738                         count_mod++;
739
740                 /*
741                  * ensure that we have a varying delta timer which is necessary
742                  * for the calculation of entropy -- perform this check
743                  * only after the first loop is executed as we need to prime
744                  * the old_data value
745                  */
746                 if (i) {
747                         if (delta != old_delta)
748                                 count_var++;
749                         if (delta > old_delta)
750                                 delta_sum += (delta - old_delta);
751                         else
752                                 delta_sum += (old_delta - delta);
753                 }
754                 old_delta = delta;
755         }
756
757         /*
758          * we allow up to three times the time running backwards.
759          * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
760          * if such an operation just happens to interfere with our test, it
761          * should not fail. The value of 3 should cover the NTP case being
762          * performed during our test run.
763          */
764         if (3 < time_backwards)
765                 return JENT_ENOMONOTONIC;
766         /* Error if the time variances are always identical */
767         if (!delta_sum)
768                 return JENT_EVARVAR;
769
770         /*
771          * Variations of deltas of time must on average be larger
772          * than 1 to ensure the entropy estimation
773          * implied with 1 is preserved
774          */
775         if (delta_sum <= 1)
776                 return JENT_EMINVARVAR;
777
778         /*
779          * Ensure that we have variations in the time stamp below 10 for at
780          * least 10% of all checks -- on some platforms, the counter
781          * increments in multiples of 100, but not always
782          */
783         if ((TESTLOOPCOUNT/10 * 9) < count_mod)
784                 return JENT_ECOARSETIME;
785
786         return 0;
787 }