2 * Driver for the Octeon bootbus compact flash.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 2005 - 2009 Cavium Networks
9 * Copyright (C) 2008 Wind River Systems
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/irq.h>
16 #include <linux/platform_device.h>
17 #include <linux/workqueue.h>
18 #include <scsi/scsi_host.h>
20 #include <asm/octeon/octeon.h>
23 * The Octeon bootbus compact flash interface is connected in at least
24 * 3 different configurations on various evaluation boards:
26 * -- 8 bits no irq, no DMA
27 * -- 16 bits no irq, no DMA
28 * -- 16 bits True IDE mode with DMA, but no irq.
30 * In the last case the DMA engine can generate an interrupt when the
31 * transfer is complete. For the first two cases only PIO is supported.
35 #define DRV_NAME "pata_octeon_cf"
36 #define DRV_VERSION "2.1"
39 struct octeon_cf_port {
40 struct workqueue_struct *wq;
41 struct delayed_work delayed_finish;
46 static struct scsi_host_template octeon_cf_sht = {
47 ATA_PIO_SHT(DRV_NAME),
51 * Convert nanosecond based time to setting used in the
52 * boot bus timing register, based on timing multiple
54 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
59 * Compute # of eclock periods to get desired duration in
62 val = DIV_ROUND_UP(nsecs * (octeon_get_clock_rate() / 1000000),
68 static void octeon_cf_set_boot_reg_cfg(int cs)
70 union cvmx_mio_boot_reg_cfgx reg_cfg;
71 reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
72 reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
73 reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */
74 reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
75 reg_cfg.s.sam = 0; /* Don't combine write and output enable */
76 reg_cfg.s.we_ext = 0; /* No write enable extension */
77 reg_cfg.s.oe_ext = 0; /* No read enable extension */
78 reg_cfg.s.en = 1; /* Enable this region */
79 reg_cfg.s.orbit = 0; /* Don't combine with previous region */
80 reg_cfg.s.ale = 0; /* Don't do address multiplexing */
81 cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
85 * Called after libata determines the needed PIO mode. This
86 * function programs the Octeon bootbus regions to support the
87 * timing requirements of the PIO mode.
89 * @ap: ATA port information
92 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
94 struct octeon_cf_data *ocd = ap->dev->platform_data;
95 union cvmx_mio_boot_reg_timx reg_tim;
96 int cs = ocd->base_region;
98 struct ata_timing timing;
103 /* These names are timing parameters from the ATA spec */
108 T = (int)(2000000000000LL / octeon_get_clock_rate());
110 if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
123 trh = ns_to_tim_reg(2, 20);
127 pause = timing.cycle - timing.active - timing.setup - trh;
131 octeon_cf_set_boot_reg_cfg(cs);
132 if (ocd->dma_engine >= 0)
133 /* True IDE mode, program both chip selects. */
134 octeon_cf_set_boot_reg_cfg(cs + 1);
137 use_iordy = ata_pio_need_iordy(dev);
139 reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
140 /* Disable page mode */
142 /* Enable dynamic timing */
143 reg_tim.s.waitm = use_iordy;
144 /* Pages are disabled */
146 /* We don't use multiplexed address mode */
150 /* Time after IORDY to coninue to assert the data */
152 /* Time to wait to complete the cycle. */
153 reg_tim.s.pause = pause;
154 /* How long to hold after a write to de-assert CE. */
155 reg_tim.s.wr_hld = trh;
156 /* How long to wait after a read to de-assert CE. */
157 reg_tim.s.rd_hld = trh;
158 /* How long write enable is asserted */
160 /* How long read enable is asserted */
162 /* Time after CE that read/write starts */
163 reg_tim.s.ce = ns_to_tim_reg(2, 5);
164 /* Time before CE that address is valid */
167 /* Program the bootbus region timing for the data port chip select. */
168 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
169 if (ocd->dma_engine >= 0)
170 /* True IDE mode, program both chip selects. */
171 cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
174 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
176 struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
177 union cvmx_mio_boot_dma_timx dma_tim;
180 unsigned int dma_ackh;
181 unsigned int dma_arq;
183 unsigned int T0, Tkr, Td;
184 unsigned int tim_mult;
186 const struct ata_timing *timing;
188 timing = ata_timing_find_mode(dev->dma_mode);
191 Tkr = timing->recover;
192 dma_ackh = timing->dmack_hold;
195 /* dma_tim.s.tim_mult = 0 --> 4x */
198 /* not spec'ed, value in eclocks, not affected by tim_mult */
200 pause = 25 - dma_arq * 1000 /
201 (octeon_get_clock_rate() / 1000000); /* Tz */
204 /* Tkr from cf spec, lengthened to meet T0 */
205 oe_n = max(T0 - oe_a, Tkr);
207 dma_tim.s.dmack_pi = 1;
209 dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
210 dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
213 * This is tI, C.F. spec. says 0, but Sony CF card requires
214 * more, we use 20 nS.
216 dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
217 dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
219 dma_tim.s.dmarq = dma_arq;
220 dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
222 dma_tim.s.rd_dly = 0; /* Sample right on edge */
225 dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
226 dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
228 pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
229 ns_to_tim_reg(tim_mult, 60));
230 pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
231 "%d, dmarq: %d, pause: %d\n",
232 dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
233 dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
235 cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
241 * Handle an 8 bit I/O request.
243 * @dev: Device to access
244 * @buffer: Data buffer
245 * @buflen: Length of the buffer.
246 * @rw: True to write.
248 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
249 unsigned char *buffer,
253 struct ata_port *ap = dev->link->ap;
254 void __iomem *data_addr = ap->ioaddr.data_addr;
262 iowrite8(*buffer, data_addr);
265 * Every 16 writes do a read so the bootbus
266 * FIFO doesn't fill up.
269 ioread8(ap->ioaddr.altstatus_addr);
274 ioread8_rep(data_addr, buffer, words);
280 * Handle a 16 bit I/O request.
282 * @dev: Device to access
283 * @buffer: Data buffer
284 * @buflen: Length of the buffer.
285 * @rw: True to write.
287 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
288 unsigned char *buffer,
292 struct ata_port *ap = dev->link->ap;
293 void __iomem *data_addr = ap->ioaddr.data_addr;
301 iowrite16(*(uint16_t *)buffer, data_addr);
302 buffer += sizeof(uint16_t);
304 * Every 16 writes do a read so the bootbus
305 * FIFO doesn't fill up.
308 ioread8(ap->ioaddr.altstatus_addr);
314 *(uint16_t *)buffer = ioread16(data_addr);
315 buffer += sizeof(uint16_t);
318 /* Transfer trailing 1 byte, if any. */
319 if (unlikely(buflen & 0x01)) {
320 __le16 align_buf[1] = { 0 };
323 align_buf[0] = cpu_to_le16(ioread16(data_addr));
324 memcpy(buffer, align_buf, 1);
326 memcpy(align_buf, buffer, 1);
327 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
335 * Read the taskfile for 16bit non-True IDE only.
337 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
340 /* The base of the registers is at ioaddr.data_addr. */
341 void __iomem *base = ap->ioaddr.data_addr;
343 blob = __raw_readw(base + 0xc);
344 tf->feature = blob >> 8;
346 blob = __raw_readw(base + 2);
347 tf->nsect = blob & 0xff;
348 tf->lbal = blob >> 8;
350 blob = __raw_readw(base + 4);
351 tf->lbam = blob & 0xff;
352 tf->lbah = blob >> 8;
354 blob = __raw_readw(base + 6);
355 tf->device = blob & 0xff;
356 tf->command = blob >> 8;
358 if (tf->flags & ATA_TFLAG_LBA48) {
359 if (likely(ap->ioaddr.ctl_addr)) {
360 iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
362 blob = __raw_readw(base + 0xc);
363 tf->hob_feature = blob >> 8;
365 blob = __raw_readw(base + 2);
366 tf->hob_nsect = blob & 0xff;
367 tf->hob_lbal = blob >> 8;
369 blob = __raw_readw(base + 4);
370 tf->hob_lbam = blob & 0xff;
371 tf->hob_lbah = blob >> 8;
373 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
374 ap->last_ctl = tf->ctl;
381 static u8 octeon_cf_check_status16(struct ata_port *ap)
384 void __iomem *base = ap->ioaddr.data_addr;
386 blob = __raw_readw(base + 6);
390 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
391 unsigned long deadline)
393 struct ata_port *ap = link->ap;
394 void __iomem *base = ap->ioaddr.data_addr;
398 DPRINTK("about to softreset\n");
399 __raw_writew(ap->ctl, base + 0xe);
401 __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
403 __raw_writew(ap->ctl, base + 0xe);
405 rc = ata_sff_wait_after_reset(link, 1, deadline);
407 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
411 /* determine by signature whether we have ATA or ATAPI devices */
412 classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
413 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
418 * Load the taskfile for 16bit non-True IDE only. The device_addr is
419 * not loaded, we do this as part of octeon_cf_exec_command16.
421 static void octeon_cf_tf_load16(struct ata_port *ap,
422 const struct ata_taskfile *tf)
424 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
425 /* The base of the registers is at ioaddr.data_addr. */
426 void __iomem *base = ap->ioaddr.data_addr;
428 if (tf->ctl != ap->last_ctl) {
429 iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
430 ap->last_ctl = tf->ctl;
433 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
434 __raw_writew(tf->hob_feature << 8, base + 0xc);
435 __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
436 __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
437 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
445 __raw_writew(tf->feature << 8, base + 0xc);
446 __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
447 __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
448 VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
459 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
461 /* There is only one device, do nothing. */
466 * Issue ATA command to host controller. The device_addr is also sent
467 * as it must be written in a combined write with the command.
469 static void octeon_cf_exec_command16(struct ata_port *ap,
470 const struct ata_taskfile *tf)
472 /* The base of the registers is at ioaddr.data_addr. */
473 void __iomem *base = ap->ioaddr.data_addr;
476 if (tf->flags & ATA_TFLAG_DEVICE) {
477 VPRINTK("device 0x%X\n", tf->device);
483 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
484 blob |= (tf->command << 8);
485 __raw_writew(blob, base + 6);
491 static u8 octeon_cf_irq_on(struct ata_port *ap)
496 static void octeon_cf_irq_clear(struct ata_port *ap)
501 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
503 struct ata_port *ap = qc->ap;
504 struct octeon_cf_port *cf_port;
506 cf_port = ap->private_data;
508 /* issue r/w command */
510 cf_port->dma_finished = 0;
511 ap->ops->sff_exec_command(ap, &qc->tf);
516 * Start a DMA transfer that was already setup
518 * @qc: Information about the DMA
520 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
522 struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
523 union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
524 union cvmx_mio_boot_dma_intx mio_boot_dma_int;
525 struct scatterlist *sg;
527 VPRINTK("%d scatterlists\n", qc->n_elem);
529 /* Get the scatter list entry we need to DMA into */
534 * Clear the DMA complete status.
536 mio_boot_dma_int.u64 = 0;
537 mio_boot_dma_int.s.done = 1;
538 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
539 mio_boot_dma_int.u64);
541 /* Enable the interrupt. */
542 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
543 mio_boot_dma_int.u64);
545 /* Set the direction of the DMA */
546 mio_boot_dma_cfg.u64 = 0;
547 mio_boot_dma_cfg.s.en = 1;
548 mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
551 * Don't stop the DMA if the device deasserts DMARQ. Many
552 * compact flashes deassert DMARQ for a short time between
553 * sectors. Instead of stopping and restarting the DMA, we'll
554 * let the hardware do it. If the DMA is really stopped early
555 * due to an error condition, a later timeout will force us to
558 mio_boot_dma_cfg.s.clr = 0;
560 /* Size is specified in 16bit words and minus one notation */
561 mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
563 /* We need to swap the high and low bytes of every 16 bits */
564 mio_boot_dma_cfg.s.swap8 = 1;
566 mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
568 VPRINTK("%s %d bytes address=%p\n",
569 (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
570 (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
572 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
573 mio_boot_dma_cfg.u64);
579 * spin_lock_irqsave(host lock)
582 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
583 struct ata_queued_cmd *qc)
585 struct ata_eh_info *ehi = &ap->link.eh_info;
586 struct octeon_cf_data *ocd = ap->dev->platform_data;
587 union cvmx_mio_boot_dma_cfgx dma_cfg;
588 union cvmx_mio_boot_dma_intx dma_int;
589 struct octeon_cf_port *cf_port;
592 VPRINTK("ata%u: protocol %d task_state %d\n",
593 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
596 if (ap->hsm_task_state != HSM_ST_LAST)
599 cf_port = ap->private_data;
601 dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
602 if (dma_cfg.s.size != 0xfffff) {
603 /* Error, the transfer was not complete. */
604 qc->err_mask |= AC_ERR_HOST_BUS;
605 ap->hsm_task_state = HSM_ST_ERR;
608 /* Stop and clear the dma engine. */
611 cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
613 /* Disable the interrupt. */
615 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
617 /* Clear the DMA complete status */
619 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
621 status = ap->ops->sff_check_status(ap);
623 ata_sff_hsm_move(ap, qc, status, 0);
625 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
626 ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
632 * Check if any queued commands have more DMAs, if so start the next
633 * transfer, else do end of transfer handling.
635 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
637 struct ata_host *host = dev_instance;
638 struct octeon_cf_port *cf_port;
640 unsigned int handled = 0;
643 spin_lock_irqsave(&host->lock, flags);
646 for (i = 0; i < host->n_ports; i++) {
649 struct ata_queued_cmd *qc;
650 union cvmx_mio_boot_dma_intx dma_int;
651 union cvmx_mio_boot_dma_cfgx dma_cfg;
652 struct octeon_cf_data *ocd;
655 ocd = ap->dev->platform_data;
657 if (ap->flags & ATA_FLAG_DISABLED)
660 ocd = ap->dev->platform_data;
661 cf_port = ap->private_data;
663 cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
665 cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
667 qc = ata_qc_from_tag(ap, ap->link.active_tag);
669 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
670 (qc->flags & ATA_QCFLAG_ACTIVE)) {
671 if (dma_int.s.done && !dma_cfg.s.en) {
672 if (!sg_is_last(qc->cursg)) {
673 qc->cursg = sg_next(qc->cursg);
675 octeon_cf_dma_start(qc);
678 cf_port->dma_finished = 1;
681 if (!cf_port->dma_finished)
683 status = ioread8(ap->ioaddr.altstatus_addr);
684 if (status & (ATA_BUSY | ATA_DRQ)) {
686 * We are busy, try to handle it
687 * later. This is the DMA finished
688 * interrupt, and it could take a
689 * little while for the card to be
690 * ready for more commands.
695 cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
698 queue_delayed_work(cf_port->wq,
699 &cf_port->delayed_finish, 1);
702 handled |= octeon_cf_dma_finished(ap, qc);
706 spin_unlock_irqrestore(&host->lock, flags);
708 return IRQ_RETVAL(handled);
711 static void octeon_cf_delayed_finish(struct work_struct *work)
713 struct octeon_cf_port *cf_port = container_of(work,
714 struct octeon_cf_port,
715 delayed_finish.work);
716 struct ata_port *ap = cf_port->ap;
717 struct ata_host *host = ap->host;
718 struct ata_queued_cmd *qc;
722 spin_lock_irqsave(&host->lock, flags);
725 * If the port is not waiting for completion, it must have
726 * handled it previously. The hsm_task_state is
727 * protected by host->lock.
729 if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
732 status = ioread8(ap->ioaddr.altstatus_addr);
733 if (status & (ATA_BUSY | ATA_DRQ)) {
734 /* Still busy, try again. */
735 queue_delayed_work(cf_port->wq,
736 &cf_port->delayed_finish, 1);
739 qc = ata_qc_from_tag(ap, ap->link.active_tag);
740 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
741 (qc->flags & ATA_QCFLAG_ACTIVE))
742 octeon_cf_dma_finished(ap, qc);
744 spin_unlock_irqrestore(&host->lock, flags);
747 static void octeon_cf_dev_config(struct ata_device *dev)
750 * A maximum of 2^20 - 1 16 bit transfers are possible with
751 * the bootbus DMA. So we need to throttle max_sectors to
752 * (2^12 - 1 == 4095) to assure that this can never happen.
754 dev->max_sectors = min(dev->max_sectors, 4095U);
758 * Trap if driver tries to do standard bmdma commands. They are not
761 static void unreachable_qc(struct ata_queued_cmd *qc)
766 static u8 unreachable_port(struct ata_port *ap)
772 * We don't do ATAPI DMA so return 0.
774 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
779 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
781 struct ata_port *ap = qc->ap;
783 switch (qc->tf.protocol) {
785 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
787 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
788 octeon_cf_dma_setup(qc); /* set up dma */
789 octeon_cf_dma_start(qc); /* initiate dma */
790 ap->hsm_task_state = HSM_ST_LAST;
794 dev_err(ap->dev, "Error, ATAPI not supported\n");
798 return ata_sff_qc_issue(qc);
804 static struct ata_port_operations octeon_cf_ops = {
805 .inherits = &ata_sff_port_ops,
806 .check_atapi_dma = octeon_cf_check_atapi_dma,
807 .qc_prep = ata_noop_qc_prep,
808 .qc_issue = octeon_cf_qc_issue,
809 .sff_dev_select = octeon_cf_dev_select,
810 .sff_irq_on = octeon_cf_irq_on,
811 .sff_irq_clear = octeon_cf_irq_clear,
812 .bmdma_setup = unreachable_qc,
813 .bmdma_start = unreachable_qc,
814 .bmdma_stop = unreachable_qc,
815 .bmdma_status = unreachable_port,
816 .cable_detect = ata_cable_40wire,
817 .set_piomode = octeon_cf_set_piomode,
818 .set_dmamode = octeon_cf_set_dmamode,
819 .dev_config = octeon_cf_dev_config,
822 static int __devinit octeon_cf_probe(struct platform_device *pdev)
824 struct resource *res_cs0, *res_cs1;
827 void __iomem *cs1 = NULL;
828 struct ata_host *host;
830 struct octeon_cf_data *ocd;
832 irq_handler_t irq_handler = NULL;
834 struct octeon_cf_port *cf_port;
836 res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
841 ocd = pdev->dev.platform_data;
843 cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
844 resource_size(res_cs0));
849 /* Determine from availability of DMA if True IDE mode or not */
850 if (ocd->dma_engine >= 0) {
851 res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
855 cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
856 res_cs0->end - res_cs1->start + 1);
862 cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
867 host = ata_host_alloc(&pdev->dev, 1);
872 ap->private_data = cf_port;
874 ap->ops = &octeon_cf_ops;
875 ap->pio_mask = ATA_PIO6;
876 ap->flags |= ATA_FLAG_MMIO | ATA_FLAG_NO_LEGACY
877 | ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING;
879 base = cs0 + ocd->base_region_bias;
881 ap->ioaddr.cmd_addr = base;
882 ata_sff_std_ports(&ap->ioaddr);
884 ap->ioaddr.altstatus_addr = base + 0xe;
885 ap->ioaddr.ctl_addr = base + 0xe;
886 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
888 /* Presence of cs1 indicates True IDE mode. */
889 ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
890 ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
891 ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
892 ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
893 ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
894 ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
895 ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
896 ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
897 ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
898 ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
899 ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
900 ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
901 ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
902 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
904 ap->mwdma_mask = ATA_MWDMA4;
905 irq = platform_get_irq(pdev, 0);
906 irq_handler = octeon_cf_interrupt;
908 /* True IDE mode needs delayed work to poll for not-busy. */
909 cf_port->wq = create_singlethread_workqueue(DRV_NAME);
912 INIT_DELAYED_WORK(&cf_port->delayed_finish,
913 octeon_cf_delayed_finish);
916 /* 16 bit but not True IDE */
917 octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
918 octeon_cf_ops.softreset = octeon_cf_softreset16;
919 octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
920 octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
921 octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
922 octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
924 ap->ioaddr.data_addr = base + ATA_REG_DATA;
925 ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
926 ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
927 ap->ioaddr.ctl_addr = base + 0xe;
928 ap->ioaddr.altstatus_addr = base + 0xe;
931 ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
934 dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n",
935 (ocd->is16bit) ? 16 : 8,
936 (cs1) ? ", True IDE" : "");
939 return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
946 static struct platform_driver octeon_cf_driver = {
947 .probe = octeon_cf_probe,
950 .owner = THIS_MODULE,
954 static int __init octeon_cf_init(void)
956 return platform_driver_register(&octeon_cf_driver);
960 MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
961 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
962 MODULE_LICENSE("GPL");
963 MODULE_VERSION(DRV_VERSION);
964 MODULE_ALIAS("platform:" DRV_NAME);
966 module_init(octeon_cf_init);