]> git.karo-electronics.de Git - karo-tx-linux.git/blob - crypto/mcryptd.c
Merge tag 'dt2-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[karo-tx-linux.git] / crypto / mcryptd.c
1 /*
2  * Software multibuffer async crypto daemon.
3  *
4  * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5  *
6  * Adapted from crypto daemon.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  */
14
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/hardirq.h>
29
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
32
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34                                    unsigned int tail);
35
36 struct mcryptd_flush_list {
37         struct list_head list;
38         struct mutex lock;
39 };
40
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
42
43 struct hashd_instance_ctx {
44         struct crypto_shash_spawn spawn;
45         struct mcryptd_queue *queue;
46 };
47
48 static void mcryptd_queue_worker(struct work_struct *work);
49
50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
51 {
52         struct mcryptd_flush_list *flist;
53
54         if (!cstate->flusher_engaged) {
55                 /* put the flusher on the flush list */
56                 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57                 mutex_lock(&flist->lock);
58                 list_add_tail(&cstate->flush_list, &flist->list);
59                 cstate->flusher_engaged = true;
60                 cstate->next_flush = jiffies + delay;
61                 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62                         &cstate->flush, delay);
63                 mutex_unlock(&flist->lock);
64         }
65 }
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
67
68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69                              unsigned int max_cpu_qlen)
70 {
71         int cpu;
72         struct mcryptd_cpu_queue *cpu_queue;
73
74         queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75         pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76         if (!queue->cpu_queue)
77                 return -ENOMEM;
78         for_each_possible_cpu(cpu) {
79                 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80                 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81                 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82                 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83         }
84         return 0;
85 }
86
87 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
88 {
89         int cpu;
90         struct mcryptd_cpu_queue *cpu_queue;
91
92         for_each_possible_cpu(cpu) {
93                 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
94                 BUG_ON(cpu_queue->queue.qlen);
95         }
96         free_percpu(queue->cpu_queue);
97 }
98
99 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
100                                   struct crypto_async_request *request,
101                                   struct mcryptd_hash_request_ctx *rctx)
102 {
103         int cpu, err;
104         struct mcryptd_cpu_queue *cpu_queue;
105
106         cpu = get_cpu();
107         cpu_queue = this_cpu_ptr(queue->cpu_queue);
108         rctx->tag.cpu = cpu;
109
110         err = crypto_enqueue_request(&cpu_queue->queue, request);
111         pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112                  cpu, cpu_queue, request);
113         queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
114         put_cpu();
115
116         return err;
117 }
118
119 /*
120  * Try to opportunisticlly flush the partially completed jobs if
121  * crypto daemon is the only task running.
122  */
123 static void mcryptd_opportunistic_flush(void)
124 {
125         struct mcryptd_flush_list *flist;
126         struct mcryptd_alg_cstate *cstate;
127
128         flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
129         while (single_task_running()) {
130                 mutex_lock(&flist->lock);
131                 if (list_empty(&flist->list)) {
132                         mutex_unlock(&flist->lock);
133                         return;
134                 }
135                 cstate = list_entry(flist->list.next,
136                                 struct mcryptd_alg_cstate, flush_list);
137                 if (!cstate->flusher_engaged) {
138                         mutex_unlock(&flist->lock);
139                         return;
140                 }
141                 list_del(&cstate->flush_list);
142                 cstate->flusher_engaged = false;
143                 mutex_unlock(&flist->lock);
144                 cstate->alg_state->flusher(cstate);
145         }
146 }
147
148 /*
149  * Called in workqueue context, do one real cryption work (via
150  * req->complete) and reschedule itself if there are more work to
151  * do.
152  */
153 static void mcryptd_queue_worker(struct work_struct *work)
154 {
155         struct mcryptd_cpu_queue *cpu_queue;
156         struct crypto_async_request *req, *backlog;
157         int i;
158
159         /*
160          * Need to loop through more than once for multi-buffer to
161          * be effective.
162          */
163
164         cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
165         i = 0;
166         while (i < MCRYPTD_BATCH || single_task_running()) {
167                 /*
168                  * preempt_disable/enable is used to prevent
169                  * being preempted by mcryptd_enqueue_request()
170                  */
171                 local_bh_disable();
172                 preempt_disable();
173                 backlog = crypto_get_backlog(&cpu_queue->queue);
174                 req = crypto_dequeue_request(&cpu_queue->queue);
175                 preempt_enable();
176                 local_bh_enable();
177
178                 if (!req) {
179                         mcryptd_opportunistic_flush();
180                         return;
181                 }
182
183                 if (backlog)
184                         backlog->complete(backlog, -EINPROGRESS);
185                 req->complete(req, 0);
186                 if (!cpu_queue->queue.qlen)
187                         return;
188                 ++i;
189         }
190         if (cpu_queue->queue.qlen)
191                 queue_work(kcrypto_wq, &cpu_queue->work);
192 }
193
194 void mcryptd_flusher(struct work_struct *__work)
195 {
196         struct  mcryptd_alg_cstate      *alg_cpu_state;
197         struct  mcryptd_alg_state       *alg_state;
198         struct  mcryptd_flush_list      *flist;
199         int     cpu;
200
201         cpu = smp_processor_id();
202         alg_cpu_state = container_of(to_delayed_work(__work),
203                                      struct mcryptd_alg_cstate, flush);
204         alg_state = alg_cpu_state->alg_state;
205         if (alg_cpu_state->cpu != cpu)
206                 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
207                                 cpu, alg_cpu_state->cpu);
208
209         if (alg_cpu_state->flusher_engaged) {
210                 flist = per_cpu_ptr(mcryptd_flist, cpu);
211                 mutex_lock(&flist->lock);
212                 list_del(&alg_cpu_state->flush_list);
213                 alg_cpu_state->flusher_engaged = false;
214                 mutex_unlock(&flist->lock);
215                 alg_state->flusher(alg_cpu_state);
216         }
217 }
218 EXPORT_SYMBOL_GPL(mcryptd_flusher);
219
220 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
221 {
222         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
223         struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
224
225         return ictx->queue;
226 }
227
228 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
229                                    unsigned int tail)
230 {
231         char *p;
232         struct crypto_instance *inst;
233         int err;
234
235         p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
236         if (!p)
237                 return ERR_PTR(-ENOMEM);
238
239         inst = (void *)(p + head);
240
241         err = -ENAMETOOLONG;
242         if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
243                     "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
244                 goto out_free_inst;
245
246         memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
247
248         inst->alg.cra_priority = alg->cra_priority + 50;
249         inst->alg.cra_blocksize = alg->cra_blocksize;
250         inst->alg.cra_alignmask = alg->cra_alignmask;
251
252 out:
253         return p;
254
255 out_free_inst:
256         kfree(p);
257         p = ERR_PTR(err);
258         goto out;
259 }
260
261 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
262 {
263         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
264         struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
265         struct crypto_shash_spawn *spawn = &ictx->spawn;
266         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
267         struct crypto_shash *hash;
268
269         hash = crypto_spawn_shash(spawn);
270         if (IS_ERR(hash))
271                 return PTR_ERR(hash);
272
273         ctx->child = hash;
274         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
275                                  sizeof(struct mcryptd_hash_request_ctx) +
276                                  crypto_shash_descsize(hash));
277         return 0;
278 }
279
280 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
281 {
282         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
283
284         crypto_free_shash(ctx->child);
285 }
286
287 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
288                                    const u8 *key, unsigned int keylen)
289 {
290         struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
291         struct crypto_shash *child = ctx->child;
292         int err;
293
294         crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
295         crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
296                                       CRYPTO_TFM_REQ_MASK);
297         err = crypto_shash_setkey(child, key, keylen);
298         crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
299                                        CRYPTO_TFM_RES_MASK);
300         return err;
301 }
302
303 static int mcryptd_hash_enqueue(struct ahash_request *req,
304                                 crypto_completion_t complete)
305 {
306         int ret;
307
308         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
309         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
310         struct mcryptd_queue *queue =
311                 mcryptd_get_queue(crypto_ahash_tfm(tfm));
312
313         rctx->complete = req->base.complete;
314         req->base.complete = complete;
315
316         ret = mcryptd_enqueue_request(queue, &req->base, rctx);
317
318         return ret;
319 }
320
321 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
322 {
323         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
324         struct crypto_shash *child = ctx->child;
325         struct ahash_request *req = ahash_request_cast(req_async);
326         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
327         struct shash_desc *desc = &rctx->desc;
328
329         if (unlikely(err == -EINPROGRESS))
330                 goto out;
331
332         desc->tfm = child;
333         desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
334
335         err = crypto_shash_init(desc);
336
337         req->base.complete = rctx->complete;
338
339 out:
340         local_bh_disable();
341         rctx->complete(&req->base, err);
342         local_bh_enable();
343 }
344
345 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
346 {
347         return mcryptd_hash_enqueue(req, mcryptd_hash_init);
348 }
349
350 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
351 {
352         struct ahash_request *req = ahash_request_cast(req_async);
353         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
354
355         if (unlikely(err == -EINPROGRESS))
356                 goto out;
357
358         err = shash_ahash_mcryptd_update(req, &rctx->desc);
359         if (err) {
360                 req->base.complete = rctx->complete;
361                 goto out;
362         }
363
364         return;
365 out:
366         local_bh_disable();
367         rctx->complete(&req->base, err);
368         local_bh_enable();
369 }
370
371 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
372 {
373         return mcryptd_hash_enqueue(req, mcryptd_hash_update);
374 }
375
376 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
377 {
378         struct ahash_request *req = ahash_request_cast(req_async);
379         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
380
381         if (unlikely(err == -EINPROGRESS))
382                 goto out;
383
384         err = shash_ahash_mcryptd_final(req, &rctx->desc);
385         if (err) {
386                 req->base.complete = rctx->complete;
387                 goto out;
388         }
389
390         return;
391 out:
392         local_bh_disable();
393         rctx->complete(&req->base, err);
394         local_bh_enable();
395 }
396
397 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
398 {
399         return mcryptd_hash_enqueue(req, mcryptd_hash_final);
400 }
401
402 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
403 {
404         struct ahash_request *req = ahash_request_cast(req_async);
405         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
406
407         if (unlikely(err == -EINPROGRESS))
408                 goto out;
409
410         err = shash_ahash_mcryptd_finup(req, &rctx->desc);
411
412         if (err) {
413                 req->base.complete = rctx->complete;
414                 goto out;
415         }
416
417         return;
418 out:
419         local_bh_disable();
420         rctx->complete(&req->base, err);
421         local_bh_enable();
422 }
423
424 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
425 {
426         return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
427 }
428
429 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
430 {
431         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
432         struct crypto_shash *child = ctx->child;
433         struct ahash_request *req = ahash_request_cast(req_async);
434         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
435         struct shash_desc *desc = &rctx->desc;
436
437         if (unlikely(err == -EINPROGRESS))
438                 goto out;
439
440         desc->tfm = child;
441         desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;  /* check this again */
442
443         err = shash_ahash_mcryptd_digest(req, desc);
444
445         if (err) {
446                 req->base.complete = rctx->complete;
447                 goto out;
448         }
449
450         return;
451 out:
452         local_bh_disable();
453         rctx->complete(&req->base, err);
454         local_bh_enable();
455 }
456
457 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
458 {
459         return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
460 }
461
462 static int mcryptd_hash_export(struct ahash_request *req, void *out)
463 {
464         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
465
466         return crypto_shash_export(&rctx->desc, out);
467 }
468
469 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
470 {
471         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
472
473         return crypto_shash_import(&rctx->desc, in);
474 }
475
476 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
477                               struct mcryptd_queue *queue)
478 {
479         struct hashd_instance_ctx *ctx;
480         struct ahash_instance *inst;
481         struct shash_alg *salg;
482         struct crypto_alg *alg;
483         int err;
484
485         salg = shash_attr_alg(tb[1], 0, 0);
486         if (IS_ERR(salg))
487                 return PTR_ERR(salg);
488
489         alg = &salg->base;
490         pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
491         inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
492                                         sizeof(*ctx));
493         err = PTR_ERR(inst);
494         if (IS_ERR(inst))
495                 goto out_put_alg;
496
497         ctx = ahash_instance_ctx(inst);
498         ctx->queue = queue;
499
500         err = crypto_init_shash_spawn(&ctx->spawn, salg,
501                                       ahash_crypto_instance(inst));
502         if (err)
503                 goto out_free_inst;
504
505         inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC;
506
507         inst->alg.halg.digestsize = salg->digestsize;
508         inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
509
510         inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
511         inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
512
513         inst->alg.init   = mcryptd_hash_init_enqueue;
514         inst->alg.update = mcryptd_hash_update_enqueue;
515         inst->alg.final  = mcryptd_hash_final_enqueue;
516         inst->alg.finup  = mcryptd_hash_finup_enqueue;
517         inst->alg.export = mcryptd_hash_export;
518         inst->alg.import = mcryptd_hash_import;
519         inst->alg.setkey = mcryptd_hash_setkey;
520         inst->alg.digest = mcryptd_hash_digest_enqueue;
521
522         err = ahash_register_instance(tmpl, inst);
523         if (err) {
524                 crypto_drop_shash(&ctx->spawn);
525 out_free_inst:
526                 kfree(inst);
527         }
528
529 out_put_alg:
530         crypto_mod_put(alg);
531         return err;
532 }
533
534 static struct mcryptd_queue mqueue;
535
536 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
537 {
538         struct crypto_attr_type *algt;
539
540         algt = crypto_get_attr_type(tb);
541         if (IS_ERR(algt))
542                 return PTR_ERR(algt);
543
544         switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
545         case CRYPTO_ALG_TYPE_DIGEST:
546                 return mcryptd_create_hash(tmpl, tb, &mqueue);
547         break;
548         }
549
550         return -EINVAL;
551 }
552
553 static void mcryptd_free(struct crypto_instance *inst)
554 {
555         struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
556         struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
557
558         switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
559         case CRYPTO_ALG_TYPE_AHASH:
560                 crypto_drop_shash(&hctx->spawn);
561                 kfree(ahash_instance(inst));
562                 return;
563         default:
564                 crypto_drop_spawn(&ctx->spawn);
565                 kfree(inst);
566         }
567 }
568
569 static struct crypto_template mcryptd_tmpl = {
570         .name = "mcryptd",
571         .create = mcryptd_create,
572         .free = mcryptd_free,
573         .module = THIS_MODULE,
574 };
575
576 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
577                                         u32 type, u32 mask)
578 {
579         char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
580         struct crypto_ahash *tfm;
581
582         if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
583                      "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
584                 return ERR_PTR(-EINVAL);
585         tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
586         if (IS_ERR(tfm))
587                 return ERR_CAST(tfm);
588         if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
589                 crypto_free_ahash(tfm);
590                 return ERR_PTR(-EINVAL);
591         }
592
593         return __mcryptd_ahash_cast(tfm);
594 }
595 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
596
597 int shash_ahash_mcryptd_digest(struct ahash_request *req,
598                                struct shash_desc *desc)
599 {
600         int err;
601
602         err = crypto_shash_init(desc) ?:
603               shash_ahash_mcryptd_finup(req, desc);
604
605         return err;
606 }
607 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
608
609 int shash_ahash_mcryptd_update(struct ahash_request *req,
610                                struct shash_desc *desc)
611 {
612         struct crypto_shash *tfm = desc->tfm;
613         struct shash_alg *shash = crypto_shash_alg(tfm);
614
615         /* alignment is to be done by multi-buffer crypto algorithm if needed */
616
617         return shash->update(desc, NULL, 0);
618 }
619 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
620
621 int shash_ahash_mcryptd_finup(struct ahash_request *req,
622                               struct shash_desc *desc)
623 {
624         struct crypto_shash *tfm = desc->tfm;
625         struct shash_alg *shash = crypto_shash_alg(tfm);
626
627         /* alignment is to be done by multi-buffer crypto algorithm if needed */
628
629         return shash->finup(desc, NULL, 0, req->result);
630 }
631 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
632
633 int shash_ahash_mcryptd_final(struct ahash_request *req,
634                               struct shash_desc *desc)
635 {
636         struct crypto_shash *tfm = desc->tfm;
637         struct shash_alg *shash = crypto_shash_alg(tfm);
638
639         /* alignment is to be done by multi-buffer crypto algorithm if needed */
640
641         return shash->final(desc, req->result);
642 }
643 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
644
645 struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
646 {
647         struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
648
649         return ctx->child;
650 }
651 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
652
653 struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
654 {
655         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
656         return &rctx->desc;
657 }
658 EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
659
660 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
661 {
662         crypto_free_ahash(&tfm->base);
663 }
664 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
665
666
667 static int __init mcryptd_init(void)
668 {
669         int err, cpu;
670         struct mcryptd_flush_list *flist;
671
672         mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
673         for_each_possible_cpu(cpu) {
674                 flist = per_cpu_ptr(mcryptd_flist, cpu);
675                 INIT_LIST_HEAD(&flist->list);
676                 mutex_init(&flist->lock);
677         }
678
679         err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
680         if (err) {
681                 free_percpu(mcryptd_flist);
682                 return err;
683         }
684
685         err = crypto_register_template(&mcryptd_tmpl);
686         if (err) {
687                 mcryptd_fini_queue(&mqueue);
688                 free_percpu(mcryptd_flist);
689         }
690
691         return err;
692 }
693
694 static void __exit mcryptd_exit(void)
695 {
696         mcryptd_fini_queue(&mqueue);
697         crypto_unregister_template(&mcryptd_tmpl);
698         free_percpu(mcryptd_flist);
699 }
700
701 subsys_initcall(mcryptd_init);
702 module_exit(mcryptd_exit);
703
704 MODULE_LICENSE("GPL");
705 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
706 MODULE_ALIAS_CRYPTO("mcryptd");