]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/acpi/nfit/core.c
Merge branch 'perf/urgent' into perf/core, to pick up fixes
[karo-tx-linux.git] / drivers / acpi / nfit / core.c
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/pmem.h>
24 #include <linux/io.h>
25 #include <linux/nd.h>
26 #include <asm/cacheflush.h>
27 #include "nfit.h"
28
29 /*
30  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
31  * irrelevant.
32  */
33 #include <linux/io-64-nonatomic-hi-lo.h>
34
35 static bool force_enable_dimms;
36 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
37 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
38
39 static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT;
40 module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR);
41 MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds");
42
43 /* after three payloads of overflow, it's dead jim */
44 static unsigned int scrub_overflow_abort = 3;
45 module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR);
46 MODULE_PARM_DESC(scrub_overflow_abort,
47                 "Number of times we overflow ARS results before abort");
48
49 static bool disable_vendor_specific;
50 module_param(disable_vendor_specific, bool, S_IRUGO);
51 MODULE_PARM_DESC(disable_vendor_specific,
52                 "Limit commands to the publicly specified set\n");
53
54 LIST_HEAD(acpi_descs);
55 DEFINE_MUTEX(acpi_desc_lock);
56
57 static struct workqueue_struct *nfit_wq;
58
59 struct nfit_table_prev {
60         struct list_head spas;
61         struct list_head memdevs;
62         struct list_head dcrs;
63         struct list_head bdws;
64         struct list_head idts;
65         struct list_head flushes;
66 };
67
68 static u8 nfit_uuid[NFIT_UUID_MAX][16];
69
70 const u8 *to_nfit_uuid(enum nfit_uuids id)
71 {
72         return nfit_uuid[id];
73 }
74 EXPORT_SYMBOL(to_nfit_uuid);
75
76 static struct acpi_nfit_desc *to_acpi_nfit_desc(
77                 struct nvdimm_bus_descriptor *nd_desc)
78 {
79         return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
80 }
81
82 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
83 {
84         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
85
86         /*
87          * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
88          * acpi_device.
89          */
90         if (!nd_desc->provider_name
91                         || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
92                 return NULL;
93
94         return to_acpi_device(acpi_desc->dev);
95 }
96
97 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
98 {
99         struct nd_cmd_clear_error *clear_err;
100         struct nd_cmd_ars_status *ars_status;
101         u16 flags;
102
103         switch (cmd) {
104         case ND_CMD_ARS_CAP:
105                 if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
106                         return -ENOTTY;
107
108                 /* Command failed */
109                 if (status & 0xffff)
110                         return -EIO;
111
112                 /* No supported scan types for this range */
113                 flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
114                 if ((status >> 16 & flags) == 0)
115                         return -ENOTTY;
116                 return 0;
117         case ND_CMD_ARS_START:
118                 /* ARS is in progress */
119                 if ((status & 0xffff) == NFIT_ARS_START_BUSY)
120                         return -EBUSY;
121
122                 /* Command failed */
123                 if (status & 0xffff)
124                         return -EIO;
125                 return 0;
126         case ND_CMD_ARS_STATUS:
127                 ars_status = buf;
128                 /* Command failed */
129                 if (status & 0xffff)
130                         return -EIO;
131                 /* Check extended status (Upper two bytes) */
132                 if (status == NFIT_ARS_STATUS_DONE)
133                         return 0;
134
135                 /* ARS is in progress */
136                 if (status == NFIT_ARS_STATUS_BUSY)
137                         return -EBUSY;
138
139                 /* No ARS performed for the current boot */
140                 if (status == NFIT_ARS_STATUS_NONE)
141                         return -EAGAIN;
142
143                 /*
144                  * ARS interrupted, either we overflowed or some other
145                  * agent wants the scan to stop.  If we didn't overflow
146                  * then just continue with the returned results.
147                  */
148                 if (status == NFIT_ARS_STATUS_INTR) {
149                         if (ars_status->out_length >= 40 && (ars_status->flags
150                                                 & NFIT_ARS_F_OVERFLOW))
151                                 return -ENOSPC;
152                         return 0;
153                 }
154
155                 /* Unknown status */
156                 if (status >> 16)
157                         return -EIO;
158                 return 0;
159         case ND_CMD_CLEAR_ERROR:
160                 clear_err = buf;
161                 if (status & 0xffff)
162                         return -EIO;
163                 if (!clear_err->cleared)
164                         return -EIO;
165                 if (clear_err->length > clear_err->cleared)
166                         return clear_err->cleared;
167                 return 0;
168         default:
169                 break;
170         }
171
172         /* all other non-zero status results in an error */
173         if (status)
174                 return -EIO;
175         return 0;
176 }
177
178 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
179                 u32 status)
180 {
181         if (!nvdimm)
182                 return xlat_bus_status(buf, cmd, status);
183         if (status)
184                 return -EIO;
185         return 0;
186 }
187
188 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
189                 unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
190 {
191         struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
192         union acpi_object in_obj, in_buf, *out_obj;
193         const struct nd_cmd_desc *desc = NULL;
194         struct device *dev = acpi_desc->dev;
195         struct nd_cmd_pkg *call_pkg = NULL;
196         const char *cmd_name, *dimm_name;
197         unsigned long cmd_mask, dsm_mask;
198         u32 offset, fw_status = 0;
199         acpi_handle handle;
200         unsigned int func;
201         const u8 *uuid;
202         int rc, i;
203
204         func = cmd;
205         if (cmd == ND_CMD_CALL) {
206                 call_pkg = buf;
207                 func = call_pkg->nd_command;
208         }
209
210         if (nvdimm) {
211                 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
212                 struct acpi_device *adev = nfit_mem->adev;
213
214                 if (!adev)
215                         return -ENOTTY;
216                 if (call_pkg && nfit_mem->family != call_pkg->nd_family)
217                         return -ENOTTY;
218
219                 dimm_name = nvdimm_name(nvdimm);
220                 cmd_name = nvdimm_cmd_name(cmd);
221                 cmd_mask = nvdimm_cmd_mask(nvdimm);
222                 dsm_mask = nfit_mem->dsm_mask;
223                 desc = nd_cmd_dimm_desc(cmd);
224                 uuid = to_nfit_uuid(nfit_mem->family);
225                 handle = adev->handle;
226         } else {
227                 struct acpi_device *adev = to_acpi_dev(acpi_desc);
228
229                 cmd_name = nvdimm_bus_cmd_name(cmd);
230                 cmd_mask = nd_desc->cmd_mask;
231                 dsm_mask = cmd_mask;
232                 desc = nd_cmd_bus_desc(cmd);
233                 uuid = to_nfit_uuid(NFIT_DEV_BUS);
234                 handle = adev->handle;
235                 dimm_name = "bus";
236         }
237
238         if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
239                 return -ENOTTY;
240
241         if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask))
242                 return -ENOTTY;
243
244         in_obj.type = ACPI_TYPE_PACKAGE;
245         in_obj.package.count = 1;
246         in_obj.package.elements = &in_buf;
247         in_buf.type = ACPI_TYPE_BUFFER;
248         in_buf.buffer.pointer = buf;
249         in_buf.buffer.length = 0;
250
251         /* libnvdimm has already validated the input envelope */
252         for (i = 0; i < desc->in_num; i++)
253                 in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
254                                 i, buf);
255
256         if (call_pkg) {
257                 /* skip over package wrapper */
258                 in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
259                 in_buf.buffer.length = call_pkg->nd_size_in;
260         }
261
262         if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
263                 dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n",
264                                 __func__, dimm_name, cmd, func,
265                                 in_buf.buffer.length);
266                 print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
267                         in_buf.buffer.pointer,
268                         min_t(u32, 256, in_buf.buffer.length), true);
269         }
270
271         out_obj = acpi_evaluate_dsm(handle, uuid, 1, func, &in_obj);
272         if (!out_obj) {
273                 dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name,
274                                 cmd_name);
275                 return -EINVAL;
276         }
277
278         if (call_pkg) {
279                 call_pkg->nd_fw_size = out_obj->buffer.length;
280                 memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
281                         out_obj->buffer.pointer,
282                         min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
283
284                 ACPI_FREE(out_obj);
285                 /*
286                  * Need to support FW function w/o known size in advance.
287                  * Caller can determine required size based upon nd_fw_size.
288                  * If we return an error (like elsewhere) then caller wouldn't
289                  * be able to rely upon data returned to make calculation.
290                  */
291                 return 0;
292         }
293
294         if (out_obj->package.type != ACPI_TYPE_BUFFER) {
295                 dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n",
296                                 __func__, dimm_name, cmd_name, out_obj->type);
297                 rc = -EINVAL;
298                 goto out;
299         }
300
301         if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) {
302                 dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__,
303                                 dimm_name, cmd_name, out_obj->buffer.length);
304                 print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4,
305                                 4, out_obj->buffer.pointer, min_t(u32, 128,
306                                         out_obj->buffer.length), true);
307         }
308
309         for (i = 0, offset = 0; i < desc->out_num; i++) {
310                 u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
311                                 (u32 *) out_obj->buffer.pointer,
312                                 out_obj->buffer.length - offset);
313
314                 if (offset + out_size > out_obj->buffer.length) {
315                         dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n",
316                                         __func__, dimm_name, cmd_name, i);
317                         break;
318                 }
319
320                 if (in_buf.buffer.length + offset + out_size > buf_len) {
321                         dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n",
322                                         __func__, dimm_name, cmd_name, i);
323                         rc = -ENXIO;
324                         goto out;
325                 }
326                 memcpy(buf + in_buf.buffer.length + offset,
327                                 out_obj->buffer.pointer + offset, out_size);
328                 offset += out_size;
329         }
330
331         /*
332          * Set fw_status for all the commands with a known format to be
333          * later interpreted by xlat_status().
334          */
335         if (i >= 1 && ((cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR)
336                         || (cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR)))
337                 fw_status = *(u32 *) out_obj->buffer.pointer;
338
339         if (offset + in_buf.buffer.length < buf_len) {
340                 if (i >= 1) {
341                         /*
342                          * status valid, return the number of bytes left
343                          * unfilled in the output buffer
344                          */
345                         rc = buf_len - offset - in_buf.buffer.length;
346                         if (cmd_rc)
347                                 *cmd_rc = xlat_status(nvdimm, buf, cmd,
348                                                 fw_status);
349                 } else {
350                         dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
351                                         __func__, dimm_name, cmd_name, buf_len,
352                                         offset);
353                         rc = -ENXIO;
354                 }
355         } else {
356                 rc = 0;
357                 if (cmd_rc)
358                         *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
359         }
360
361  out:
362         ACPI_FREE(out_obj);
363
364         return rc;
365 }
366 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
367
368 static const char *spa_type_name(u16 type)
369 {
370         static const char *to_name[] = {
371                 [NFIT_SPA_VOLATILE] = "volatile",
372                 [NFIT_SPA_PM] = "pmem",
373                 [NFIT_SPA_DCR] = "dimm-control-region",
374                 [NFIT_SPA_BDW] = "block-data-window",
375                 [NFIT_SPA_VDISK] = "volatile-disk",
376                 [NFIT_SPA_VCD] = "volatile-cd",
377                 [NFIT_SPA_PDISK] = "persistent-disk",
378                 [NFIT_SPA_PCD] = "persistent-cd",
379
380         };
381
382         if (type > NFIT_SPA_PCD)
383                 return "unknown";
384
385         return to_name[type];
386 }
387
388 int nfit_spa_type(struct acpi_nfit_system_address *spa)
389 {
390         int i;
391
392         for (i = 0; i < NFIT_UUID_MAX; i++)
393                 if (memcmp(to_nfit_uuid(i), spa->range_guid, 16) == 0)
394                         return i;
395         return -1;
396 }
397
398 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
399                 struct nfit_table_prev *prev,
400                 struct acpi_nfit_system_address *spa)
401 {
402         struct device *dev = acpi_desc->dev;
403         struct nfit_spa *nfit_spa;
404
405         if (spa->header.length != sizeof(*spa))
406                 return false;
407
408         list_for_each_entry(nfit_spa, &prev->spas, list) {
409                 if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
410                         list_move_tail(&nfit_spa->list, &acpi_desc->spas);
411                         return true;
412                 }
413         }
414
415         nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
416                         GFP_KERNEL);
417         if (!nfit_spa)
418                 return false;
419         INIT_LIST_HEAD(&nfit_spa->list);
420         memcpy(nfit_spa->spa, spa, sizeof(*spa));
421         list_add_tail(&nfit_spa->list, &acpi_desc->spas);
422         dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__,
423                         spa->range_index,
424                         spa_type_name(nfit_spa_type(spa)));
425         return true;
426 }
427
428 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
429                 struct nfit_table_prev *prev,
430                 struct acpi_nfit_memory_map *memdev)
431 {
432         struct device *dev = acpi_desc->dev;
433         struct nfit_memdev *nfit_memdev;
434
435         if (memdev->header.length != sizeof(*memdev))
436                 return false;
437
438         list_for_each_entry(nfit_memdev, &prev->memdevs, list)
439                 if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
440                         list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
441                         return true;
442                 }
443
444         nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
445                         GFP_KERNEL);
446         if (!nfit_memdev)
447                 return false;
448         INIT_LIST_HEAD(&nfit_memdev->list);
449         memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
450         list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
451         dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d\n",
452                         __func__, memdev->device_handle, memdev->range_index,
453                         memdev->region_index);
454         return true;
455 }
456
457 /*
458  * An implementation may provide a truncated control region if no block windows
459  * are defined.
460  */
461 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
462 {
463         if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
464                                 window_size))
465                 return 0;
466         if (dcr->windows)
467                 return sizeof(*dcr);
468         return offsetof(struct acpi_nfit_control_region, window_size);
469 }
470
471 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
472                 struct nfit_table_prev *prev,
473                 struct acpi_nfit_control_region *dcr)
474 {
475         struct device *dev = acpi_desc->dev;
476         struct nfit_dcr *nfit_dcr;
477
478         if (!sizeof_dcr(dcr))
479                 return false;
480
481         list_for_each_entry(nfit_dcr, &prev->dcrs, list)
482                 if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
483                         list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
484                         return true;
485                 }
486
487         nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
488                         GFP_KERNEL);
489         if (!nfit_dcr)
490                 return false;
491         INIT_LIST_HEAD(&nfit_dcr->list);
492         memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
493         list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
494         dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__,
495                         dcr->region_index, dcr->windows);
496         return true;
497 }
498
499 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
500                 struct nfit_table_prev *prev,
501                 struct acpi_nfit_data_region *bdw)
502 {
503         struct device *dev = acpi_desc->dev;
504         struct nfit_bdw *nfit_bdw;
505
506         if (bdw->header.length != sizeof(*bdw))
507                 return false;
508         list_for_each_entry(nfit_bdw, &prev->bdws, list)
509                 if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
510                         list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
511                         return true;
512                 }
513
514         nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
515                         GFP_KERNEL);
516         if (!nfit_bdw)
517                 return false;
518         INIT_LIST_HEAD(&nfit_bdw->list);
519         memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
520         list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
521         dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__,
522                         bdw->region_index, bdw->windows);
523         return true;
524 }
525
526 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
527 {
528         if (idt->header.length < sizeof(*idt))
529                 return 0;
530         return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
531 }
532
533 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
534                 struct nfit_table_prev *prev,
535                 struct acpi_nfit_interleave *idt)
536 {
537         struct device *dev = acpi_desc->dev;
538         struct nfit_idt *nfit_idt;
539
540         if (!sizeof_idt(idt))
541                 return false;
542
543         list_for_each_entry(nfit_idt, &prev->idts, list) {
544                 if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
545                         continue;
546
547                 if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
548                         list_move_tail(&nfit_idt->list, &acpi_desc->idts);
549                         return true;
550                 }
551         }
552
553         nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
554                         GFP_KERNEL);
555         if (!nfit_idt)
556                 return false;
557         INIT_LIST_HEAD(&nfit_idt->list);
558         memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
559         list_add_tail(&nfit_idt->list, &acpi_desc->idts);
560         dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__,
561                         idt->interleave_index, idt->line_count);
562         return true;
563 }
564
565 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
566 {
567         if (flush->header.length < sizeof(*flush))
568                 return 0;
569         return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
570 }
571
572 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
573                 struct nfit_table_prev *prev,
574                 struct acpi_nfit_flush_address *flush)
575 {
576         struct device *dev = acpi_desc->dev;
577         struct nfit_flush *nfit_flush;
578
579         if (!sizeof_flush(flush))
580                 return false;
581
582         list_for_each_entry(nfit_flush, &prev->flushes, list) {
583                 if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
584                         continue;
585
586                 if (memcmp(nfit_flush->flush, flush,
587                                         sizeof_flush(flush)) == 0) {
588                         list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
589                         return true;
590                 }
591         }
592
593         nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
594                         + sizeof_flush(flush), GFP_KERNEL);
595         if (!nfit_flush)
596                 return false;
597         INIT_LIST_HEAD(&nfit_flush->list);
598         memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
599         list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
600         dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__,
601                         flush->device_handle, flush->hint_count);
602         return true;
603 }
604
605 static void *add_table(struct acpi_nfit_desc *acpi_desc,
606                 struct nfit_table_prev *prev, void *table, const void *end)
607 {
608         struct device *dev = acpi_desc->dev;
609         struct acpi_nfit_header *hdr;
610         void *err = ERR_PTR(-ENOMEM);
611
612         if (table >= end)
613                 return NULL;
614
615         hdr = table;
616         if (!hdr->length) {
617                 dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
618                         hdr->type);
619                 return NULL;
620         }
621
622         switch (hdr->type) {
623         case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
624                 if (!add_spa(acpi_desc, prev, table))
625                         return err;
626                 break;
627         case ACPI_NFIT_TYPE_MEMORY_MAP:
628                 if (!add_memdev(acpi_desc, prev, table))
629                         return err;
630                 break;
631         case ACPI_NFIT_TYPE_CONTROL_REGION:
632                 if (!add_dcr(acpi_desc, prev, table))
633                         return err;
634                 break;
635         case ACPI_NFIT_TYPE_DATA_REGION:
636                 if (!add_bdw(acpi_desc, prev, table))
637                         return err;
638                 break;
639         case ACPI_NFIT_TYPE_INTERLEAVE:
640                 if (!add_idt(acpi_desc, prev, table))
641                         return err;
642                 break;
643         case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
644                 if (!add_flush(acpi_desc, prev, table))
645                         return err;
646                 break;
647         case ACPI_NFIT_TYPE_SMBIOS:
648                 dev_dbg(dev, "%s: smbios\n", __func__);
649                 break;
650         default:
651                 dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
652                 break;
653         }
654
655         return table + hdr->length;
656 }
657
658 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
659                 struct nfit_mem *nfit_mem)
660 {
661         u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
662         u16 dcr = nfit_mem->dcr->region_index;
663         struct nfit_spa *nfit_spa;
664
665         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
666                 u16 range_index = nfit_spa->spa->range_index;
667                 int type = nfit_spa_type(nfit_spa->spa);
668                 struct nfit_memdev *nfit_memdev;
669
670                 if (type != NFIT_SPA_BDW)
671                         continue;
672
673                 list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
674                         if (nfit_memdev->memdev->range_index != range_index)
675                                 continue;
676                         if (nfit_memdev->memdev->device_handle != device_handle)
677                                 continue;
678                         if (nfit_memdev->memdev->region_index != dcr)
679                                 continue;
680
681                         nfit_mem->spa_bdw = nfit_spa->spa;
682                         return;
683                 }
684         }
685
686         dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
687                         nfit_mem->spa_dcr->range_index);
688         nfit_mem->bdw = NULL;
689 }
690
691 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
692                 struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
693 {
694         u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
695         struct nfit_memdev *nfit_memdev;
696         struct nfit_bdw *nfit_bdw;
697         struct nfit_idt *nfit_idt;
698         u16 idt_idx, range_index;
699
700         list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
701                 if (nfit_bdw->bdw->region_index != dcr)
702                         continue;
703                 nfit_mem->bdw = nfit_bdw->bdw;
704                 break;
705         }
706
707         if (!nfit_mem->bdw)
708                 return;
709
710         nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
711
712         if (!nfit_mem->spa_bdw)
713                 return;
714
715         range_index = nfit_mem->spa_bdw->range_index;
716         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
717                 if (nfit_memdev->memdev->range_index != range_index ||
718                                 nfit_memdev->memdev->region_index != dcr)
719                         continue;
720                 nfit_mem->memdev_bdw = nfit_memdev->memdev;
721                 idt_idx = nfit_memdev->memdev->interleave_index;
722                 list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
723                         if (nfit_idt->idt->interleave_index != idt_idx)
724                                 continue;
725                         nfit_mem->idt_bdw = nfit_idt->idt;
726                         break;
727                 }
728                 break;
729         }
730 }
731
732 static int nfit_mem_dcr_init(struct acpi_nfit_desc *acpi_desc,
733                 struct acpi_nfit_system_address *spa)
734 {
735         struct nfit_mem *nfit_mem, *found;
736         struct nfit_memdev *nfit_memdev;
737         int type = nfit_spa_type(spa);
738
739         switch (type) {
740         case NFIT_SPA_DCR:
741         case NFIT_SPA_PM:
742                 break;
743         default:
744                 return 0;
745         }
746
747         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
748                 struct nfit_flush *nfit_flush;
749                 struct nfit_dcr *nfit_dcr;
750                 u32 device_handle;
751                 u16 dcr;
752
753                 if (nfit_memdev->memdev->range_index != spa->range_index)
754                         continue;
755                 found = NULL;
756                 dcr = nfit_memdev->memdev->region_index;
757                 device_handle = nfit_memdev->memdev->device_handle;
758                 list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
759                         if (__to_nfit_memdev(nfit_mem)->device_handle
760                                         == device_handle) {
761                                 found = nfit_mem;
762                                 break;
763                         }
764
765                 if (found)
766                         nfit_mem = found;
767                 else {
768                         nfit_mem = devm_kzalloc(acpi_desc->dev,
769                                         sizeof(*nfit_mem), GFP_KERNEL);
770                         if (!nfit_mem)
771                                 return -ENOMEM;
772                         INIT_LIST_HEAD(&nfit_mem->list);
773                         nfit_mem->acpi_desc = acpi_desc;
774                         list_add(&nfit_mem->list, &acpi_desc->dimms);
775                 }
776
777                 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
778                         if (nfit_dcr->dcr->region_index != dcr)
779                                 continue;
780                         /*
781                          * Record the control region for the dimm.  For
782                          * the ACPI 6.1 case, where there are separate
783                          * control regions for the pmem vs blk
784                          * interfaces, be sure to record the extended
785                          * blk details.
786                          */
787                         if (!nfit_mem->dcr)
788                                 nfit_mem->dcr = nfit_dcr->dcr;
789                         else if (nfit_mem->dcr->windows == 0
790                                         && nfit_dcr->dcr->windows)
791                                 nfit_mem->dcr = nfit_dcr->dcr;
792                         break;
793                 }
794
795                 list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
796                         struct acpi_nfit_flush_address *flush;
797                         u16 i;
798
799                         if (nfit_flush->flush->device_handle != device_handle)
800                                 continue;
801                         nfit_mem->nfit_flush = nfit_flush;
802                         flush = nfit_flush->flush;
803                         nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev,
804                                         flush->hint_count
805                                         * sizeof(struct resource), GFP_KERNEL);
806                         if (!nfit_mem->flush_wpq)
807                                 return -ENOMEM;
808                         for (i = 0; i < flush->hint_count; i++) {
809                                 struct resource *res = &nfit_mem->flush_wpq[i];
810
811                                 res->start = flush->hint_address[i];
812                                 res->end = res->start + 8 - 1;
813                         }
814                         break;
815                 }
816
817                 if (dcr && !nfit_mem->dcr) {
818                         dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
819                                         spa->range_index, dcr);
820                         return -ENODEV;
821                 }
822
823                 if (type == NFIT_SPA_DCR) {
824                         struct nfit_idt *nfit_idt;
825                         u16 idt_idx;
826
827                         /* multiple dimms may share a SPA when interleaved */
828                         nfit_mem->spa_dcr = spa;
829                         nfit_mem->memdev_dcr = nfit_memdev->memdev;
830                         idt_idx = nfit_memdev->memdev->interleave_index;
831                         list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
832                                 if (nfit_idt->idt->interleave_index != idt_idx)
833                                         continue;
834                                 nfit_mem->idt_dcr = nfit_idt->idt;
835                                 break;
836                         }
837                         nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
838                 } else {
839                         /*
840                          * A single dimm may belong to multiple SPA-PM
841                          * ranges, record at least one in addition to
842                          * any SPA-DCR range.
843                          */
844                         nfit_mem->memdev_pmem = nfit_memdev->memdev;
845                 }
846         }
847
848         return 0;
849 }
850
851 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
852 {
853         struct nfit_mem *a = container_of(_a, typeof(*a), list);
854         struct nfit_mem *b = container_of(_b, typeof(*b), list);
855         u32 handleA, handleB;
856
857         handleA = __to_nfit_memdev(a)->device_handle;
858         handleB = __to_nfit_memdev(b)->device_handle;
859         if (handleA < handleB)
860                 return -1;
861         else if (handleA > handleB)
862                 return 1;
863         return 0;
864 }
865
866 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
867 {
868         struct nfit_spa *nfit_spa;
869
870         /*
871          * For each SPA-DCR or SPA-PMEM address range find its
872          * corresponding MEMDEV(s).  From each MEMDEV find the
873          * corresponding DCR.  Then, if we're operating on a SPA-DCR,
874          * try to find a SPA-BDW and a corresponding BDW that references
875          * the DCR.  Throw it all into an nfit_mem object.  Note, that
876          * BDWs are optional.
877          */
878         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
879                 int rc;
880
881                 rc = nfit_mem_dcr_init(acpi_desc, nfit_spa->spa);
882                 if (rc)
883                         return rc;
884         }
885
886         list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
887
888         return 0;
889 }
890
891 static ssize_t revision_show(struct device *dev,
892                 struct device_attribute *attr, char *buf)
893 {
894         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
895         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
896         struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
897
898         return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
899 }
900 static DEVICE_ATTR_RO(revision);
901
902 static ssize_t hw_error_scrub_show(struct device *dev,
903                 struct device_attribute *attr, char *buf)
904 {
905         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
906         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
907         struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
908
909         return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
910 }
911
912 /*
913  * The 'hw_error_scrub' attribute can have the following values written to it:
914  * '0': Switch to the default mode where an exception will only insert
915  *      the address of the memory error into the poison and badblocks lists.
916  * '1': Enable a full scrub to happen if an exception for a memory error is
917  *      received.
918  */
919 static ssize_t hw_error_scrub_store(struct device *dev,
920                 struct device_attribute *attr, const char *buf, size_t size)
921 {
922         struct nvdimm_bus_descriptor *nd_desc;
923         ssize_t rc;
924         long val;
925
926         rc = kstrtol(buf, 0, &val);
927         if (rc)
928                 return rc;
929
930         device_lock(dev);
931         nd_desc = dev_get_drvdata(dev);
932         if (nd_desc) {
933                 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
934
935                 switch (val) {
936                 case HW_ERROR_SCRUB_ON:
937                         acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
938                         break;
939                 case HW_ERROR_SCRUB_OFF:
940                         acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
941                         break;
942                 default:
943                         rc = -EINVAL;
944                         break;
945                 }
946         }
947         device_unlock(dev);
948         if (rc)
949                 return rc;
950         return size;
951 }
952 static DEVICE_ATTR_RW(hw_error_scrub);
953
954 /*
955  * This shows the number of full Address Range Scrubs that have been
956  * completed since driver load time. Userspace can wait on this using
957  * select/poll etc. A '+' at the end indicates an ARS is in progress
958  */
959 static ssize_t scrub_show(struct device *dev,
960                 struct device_attribute *attr, char *buf)
961 {
962         struct nvdimm_bus_descriptor *nd_desc;
963         ssize_t rc = -ENXIO;
964
965         device_lock(dev);
966         nd_desc = dev_get_drvdata(dev);
967         if (nd_desc) {
968                 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
969
970                 rc = sprintf(buf, "%d%s", acpi_desc->scrub_count,
971                                 (work_busy(&acpi_desc->work)) ? "+\n" : "\n");
972         }
973         device_unlock(dev);
974         return rc;
975 }
976
977 static ssize_t scrub_store(struct device *dev,
978                 struct device_attribute *attr, const char *buf, size_t size)
979 {
980         struct nvdimm_bus_descriptor *nd_desc;
981         ssize_t rc;
982         long val;
983
984         rc = kstrtol(buf, 0, &val);
985         if (rc)
986                 return rc;
987         if (val != 1)
988                 return -EINVAL;
989
990         device_lock(dev);
991         nd_desc = dev_get_drvdata(dev);
992         if (nd_desc) {
993                 struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
994
995                 rc = acpi_nfit_ars_rescan(acpi_desc);
996         }
997         device_unlock(dev);
998         if (rc)
999                 return rc;
1000         return size;
1001 }
1002 static DEVICE_ATTR_RW(scrub);
1003
1004 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1005 {
1006         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1007         const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1008                 | 1 << ND_CMD_ARS_STATUS;
1009
1010         return (nd_desc->cmd_mask & mask) == mask;
1011 }
1012
1013 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1014 {
1015         struct device *dev = container_of(kobj, struct device, kobj);
1016         struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1017
1018         if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1019                 return 0;
1020         return a->mode;
1021 }
1022
1023 static struct attribute *acpi_nfit_attributes[] = {
1024         &dev_attr_revision.attr,
1025         &dev_attr_scrub.attr,
1026         &dev_attr_hw_error_scrub.attr,
1027         NULL,
1028 };
1029
1030 static struct attribute_group acpi_nfit_attribute_group = {
1031         .name = "nfit",
1032         .attrs = acpi_nfit_attributes,
1033         .is_visible = nfit_visible,
1034 };
1035
1036 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1037         &nvdimm_bus_attribute_group,
1038         &acpi_nfit_attribute_group,
1039         NULL,
1040 };
1041
1042 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1043 {
1044         struct nvdimm *nvdimm = to_nvdimm(dev);
1045         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1046
1047         return __to_nfit_memdev(nfit_mem);
1048 }
1049
1050 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1051 {
1052         struct nvdimm *nvdimm = to_nvdimm(dev);
1053         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1054
1055         return nfit_mem->dcr;
1056 }
1057
1058 static ssize_t handle_show(struct device *dev,
1059                 struct device_attribute *attr, char *buf)
1060 {
1061         struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1062
1063         return sprintf(buf, "%#x\n", memdev->device_handle);
1064 }
1065 static DEVICE_ATTR_RO(handle);
1066
1067 static ssize_t phys_id_show(struct device *dev,
1068                 struct device_attribute *attr, char *buf)
1069 {
1070         struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1071
1072         return sprintf(buf, "%#x\n", memdev->physical_id);
1073 }
1074 static DEVICE_ATTR_RO(phys_id);
1075
1076 static ssize_t vendor_show(struct device *dev,
1077                 struct device_attribute *attr, char *buf)
1078 {
1079         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1080
1081         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1082 }
1083 static DEVICE_ATTR_RO(vendor);
1084
1085 static ssize_t rev_id_show(struct device *dev,
1086                 struct device_attribute *attr, char *buf)
1087 {
1088         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1089
1090         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1091 }
1092 static DEVICE_ATTR_RO(rev_id);
1093
1094 static ssize_t device_show(struct device *dev,
1095                 struct device_attribute *attr, char *buf)
1096 {
1097         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1098
1099         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1100 }
1101 static DEVICE_ATTR_RO(device);
1102
1103 static ssize_t subsystem_vendor_show(struct device *dev,
1104                 struct device_attribute *attr, char *buf)
1105 {
1106         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1107
1108         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1109 }
1110 static DEVICE_ATTR_RO(subsystem_vendor);
1111
1112 static ssize_t subsystem_rev_id_show(struct device *dev,
1113                 struct device_attribute *attr, char *buf)
1114 {
1115         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1116
1117         return sprintf(buf, "0x%04x\n",
1118                         be16_to_cpu(dcr->subsystem_revision_id));
1119 }
1120 static DEVICE_ATTR_RO(subsystem_rev_id);
1121
1122 static ssize_t subsystem_device_show(struct device *dev,
1123                 struct device_attribute *attr, char *buf)
1124 {
1125         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1126
1127         return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1128 }
1129 static DEVICE_ATTR_RO(subsystem_device);
1130
1131 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1132 {
1133         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1134         int formats = 0;
1135
1136         if (nfit_mem->memdev_pmem)
1137                 formats++;
1138         if (nfit_mem->memdev_bdw)
1139                 formats++;
1140         return formats;
1141 }
1142
1143 static ssize_t format_show(struct device *dev,
1144                 struct device_attribute *attr, char *buf)
1145 {
1146         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1147
1148         return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1149 }
1150 static DEVICE_ATTR_RO(format);
1151
1152 static ssize_t format1_show(struct device *dev,
1153                 struct device_attribute *attr, char *buf)
1154 {
1155         u32 handle;
1156         ssize_t rc = -ENXIO;
1157         struct nfit_mem *nfit_mem;
1158         struct nfit_memdev *nfit_memdev;
1159         struct acpi_nfit_desc *acpi_desc;
1160         struct nvdimm *nvdimm = to_nvdimm(dev);
1161         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1162
1163         nfit_mem = nvdimm_provider_data(nvdimm);
1164         acpi_desc = nfit_mem->acpi_desc;
1165         handle = to_nfit_memdev(dev)->device_handle;
1166
1167         /* assumes DIMMs have at most 2 published interface codes */
1168         mutex_lock(&acpi_desc->init_mutex);
1169         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1170                 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1171                 struct nfit_dcr *nfit_dcr;
1172
1173                 if (memdev->device_handle != handle)
1174                         continue;
1175
1176                 list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1177                         if (nfit_dcr->dcr->region_index != memdev->region_index)
1178                                 continue;
1179                         if (nfit_dcr->dcr->code == dcr->code)
1180                                 continue;
1181                         rc = sprintf(buf, "0x%04x\n",
1182                                         le16_to_cpu(nfit_dcr->dcr->code));
1183                         break;
1184                 }
1185                 if (rc != ENXIO)
1186                         break;
1187         }
1188         mutex_unlock(&acpi_desc->init_mutex);
1189         return rc;
1190 }
1191 static DEVICE_ATTR_RO(format1);
1192
1193 static ssize_t formats_show(struct device *dev,
1194                 struct device_attribute *attr, char *buf)
1195 {
1196         struct nvdimm *nvdimm = to_nvdimm(dev);
1197
1198         return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1199 }
1200 static DEVICE_ATTR_RO(formats);
1201
1202 static ssize_t serial_show(struct device *dev,
1203                 struct device_attribute *attr, char *buf)
1204 {
1205         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1206
1207         return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1208 }
1209 static DEVICE_ATTR_RO(serial);
1210
1211 static ssize_t family_show(struct device *dev,
1212                 struct device_attribute *attr, char *buf)
1213 {
1214         struct nvdimm *nvdimm = to_nvdimm(dev);
1215         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1216
1217         if (nfit_mem->family < 0)
1218                 return -ENXIO;
1219         return sprintf(buf, "%d\n", nfit_mem->family);
1220 }
1221 static DEVICE_ATTR_RO(family);
1222
1223 static ssize_t dsm_mask_show(struct device *dev,
1224                 struct device_attribute *attr, char *buf)
1225 {
1226         struct nvdimm *nvdimm = to_nvdimm(dev);
1227         struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1228
1229         if (nfit_mem->family < 0)
1230                 return -ENXIO;
1231         return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1232 }
1233 static DEVICE_ATTR_RO(dsm_mask);
1234
1235 static ssize_t flags_show(struct device *dev,
1236                 struct device_attribute *attr, char *buf)
1237 {
1238         u16 flags = to_nfit_memdev(dev)->flags;
1239
1240         return sprintf(buf, "%s%s%s%s%s\n",
1241                 flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1242                 flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1243                 flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1244                 flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1245                 flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "");
1246 }
1247 static DEVICE_ATTR_RO(flags);
1248
1249 static ssize_t id_show(struct device *dev,
1250                 struct device_attribute *attr, char *buf)
1251 {
1252         struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1253
1254         if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1255                 return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1256                                 be16_to_cpu(dcr->vendor_id),
1257                                 dcr->manufacturing_location,
1258                                 be16_to_cpu(dcr->manufacturing_date),
1259                                 be32_to_cpu(dcr->serial_number));
1260         else
1261                 return sprintf(buf, "%04x-%08x\n",
1262                                 be16_to_cpu(dcr->vendor_id),
1263                                 be32_to_cpu(dcr->serial_number));
1264 }
1265 static DEVICE_ATTR_RO(id);
1266
1267 static struct attribute *acpi_nfit_dimm_attributes[] = {
1268         &dev_attr_handle.attr,
1269         &dev_attr_phys_id.attr,
1270         &dev_attr_vendor.attr,
1271         &dev_attr_device.attr,
1272         &dev_attr_rev_id.attr,
1273         &dev_attr_subsystem_vendor.attr,
1274         &dev_attr_subsystem_device.attr,
1275         &dev_attr_subsystem_rev_id.attr,
1276         &dev_attr_format.attr,
1277         &dev_attr_formats.attr,
1278         &dev_attr_format1.attr,
1279         &dev_attr_serial.attr,
1280         &dev_attr_flags.attr,
1281         &dev_attr_id.attr,
1282         &dev_attr_family.attr,
1283         &dev_attr_dsm_mask.attr,
1284         NULL,
1285 };
1286
1287 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1288                 struct attribute *a, int n)
1289 {
1290         struct device *dev = container_of(kobj, struct device, kobj);
1291         struct nvdimm *nvdimm = to_nvdimm(dev);
1292
1293         if (!to_nfit_dcr(dev))
1294                 return 0;
1295         if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1296                 return 0;
1297         return a->mode;
1298 }
1299
1300 static struct attribute_group acpi_nfit_dimm_attribute_group = {
1301         .name = "nfit",
1302         .attrs = acpi_nfit_dimm_attributes,
1303         .is_visible = acpi_nfit_dimm_attr_visible,
1304 };
1305
1306 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1307         &nvdimm_attribute_group,
1308         &nd_device_attribute_group,
1309         &acpi_nfit_dimm_attribute_group,
1310         NULL,
1311 };
1312
1313 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1314                 u32 device_handle)
1315 {
1316         struct nfit_mem *nfit_mem;
1317
1318         list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1319                 if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1320                         return nfit_mem->nvdimm;
1321
1322         return NULL;
1323 }
1324
1325 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1326 {
1327         struct nfit_mem *nfit_mem;
1328         struct acpi_nfit_desc *acpi_desc;
1329
1330         dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__,
1331                         event);
1332
1333         if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1334                 dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1335                                 event);
1336                 return;
1337         }
1338
1339         acpi_desc = dev_get_drvdata(dev->parent);
1340         if (!acpi_desc)
1341                 return;
1342
1343         /*
1344          * If we successfully retrieved acpi_desc, then we know nfit_mem data
1345          * is still valid.
1346          */
1347         nfit_mem = dev_get_drvdata(dev);
1348         if (nfit_mem && nfit_mem->flags_attr)
1349                 sysfs_notify_dirent(nfit_mem->flags_attr);
1350 }
1351 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1352
1353 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1354 {
1355         struct acpi_device *adev = data;
1356         struct device *dev = &adev->dev;
1357
1358         device_lock(dev->parent);
1359         __acpi_nvdimm_notify(dev, event);
1360         device_unlock(dev->parent);
1361 }
1362
1363 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1364                 struct nfit_mem *nfit_mem, u32 device_handle)
1365 {
1366         struct acpi_device *adev, *adev_dimm;
1367         struct device *dev = acpi_desc->dev;
1368         unsigned long dsm_mask;
1369         const u8 *uuid;
1370         int i;
1371
1372         /* nfit test assumes 1:1 relationship between commands and dsms */
1373         nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1374         nfit_mem->family = NVDIMM_FAMILY_INTEL;
1375         adev = to_acpi_dev(acpi_desc);
1376         if (!adev)
1377                 return 0;
1378
1379         adev_dimm = acpi_find_child_device(adev, device_handle, false);
1380         nfit_mem->adev = adev_dimm;
1381         if (!adev_dimm) {
1382                 dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1383                                 device_handle);
1384                 return force_enable_dimms ? 0 : -ENODEV;
1385         }
1386
1387         if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1388                 ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1389                 dev_err(dev, "%s: notification registration failed\n",
1390                                 dev_name(&adev_dimm->dev));
1391                 return -ENXIO;
1392         }
1393
1394         /*
1395          * Until standardization materializes we need to consider 4
1396          * different command sets.  Note, that checking for function0 (bit0)
1397          * tells us if any commands are reachable through this uuid.
1398          */
1399         for (i = NVDIMM_FAMILY_INTEL; i <= NVDIMM_FAMILY_MSFT; i++)
1400                 if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1401                         break;
1402
1403         /* limit the supported commands to those that are publicly documented */
1404         nfit_mem->family = i;
1405         if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1406                 dsm_mask = 0x3fe;
1407                 if (disable_vendor_specific)
1408                         dsm_mask &= ~(1 << ND_CMD_VENDOR);
1409         } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1410                 dsm_mask = 0x1c3c76;
1411         } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1412                 dsm_mask = 0x1fe;
1413                 if (disable_vendor_specific)
1414                         dsm_mask &= ~(1 << 8);
1415         } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1416                 dsm_mask = 0xffffffff;
1417         } else {
1418                 dev_dbg(dev, "unknown dimm command family\n");
1419                 nfit_mem->family = -1;
1420                 /* DSMs are optional, continue loading the driver... */
1421                 return 0;
1422         }
1423
1424         uuid = to_nfit_uuid(nfit_mem->family);
1425         for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1426                 if (acpi_check_dsm(adev_dimm->handle, uuid, 1, 1ULL << i))
1427                         set_bit(i, &nfit_mem->dsm_mask);
1428
1429         return 0;
1430 }
1431
1432 static void shutdown_dimm_notify(void *data)
1433 {
1434         struct acpi_nfit_desc *acpi_desc = data;
1435         struct nfit_mem *nfit_mem;
1436
1437         mutex_lock(&acpi_desc->init_mutex);
1438         /*
1439          * Clear out the nfit_mem->flags_attr and shut down dimm event
1440          * notifications.
1441          */
1442         list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1443                 struct acpi_device *adev_dimm = nfit_mem->adev;
1444
1445                 if (nfit_mem->flags_attr) {
1446                         sysfs_put(nfit_mem->flags_attr);
1447                         nfit_mem->flags_attr = NULL;
1448                 }
1449                 if (adev_dimm)
1450                         acpi_remove_notify_handler(adev_dimm->handle,
1451                                         ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1452         }
1453         mutex_unlock(&acpi_desc->init_mutex);
1454 }
1455
1456 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1457 {
1458         struct nfit_mem *nfit_mem;
1459         int dimm_count = 0, rc;
1460         struct nvdimm *nvdimm;
1461
1462         list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1463                 struct acpi_nfit_flush_address *flush;
1464                 unsigned long flags = 0, cmd_mask;
1465                 u32 device_handle;
1466                 u16 mem_flags;
1467
1468                 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1469                 nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1470                 if (nvdimm) {
1471                         dimm_count++;
1472                         continue;
1473                 }
1474
1475                 if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1476                         flags |= NDD_ALIASING;
1477
1478                 mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1479                 if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1480                         flags |= NDD_UNARMED;
1481
1482                 rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1483                 if (rc)
1484                         continue;
1485
1486                 /*
1487                  * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1488                  * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1489                  * userspace interface.
1490                  */
1491                 cmd_mask = 1UL << ND_CMD_CALL;
1492                 if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
1493                         cmd_mask |= nfit_mem->dsm_mask;
1494
1495                 flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1496                         : NULL;
1497                 nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1498                                 acpi_nfit_dimm_attribute_groups,
1499                                 flags, cmd_mask, flush ? flush->hint_count : 0,
1500                                 nfit_mem->flush_wpq);
1501                 if (!nvdimm)
1502                         return -ENOMEM;
1503
1504                 nfit_mem->nvdimm = nvdimm;
1505                 dimm_count++;
1506
1507                 if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1508                         continue;
1509
1510                 dev_info(acpi_desc->dev, "%s flags:%s%s%s%s\n",
1511                                 nvdimm_name(nvdimm),
1512                   mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1513                   mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1514                   mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1515                   mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "");
1516
1517         }
1518
1519         rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1520         if (rc)
1521                 return rc;
1522
1523         /*
1524          * Now that dimms are successfully registered, and async registration
1525          * is flushed, attempt to enable event notification.
1526          */
1527         list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1528                 struct kernfs_node *nfit_kernfs;
1529
1530                 nvdimm = nfit_mem->nvdimm;
1531                 nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1532                 if (nfit_kernfs)
1533                         nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1534                                         "flags");
1535                 sysfs_put(nfit_kernfs);
1536                 if (!nfit_mem->flags_attr)
1537                         dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1538                                         nvdimm_name(nvdimm));
1539         }
1540
1541         return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1542                         acpi_desc);
1543 }
1544
1545 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
1546 {
1547         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1548         const u8 *uuid = to_nfit_uuid(NFIT_DEV_BUS);
1549         struct acpi_device *adev;
1550         int i;
1551
1552         nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
1553         adev = to_acpi_dev(acpi_desc);
1554         if (!adev)
1555                 return;
1556
1557         for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
1558                 if (acpi_check_dsm(adev->handle, uuid, 1, 1ULL << i))
1559                         set_bit(i, &nd_desc->cmd_mask);
1560 }
1561
1562 static ssize_t range_index_show(struct device *dev,
1563                 struct device_attribute *attr, char *buf)
1564 {
1565         struct nd_region *nd_region = to_nd_region(dev);
1566         struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
1567
1568         return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
1569 }
1570 static DEVICE_ATTR_RO(range_index);
1571
1572 static struct attribute *acpi_nfit_region_attributes[] = {
1573         &dev_attr_range_index.attr,
1574         NULL,
1575 };
1576
1577 static struct attribute_group acpi_nfit_region_attribute_group = {
1578         .name = "nfit",
1579         .attrs = acpi_nfit_region_attributes,
1580 };
1581
1582 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
1583         &nd_region_attribute_group,
1584         &nd_mapping_attribute_group,
1585         &nd_device_attribute_group,
1586         &nd_numa_attribute_group,
1587         &acpi_nfit_region_attribute_group,
1588         NULL,
1589 };
1590
1591 /* enough info to uniquely specify an interleave set */
1592 struct nfit_set_info {
1593         struct nfit_set_info_map {
1594                 u64 region_offset;
1595                 u32 serial_number;
1596                 u32 pad;
1597         } mapping[0];
1598 };
1599
1600 static size_t sizeof_nfit_set_info(int num_mappings)
1601 {
1602         return sizeof(struct nfit_set_info)
1603                 + num_mappings * sizeof(struct nfit_set_info_map);
1604 }
1605
1606 static int cmp_map_compat(const void *m0, const void *m1)
1607 {
1608         const struct nfit_set_info_map *map0 = m0;
1609         const struct nfit_set_info_map *map1 = m1;
1610
1611         return memcmp(&map0->region_offset, &map1->region_offset,
1612                         sizeof(u64));
1613 }
1614
1615 static int cmp_map(const void *m0, const void *m1)
1616 {
1617         const struct nfit_set_info_map *map0 = m0;
1618         const struct nfit_set_info_map *map1 = m1;
1619
1620         return map0->region_offset - map1->region_offset;
1621 }
1622
1623 /* Retrieve the nth entry referencing this spa */
1624 static struct acpi_nfit_memory_map *memdev_from_spa(
1625                 struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
1626 {
1627         struct nfit_memdev *nfit_memdev;
1628
1629         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
1630                 if (nfit_memdev->memdev->range_index == range_index)
1631                         if (n-- == 0)
1632                                 return nfit_memdev->memdev;
1633         return NULL;
1634 }
1635
1636 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
1637                 struct nd_region_desc *ndr_desc,
1638                 struct acpi_nfit_system_address *spa)
1639 {
1640         int i, spa_type = nfit_spa_type(spa);
1641         struct device *dev = acpi_desc->dev;
1642         struct nd_interleave_set *nd_set;
1643         u16 nr = ndr_desc->num_mappings;
1644         struct nfit_set_info *info;
1645
1646         if (spa_type == NFIT_SPA_PM || spa_type == NFIT_SPA_VOLATILE)
1647                 /* pass */;
1648         else
1649                 return 0;
1650
1651         nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
1652         if (!nd_set)
1653                 return -ENOMEM;
1654
1655         info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
1656         if (!info)
1657                 return -ENOMEM;
1658         for (i = 0; i < nr; i++) {
1659                 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1660                 struct nfit_set_info_map *map = &info->mapping[i];
1661                 struct nvdimm *nvdimm = mapping->nvdimm;
1662                 struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1663                 struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
1664                                 spa->range_index, i);
1665
1666                 if (!memdev || !nfit_mem->dcr) {
1667                         dev_err(dev, "%s: failed to find DCR\n", __func__);
1668                         return -ENODEV;
1669                 }
1670
1671                 map->region_offset = memdev->region_offset;
1672                 map->serial_number = nfit_mem->dcr->serial_number;
1673         }
1674
1675         sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1676                         cmp_map, NULL);
1677         nd_set->cookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1678
1679         /* support namespaces created with the wrong sort order */
1680         sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
1681                         cmp_map_compat, NULL);
1682         nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
1683
1684         ndr_desc->nd_set = nd_set;
1685         devm_kfree(dev, info);
1686
1687         return 0;
1688 }
1689
1690 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
1691 {
1692         struct acpi_nfit_interleave *idt = mmio->idt;
1693         u32 sub_line_offset, line_index, line_offset;
1694         u64 line_no, table_skip_count, table_offset;
1695
1696         line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
1697         table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
1698         line_offset = idt->line_offset[line_index]
1699                 * mmio->line_size;
1700         table_offset = table_skip_count * mmio->table_size;
1701
1702         return mmio->base_offset + line_offset + table_offset + sub_line_offset;
1703 }
1704
1705 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
1706 {
1707         struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1708         u64 offset = nfit_blk->stat_offset + mmio->size * bw;
1709         const u32 STATUS_MASK = 0x80000037;
1710
1711         if (mmio->num_lines)
1712                 offset = to_interleave_offset(offset, mmio);
1713
1714         return readl(mmio->addr.base + offset) & STATUS_MASK;
1715 }
1716
1717 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
1718                 resource_size_t dpa, unsigned int len, unsigned int write)
1719 {
1720         u64 cmd, offset;
1721         struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
1722
1723         enum {
1724                 BCW_OFFSET_MASK = (1ULL << 48)-1,
1725                 BCW_LEN_SHIFT = 48,
1726                 BCW_LEN_MASK = (1ULL << 8) - 1,
1727                 BCW_CMD_SHIFT = 56,
1728         };
1729
1730         cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
1731         len = len >> L1_CACHE_SHIFT;
1732         cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
1733         cmd |= ((u64) write) << BCW_CMD_SHIFT;
1734
1735         offset = nfit_blk->cmd_offset + mmio->size * bw;
1736         if (mmio->num_lines)
1737                 offset = to_interleave_offset(offset, mmio);
1738
1739         writeq(cmd, mmio->addr.base + offset);
1740         nvdimm_flush(nfit_blk->nd_region);
1741
1742         if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
1743                 readq(mmio->addr.base + offset);
1744 }
1745
1746 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
1747                 resource_size_t dpa, void *iobuf, size_t len, int rw,
1748                 unsigned int lane)
1749 {
1750         struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1751         unsigned int copied = 0;
1752         u64 base_offset;
1753         int rc;
1754
1755         base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
1756                 + lane * mmio->size;
1757         write_blk_ctl(nfit_blk, lane, dpa, len, rw);
1758         while (len) {
1759                 unsigned int c;
1760                 u64 offset;
1761
1762                 if (mmio->num_lines) {
1763                         u32 line_offset;
1764
1765                         offset = to_interleave_offset(base_offset + copied,
1766                                         mmio);
1767                         div_u64_rem(offset, mmio->line_size, &line_offset);
1768                         c = min_t(size_t, len, mmio->line_size - line_offset);
1769                 } else {
1770                         offset = base_offset + nfit_blk->bdw_offset;
1771                         c = len;
1772                 }
1773
1774                 if (rw)
1775                         memcpy_to_pmem(mmio->addr.aperture + offset,
1776                                         iobuf + copied, c);
1777                 else {
1778                         if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
1779                                 mmio_flush_range((void __force *)
1780                                         mmio->addr.aperture + offset, c);
1781
1782                         memcpy_from_pmem(iobuf + copied,
1783                                         mmio->addr.aperture + offset, c);
1784                 }
1785
1786                 copied += c;
1787                 len -= c;
1788         }
1789
1790         if (rw)
1791                 nvdimm_flush(nfit_blk->nd_region);
1792
1793         rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
1794         return rc;
1795 }
1796
1797 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
1798                 resource_size_t dpa, void *iobuf, u64 len, int rw)
1799 {
1800         struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
1801         struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
1802         struct nd_region *nd_region = nfit_blk->nd_region;
1803         unsigned int lane, copied = 0;
1804         int rc = 0;
1805
1806         lane = nd_region_acquire_lane(nd_region);
1807         while (len) {
1808                 u64 c = min(len, mmio->size);
1809
1810                 rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
1811                                 iobuf + copied, c, rw, lane);
1812                 if (rc)
1813                         break;
1814
1815                 copied += c;
1816                 len -= c;
1817         }
1818         nd_region_release_lane(nd_region, lane);
1819
1820         return rc;
1821 }
1822
1823 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
1824                 struct acpi_nfit_interleave *idt, u16 interleave_ways)
1825 {
1826         if (idt) {
1827                 mmio->num_lines = idt->line_count;
1828                 mmio->line_size = idt->line_size;
1829                 if (interleave_ways == 0)
1830                         return -ENXIO;
1831                 mmio->table_size = mmio->num_lines * interleave_ways
1832                         * mmio->line_size;
1833         }
1834
1835         return 0;
1836 }
1837
1838 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
1839                 struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
1840 {
1841         struct nd_cmd_dimm_flags flags;
1842         int rc;
1843
1844         memset(&flags, 0, sizeof(flags));
1845         rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
1846                         sizeof(flags), NULL);
1847
1848         if (rc >= 0 && flags.status == 0)
1849                 nfit_blk->dimm_flags = flags.flags;
1850         else if (rc == -ENOTTY) {
1851                 /* fall back to a conservative default */
1852                 nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
1853                 rc = 0;
1854         } else
1855                 rc = -ENXIO;
1856
1857         return rc;
1858 }
1859
1860 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
1861                 struct device *dev)
1862 {
1863         struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1864         struct nd_blk_region *ndbr = to_nd_blk_region(dev);
1865         struct nfit_blk_mmio *mmio;
1866         struct nfit_blk *nfit_blk;
1867         struct nfit_mem *nfit_mem;
1868         struct nvdimm *nvdimm;
1869         int rc;
1870
1871         nvdimm = nd_blk_region_to_dimm(ndbr);
1872         nfit_mem = nvdimm_provider_data(nvdimm);
1873         if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
1874                 dev_dbg(dev, "%s: missing%s%s%s\n", __func__,
1875                                 nfit_mem ? "" : " nfit_mem",
1876                                 (nfit_mem && nfit_mem->dcr) ? "" : " dcr",
1877                                 (nfit_mem && nfit_mem->bdw) ? "" : " bdw");
1878                 return -ENXIO;
1879         }
1880
1881         nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
1882         if (!nfit_blk)
1883                 return -ENOMEM;
1884         nd_blk_region_set_provider_data(ndbr, nfit_blk);
1885         nfit_blk->nd_region = to_nd_region(dev);
1886
1887         /* map block aperture memory */
1888         nfit_blk->bdw_offset = nfit_mem->bdw->offset;
1889         mmio = &nfit_blk->mmio[BDW];
1890         mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
1891                         nfit_mem->spa_bdw->length, ARCH_MEMREMAP_PMEM);
1892         if (!mmio->addr.base) {
1893                 dev_dbg(dev, "%s: %s failed to map bdw\n", __func__,
1894                                 nvdimm_name(nvdimm));
1895                 return -ENOMEM;
1896         }
1897         mmio->size = nfit_mem->bdw->size;
1898         mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
1899         mmio->idt = nfit_mem->idt_bdw;
1900         mmio->spa = nfit_mem->spa_bdw;
1901         rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
1902                         nfit_mem->memdev_bdw->interleave_ways);
1903         if (rc) {
1904                 dev_dbg(dev, "%s: %s failed to init bdw interleave\n",
1905                                 __func__, nvdimm_name(nvdimm));
1906                 return rc;
1907         }
1908
1909         /* map block control memory */
1910         nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
1911         nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
1912         mmio = &nfit_blk->mmio[DCR];
1913         mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
1914                         nfit_mem->spa_dcr->length);
1915         if (!mmio->addr.base) {
1916                 dev_dbg(dev, "%s: %s failed to map dcr\n", __func__,
1917                                 nvdimm_name(nvdimm));
1918                 return -ENOMEM;
1919         }
1920         mmio->size = nfit_mem->dcr->window_size;
1921         mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
1922         mmio->idt = nfit_mem->idt_dcr;
1923         mmio->spa = nfit_mem->spa_dcr;
1924         rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
1925                         nfit_mem->memdev_dcr->interleave_ways);
1926         if (rc) {
1927                 dev_dbg(dev, "%s: %s failed to init dcr interleave\n",
1928                                 __func__, nvdimm_name(nvdimm));
1929                 return rc;
1930         }
1931
1932         rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
1933         if (rc < 0) {
1934                 dev_dbg(dev, "%s: %s failed get DIMM flags\n",
1935                                 __func__, nvdimm_name(nvdimm));
1936                 return rc;
1937         }
1938
1939         if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
1940                 dev_warn(dev, "unable to guarantee persistence of writes\n");
1941
1942         if (mmio->line_size == 0)
1943                 return 0;
1944
1945         if ((u32) nfit_blk->cmd_offset % mmio->line_size
1946                         + 8 > mmio->line_size) {
1947                 dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
1948                 return -ENXIO;
1949         } else if ((u32) nfit_blk->stat_offset % mmio->line_size
1950                         + 8 > mmio->line_size) {
1951                 dev_dbg(dev, "stat_offset crosses interleave boundary\n");
1952                 return -ENXIO;
1953         }
1954
1955         return 0;
1956 }
1957
1958 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
1959                 struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
1960 {
1961         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1962         struct acpi_nfit_system_address *spa = nfit_spa->spa;
1963         int cmd_rc, rc;
1964
1965         cmd->address = spa->address;
1966         cmd->length = spa->length;
1967         rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
1968                         sizeof(*cmd), &cmd_rc);
1969         if (rc < 0)
1970                 return rc;
1971         return cmd_rc;
1972 }
1973
1974 static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa)
1975 {
1976         int rc;
1977         int cmd_rc;
1978         struct nd_cmd_ars_start ars_start;
1979         struct acpi_nfit_system_address *spa = nfit_spa->spa;
1980         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
1981
1982         memset(&ars_start, 0, sizeof(ars_start));
1983         ars_start.address = spa->address;
1984         ars_start.length = spa->length;
1985         if (nfit_spa_type(spa) == NFIT_SPA_PM)
1986                 ars_start.type = ND_ARS_PERSISTENT;
1987         else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
1988                 ars_start.type = ND_ARS_VOLATILE;
1989         else
1990                 return -ENOTTY;
1991
1992         rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
1993                         sizeof(ars_start), &cmd_rc);
1994
1995         if (rc < 0)
1996                 return rc;
1997         return cmd_rc;
1998 }
1999
2000 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2001 {
2002         int rc, cmd_rc;
2003         struct nd_cmd_ars_start ars_start;
2004         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2005         struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2006
2007         memset(&ars_start, 0, sizeof(ars_start));
2008         ars_start.address = ars_status->restart_address;
2009         ars_start.length = ars_status->restart_length;
2010         ars_start.type = ars_status->type;
2011         rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2012                         sizeof(ars_start), &cmd_rc);
2013         if (rc < 0)
2014                 return rc;
2015         return cmd_rc;
2016 }
2017
2018 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2019 {
2020         struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2021         struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2022         int rc, cmd_rc;
2023
2024         rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2025                         acpi_desc->ars_status_size, &cmd_rc);
2026         if (rc < 0)
2027                 return rc;
2028         return cmd_rc;
2029 }
2030
2031 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc,
2032                 struct nd_cmd_ars_status *ars_status)
2033 {
2034         struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2035         int rc;
2036         u32 i;
2037
2038         /*
2039          * First record starts at 44 byte offset from the start of the
2040          * payload.
2041          */
2042         if (ars_status->out_length < 44)
2043                 return 0;
2044         for (i = 0; i < ars_status->num_records; i++) {
2045                 /* only process full records */
2046                 if (ars_status->out_length
2047                                 < 44 + sizeof(struct nd_ars_record) * (i + 1))
2048                         break;
2049                 rc = nvdimm_bus_add_poison(nvdimm_bus,
2050                                 ars_status->records[i].err_address,
2051                                 ars_status->records[i].length);
2052                 if (rc)
2053                         return rc;
2054         }
2055         if (i < ars_status->num_records)
2056                 dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2057
2058         return 0;
2059 }
2060
2061 static void acpi_nfit_remove_resource(void *data)
2062 {
2063         struct resource *res = data;
2064
2065         remove_resource(res);
2066 }
2067
2068 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2069                 struct nd_region_desc *ndr_desc)
2070 {
2071         struct resource *res, *nd_res = ndr_desc->res;
2072         int is_pmem, ret;
2073
2074         /* No operation if the region is already registered as PMEM */
2075         is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2076                                 IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2077         if (is_pmem == REGION_INTERSECTS)
2078                 return 0;
2079
2080         res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2081         if (!res)
2082                 return -ENOMEM;
2083
2084         res->name = "Persistent Memory";
2085         res->start = nd_res->start;
2086         res->end = nd_res->end;
2087         res->flags = IORESOURCE_MEM;
2088         res->desc = IORES_DESC_PERSISTENT_MEMORY;
2089
2090         ret = insert_resource(&iomem_resource, res);
2091         if (ret)
2092                 return ret;
2093
2094         ret = devm_add_action_or_reset(acpi_desc->dev,
2095                                         acpi_nfit_remove_resource,
2096                                         res);
2097         if (ret)
2098                 return ret;
2099
2100         return 0;
2101 }
2102
2103 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2104                 struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2105                 struct acpi_nfit_memory_map *memdev,
2106                 struct nfit_spa *nfit_spa)
2107 {
2108         struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2109                         memdev->device_handle);
2110         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2111         struct nd_blk_region_desc *ndbr_desc;
2112         struct nfit_mem *nfit_mem;
2113         int blk_valid = 0;
2114
2115         if (!nvdimm) {
2116                 dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2117                                 spa->range_index, memdev->device_handle);
2118                 return -ENODEV;
2119         }
2120
2121         mapping->nvdimm = nvdimm;
2122         switch (nfit_spa_type(spa)) {
2123         case NFIT_SPA_PM:
2124         case NFIT_SPA_VOLATILE:
2125                 mapping->start = memdev->address;
2126                 mapping->size = memdev->region_size;
2127                 break;
2128         case NFIT_SPA_DCR:
2129                 nfit_mem = nvdimm_provider_data(nvdimm);
2130                 if (!nfit_mem || !nfit_mem->bdw) {
2131                         dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2132                                         spa->range_index, nvdimm_name(nvdimm));
2133                 } else {
2134                         mapping->size = nfit_mem->bdw->capacity;
2135                         mapping->start = nfit_mem->bdw->start_address;
2136                         ndr_desc->num_lanes = nfit_mem->bdw->windows;
2137                         blk_valid = 1;
2138                 }
2139
2140                 ndr_desc->mapping = mapping;
2141                 ndr_desc->num_mappings = blk_valid;
2142                 ndbr_desc = to_blk_region_desc(ndr_desc);
2143                 ndbr_desc->enable = acpi_nfit_blk_region_enable;
2144                 ndbr_desc->do_io = acpi_desc->blk_do_io;
2145                 nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2146                                 ndr_desc);
2147                 if (!nfit_spa->nd_region)
2148                         return -ENOMEM;
2149                 break;
2150         }
2151
2152         return 0;
2153 }
2154
2155 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2156 {
2157         return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2158                 nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2159                 nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2160                 nfit_spa_type(spa) == NFIT_SPA_PCD);
2161 }
2162
2163 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2164                 struct nfit_spa *nfit_spa)
2165 {
2166         static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2167         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2168         struct nd_blk_region_desc ndbr_desc;
2169         struct nd_region_desc *ndr_desc;
2170         struct nfit_memdev *nfit_memdev;
2171         struct nvdimm_bus *nvdimm_bus;
2172         struct resource res;
2173         int count = 0, rc;
2174
2175         if (nfit_spa->nd_region)
2176                 return 0;
2177
2178         if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2179                 dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n",
2180                                 __func__);
2181                 return 0;
2182         }
2183
2184         memset(&res, 0, sizeof(res));
2185         memset(&mappings, 0, sizeof(mappings));
2186         memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2187         res.start = spa->address;
2188         res.end = res.start + spa->length - 1;
2189         ndr_desc = &ndbr_desc.ndr_desc;
2190         ndr_desc->res = &res;
2191         ndr_desc->provider_data = nfit_spa;
2192         ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2193         if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2194                 ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2195                                                 spa->proximity_domain);
2196         else
2197                 ndr_desc->numa_node = NUMA_NO_NODE;
2198
2199         list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2200                 struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2201                 struct nd_mapping_desc *mapping;
2202
2203                 if (memdev->range_index != spa->range_index)
2204                         continue;
2205                 if (count >= ND_MAX_MAPPINGS) {
2206                         dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2207                                         spa->range_index, ND_MAX_MAPPINGS);
2208                         return -ENXIO;
2209                 }
2210                 mapping = &mappings[count++];
2211                 rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2212                                 memdev, nfit_spa);
2213                 if (rc)
2214                         goto out;
2215         }
2216
2217         ndr_desc->mapping = mappings;
2218         ndr_desc->num_mappings = count;
2219         rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2220         if (rc)
2221                 goto out;
2222
2223         nvdimm_bus = acpi_desc->nvdimm_bus;
2224         if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2225                 rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2226                 if (rc) {
2227                         dev_warn(acpi_desc->dev,
2228                                 "failed to insert pmem resource to iomem: %d\n",
2229                                 rc);
2230                         goto out;
2231                 }
2232
2233                 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2234                                 ndr_desc);
2235                 if (!nfit_spa->nd_region)
2236                         rc = -ENOMEM;
2237         } else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) {
2238                 nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2239                                 ndr_desc);
2240                 if (!nfit_spa->nd_region)
2241                         rc = -ENOMEM;
2242         } else if (nfit_spa_is_virtual(spa)) {
2243                 nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2244                                 ndr_desc);
2245                 if (!nfit_spa->nd_region)
2246                         rc = -ENOMEM;
2247         }
2248
2249  out:
2250         if (rc)
2251                 dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2252                                 nfit_spa->spa->range_index);
2253         return rc;
2254 }
2255
2256 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc,
2257                 u32 max_ars)
2258 {
2259         struct device *dev = acpi_desc->dev;
2260         struct nd_cmd_ars_status *ars_status;
2261
2262         if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) {
2263                 memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size);
2264                 return 0;
2265         }
2266
2267         if (acpi_desc->ars_status)
2268                 devm_kfree(dev, acpi_desc->ars_status);
2269         acpi_desc->ars_status = NULL;
2270         ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL);
2271         if (!ars_status)
2272                 return -ENOMEM;
2273         acpi_desc->ars_status = ars_status;
2274         acpi_desc->ars_status_size = max_ars;
2275         return 0;
2276 }
2277
2278 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc,
2279                 struct nfit_spa *nfit_spa)
2280 {
2281         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2282         int rc;
2283
2284         if (!nfit_spa->max_ars) {
2285                 struct nd_cmd_ars_cap ars_cap;
2286
2287                 memset(&ars_cap, 0, sizeof(ars_cap));
2288                 rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
2289                 if (rc < 0)
2290                         return rc;
2291                 nfit_spa->max_ars = ars_cap.max_ars_out;
2292                 nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
2293                 /* check that the supported scrub types match the spa type */
2294                 if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE &&
2295                                 ((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0)
2296                         return -ENOTTY;
2297                 else if (nfit_spa_type(spa) == NFIT_SPA_PM &&
2298                                 ((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0)
2299                         return -ENOTTY;
2300         }
2301
2302         if (ars_status_alloc(acpi_desc, nfit_spa->max_ars))
2303                 return -ENOMEM;
2304
2305         rc = ars_get_status(acpi_desc);
2306         if (rc < 0 && rc != -ENOSPC)
2307                 return rc;
2308
2309         if (ars_status_process_records(acpi_desc, acpi_desc->ars_status))
2310                 return -ENOMEM;
2311
2312         return 0;
2313 }
2314
2315 static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc,
2316                 struct nfit_spa *nfit_spa)
2317 {
2318         struct acpi_nfit_system_address *spa = nfit_spa->spa;
2319         unsigned int overflow_retry = scrub_overflow_abort;
2320         u64 init_ars_start = 0, init_ars_len = 0;
2321         struct device *dev = acpi_desc->dev;
2322         unsigned int tmo = scrub_timeout;
2323         int rc;
2324
2325         if (!nfit_spa->ars_required || !nfit_spa->nd_region)
2326                 return;
2327
2328         rc = ars_start(acpi_desc, nfit_spa);
2329         /*
2330          * If we timed out the initial scan we'll still be busy here,
2331          * and will wait another timeout before giving up permanently.
2332          */
2333         if (rc < 0 && rc != -EBUSY)
2334                 return;
2335
2336         do {
2337                 u64 ars_start, ars_len;
2338
2339                 if (acpi_desc->cancel)
2340                         break;
2341                 rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2342                 if (rc == -ENOTTY)
2343                         break;
2344                 if (rc == -EBUSY && !tmo) {
2345                         dev_warn(dev, "range %d ars timeout, aborting\n",
2346                                         spa->range_index);
2347                         break;
2348                 }
2349
2350                 if (rc == -EBUSY) {
2351                         /*
2352                          * Note, entries may be appended to the list
2353                          * while the lock is dropped, but the workqueue
2354                          * being active prevents entries being deleted /
2355                          * freed.
2356                          */
2357                         mutex_unlock(&acpi_desc->init_mutex);
2358                         ssleep(1);
2359                         tmo--;
2360                         mutex_lock(&acpi_desc->init_mutex);
2361                         continue;
2362                 }
2363
2364                 /* we got some results, but there are more pending... */
2365                 if (rc == -ENOSPC && overflow_retry--) {
2366                         if (!init_ars_len) {
2367                                 init_ars_len = acpi_desc->ars_status->length;
2368                                 init_ars_start = acpi_desc->ars_status->address;
2369                         }
2370                         rc = ars_continue(acpi_desc);
2371                 }
2372
2373                 if (rc < 0) {
2374                         dev_warn(dev, "range %d ars continuation failed\n",
2375                                         spa->range_index);
2376                         break;
2377                 }
2378
2379                 if (init_ars_len) {
2380                         ars_start = init_ars_start;
2381                         ars_len = init_ars_len;
2382                 } else {
2383                         ars_start = acpi_desc->ars_status->address;
2384                         ars_len = acpi_desc->ars_status->length;
2385                 }
2386                 dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n",
2387                                 spa->range_index, ars_start, ars_len);
2388                 /* notify the region about new poison entries */
2389                 nvdimm_region_notify(nfit_spa->nd_region,
2390                                 NVDIMM_REVALIDATE_POISON);
2391                 break;
2392         } while (1);
2393 }
2394
2395 static void acpi_nfit_scrub(struct work_struct *work)
2396 {
2397         struct device *dev;
2398         u64 init_scrub_length = 0;
2399         struct nfit_spa *nfit_spa;
2400         u64 init_scrub_address = 0;
2401         bool init_ars_done = false;
2402         struct acpi_nfit_desc *acpi_desc;
2403         unsigned int tmo = scrub_timeout;
2404         unsigned int overflow_retry = scrub_overflow_abort;
2405
2406         acpi_desc = container_of(work, typeof(*acpi_desc), work);
2407         dev = acpi_desc->dev;
2408
2409         /*
2410          * We scrub in 2 phases.  The first phase waits for any platform
2411          * firmware initiated scrubs to complete and then we go search for the
2412          * affected spa regions to mark them scanned.  In the second phase we
2413          * initiate a directed scrub for every range that was not scrubbed in
2414          * phase 1. If we're called for a 'rescan', we harmlessly pass through
2415          * the first phase, but really only care about running phase 2, where
2416          * regions can be notified of new poison.
2417          */
2418
2419         /* process platform firmware initiated scrubs */
2420  retry:
2421         mutex_lock(&acpi_desc->init_mutex);
2422         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2423                 struct nd_cmd_ars_status *ars_status;
2424                 struct acpi_nfit_system_address *spa;
2425                 u64 ars_start, ars_len;
2426                 int rc;
2427
2428                 if (acpi_desc->cancel)
2429                         break;
2430
2431                 if (nfit_spa->nd_region)
2432                         continue;
2433
2434                 if (init_ars_done) {
2435                         /*
2436                          * No need to re-query, we're now just
2437                          * reconciling all the ranges covered by the
2438                          * initial scrub
2439                          */
2440                         rc = 0;
2441                 } else
2442                         rc = acpi_nfit_query_poison(acpi_desc, nfit_spa);
2443
2444                 if (rc == -ENOTTY) {
2445                         /* no ars capability, just register spa and move on */
2446                         acpi_nfit_register_region(acpi_desc, nfit_spa);
2447                         continue;
2448                 }
2449
2450                 if (rc == -EBUSY && !tmo) {
2451                         /* fallthrough to directed scrub in phase 2 */
2452                         dev_warn(dev, "timeout awaiting ars results, continuing...\n");
2453                         break;
2454                 } else if (rc == -EBUSY) {
2455                         mutex_unlock(&acpi_desc->init_mutex);
2456                         ssleep(1);
2457                         tmo--;
2458                         goto retry;
2459                 }
2460
2461                 /* we got some results, but there are more pending... */
2462                 if (rc == -ENOSPC && overflow_retry--) {
2463                         ars_status = acpi_desc->ars_status;
2464                         /*
2465                          * Record the original scrub range, so that we
2466                          * can recall all the ranges impacted by the
2467                          * initial scrub.
2468                          */
2469                         if (!init_scrub_length) {
2470                                 init_scrub_length = ars_status->length;
2471                                 init_scrub_address = ars_status->address;
2472                         }
2473                         rc = ars_continue(acpi_desc);
2474                         if (rc == 0) {
2475                                 mutex_unlock(&acpi_desc->init_mutex);
2476                                 goto retry;
2477                         }
2478                 }
2479
2480                 if (rc < 0) {
2481                         /*
2482                          * Initial scrub failed, we'll give it one more
2483                          * try below...
2484                          */
2485                         break;
2486                 }
2487
2488                 /* We got some final results, record completed ranges */
2489                 ars_status = acpi_desc->ars_status;
2490                 if (init_scrub_length) {
2491                         ars_start = init_scrub_address;
2492                         ars_len = ars_start + init_scrub_length;
2493                 } else {
2494                         ars_start = ars_status->address;
2495                         ars_len = ars_status->length;
2496                 }
2497                 spa = nfit_spa->spa;
2498
2499                 if (!init_ars_done) {
2500                         init_ars_done = true;
2501                         dev_dbg(dev, "init scrub %#llx + %#llx complete\n",
2502                                         ars_start, ars_len);
2503                 }
2504                 if (ars_start <= spa->address && ars_start + ars_len
2505                                 >= spa->address + spa->length)
2506                         acpi_nfit_register_region(acpi_desc, nfit_spa);
2507         }
2508
2509         /*
2510          * For all the ranges not covered by an initial scrub we still
2511          * want to see if there are errors, but it's ok to discover them
2512          * asynchronously.
2513          */
2514         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2515                 /*
2516                  * Flag all the ranges that still need scrubbing, but
2517                  * register them now to make data available.
2518                  */
2519                 if (!nfit_spa->nd_region) {
2520                         nfit_spa->ars_required = 1;
2521                         acpi_nfit_register_region(acpi_desc, nfit_spa);
2522                 }
2523         }
2524
2525         list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2526                 acpi_nfit_async_scrub(acpi_desc, nfit_spa);
2527         acpi_desc->scrub_count++;
2528         if (acpi_desc->scrub_count_state)
2529                 sysfs_notify_dirent(acpi_desc->scrub_count_state);
2530         mutex_unlock(&acpi_desc->init_mutex);
2531 }
2532
2533 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
2534 {
2535         struct nfit_spa *nfit_spa;
2536         int rc;
2537
2538         list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
2539                 if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) {
2540                         /* BLK regions don't need to wait for ars results */
2541                         rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
2542                         if (rc)
2543                                 return rc;
2544                 }
2545
2546         queue_work(nfit_wq, &acpi_desc->work);
2547         return 0;
2548 }
2549
2550 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
2551                 struct nfit_table_prev *prev)
2552 {
2553         struct device *dev = acpi_desc->dev;
2554
2555         if (!list_empty(&prev->spas) ||
2556                         !list_empty(&prev->memdevs) ||
2557                         !list_empty(&prev->dcrs) ||
2558                         !list_empty(&prev->bdws) ||
2559                         !list_empty(&prev->idts) ||
2560                         !list_empty(&prev->flushes)) {
2561                 dev_err(dev, "new nfit deletes entries (unsupported)\n");
2562                 return -ENXIO;
2563         }
2564         return 0;
2565 }
2566
2567 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
2568 {
2569         struct device *dev = acpi_desc->dev;
2570         struct kernfs_node *nfit;
2571         struct device *bus_dev;
2572
2573         if (!ars_supported(acpi_desc->nvdimm_bus))
2574                 return 0;
2575
2576         bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2577         nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
2578         if (!nfit) {
2579                 dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
2580                 return -ENODEV;
2581         }
2582         acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
2583         sysfs_put(nfit);
2584         if (!acpi_desc->scrub_count_state) {
2585                 dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
2586                 return -ENODEV;
2587         }
2588
2589         return 0;
2590 }
2591
2592 static void acpi_nfit_destruct(void *data)
2593 {
2594         struct acpi_nfit_desc *acpi_desc = data;
2595         struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
2596
2597         /*
2598          * Destruct under acpi_desc_lock so that nfit_handle_mce does not
2599          * race teardown
2600          */
2601         mutex_lock(&acpi_desc_lock);
2602         acpi_desc->cancel = 1;
2603         /*
2604          * Bounce the nvdimm bus lock to make sure any in-flight
2605          * acpi_nfit_ars_rescan() submissions have had a chance to
2606          * either submit or see ->cancel set.
2607          */
2608         device_lock(bus_dev);
2609         device_unlock(bus_dev);
2610
2611         flush_workqueue(nfit_wq);
2612         if (acpi_desc->scrub_count_state)
2613                 sysfs_put(acpi_desc->scrub_count_state);
2614         nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
2615         acpi_desc->nvdimm_bus = NULL;
2616         list_del(&acpi_desc->list);
2617         mutex_unlock(&acpi_desc_lock);
2618 }
2619
2620 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
2621 {
2622         struct device *dev = acpi_desc->dev;
2623         struct nfit_table_prev prev;
2624         const void *end;
2625         int rc;
2626
2627         if (!acpi_desc->nvdimm_bus) {
2628                 acpi_nfit_init_dsms(acpi_desc);
2629
2630                 acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
2631                                 &acpi_desc->nd_desc);
2632                 if (!acpi_desc->nvdimm_bus)
2633                         return -ENOMEM;
2634
2635                 rc = devm_add_action_or_reset(dev, acpi_nfit_destruct,
2636                                 acpi_desc);
2637                 if (rc)
2638                         return rc;
2639
2640                 rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
2641                 if (rc)
2642                         return rc;
2643
2644                 /* register this acpi_desc for mce notifications */
2645                 mutex_lock(&acpi_desc_lock);
2646                 list_add_tail(&acpi_desc->list, &acpi_descs);
2647                 mutex_unlock(&acpi_desc_lock);
2648         }
2649
2650         mutex_lock(&acpi_desc->init_mutex);
2651
2652         INIT_LIST_HEAD(&prev.spas);
2653         INIT_LIST_HEAD(&prev.memdevs);
2654         INIT_LIST_HEAD(&prev.dcrs);
2655         INIT_LIST_HEAD(&prev.bdws);
2656         INIT_LIST_HEAD(&prev.idts);
2657         INIT_LIST_HEAD(&prev.flushes);
2658
2659         list_cut_position(&prev.spas, &acpi_desc->spas,
2660                                 acpi_desc->spas.prev);
2661         list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
2662                                 acpi_desc->memdevs.prev);
2663         list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
2664                                 acpi_desc->dcrs.prev);
2665         list_cut_position(&prev.bdws, &acpi_desc->bdws,
2666                                 acpi_desc->bdws.prev);
2667         list_cut_position(&prev.idts, &acpi_desc->idts,
2668                                 acpi_desc->idts.prev);
2669         list_cut_position(&prev.flushes, &acpi_desc->flushes,
2670                                 acpi_desc->flushes.prev);
2671
2672         end = data + sz;
2673         while (!IS_ERR_OR_NULL(data))
2674                 data = add_table(acpi_desc, &prev, data, end);
2675
2676         if (IS_ERR(data)) {
2677                 dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__,
2678                                 PTR_ERR(data));
2679                 rc = PTR_ERR(data);
2680                 goto out_unlock;
2681         }
2682
2683         rc = acpi_nfit_check_deletions(acpi_desc, &prev);
2684         if (rc)
2685                 goto out_unlock;
2686
2687         rc = nfit_mem_init(acpi_desc);
2688         if (rc)
2689                 goto out_unlock;
2690
2691         rc = acpi_nfit_register_dimms(acpi_desc);
2692         if (rc)
2693                 goto out_unlock;
2694
2695         rc = acpi_nfit_register_regions(acpi_desc);
2696
2697  out_unlock:
2698         mutex_unlock(&acpi_desc->init_mutex);
2699         return rc;
2700 }
2701 EXPORT_SYMBOL_GPL(acpi_nfit_init);
2702
2703 struct acpi_nfit_flush_work {
2704         struct work_struct work;
2705         struct completion cmp;
2706 };
2707
2708 static void flush_probe(struct work_struct *work)
2709 {
2710         struct acpi_nfit_flush_work *flush;
2711
2712         flush = container_of(work, typeof(*flush), work);
2713         complete(&flush->cmp);
2714 }
2715
2716 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
2717 {
2718         struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2719         struct device *dev = acpi_desc->dev;
2720         struct acpi_nfit_flush_work flush;
2721         int rc;
2722
2723         /* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
2724         device_lock(dev);
2725         device_unlock(dev);
2726
2727         /*
2728          * Scrub work could take 10s of seconds, userspace may give up so we
2729          * need to be interruptible while waiting.
2730          */
2731         INIT_WORK_ONSTACK(&flush.work, flush_probe);
2732         COMPLETION_INITIALIZER_ONSTACK(flush.cmp);
2733         queue_work(nfit_wq, &flush.work);
2734
2735         rc = wait_for_completion_interruptible(&flush.cmp);
2736         cancel_work_sync(&flush.work);
2737         return rc;
2738 }
2739
2740 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
2741                 struct nvdimm *nvdimm, unsigned int cmd)
2742 {
2743         struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
2744
2745         if (nvdimm)
2746                 return 0;
2747         if (cmd != ND_CMD_ARS_START)
2748                 return 0;
2749
2750         /*
2751          * The kernel and userspace may race to initiate a scrub, but
2752          * the scrub thread is prepared to lose that initial race.  It
2753          * just needs guarantees that any ars it initiates are not
2754          * interrupted by any intervening start reqeusts from userspace.
2755          */
2756         if (work_busy(&acpi_desc->work))
2757                 return -EBUSY;
2758
2759         return 0;
2760 }
2761
2762 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc)
2763 {
2764         struct device *dev = acpi_desc->dev;
2765         struct nfit_spa *nfit_spa;
2766
2767         if (work_busy(&acpi_desc->work))
2768                 return -EBUSY;
2769
2770         if (acpi_desc->cancel)
2771                 return 0;
2772
2773         mutex_lock(&acpi_desc->init_mutex);
2774         list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2775                 struct acpi_nfit_system_address *spa = nfit_spa->spa;
2776
2777                 if (nfit_spa_type(spa) != NFIT_SPA_PM)
2778                         continue;
2779
2780                 nfit_spa->ars_required = 1;
2781         }
2782         queue_work(nfit_wq, &acpi_desc->work);
2783         dev_dbg(dev, "%s: ars_scan triggered\n", __func__);
2784         mutex_unlock(&acpi_desc->init_mutex);
2785
2786         return 0;
2787 }
2788
2789 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
2790 {
2791         struct nvdimm_bus_descriptor *nd_desc;
2792
2793         dev_set_drvdata(dev, acpi_desc);
2794         acpi_desc->dev = dev;
2795         acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
2796         nd_desc = &acpi_desc->nd_desc;
2797         nd_desc->provider_name = "ACPI.NFIT";
2798         nd_desc->module = THIS_MODULE;
2799         nd_desc->ndctl = acpi_nfit_ctl;
2800         nd_desc->flush_probe = acpi_nfit_flush_probe;
2801         nd_desc->clear_to_send = acpi_nfit_clear_to_send;
2802         nd_desc->attr_groups = acpi_nfit_attribute_groups;
2803
2804         INIT_LIST_HEAD(&acpi_desc->spas);
2805         INIT_LIST_HEAD(&acpi_desc->dcrs);
2806         INIT_LIST_HEAD(&acpi_desc->bdws);
2807         INIT_LIST_HEAD(&acpi_desc->idts);
2808         INIT_LIST_HEAD(&acpi_desc->flushes);
2809         INIT_LIST_HEAD(&acpi_desc->memdevs);
2810         INIT_LIST_HEAD(&acpi_desc->dimms);
2811         INIT_LIST_HEAD(&acpi_desc->list);
2812         mutex_init(&acpi_desc->init_mutex);
2813         INIT_WORK(&acpi_desc->work, acpi_nfit_scrub);
2814 }
2815 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
2816
2817 static int acpi_nfit_add(struct acpi_device *adev)
2818 {
2819         struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
2820         struct acpi_nfit_desc *acpi_desc;
2821         struct device *dev = &adev->dev;
2822         struct acpi_table_header *tbl;
2823         acpi_status status = AE_OK;
2824         acpi_size sz;
2825         int rc = 0;
2826
2827         status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
2828         if (ACPI_FAILURE(status)) {
2829                 /* This is ok, we could have an nvdimm hotplugged later */
2830                 dev_dbg(dev, "failed to find NFIT at startup\n");
2831                 return 0;
2832         }
2833         sz = tbl->length;
2834
2835         acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
2836         if (!acpi_desc)
2837                 return -ENOMEM;
2838         acpi_nfit_desc_init(acpi_desc, &adev->dev);
2839
2840         /* Save the acpi header for exporting the revision via sysfs */
2841         acpi_desc->acpi_header = *tbl;
2842
2843         /* Evaluate _FIT and override with that if present */
2844         status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
2845         if (ACPI_SUCCESS(status) && buf.length > 0) {
2846                 union acpi_object *obj = buf.pointer;
2847
2848                 if (obj->type == ACPI_TYPE_BUFFER)
2849                         rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
2850                                         obj->buffer.length);
2851                 else
2852                         dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n",
2853                                  __func__, (int) obj->type);
2854                 kfree(buf.pointer);
2855         } else
2856                 /* skip over the lead-in header table */
2857                 rc = acpi_nfit_init(acpi_desc, (void *) tbl
2858                                 + sizeof(struct acpi_table_nfit),
2859                                 sz - sizeof(struct acpi_table_nfit));
2860         return rc;
2861 }
2862
2863 static int acpi_nfit_remove(struct acpi_device *adev)
2864 {
2865         /* see acpi_nfit_destruct */
2866         return 0;
2867 }
2868
2869 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
2870 {
2871         struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
2872         struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
2873         union acpi_object *obj;
2874         acpi_status status;
2875         int ret;
2876
2877         dev_dbg(dev, "%s: event: %d\n", __func__, event);
2878
2879         if (event != NFIT_NOTIFY_UPDATE)
2880                 return;
2881
2882         if (!dev->driver) {
2883                 /* dev->driver may be null if we're being removed */
2884                 dev_dbg(dev, "%s: no driver found for dev\n", __func__);
2885                 return;
2886         }
2887
2888         if (!acpi_desc) {
2889                 acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
2890                 if (!acpi_desc)
2891                         return;
2892                 acpi_nfit_desc_init(acpi_desc, dev);
2893         } else {
2894                 /*
2895                  * Finish previous registration before considering new
2896                  * regions.
2897                  */
2898                 flush_workqueue(nfit_wq);
2899         }
2900
2901         /* Evaluate _FIT */
2902         status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
2903         if (ACPI_FAILURE(status)) {
2904                 dev_err(dev, "failed to evaluate _FIT\n");
2905                 return;
2906         }
2907
2908         obj = buf.pointer;
2909         if (obj->type == ACPI_TYPE_BUFFER) {
2910                 ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
2911                                 obj->buffer.length);
2912                 if (ret)
2913                         dev_err(dev, "failed to merge updated NFIT\n");
2914         } else
2915                 dev_err(dev, "Invalid _FIT\n");
2916         kfree(buf.pointer);
2917 }
2918 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
2919
2920 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
2921 {
2922         device_lock(&adev->dev);
2923         __acpi_nfit_notify(&adev->dev, adev->handle, event);
2924         device_unlock(&adev->dev);
2925 }
2926
2927 static const struct acpi_device_id acpi_nfit_ids[] = {
2928         { "ACPI0012", 0 },
2929         { "", 0 },
2930 };
2931 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
2932
2933 static struct acpi_driver acpi_nfit_driver = {
2934         .name = KBUILD_MODNAME,
2935         .ids = acpi_nfit_ids,
2936         .ops = {
2937                 .add = acpi_nfit_add,
2938                 .remove = acpi_nfit_remove,
2939                 .notify = acpi_nfit_notify,
2940         },
2941 };
2942
2943 static __init int nfit_init(void)
2944 {
2945         BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
2946         BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
2947         BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
2948         BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
2949         BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
2950         BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
2951         BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
2952
2953         acpi_str_to_uuid(UUID_VOLATILE_MEMORY, nfit_uuid[NFIT_SPA_VOLATILE]);
2954         acpi_str_to_uuid(UUID_PERSISTENT_MEMORY, nfit_uuid[NFIT_SPA_PM]);
2955         acpi_str_to_uuid(UUID_CONTROL_REGION, nfit_uuid[NFIT_SPA_DCR]);
2956         acpi_str_to_uuid(UUID_DATA_REGION, nfit_uuid[NFIT_SPA_BDW]);
2957         acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_VDISK]);
2958         acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_CD, nfit_uuid[NFIT_SPA_VCD]);
2959         acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_PDISK]);
2960         acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_CD, nfit_uuid[NFIT_SPA_PCD]);
2961         acpi_str_to_uuid(UUID_NFIT_BUS, nfit_uuid[NFIT_DEV_BUS]);
2962         acpi_str_to_uuid(UUID_NFIT_DIMM, nfit_uuid[NFIT_DEV_DIMM]);
2963         acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE1, nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
2964         acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE2, nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
2965         acpi_str_to_uuid(UUID_NFIT_DIMM_N_MSFT, nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
2966
2967         nfit_wq = create_singlethread_workqueue("nfit");
2968         if (!nfit_wq)
2969                 return -ENOMEM;
2970
2971         nfit_mce_register();
2972
2973         return acpi_bus_register_driver(&acpi_nfit_driver);
2974 }
2975
2976 static __exit void nfit_exit(void)
2977 {
2978         nfit_mce_unregister();
2979         acpi_bus_unregister_driver(&acpi_nfit_driver);
2980         destroy_workqueue(nfit_wq);
2981         WARN_ON(!list_empty(&acpi_descs));
2982 }
2983
2984 module_init(nfit_init);
2985 module_exit(nfit_exit);
2986 MODULE_LICENSE("GPL v2");
2987 MODULE_AUTHOR("Intel Corporation");