]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/acpi/processor_idle.c
x86_64: fix incorrect comments
[mv-sheeva.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
45
46 /*
47  * Include the apic definitions for x86 to have the APIC timer related defines
48  * available also for UP (on SMP it gets magically included via linux/smp.h).
49  * asm/acpi.h is not an option, as it would require more include magic. Also
50  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
51  */
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
55
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
62
63 #define ACPI_PROCESSOR_CLASS            "processor"
64 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER       "power"
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD                     1       /* 1us */
69 #define C3_OVERHEAD                     1       /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
71
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
76
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
79
80 static s64 us_to_pm_timer_ticks(s64 t)
81 {
82         return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
83 }
84 /*
85  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86  * For now disable this. Probably a bug somewhere else.
87  *
88  * To skip this limit, boot/load with a large max_cstate limit.
89  */
90 static int set_max_cstate(const struct dmi_system_id *id)
91 {
92         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93                 return 0;
94
95         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96                " Override with \"processor.max_cstate=%d\"\n", id->ident,
97                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
98
99         max_cstate = (long)id->driver_data;
100
101         return 0;
102 }
103
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105    callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107         { set_max_cstate, "Clevo 5600D", {
108           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110          (void *)2},
111         {},
112 };
113
114
115 /*
116  * Callers should disable interrupts before the call and enable
117  * interrupts after return.
118  */
119 static void acpi_safe_halt(void)
120 {
121         current_thread_info()->status &= ~TS_POLLING;
122         /*
123          * TS_POLLING-cleared state must be visible before we
124          * test NEED_RESCHED:
125          */
126         smp_mb();
127         if (!need_resched()) {
128                 safe_halt();
129                 local_irq_disable();
130         }
131         current_thread_info()->status |= TS_POLLING;
132 }
133
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
135
136 /*
137  * Some BIOS implementations switch to C3 in the published C2 state.
138  * This seems to be a common problem on AMD boxen, but other vendors
139  * are affected too. We pick the most conservative approach: we assume
140  * that the local APIC stops in both C2 and C3.
141  */
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143                                    struct acpi_processor_cx *cx)
144 {
145         struct acpi_processor_power *pwr = &pr->power;
146         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
147
148         /*
149          * Check, if one of the previous states already marked the lapic
150          * unstable
151          */
152         if (pwr->timer_broadcast_on_state < state)
153                 return;
154
155         if (cx->type >= type)
156                 pr->power.timer_broadcast_on_state = state;
157 }
158
159 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
160 {
161         unsigned long reason;
162
163         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
164                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
165
166         clockevents_notify(reason, &pr->id);
167 }
168
169 /* Power(C) State timer broadcast control */
170 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
171                                        struct acpi_processor_cx *cx,
172                                        int broadcast)
173 {
174         int state = cx - pr->power.states;
175
176         if (state >= pr->power.timer_broadcast_on_state) {
177                 unsigned long reason;
178
179                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
180                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
181                 clockevents_notify(reason, &pr->id);
182         }
183 }
184
185 #else
186
187 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
188                                    struct acpi_processor_cx *cstate) { }
189 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
190 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
191                                        struct acpi_processor_cx *cx,
192                                        int broadcast)
193 {
194 }
195
196 #endif
197
198 /*
199  * Suspend / resume control
200  */
201 static int acpi_idle_suspend;
202
203 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
204 {
205         acpi_idle_suspend = 1;
206         return 0;
207 }
208
209 int acpi_processor_resume(struct acpi_device * device)
210 {
211         acpi_idle_suspend = 0;
212         return 0;
213 }
214
215 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
216 static int tsc_halts_in_c(int state)
217 {
218         switch (boot_cpu_data.x86_vendor) {
219         case X86_VENDOR_AMD:
220         case X86_VENDOR_INTEL:
221                 /*
222                  * AMD Fam10h TSC will tick in all
223                  * C/P/S0/S1 states when this bit is set.
224                  */
225                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
226                         return 0;
227
228                 /*FALL THROUGH*/
229         default:
230                 return state > ACPI_STATE_C1;
231         }
232 }
233 #endif
234
235 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
236 {
237
238         if (!pr)
239                 return -EINVAL;
240
241         if (!pr->pblk)
242                 return -ENODEV;
243
244         /* if info is obtained from pblk/fadt, type equals state */
245         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
246         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
247
248 #ifndef CONFIG_HOTPLUG_CPU
249         /*
250          * Check for P_LVL2_UP flag before entering C2 and above on
251          * an SMP system.
252          */
253         if ((num_online_cpus() > 1) &&
254             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
255                 return -ENODEV;
256 #endif
257
258         /* determine C2 and C3 address from pblk */
259         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
260         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
261
262         /* determine latencies from FADT */
263         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
264         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
265
266         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
267                           "lvl2[0x%08x] lvl3[0x%08x]\n",
268                           pr->power.states[ACPI_STATE_C2].address,
269                           pr->power.states[ACPI_STATE_C3].address));
270
271         return 0;
272 }
273
274 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
275 {
276         if (!pr->power.states[ACPI_STATE_C1].valid) {
277                 /* set the first C-State to C1 */
278                 /* all processors need to support C1 */
279                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
280                 pr->power.states[ACPI_STATE_C1].valid = 1;
281                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
282         }
283         /* the C0 state only exists as a filler in our array */
284         pr->power.states[ACPI_STATE_C0].valid = 1;
285         return 0;
286 }
287
288 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
289 {
290         acpi_status status = 0;
291         acpi_integer count;
292         int current_count;
293         int i;
294         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
295         union acpi_object *cst;
296
297
298         if (nocst)
299                 return -ENODEV;
300
301         current_count = 0;
302
303         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
304         if (ACPI_FAILURE(status)) {
305                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
306                 return -ENODEV;
307         }
308
309         cst = buffer.pointer;
310
311         /* There must be at least 2 elements */
312         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
313                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
314                 status = -EFAULT;
315                 goto end;
316         }
317
318         count = cst->package.elements[0].integer.value;
319
320         /* Validate number of power states. */
321         if (count < 1 || count != cst->package.count - 1) {
322                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
323                 status = -EFAULT;
324                 goto end;
325         }
326
327         /* Tell driver that at least _CST is supported. */
328         pr->flags.has_cst = 1;
329
330         for (i = 1; i <= count; i++) {
331                 union acpi_object *element;
332                 union acpi_object *obj;
333                 struct acpi_power_register *reg;
334                 struct acpi_processor_cx cx;
335
336                 memset(&cx, 0, sizeof(cx));
337
338                 element = &(cst->package.elements[i]);
339                 if (element->type != ACPI_TYPE_PACKAGE)
340                         continue;
341
342                 if (element->package.count != 4)
343                         continue;
344
345                 obj = &(element->package.elements[0]);
346
347                 if (obj->type != ACPI_TYPE_BUFFER)
348                         continue;
349
350                 reg = (struct acpi_power_register *)obj->buffer.pointer;
351
352                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
353                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
354                         continue;
355
356                 /* There should be an easy way to extract an integer... */
357                 obj = &(element->package.elements[1]);
358                 if (obj->type != ACPI_TYPE_INTEGER)
359                         continue;
360
361                 cx.type = obj->integer.value;
362                 /*
363                  * Some buggy BIOSes won't list C1 in _CST -
364                  * Let acpi_processor_get_power_info_default() handle them later
365                  */
366                 if (i == 1 && cx.type != ACPI_STATE_C1)
367                         current_count++;
368
369                 cx.address = reg->address;
370                 cx.index = current_count + 1;
371
372                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
373                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
374                         if (acpi_processor_ffh_cstate_probe
375                                         (pr->id, &cx, reg) == 0) {
376                                 cx.entry_method = ACPI_CSTATE_FFH;
377                         } else if (cx.type == ACPI_STATE_C1) {
378                                 /*
379                                  * C1 is a special case where FIXED_HARDWARE
380                                  * can be handled in non-MWAIT way as well.
381                                  * In that case, save this _CST entry info.
382                                  * Otherwise, ignore this info and continue.
383                                  */
384                                 cx.entry_method = ACPI_CSTATE_HALT;
385                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
386                         } else {
387                                 continue;
388                         }
389                         if (cx.type == ACPI_STATE_C1 &&
390                                         (idle_halt || idle_nomwait)) {
391                                 /*
392                                  * In most cases the C1 space_id obtained from
393                                  * _CST object is FIXED_HARDWARE access mode.
394                                  * But when the option of idle=halt is added,
395                                  * the entry_method type should be changed from
396                                  * CSTATE_FFH to CSTATE_HALT.
397                                  * When the option of idle=nomwait is added,
398                                  * the C1 entry_method type should be
399                                  * CSTATE_HALT.
400                                  */
401                                 cx.entry_method = ACPI_CSTATE_HALT;
402                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
403                         }
404                 } else {
405                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
406                                  cx.address);
407                 }
408
409                 if (cx.type == ACPI_STATE_C1) {
410                         cx.valid = 1;
411                 }
412
413                 obj = &(element->package.elements[2]);
414                 if (obj->type != ACPI_TYPE_INTEGER)
415                         continue;
416
417                 cx.latency = obj->integer.value;
418
419                 obj = &(element->package.elements[3]);
420                 if (obj->type != ACPI_TYPE_INTEGER)
421                         continue;
422
423                 cx.power = obj->integer.value;
424
425                 current_count++;
426                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
427
428                 /*
429                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
430                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
431                  */
432                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
433                         printk(KERN_WARNING
434                                "Limiting number of power states to max (%d)\n",
435                                ACPI_PROCESSOR_MAX_POWER);
436                         printk(KERN_WARNING
437                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
438                         break;
439                 }
440         }
441
442         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
443                           current_count));
444
445         /* Validate number of power states discovered */
446         if (current_count < 2)
447                 status = -EFAULT;
448
449       end:
450         kfree(buffer.pointer);
451
452         return status;
453 }
454
455 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
456 {
457
458         if (!cx->address)
459                 return;
460
461         /*
462          * C2 latency must be less than or equal to 100
463          * microseconds.
464          */
465         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
466                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
467                                   "latency too large [%d]\n", cx->latency));
468                 return;
469         }
470
471         /*
472          * Otherwise we've met all of our C2 requirements.
473          * Normalize the C2 latency to expidite policy
474          */
475         cx->valid = 1;
476
477         cx->latency_ticks = cx->latency;
478
479         return;
480 }
481
482 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
483                                            struct acpi_processor_cx *cx)
484 {
485         static int bm_check_flag;
486
487
488         if (!cx->address)
489                 return;
490
491         /*
492          * C3 latency must be less than or equal to 1000
493          * microseconds.
494          */
495         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
496                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
497                                   "latency too large [%d]\n", cx->latency));
498                 return;
499         }
500
501         /*
502          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
503          * DMA transfers are used by any ISA device to avoid livelock.
504          * Note that we could disable Type-F DMA (as recommended by
505          * the erratum), but this is known to disrupt certain ISA
506          * devices thus we take the conservative approach.
507          */
508         else if (errata.piix4.fdma) {
509                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
510                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
511                 return;
512         }
513
514         /* All the logic here assumes flags.bm_check is same across all CPUs */
515         if (!bm_check_flag) {
516                 /* Determine whether bm_check is needed based on CPU  */
517                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
518                 bm_check_flag = pr->flags.bm_check;
519         } else {
520                 pr->flags.bm_check = bm_check_flag;
521         }
522
523         if (pr->flags.bm_check) {
524                 if (!pr->flags.bm_control) {
525                         if (pr->flags.has_cst != 1) {
526                                 /* bus mastering control is necessary */
527                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
528                                         "C3 support requires BM control\n"));
529                                 return;
530                         } else {
531                                 /* Here we enter C3 without bus mastering */
532                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
533                                         "C3 support without BM control\n"));
534                         }
535                 }
536         } else {
537                 /*
538                  * WBINVD should be set in fadt, for C3 state to be
539                  * supported on when bm_check is not required.
540                  */
541                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
542                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
543                                           "Cache invalidation should work properly"
544                                           " for C3 to be enabled on SMP systems\n"));
545                         return;
546                 }
547         }
548
549         /*
550          * Otherwise we've met all of our C3 requirements.
551          * Normalize the C3 latency to expidite policy.  Enable
552          * checking of bus mastering status (bm_check) so we can
553          * use this in our C3 policy
554          */
555         cx->valid = 1;
556
557         cx->latency_ticks = cx->latency;
558         /*
559          * On older chipsets, BM_RLD needs to be set
560          * in order for Bus Master activity to wake the
561          * system from C3.  Newer chipsets handle DMA
562          * during C3 automatically and BM_RLD is a NOP.
563          * In either case, the proper way to
564          * handle BM_RLD is to set it and leave it set.
565          */
566         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
567
568         return;
569 }
570
571 static int acpi_processor_power_verify(struct acpi_processor *pr)
572 {
573         unsigned int i;
574         unsigned int working = 0;
575
576         pr->power.timer_broadcast_on_state = INT_MAX;
577
578         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
579                 struct acpi_processor_cx *cx = &pr->power.states[i];
580
581                 switch (cx->type) {
582                 case ACPI_STATE_C1:
583                         cx->valid = 1;
584                         break;
585
586                 case ACPI_STATE_C2:
587                         acpi_processor_power_verify_c2(cx);
588                         if (cx->valid)
589                                 acpi_timer_check_state(i, pr, cx);
590                         break;
591
592                 case ACPI_STATE_C3:
593                         acpi_processor_power_verify_c3(pr, cx);
594                         if (cx->valid)
595                                 acpi_timer_check_state(i, pr, cx);
596                         break;
597                 }
598
599                 if (cx->valid)
600                         working++;
601         }
602
603         acpi_propagate_timer_broadcast(pr);
604
605         return (working);
606 }
607
608 static int acpi_processor_get_power_info(struct acpi_processor *pr)
609 {
610         unsigned int i;
611         int result;
612
613
614         /* NOTE: the idle thread may not be running while calling
615          * this function */
616
617         /* Zero initialize all the C-states info. */
618         memset(pr->power.states, 0, sizeof(pr->power.states));
619
620         result = acpi_processor_get_power_info_cst(pr);
621         if (result == -ENODEV)
622                 result = acpi_processor_get_power_info_fadt(pr);
623
624         if (result)
625                 return result;
626
627         acpi_processor_get_power_info_default(pr);
628
629         pr->power.count = acpi_processor_power_verify(pr);
630
631         /*
632          * if one state of type C2 or C3 is available, mark this
633          * CPU as being "idle manageable"
634          */
635         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
636                 if (pr->power.states[i].valid) {
637                         pr->power.count = i;
638                         if (pr->power.states[i].type >= ACPI_STATE_C2)
639                                 pr->flags.power = 1;
640                 }
641         }
642
643         return 0;
644 }
645
646 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
647 {
648         struct acpi_processor *pr = seq->private;
649         unsigned int i;
650
651
652         if (!pr)
653                 goto end;
654
655         seq_printf(seq, "active state:            C%zd\n"
656                    "max_cstate:              C%d\n"
657                    "bus master activity:     %08x\n"
658                    "maximum allowed latency: %d usec\n",
659                    pr->power.state ? pr->power.state - pr->power.states : 0,
660                    max_cstate, (unsigned)pr->power.bm_activity,
661                    pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
662
663         seq_puts(seq, "states:\n");
664
665         for (i = 1; i <= pr->power.count; i++) {
666                 seq_printf(seq, "   %cC%d:                  ",
667                            (&pr->power.states[i] ==
668                             pr->power.state ? '*' : ' '), i);
669
670                 if (!pr->power.states[i].valid) {
671                         seq_puts(seq, "<not supported>\n");
672                         continue;
673                 }
674
675                 switch (pr->power.states[i].type) {
676                 case ACPI_STATE_C1:
677                         seq_printf(seq, "type[C1] ");
678                         break;
679                 case ACPI_STATE_C2:
680                         seq_printf(seq, "type[C2] ");
681                         break;
682                 case ACPI_STATE_C3:
683                         seq_printf(seq, "type[C3] ");
684                         break;
685                 default:
686                         seq_printf(seq, "type[--] ");
687                         break;
688                 }
689
690                 if (pr->power.states[i].promotion.state)
691                         seq_printf(seq, "promotion[C%zd] ",
692                                    (pr->power.states[i].promotion.state -
693                                     pr->power.states));
694                 else
695                         seq_puts(seq, "promotion[--] ");
696
697                 if (pr->power.states[i].demotion.state)
698                         seq_printf(seq, "demotion[C%zd] ",
699                                    (pr->power.states[i].demotion.state -
700                                     pr->power.states));
701                 else
702                         seq_puts(seq, "demotion[--] ");
703
704                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
705                            pr->power.states[i].latency,
706                            pr->power.states[i].usage,
707                            (unsigned long long)pr->power.states[i].time);
708         }
709
710       end:
711         return 0;
712 }
713
714 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
715 {
716         return single_open(file, acpi_processor_power_seq_show,
717                            PDE(inode)->data);
718 }
719
720 static const struct file_operations acpi_processor_power_fops = {
721         .owner = THIS_MODULE,
722         .open = acpi_processor_power_open_fs,
723         .read = seq_read,
724         .llseek = seq_lseek,
725         .release = single_release,
726 };
727
728
729 /**
730  * acpi_idle_bm_check - checks if bus master activity was detected
731  */
732 static int acpi_idle_bm_check(void)
733 {
734         u32 bm_status = 0;
735
736         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
737         if (bm_status)
738                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
739         /*
740          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
741          * the true state of bus mastering activity; forcing us to
742          * manually check the BMIDEA bit of each IDE channel.
743          */
744         else if (errata.piix4.bmisx) {
745                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
746                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
747                         bm_status = 1;
748         }
749         return bm_status;
750 }
751
752 /**
753  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
754  * @cx: cstate data
755  *
756  * Caller disables interrupt before call and enables interrupt after return.
757  */
758 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
759 {
760         /* Don't trace irqs off for idle */
761         stop_critical_timings();
762         if (cx->entry_method == ACPI_CSTATE_FFH) {
763                 /* Call into architectural FFH based C-state */
764                 acpi_processor_ffh_cstate_enter(cx);
765         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
766                 acpi_safe_halt();
767         } else {
768                 int unused;
769                 /* IO port based C-state */
770                 inb(cx->address);
771                 /* Dummy wait op - must do something useless after P_LVL2 read
772                    because chipsets cannot guarantee that STPCLK# signal
773                    gets asserted in time to freeze execution properly. */
774                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
775         }
776         start_critical_timings();
777 }
778
779 /**
780  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
781  * @dev: the target CPU
782  * @state: the state data
783  *
784  * This is equivalent to the HALT instruction.
785  */
786 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
787                               struct cpuidle_state *state)
788 {
789         ktime_t  kt1, kt2;
790         s64 idle_time;
791         struct acpi_processor *pr;
792         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
793
794         pr = __get_cpu_var(processors);
795
796         if (unlikely(!pr))
797                 return 0;
798
799         local_irq_disable();
800
801         /* Do not access any ACPI IO ports in suspend path */
802         if (acpi_idle_suspend) {
803                 acpi_safe_halt();
804                 local_irq_enable();
805                 return 0;
806         }
807
808         kt1 = ktime_get_real();
809         acpi_idle_do_entry(cx);
810         kt2 = ktime_get_real();
811         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
812
813         local_irq_enable();
814         cx->usage++;
815
816         return idle_time;
817 }
818
819 /**
820  * acpi_idle_enter_simple - enters an ACPI state without BM handling
821  * @dev: the target CPU
822  * @state: the state data
823  */
824 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
825                                   struct cpuidle_state *state)
826 {
827         struct acpi_processor *pr;
828         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
829         ktime_t  kt1, kt2;
830         s64 idle_time;
831         s64 sleep_ticks = 0;
832
833         pr = __get_cpu_var(processors);
834
835         if (unlikely(!pr))
836                 return 0;
837
838         if (acpi_idle_suspend)
839                 return(acpi_idle_enter_c1(dev, state));
840
841         local_irq_disable();
842         current_thread_info()->status &= ~TS_POLLING;
843         /*
844          * TS_POLLING-cleared state must be visible before we test
845          * NEED_RESCHED:
846          */
847         smp_mb();
848
849         if (unlikely(need_resched())) {
850                 current_thread_info()->status |= TS_POLLING;
851                 local_irq_enable();
852                 return 0;
853         }
854
855         /*
856          * Must be done before busmaster disable as we might need to
857          * access HPET !
858          */
859         acpi_state_timer_broadcast(pr, cx, 1);
860
861         if (cx->type == ACPI_STATE_C3)
862                 ACPI_FLUSH_CPU_CACHE();
863
864         kt1 = ktime_get_real();
865         /* Tell the scheduler that we are going deep-idle: */
866         sched_clock_idle_sleep_event();
867         acpi_idle_do_entry(cx);
868         kt2 = ktime_get_real();
869         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
870
871 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
872         /* TSC could halt in idle, so notify users */
873         if (tsc_halts_in_c(cx->type))
874                 mark_tsc_unstable("TSC halts in idle");;
875 #endif
876         sleep_ticks = us_to_pm_timer_ticks(idle_time);
877
878         /* Tell the scheduler how much we idled: */
879         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
880
881         local_irq_enable();
882         current_thread_info()->status |= TS_POLLING;
883
884         cx->usage++;
885
886         acpi_state_timer_broadcast(pr, cx, 0);
887         cx->time += sleep_ticks;
888         return idle_time;
889 }
890
891 static int c3_cpu_count;
892 static DEFINE_SPINLOCK(c3_lock);
893
894 /**
895  * acpi_idle_enter_bm - enters C3 with proper BM handling
896  * @dev: the target CPU
897  * @state: the state data
898  *
899  * If BM is detected, the deepest non-C3 idle state is entered instead.
900  */
901 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
902                               struct cpuidle_state *state)
903 {
904         struct acpi_processor *pr;
905         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
906         ktime_t  kt1, kt2;
907         s64 idle_time;
908         s64 sleep_ticks = 0;
909
910
911         pr = __get_cpu_var(processors);
912
913         if (unlikely(!pr))
914                 return 0;
915
916         if (acpi_idle_suspend)
917                 return(acpi_idle_enter_c1(dev, state));
918
919         if (acpi_idle_bm_check()) {
920                 if (dev->safe_state) {
921                         dev->last_state = dev->safe_state;
922                         return dev->safe_state->enter(dev, dev->safe_state);
923                 } else {
924                         local_irq_disable();
925                         acpi_safe_halt();
926                         local_irq_enable();
927                         return 0;
928                 }
929         }
930
931         local_irq_disable();
932         current_thread_info()->status &= ~TS_POLLING;
933         /*
934          * TS_POLLING-cleared state must be visible before we test
935          * NEED_RESCHED:
936          */
937         smp_mb();
938
939         if (unlikely(need_resched())) {
940                 current_thread_info()->status |= TS_POLLING;
941                 local_irq_enable();
942                 return 0;
943         }
944
945         acpi_unlazy_tlb(smp_processor_id());
946
947         /* Tell the scheduler that we are going deep-idle: */
948         sched_clock_idle_sleep_event();
949         /*
950          * Must be done before busmaster disable as we might need to
951          * access HPET !
952          */
953         acpi_state_timer_broadcast(pr, cx, 1);
954
955         /*
956          * disable bus master
957          * bm_check implies we need ARB_DIS
958          * !bm_check implies we need cache flush
959          * bm_control implies whether we can do ARB_DIS
960          *
961          * That leaves a case where bm_check is set and bm_control is
962          * not set. In that case we cannot do much, we enter C3
963          * without doing anything.
964          */
965         if (pr->flags.bm_check && pr->flags.bm_control) {
966                 spin_lock(&c3_lock);
967                 c3_cpu_count++;
968                 /* Disable bus master arbitration when all CPUs are in C3 */
969                 if (c3_cpu_count == num_online_cpus())
970                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
971                 spin_unlock(&c3_lock);
972         } else if (!pr->flags.bm_check) {
973                 ACPI_FLUSH_CPU_CACHE();
974         }
975
976         kt1 = ktime_get_real();
977         acpi_idle_do_entry(cx);
978         kt2 = ktime_get_real();
979         idle_time =  ktime_to_us(ktime_sub(kt2, kt1));
980
981         /* Re-enable bus master arbitration */
982         if (pr->flags.bm_check && pr->flags.bm_control) {
983                 spin_lock(&c3_lock);
984                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
985                 c3_cpu_count--;
986                 spin_unlock(&c3_lock);
987         }
988
989 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
990         /* TSC could halt in idle, so notify users */
991         if (tsc_halts_in_c(ACPI_STATE_C3))
992                 mark_tsc_unstable("TSC halts in idle");
993 #endif
994         sleep_ticks = us_to_pm_timer_ticks(idle_time);
995         /* Tell the scheduler how much we idled: */
996         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
997
998         local_irq_enable();
999         current_thread_info()->status |= TS_POLLING;
1000
1001         cx->usage++;
1002
1003         acpi_state_timer_broadcast(pr, cx, 0);
1004         cx->time += sleep_ticks;
1005         return idle_time;
1006 }
1007
1008 struct cpuidle_driver acpi_idle_driver = {
1009         .name =         "acpi_idle",
1010         .owner =        THIS_MODULE,
1011 };
1012
1013 /**
1014  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1015  * @pr: the ACPI processor
1016  */
1017 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1018 {
1019         int i, count = CPUIDLE_DRIVER_STATE_START;
1020         struct acpi_processor_cx *cx;
1021         struct cpuidle_state *state;
1022         struct cpuidle_device *dev = &pr->power.dev;
1023
1024         if (!pr->flags.power_setup_done)
1025                 return -EINVAL;
1026
1027         if (pr->flags.power == 0) {
1028                 return -EINVAL;
1029         }
1030
1031         dev->cpu = pr->id;
1032         for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1033                 dev->states[i].name[0] = '\0';
1034                 dev->states[i].desc[0] = '\0';
1035         }
1036
1037         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1038                 cx = &pr->power.states[i];
1039                 state = &dev->states[count];
1040
1041                 if (!cx->valid)
1042                         continue;
1043
1044 #ifdef CONFIG_HOTPLUG_CPU
1045                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1046                     !pr->flags.has_cst &&
1047                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1048                         continue;
1049 #endif
1050                 cpuidle_set_statedata(state, cx);
1051
1052                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1053                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1054                 state->exit_latency = cx->latency;
1055                 state->target_residency = cx->latency * latency_factor;
1056                 state->power_usage = cx->power;
1057
1058                 state->flags = 0;
1059                 switch (cx->type) {
1060                         case ACPI_STATE_C1:
1061                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1062                         if (cx->entry_method == ACPI_CSTATE_FFH)
1063                                 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1064
1065                         state->enter = acpi_idle_enter_c1;
1066                         dev->safe_state = state;
1067                         break;
1068
1069                         case ACPI_STATE_C2:
1070                         state->flags |= CPUIDLE_FLAG_BALANCED;
1071                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1072                         state->enter = acpi_idle_enter_simple;
1073                         dev->safe_state = state;
1074                         break;
1075
1076                         case ACPI_STATE_C3:
1077                         state->flags |= CPUIDLE_FLAG_DEEP;
1078                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1079                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1080                         state->enter = pr->flags.bm_check ?
1081                                         acpi_idle_enter_bm :
1082                                         acpi_idle_enter_simple;
1083                         break;
1084                 }
1085
1086                 count++;
1087                 if (count == CPUIDLE_STATE_MAX)
1088                         break;
1089         }
1090
1091         dev->state_count = count;
1092
1093         if (!count)
1094                 return -EINVAL;
1095
1096         return 0;
1097 }
1098
1099 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1100 {
1101         int ret = 0;
1102
1103         if (boot_option_idle_override)
1104                 return 0;
1105
1106         if (!pr)
1107                 return -EINVAL;
1108
1109         if (nocst) {
1110                 return -ENODEV;
1111         }
1112
1113         if (!pr->flags.power_setup_done)
1114                 return -ENODEV;
1115
1116         cpuidle_pause_and_lock();
1117         cpuidle_disable_device(&pr->power.dev);
1118         acpi_processor_get_power_info(pr);
1119         if (pr->flags.power) {
1120                 acpi_processor_setup_cpuidle(pr);
1121                 ret = cpuidle_enable_device(&pr->power.dev);
1122         }
1123         cpuidle_resume_and_unlock();
1124
1125         return ret;
1126 }
1127
1128 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1129                               struct acpi_device *device)
1130 {
1131         acpi_status status = 0;
1132         static int first_run;
1133         struct proc_dir_entry *entry = NULL;
1134         unsigned int i;
1135
1136         if (boot_option_idle_override)
1137                 return 0;
1138
1139         if (!first_run) {
1140                 if (idle_halt) {
1141                         /*
1142                          * When the boot option of "idle=halt" is added, halt
1143                          * is used for CPU IDLE.
1144                          * In such case C2/C3 is meaningless. So the max_cstate
1145                          * is set to one.
1146                          */
1147                         max_cstate = 1;
1148                 }
1149                 dmi_check_system(processor_power_dmi_table);
1150                 max_cstate = acpi_processor_cstate_check(max_cstate);
1151                 if (max_cstate < ACPI_C_STATES_MAX)
1152                         printk(KERN_NOTICE
1153                                "ACPI: processor limited to max C-state %d\n",
1154                                max_cstate);
1155                 first_run++;
1156         }
1157
1158         if (!pr)
1159                 return -EINVAL;
1160
1161         if (acpi_gbl_FADT.cst_control && !nocst) {
1162                 status =
1163                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1164                 if (ACPI_FAILURE(status)) {
1165                         ACPI_EXCEPTION((AE_INFO, status,
1166                                         "Notifying BIOS of _CST ability failed"));
1167                 }
1168         }
1169
1170         acpi_processor_get_power_info(pr);
1171         pr->flags.power_setup_done = 1;
1172
1173         /*
1174          * Install the idle handler if processor power management is supported.
1175          * Note that we use previously set idle handler will be used on
1176          * platforms that only support C1.
1177          */
1178         if (pr->flags.power) {
1179                 acpi_processor_setup_cpuidle(pr);
1180                 if (cpuidle_register_device(&pr->power.dev))
1181                         return -EIO;
1182
1183                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1184                 for (i = 1; i <= pr->power.count; i++)
1185                         if (pr->power.states[i].valid)
1186                                 printk(" C%d[C%d]", i,
1187                                        pr->power.states[i].type);
1188                 printk(")\n");
1189         }
1190
1191         /* 'power' [R] */
1192         entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1193                                  S_IRUGO, acpi_device_dir(device),
1194                                  &acpi_processor_power_fops,
1195                                  acpi_driver_data(device));
1196         if (!entry)
1197                 return -EIO;
1198         return 0;
1199 }
1200
1201 int acpi_processor_power_exit(struct acpi_processor *pr,
1202                               struct acpi_device *device)
1203 {
1204         if (boot_option_idle_override)
1205                 return 0;
1206
1207         cpuidle_unregister_device(&pr->power.dev);
1208         pr->flags.power_setup_done = 0;
1209
1210         if (acpi_device_dir(device))
1211                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1212                                   acpi_device_dir(device));
1213
1214         return 0;
1215 }