2 * RSA padding templates.
4 * Copyright (c) 2015 Intel Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
12 #include <crypto/algapi.h>
13 #include <crypto/akcipher.h>
14 #include <crypto/internal/akcipher.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
22 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
24 static const u8 rsa_digest_info_md5[] = {
25 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
26 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
27 0x05, 0x00, 0x04, 0x10
30 static const u8 rsa_digest_info_sha1[] = {
31 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
32 0x2b, 0x0e, 0x03, 0x02, 0x1a,
33 0x05, 0x00, 0x04, 0x14
36 static const u8 rsa_digest_info_rmd160[] = {
37 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
38 0x2b, 0x24, 0x03, 0x02, 0x01,
39 0x05, 0x00, 0x04, 0x14
42 static const u8 rsa_digest_info_sha224[] = {
43 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
44 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
45 0x05, 0x00, 0x04, 0x1c
48 static const u8 rsa_digest_info_sha256[] = {
49 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
50 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
51 0x05, 0x00, 0x04, 0x20
54 static const u8 rsa_digest_info_sha384[] = {
55 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
56 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
57 0x05, 0x00, 0x04, 0x30
60 static const u8 rsa_digest_info_sha512[] = {
61 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
62 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
63 0x05, 0x00, 0x04, 0x40
66 static const struct rsa_asn1_template {
70 } rsa_asn1_templates[] = {
71 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
83 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
85 const struct rsa_asn1_template *p;
87 for (p = rsa_asn1_templates; p->name; p++)
88 if (strcmp(name, p->name) == 0)
94 struct crypto_akcipher *child;
95 unsigned int key_size;
98 struct pkcs1pad_inst_ctx {
99 struct crypto_akcipher_spawn spawn;
100 const struct rsa_asn1_template *digest_info;
103 struct pkcs1pad_request {
104 struct scatterlist in_sg[2], out_sg[1];
105 uint8_t *in_buf, *out_buf;
106 struct akcipher_request child_req;
109 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
112 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
117 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen);
121 /* Find out new modulus size from rsa implementation */
122 err = crypto_akcipher_maxsize(ctx->child);
133 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
136 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
141 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen);
145 /* Find out new modulus size from rsa implementation */
146 err = crypto_akcipher_maxsize(ctx->child);
157 static int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
159 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
162 * The maximum destination buffer size for the encrypt/sign operations
163 * will be the same as for RSA, even though it's smaller for
167 return ctx->key_size ?: -EINVAL;
170 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
171 struct scatterlist *next)
173 int nsegs = next ? 2 : 1;
175 sg_init_table(sg, nsegs);
176 sg_set_buf(sg, buf, len);
179 sg_chain(sg, nsegs, next);
182 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err)
184 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
185 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
186 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
187 unsigned int pad_len;
194 len = req_ctx->child_req.dst_len;
195 pad_len = ctx->key_size - len;
197 /* Four billion to one */
198 if (likely(!pad_len))
201 out_buf = kzalloc(ctx->key_size, GFP_ATOMIC);
206 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
207 out_buf + pad_len, len);
208 sg_copy_from_buffer(req->dst,
209 sg_nents_for_len(req->dst, ctx->key_size),
210 out_buf, ctx->key_size);
214 req->dst_len = ctx->key_size;
216 kfree(req_ctx->in_buf);
221 static void pkcs1pad_encrypt_sign_complete_cb(
222 struct crypto_async_request *child_async_req, int err)
224 struct akcipher_request *req = child_async_req->data;
225 struct crypto_async_request async_req;
227 if (err == -EINPROGRESS)
230 async_req.data = req->base.data;
231 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
232 async_req.flags = child_async_req->flags;
233 req->base.complete(&async_req,
234 pkcs1pad_encrypt_sign_complete(req, err));
237 static int pkcs1pad_encrypt(struct akcipher_request *req)
239 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
240 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
241 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
243 unsigned int i, ps_end;
248 if (req->src_len > ctx->key_size - 11)
251 if (req->dst_len < ctx->key_size) {
252 req->dst_len = ctx->key_size;
256 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
258 if (!req_ctx->in_buf)
261 ps_end = ctx->key_size - req->src_len - 2;
262 req_ctx->in_buf[0] = 0x02;
263 for (i = 1; i < ps_end; i++)
264 req_ctx->in_buf[i] = 1 + prandom_u32_max(255);
265 req_ctx->in_buf[ps_end] = 0x00;
267 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
268 ctx->key_size - 1 - req->src_len, req->src);
270 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
271 if (!req_ctx->out_buf) {
272 kfree(req_ctx->in_buf);
276 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
277 ctx->key_size, NULL);
279 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
280 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
281 pkcs1pad_encrypt_sign_complete_cb, req);
283 /* Reuse output buffer */
284 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
285 req->dst, ctx->key_size - 1, req->dst_len);
287 err = crypto_akcipher_encrypt(&req_ctx->child_req);
288 if (err != -EINPROGRESS &&
290 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
291 return pkcs1pad_encrypt_sign_complete(req, err);
296 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
298 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
299 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
300 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
301 unsigned int dst_len;
309 dst_len = req_ctx->child_req.dst_len;
310 if (dst_len < ctx->key_size - 1)
313 out_buf = req_ctx->out_buf;
314 if (dst_len == ctx->key_size) {
315 if (out_buf[0] != 0x00)
316 /* Decrypted value had no leading 0 byte */
323 if (out_buf[0] != 0x02)
326 for (pos = 1; pos < dst_len; pos++)
327 if (out_buf[pos] == 0x00)
329 if (pos < 9 || pos == dst_len)
335 if (req->dst_len < dst_len - pos)
337 req->dst_len = dst_len - pos;
340 sg_copy_from_buffer(req->dst,
341 sg_nents_for_len(req->dst, req->dst_len),
342 out_buf + pos, req->dst_len);
345 kzfree(req_ctx->out_buf);
350 static void pkcs1pad_decrypt_complete_cb(
351 struct crypto_async_request *child_async_req, int err)
353 struct akcipher_request *req = child_async_req->data;
354 struct crypto_async_request async_req;
356 if (err == -EINPROGRESS)
359 async_req.data = req->base.data;
360 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
361 async_req.flags = child_async_req->flags;
362 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err));
365 static int pkcs1pad_decrypt(struct akcipher_request *req)
367 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
368 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
369 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
372 if (!ctx->key_size || req->src_len != ctx->key_size)
375 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
376 if (!req_ctx->out_buf)
379 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
380 ctx->key_size, NULL);
382 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
383 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
384 pkcs1pad_decrypt_complete_cb, req);
386 /* Reuse input buffer, output to a new buffer */
387 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
388 req_ctx->out_sg, req->src_len,
391 err = crypto_akcipher_decrypt(&req_ctx->child_req);
392 if (err != -EINPROGRESS &&
394 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
395 return pkcs1pad_decrypt_complete(req, err);
400 static int pkcs1pad_sign(struct akcipher_request *req)
402 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
403 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
404 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
405 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
406 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
407 const struct rsa_asn1_template *digest_info = ictx->digest_info;
409 unsigned int ps_end, digest_size = 0;
414 digest_size = digest_info->size;
416 if (req->src_len + digest_size > ctx->key_size - 11)
419 if (req->dst_len < ctx->key_size) {
420 req->dst_len = ctx->key_size;
424 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
426 if (!req_ctx->in_buf)
429 ps_end = ctx->key_size - digest_size - req->src_len - 2;
430 req_ctx->in_buf[0] = 0x01;
431 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
432 req_ctx->in_buf[ps_end] = 0x00;
434 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
437 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
438 ctx->key_size - 1 - req->src_len, req->src);
440 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
441 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
442 pkcs1pad_encrypt_sign_complete_cb, req);
444 /* Reuse output buffer */
445 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
446 req->dst, ctx->key_size - 1, req->dst_len);
448 err = crypto_akcipher_sign(&req_ctx->child_req);
449 if (err != -EINPROGRESS &&
451 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
452 return pkcs1pad_encrypt_sign_complete(req, err);
457 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
459 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
460 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
461 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
462 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
463 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
464 const struct rsa_asn1_template *digest_info = ictx->digest_info;
465 unsigned int dst_len;
473 dst_len = req_ctx->child_req.dst_len;
474 if (dst_len < ctx->key_size - 1)
477 out_buf = req_ctx->out_buf;
478 if (dst_len == ctx->key_size) {
479 if (out_buf[0] != 0x00)
480 /* Decrypted value had no leading 0 byte */
488 if (out_buf[0] != 0x01)
491 for (pos = 1; pos < dst_len; pos++)
492 if (out_buf[pos] != 0xff)
495 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
499 if (memcmp(out_buf + pos, digest_info->data, digest_info->size))
502 pos += digest_info->size;
506 if (req->dst_len < dst_len - pos)
508 req->dst_len = dst_len - pos;
511 sg_copy_from_buffer(req->dst,
512 sg_nents_for_len(req->dst, req->dst_len),
513 out_buf + pos, req->dst_len);
515 kzfree(req_ctx->out_buf);
520 static void pkcs1pad_verify_complete_cb(
521 struct crypto_async_request *child_async_req, int err)
523 struct akcipher_request *req = child_async_req->data;
524 struct crypto_async_request async_req;
526 if (err == -EINPROGRESS)
529 async_req.data = req->base.data;
530 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
531 async_req.flags = child_async_req->flags;
532 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err));
536 * The verify operation is here for completeness similar to the verification
537 * defined in RFC2313 section 10.2 except that block type 0 is not accepted,
538 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to
539 * retrieve the DigestInfo from a signature, instead the user is expected
540 * to call the sign operation to generate the expected signature and compare
541 * signatures instead of the message-digests.
543 static int pkcs1pad_verify(struct akcipher_request *req)
545 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
546 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
547 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
550 if (!ctx->key_size || req->src_len < ctx->key_size)
553 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
554 if (!req_ctx->out_buf)
557 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
558 ctx->key_size, NULL);
560 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
561 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
562 pkcs1pad_verify_complete_cb, req);
564 /* Reuse input buffer, output to a new buffer */
565 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
566 req_ctx->out_sg, req->src_len,
569 err = crypto_akcipher_verify(&req_ctx->child_req);
570 if (err != -EINPROGRESS &&
572 !(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)))
573 return pkcs1pad_verify_complete(req, err);
578 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
580 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
581 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
582 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
583 struct crypto_akcipher *child_tfm;
585 child_tfm = crypto_spawn_akcipher(&ictx->spawn);
586 if (IS_ERR(child_tfm))
587 return PTR_ERR(child_tfm);
589 ctx->child = child_tfm;
593 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
595 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
597 crypto_free_akcipher(ctx->child);
600 static void pkcs1pad_free(struct akcipher_instance *inst)
602 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
603 struct crypto_akcipher_spawn *spawn = &ctx->spawn;
605 crypto_drop_akcipher(spawn);
609 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
611 const struct rsa_asn1_template *digest_info;
612 struct crypto_attr_type *algt;
613 struct akcipher_instance *inst;
614 struct pkcs1pad_inst_ctx *ctx;
615 struct crypto_akcipher_spawn *spawn;
616 struct akcipher_alg *rsa_alg;
617 const char *rsa_alg_name;
618 const char *hash_name;
621 algt = crypto_get_attr_type(tb);
623 return PTR_ERR(algt);
625 if ((algt->type ^ CRYPTO_ALG_TYPE_AKCIPHER) & algt->mask)
628 rsa_alg_name = crypto_attr_alg_name(tb[1]);
629 if (IS_ERR(rsa_alg_name))
630 return PTR_ERR(rsa_alg_name);
632 hash_name = crypto_attr_alg_name(tb[2]);
633 if (IS_ERR(hash_name))
634 return PTR_ERR(hash_name);
636 digest_info = rsa_lookup_asn1(hash_name);
640 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
644 ctx = akcipher_instance_ctx(inst);
646 ctx->digest_info = digest_info;
648 crypto_set_spawn(&spawn->base, akcipher_crypto_instance(inst));
649 err = crypto_grab_akcipher(spawn, rsa_alg_name, 0,
650 crypto_requires_sync(algt->type, algt->mask));
654 rsa_alg = crypto_spawn_akcipher_alg(spawn);
658 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
659 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name, hash_name) >=
660 CRYPTO_MAX_ALG_NAME ||
661 snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
663 rsa_alg->base.cra_driver_name, hash_name) >=
667 inst->alg.base.cra_flags = rsa_alg->base.cra_flags & CRYPTO_ALG_ASYNC;
668 inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
669 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
671 inst->alg.init = pkcs1pad_init_tfm;
672 inst->alg.exit = pkcs1pad_exit_tfm;
674 inst->alg.encrypt = pkcs1pad_encrypt;
675 inst->alg.decrypt = pkcs1pad_decrypt;
676 inst->alg.sign = pkcs1pad_sign;
677 inst->alg.verify = pkcs1pad_verify;
678 inst->alg.set_pub_key = pkcs1pad_set_pub_key;
679 inst->alg.set_priv_key = pkcs1pad_set_priv_key;
680 inst->alg.max_size = pkcs1pad_get_max_size;
681 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize;
683 inst->free = pkcs1pad_free;
685 err = akcipher_register_instance(tmpl, inst);
692 crypto_drop_akcipher(spawn);
698 struct crypto_template rsa_pkcs1pad_tmpl = {
700 .create = pkcs1pad_create,
701 .module = THIS_MODULE,