]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/base/arch_topology.c
Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[karo-tx-linux.git] / drivers / base / arch_topology.c
1 /*
2  * Arch specific cpu topology information
3  *
4  * Copyright (C) 2016, ARM Ltd.
5  * Written by: Juri Lelli, ARM Ltd.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file "COPYING" in the main directory of this archive
9  * for more details.
10  *
11  * Released under the GPLv2 only.
12  * SPDX-License-Identifier: GPL-2.0
13  */
14
15 #include <linux/acpi.h>
16 #include <linux/arch_topology.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/device.h>
20 #include <linux/of.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/sched/topology.h>
24
25 static DEFINE_MUTEX(cpu_scale_mutex);
26 static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
27
28 unsigned long topology_get_cpu_scale(struct sched_domain *sd, int cpu)
29 {
30         return per_cpu(cpu_scale, cpu);
31 }
32
33 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
34 {
35         per_cpu(cpu_scale, cpu) = capacity;
36 }
37
38 static ssize_t cpu_capacity_show(struct device *dev,
39                                  struct device_attribute *attr,
40                                  char *buf)
41 {
42         struct cpu *cpu = container_of(dev, struct cpu, dev);
43
44         return sprintf(buf, "%lu\n",
45                         topology_get_cpu_scale(NULL, cpu->dev.id));
46 }
47
48 static ssize_t cpu_capacity_store(struct device *dev,
49                                   struct device_attribute *attr,
50                                   const char *buf,
51                                   size_t count)
52 {
53         struct cpu *cpu = container_of(dev, struct cpu, dev);
54         int this_cpu = cpu->dev.id;
55         int i;
56         unsigned long new_capacity;
57         ssize_t ret;
58
59         if (!count)
60                 return 0;
61
62         ret = kstrtoul(buf, 0, &new_capacity);
63         if (ret)
64                 return ret;
65         if (new_capacity > SCHED_CAPACITY_SCALE)
66                 return -EINVAL;
67
68         mutex_lock(&cpu_scale_mutex);
69         for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
70                 topology_set_cpu_scale(i, new_capacity);
71         mutex_unlock(&cpu_scale_mutex);
72
73         return count;
74 }
75
76 static DEVICE_ATTR_RW(cpu_capacity);
77
78 static int register_cpu_capacity_sysctl(void)
79 {
80         int i;
81         struct device *cpu;
82
83         for_each_possible_cpu(i) {
84                 cpu = get_cpu_device(i);
85                 if (!cpu) {
86                         pr_err("%s: too early to get CPU%d device!\n",
87                                __func__, i);
88                         continue;
89                 }
90                 device_create_file(cpu, &dev_attr_cpu_capacity);
91         }
92
93         return 0;
94 }
95 subsys_initcall(register_cpu_capacity_sysctl);
96
97 static u32 capacity_scale;
98 static u32 *raw_capacity;
99 static bool cap_parsing_failed;
100
101 void topology_normalize_cpu_scale(void)
102 {
103         u64 capacity;
104         int cpu;
105
106         if (!raw_capacity || cap_parsing_failed)
107                 return;
108
109         pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
110         mutex_lock(&cpu_scale_mutex);
111         for_each_possible_cpu(cpu) {
112                 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
113                          cpu, raw_capacity[cpu]);
114                 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
115                         / capacity_scale;
116                 topology_set_cpu_scale(cpu, capacity);
117                 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
118                         cpu, topology_get_cpu_scale(NULL, cpu));
119         }
120         mutex_unlock(&cpu_scale_mutex);
121 }
122
123 int __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
124 {
125         int ret = 1;
126         u32 cpu_capacity;
127
128         if (cap_parsing_failed)
129                 return !ret;
130
131         ret = of_property_read_u32(cpu_node,
132                                    "capacity-dmips-mhz",
133                                    &cpu_capacity);
134         if (!ret) {
135                 if (!raw_capacity) {
136                         raw_capacity = kcalloc(num_possible_cpus(),
137                                                sizeof(*raw_capacity),
138                                                GFP_KERNEL);
139                         if (!raw_capacity) {
140                                 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
141                                 cap_parsing_failed = true;
142                                 return 0;
143                         }
144                 }
145                 capacity_scale = max(cpu_capacity, capacity_scale);
146                 raw_capacity[cpu] = cpu_capacity;
147                 pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
148                         cpu_node->full_name, raw_capacity[cpu]);
149         } else {
150                 if (raw_capacity) {
151                         pr_err("cpu_capacity: missing %s raw capacity\n",
152                                 cpu_node->full_name);
153                         pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
154                 }
155                 cap_parsing_failed = true;
156                 kfree(raw_capacity);
157         }
158
159         return !ret;
160 }
161
162 #ifdef CONFIG_CPU_FREQ
163 static cpumask_var_t cpus_to_visit;
164 static bool cap_parsing_done;
165 static void parsing_done_workfn(struct work_struct *work);
166 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
167
168 static int
169 init_cpu_capacity_callback(struct notifier_block *nb,
170                            unsigned long val,
171                            void *data)
172 {
173         struct cpufreq_policy *policy = data;
174         int cpu;
175
176         if (cap_parsing_failed || cap_parsing_done)
177                 return 0;
178
179         switch (val) {
180         case CPUFREQ_NOTIFY:
181                 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
182                                 cpumask_pr_args(policy->related_cpus),
183                                 cpumask_pr_args(cpus_to_visit));
184                 cpumask_andnot(cpus_to_visit,
185                                cpus_to_visit,
186                                policy->related_cpus);
187                 for_each_cpu(cpu, policy->related_cpus) {
188                         raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
189                                             policy->cpuinfo.max_freq / 1000UL;
190                         capacity_scale = max(raw_capacity[cpu], capacity_scale);
191                 }
192                 if (cpumask_empty(cpus_to_visit)) {
193                         topology_normalize_cpu_scale();
194                         kfree(raw_capacity);
195                         pr_debug("cpu_capacity: parsing done\n");
196                         cap_parsing_done = true;
197                         schedule_work(&parsing_done_work);
198                 }
199         }
200         return 0;
201 }
202
203 static struct notifier_block init_cpu_capacity_notifier = {
204         .notifier_call = init_cpu_capacity_callback,
205 };
206
207 static int __init register_cpufreq_notifier(void)
208 {
209         /*
210          * on ACPI-based systems we need to use the default cpu capacity
211          * until we have the necessary code to parse the cpu capacity, so
212          * skip registering cpufreq notifier.
213          */
214         if (!acpi_disabled || !raw_capacity)
215                 return -EINVAL;
216
217         if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
218                 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
219                 return -ENOMEM;
220         }
221
222         cpumask_copy(cpus_to_visit, cpu_possible_mask);
223
224         return cpufreq_register_notifier(&init_cpu_capacity_notifier,
225                                          CPUFREQ_POLICY_NOTIFIER);
226 }
227 core_initcall(register_cpufreq_notifier);
228
229 static void parsing_done_workfn(struct work_struct *work)
230 {
231         cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
232                                          CPUFREQ_POLICY_NOTIFIER);
233 }
234
235 #else
236 static int __init free_raw_capacity(void)
237 {
238         kfree(raw_capacity);
239
240         return 0;
241 }
242 core_initcall(free_raw_capacity);
243 #endif