2 * acpi_power.c - ACPI Bus Power Management ($Revision: 39 $)
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or (at
12 * your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 * ACPI power-managed devices may be controlled in two ways:
28 * 1. via "Device Specific (D-State) Control"
29 * 2. via "Power Resource Control".
30 * This module is used to manage devices relying on Power Resource Control.
32 * An ACPI "power resource object" describes a software controllable power
33 * plane, clock plane, or other resource used by a power managed device.
34 * A device may rely on multiple power resources, and a power resource
35 * may be shared by multiple devices.
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/sysfs.h>
45 #include <linux/acpi.h>
49 #define _COMPONENT ACPI_POWER_COMPONENT
50 ACPI_MODULE_NAME("power");
51 #define ACPI_POWER_CLASS "power_resource"
52 #define ACPI_POWER_DEVICE_NAME "Power Resource"
53 #define ACPI_POWER_FILE_INFO "info"
54 #define ACPI_POWER_FILE_STATUS "state"
55 #define ACPI_POWER_RESOURCE_STATE_OFF 0x00
56 #define ACPI_POWER_RESOURCE_STATE_ON 0x01
57 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
59 struct acpi_power_resource {
60 struct acpi_device device;
61 struct list_head list_node;
65 unsigned int ref_count;
67 struct mutex resource_lock;
70 struct acpi_power_resource_entry {
71 struct list_head node;
72 struct acpi_power_resource *resource;
75 static LIST_HEAD(acpi_power_resource_list);
76 static DEFINE_MUTEX(power_resource_list_lock);
78 /* --------------------------------------------------------------------------
79 Power Resource Management
80 -------------------------------------------------------------------------- */
83 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
85 return container_of(device, struct acpi_power_resource, device);
88 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
90 struct acpi_device *device;
92 if (acpi_bus_get_device(handle, &device))
95 return to_power_resource(device);
98 static int acpi_power_resources_list_add(acpi_handle handle,
99 struct list_head *list)
101 struct acpi_power_resource *resource = acpi_power_get_context(handle);
102 struct acpi_power_resource_entry *entry;
104 if (!resource || !list)
107 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
111 entry->resource = resource;
112 if (!list_empty(list)) {
113 struct acpi_power_resource_entry *e;
115 list_for_each_entry(e, list, node)
116 if (e->resource->order > resource->order) {
117 list_add_tail(&entry->node, &e->node);
121 list_add_tail(&entry->node, list);
125 void acpi_power_resources_list_free(struct list_head *list)
127 struct acpi_power_resource_entry *entry, *e;
129 list_for_each_entry_safe(entry, e, list, node) {
130 list_del(&entry->node);
135 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
136 struct list_head *list)
141 for (i = start; i < package->package.count; i++) {
142 union acpi_object *element = &package->package.elements[i];
145 if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
149 rhandle = element->reference.handle;
154 err = acpi_add_power_resource(rhandle);
158 err = acpi_power_resources_list_add(rhandle, list);
163 acpi_power_resources_list_free(list);
168 static int acpi_power_get_state(acpi_handle handle, int *state)
170 acpi_status status = AE_OK;
171 unsigned long long sta = 0;
173 struct acpi_buffer buffer = { sizeof(node_name), node_name };
176 if (!handle || !state)
179 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
180 if (ACPI_FAILURE(status))
183 *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON:
184 ACPI_POWER_RESOURCE_STATE_OFF;
186 acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
188 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n",
190 *state ? "on" : "off"));
195 static int acpi_power_get_list_state(struct list_head *list, int *state)
197 struct acpi_power_resource_entry *entry;
203 /* The state of the list is 'on' IFF all resources are 'on'. */
204 list_for_each_entry(entry, list, node) {
205 struct acpi_power_resource *resource = entry->resource;
206 acpi_handle handle = resource->device.handle;
209 mutex_lock(&resource->resource_lock);
210 result = acpi_power_get_state(handle, &cur_state);
211 mutex_unlock(&resource->resource_lock);
215 if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
219 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n",
220 cur_state ? "on" : "off"));
226 static int __acpi_power_on(struct acpi_power_resource *resource)
228 acpi_status status = AE_OK;
230 status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL);
231 if (ACPI_FAILURE(status))
234 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n",
240 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
244 if (resource->ref_count++) {
245 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
246 "Power resource [%s] already on\n",
249 result = __acpi_power_on(resource);
251 resource->ref_count--;
256 static int acpi_power_on(struct acpi_power_resource *resource)
260 mutex_lock(&resource->resource_lock);
261 result = acpi_power_on_unlocked(resource);
262 mutex_unlock(&resource->resource_lock);
266 static int __acpi_power_off(struct acpi_power_resource *resource)
270 status = acpi_evaluate_object(resource->device.handle, "_OFF",
272 if (ACPI_FAILURE(status))
275 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n",
280 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
284 if (!resource->ref_count) {
285 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
286 "Power resource [%s] already off\n",
291 if (--resource->ref_count) {
292 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
293 "Power resource [%s] still in use\n",
296 result = __acpi_power_off(resource);
298 resource->ref_count++;
303 static int acpi_power_off(struct acpi_power_resource *resource)
307 mutex_lock(&resource->resource_lock);
308 result = acpi_power_off_unlocked(resource);
309 mutex_unlock(&resource->resource_lock);
313 static int acpi_power_off_list(struct list_head *list)
315 struct acpi_power_resource_entry *entry;
318 list_for_each_entry_reverse(entry, list, node) {
319 result = acpi_power_off(entry->resource);
326 list_for_each_entry_continue(entry, list, node)
327 acpi_power_on(entry->resource);
332 static int acpi_power_on_list(struct list_head *list)
334 struct acpi_power_resource_entry *entry;
337 list_for_each_entry(entry, list, node) {
338 result = acpi_power_on(entry->resource);
345 list_for_each_entry_continue_reverse(entry, list, node)
346 acpi_power_off(entry->resource);
351 static struct attribute *attrs[] = {
355 static struct attribute_group attr_groups[] = {
357 .name = "power_resources_D0",
361 .name = "power_resources_D1",
365 .name = "power_resources_D2",
368 [ACPI_STATE_D3_HOT] = {
369 .name = "power_resources_D3hot",
374 static struct attribute_group wakeup_attr_group = {
375 .name = "power_resources_wakeup",
379 static void acpi_power_hide_list(struct acpi_device *adev,
380 struct list_head *resources,
381 struct attribute_group *attr_group)
383 struct acpi_power_resource_entry *entry;
385 if (list_empty(resources))
388 list_for_each_entry_reverse(entry, resources, node) {
389 struct acpi_device *res_dev = &entry->resource->device;
391 sysfs_remove_link_from_group(&adev->dev.kobj,
393 dev_name(&res_dev->dev));
395 sysfs_remove_group(&adev->dev.kobj, attr_group);
398 static void acpi_power_expose_list(struct acpi_device *adev,
399 struct list_head *resources,
400 struct attribute_group *attr_group)
402 struct acpi_power_resource_entry *entry;
405 if (list_empty(resources))
408 ret = sysfs_create_group(&adev->dev.kobj, attr_group);
412 list_for_each_entry(entry, resources, node) {
413 struct acpi_device *res_dev = &entry->resource->device;
415 ret = sysfs_add_link_to_group(&adev->dev.kobj,
418 dev_name(&res_dev->dev));
420 acpi_power_hide_list(adev, resources, attr_group);
426 static void acpi_power_expose_hide(struct acpi_device *adev,
427 struct list_head *resources,
428 struct attribute_group *attr_group,
432 acpi_power_expose_list(adev, resources, attr_group);
434 acpi_power_hide_list(adev, resources, attr_group);
437 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
441 if (adev->wakeup.flags.valid)
442 acpi_power_expose_hide(adev, &adev->wakeup.resources,
443 &wakeup_attr_group, add);
445 if (!adev->power.flags.power_resources)
448 for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
449 acpi_power_expose_hide(adev,
450 &adev->power.states[state].resources,
451 &attr_groups[state], add);
454 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
456 struct acpi_power_resource_entry *entry;
457 int system_level = 5;
459 list_for_each_entry(entry, list, node) {
460 struct acpi_power_resource *resource = entry->resource;
461 acpi_handle handle = resource->device.handle;
465 mutex_lock(&resource->resource_lock);
467 result = acpi_power_get_state(handle, &state);
469 mutex_unlock(&resource->resource_lock);
472 if (state == ACPI_POWER_RESOURCE_STATE_ON) {
473 resource->ref_count++;
474 resource->wakeup_enabled = true;
476 if (system_level > resource->system_level)
477 system_level = resource->system_level;
479 mutex_unlock(&resource->resource_lock);
481 *system_level_p = system_level;
485 /* --------------------------------------------------------------------------
486 Device Power Management
487 -------------------------------------------------------------------------- */
490 * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
491 * ACPI 3.0) _PSW (Power State Wake)
492 * @dev: Device to handle.
493 * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
494 * @sleep_state: Target sleep state of the system.
495 * @dev_state: Target power state of the device.
497 * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
498 * State Wake) for the device, if present. On failure reset the device's
499 * wakeup.flags.valid flag.
502 * 0 if either _DSW or _PSW has been successfully executed
503 * 0 if neither _DSW nor _PSW has been found
504 * -ENODEV if the execution of either _DSW or _PSW has failed
506 int acpi_device_sleep_wake(struct acpi_device *dev,
507 int enable, int sleep_state, int dev_state)
509 union acpi_object in_arg[3];
510 struct acpi_object_list arg_list = { 3, in_arg };
511 acpi_status status = AE_OK;
514 * Try to execute _DSW first.
516 * Three agruments are needed for the _DSW object:
517 * Argument 0: enable/disable the wake capabilities
518 * Argument 1: target system state
519 * Argument 2: target device state
520 * When _DSW object is called to disable the wake capabilities, maybe
521 * the first argument is filled. The values of the other two agruments
524 in_arg[0].type = ACPI_TYPE_INTEGER;
525 in_arg[0].integer.value = enable;
526 in_arg[1].type = ACPI_TYPE_INTEGER;
527 in_arg[1].integer.value = sleep_state;
528 in_arg[2].type = ACPI_TYPE_INTEGER;
529 in_arg[2].integer.value = dev_state;
530 status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
531 if (ACPI_SUCCESS(status)) {
533 } else if (status != AE_NOT_FOUND) {
534 printk(KERN_ERR PREFIX "_DSW execution failed\n");
535 dev->wakeup.flags.valid = 0;
540 status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
541 if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
542 printk(KERN_ERR PREFIX "_PSW execution failed\n");
543 dev->wakeup.flags.valid = 0;
551 * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
552 * 1. Power on the power resources required for the wakeup device
553 * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
554 * State Wake) for the device, if present
556 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
558 struct acpi_power_resource_entry *entry;
561 if (!dev || !dev->wakeup.flags.valid)
564 mutex_lock(&acpi_device_lock);
566 if (dev->wakeup.prepare_count++)
569 list_for_each_entry(entry, &dev->wakeup.resources, node) {
570 struct acpi_power_resource *resource = entry->resource;
572 mutex_lock(&resource->resource_lock);
574 if (!resource->wakeup_enabled) {
575 err = acpi_power_on_unlocked(resource);
577 resource->wakeup_enabled = true;
580 mutex_unlock(&resource->resource_lock);
584 "Cannot turn wakeup power resources on\n");
585 dev->wakeup.flags.valid = 0;
590 * Passing 3 as the third argument below means the device may be
591 * put into arbitrary power state afterward.
593 err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
595 dev->wakeup.prepare_count = 0;
598 mutex_unlock(&acpi_device_lock);
603 * Shutdown a wakeup device, counterpart of above method
604 * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
605 * State Wake) for the device, if present
606 * 2. Shutdown down the power resources
608 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
610 struct acpi_power_resource_entry *entry;
613 if (!dev || !dev->wakeup.flags.valid)
616 mutex_lock(&acpi_device_lock);
618 if (--dev->wakeup.prepare_count > 0)
622 * Executing the code below even if prepare_count is already zero when
623 * the function is called may be useful, for example for initialisation.
625 if (dev->wakeup.prepare_count < 0)
626 dev->wakeup.prepare_count = 0;
628 err = acpi_device_sleep_wake(dev, 0, 0, 0);
632 list_for_each_entry(entry, &dev->wakeup.resources, node) {
633 struct acpi_power_resource *resource = entry->resource;
635 mutex_lock(&resource->resource_lock);
637 if (resource->wakeup_enabled) {
638 err = acpi_power_off_unlocked(resource);
640 resource->wakeup_enabled = false;
643 mutex_unlock(&resource->resource_lock);
647 "Cannot turn wakeup power resources off\n");
648 dev->wakeup.flags.valid = 0;
654 mutex_unlock(&acpi_device_lock);
658 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
664 if (!device || !state)
668 * We know a device's inferred power state when all the resources
669 * required for a given D-state are 'on'.
671 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
672 struct list_head *list = &device->power.states[i].resources;
674 if (list_empty(list))
677 result = acpi_power_get_list_state(list, &list_state);
681 if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
687 *state = ACPI_STATE_D3_COLD;
691 int acpi_power_on_resources(struct acpi_device *device, int state)
693 if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
696 return acpi_power_on_list(&device->power.states[state].resources);
699 int acpi_power_transition(struct acpi_device *device, int state)
703 if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
706 if (device->power.state == state || !device->flags.power_manageable)
709 if ((device->power.state < ACPI_STATE_D0)
710 || (device->power.state > ACPI_STATE_D3_COLD))
713 /* TBD: Resources must be ordered. */
716 * First we reference all power resources required in the target list
717 * (e.g. so the device doesn't lose power while transitioning). Then,
718 * we dereference all power resources used in the current list.
720 if (state < ACPI_STATE_D3_COLD)
721 result = acpi_power_on_list(
722 &device->power.states[state].resources);
724 if (!result && device->power.state < ACPI_STATE_D3_COLD)
726 &device->power.states[device->power.state].resources);
728 /* We shouldn't change the state unless the above operations succeed. */
729 device->power.state = result ? ACPI_STATE_UNKNOWN : state;
734 static void acpi_release_power_resource(struct device *dev)
736 struct acpi_device *device = to_acpi_device(dev);
737 struct acpi_power_resource *resource;
739 resource = container_of(device, struct acpi_power_resource, device);
741 mutex_lock(&power_resource_list_lock);
742 list_del(&resource->list_node);
743 mutex_unlock(&power_resource_list_lock);
745 acpi_free_pnp_ids(&device->pnp);
749 static ssize_t acpi_power_in_use_show(struct device *dev,
750 struct device_attribute *attr,
752 struct acpi_power_resource *resource;
754 resource = to_power_resource(to_acpi_device(dev));
755 return sprintf(buf, "%u\n", !!resource->ref_count);
757 static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL);
759 static void acpi_power_sysfs_remove(struct acpi_device *device)
761 device_remove_file(&device->dev, &dev_attr_resource_in_use);
764 int acpi_add_power_resource(acpi_handle handle)
766 struct acpi_power_resource *resource;
767 struct acpi_device *device = NULL;
768 union acpi_object acpi_object;
769 struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
771 int state, result = -ENODEV;
773 acpi_bus_get_device(handle, &device);
777 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
781 device = &resource->device;
782 acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
784 mutex_init(&resource->resource_lock);
785 INIT_LIST_HEAD(&resource->list_node);
786 resource->name = device->pnp.bus_id;
787 strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
788 strcpy(acpi_device_class(device), ACPI_POWER_CLASS);
789 device->power.state = ACPI_STATE_UNKNOWN;
791 /* Evalute the object to get the system level and resource order. */
792 status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
793 if (ACPI_FAILURE(status))
796 resource->system_level = acpi_object.power_resource.system_level;
797 resource->order = acpi_object.power_resource.resource_order;
799 result = acpi_power_get_state(handle, &state);
803 printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device),
804 acpi_device_bid(device), state ? "on" : "off");
806 device->flags.match_driver = true;
807 result = acpi_device_add(device, acpi_release_power_resource);
811 if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
812 device->remove = acpi_power_sysfs_remove;
814 mutex_lock(&power_resource_list_lock);
815 list_add(&resource->list_node, &acpi_power_resource_list);
816 mutex_unlock(&power_resource_list_lock);
817 acpi_device_add_finalize(device);
821 acpi_release_power_resource(&device->dev);
825 #ifdef CONFIG_ACPI_SLEEP
826 void acpi_resume_power_resources(void)
828 struct acpi_power_resource *resource;
830 mutex_lock(&power_resource_list_lock);
832 list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
835 mutex_lock(&resource->resource_lock);
837 result = acpi_power_get_state(resource->device.handle, &state);
839 mutex_unlock(&resource->resource_lock);
843 if (state == ACPI_POWER_RESOURCE_STATE_OFF
844 && resource->ref_count) {
845 dev_info(&resource->device.dev, "Turning ON\n");
846 __acpi_power_on(resource);
847 } else if (state == ACPI_POWER_RESOURCE_STATE_ON
848 && !resource->ref_count) {
849 dev_info(&resource->device.dev, "Turning OFF\n");
850 __acpi_power_off(resource);
853 mutex_unlock(&resource->resource_lock);
856 mutex_unlock(&power_resource_list_lock);