]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/base/power/main.c
Input: synaptics-rmi4 - register F03 port as pass-through serio
[karo-tx-linux.git] / drivers / base / power / main.c
1 /*
2  * drivers/base/power/main.c - Where the driver meets power management.
3  *
4  * Copyright (c) 2003 Patrick Mochel
5  * Copyright (c) 2003 Open Source Development Lab
6  *
7  * This file is released under the GPLv2
8  *
9  *
10  * The driver model core calls device_pm_add() when a device is registered.
11  * This will initialize the embedded device_pm_info object in the device
12  * and add it to the list of power-controlled devices. sysfs entries for
13  * controlling device power management will also be added.
14  *
15  * A separate list is used for keeping track of power info, because the power
16  * domain dependencies may differ from the ancestral dependencies that the
17  * subsystem list maintains.
18  */
19
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm-trace.h>
27 #include <linux/pm_wakeirq.h>
28 #include <linux/interrupt.h>
29 #include <linux/sched.h>
30 #include <linux/sched/debug.h>
31 #include <linux/async.h>
32 #include <linux/suspend.h>
33 #include <trace/events/power.h>
34 #include <linux/cpufreq.h>
35 #include <linux/cpuidle.h>
36 #include <linux/timer.h>
37
38 #include "../base.h"
39 #include "power.h"
40
41 typedef int (*pm_callback_t)(struct device *);
42
43 /*
44  * The entries in the dpm_list list are in a depth first order, simply
45  * because children are guaranteed to be discovered after parents, and
46  * are inserted at the back of the list on discovery.
47  *
48  * Since device_pm_add() may be called with a device lock held,
49  * we must never try to acquire a device lock while holding
50  * dpm_list_mutex.
51  */
52
53 LIST_HEAD(dpm_list);
54 static LIST_HEAD(dpm_prepared_list);
55 static LIST_HEAD(dpm_suspended_list);
56 static LIST_HEAD(dpm_late_early_list);
57 static LIST_HEAD(dpm_noirq_list);
58
59 struct suspend_stats suspend_stats;
60 static DEFINE_MUTEX(dpm_list_mtx);
61 static pm_message_t pm_transition;
62
63 static int async_error;
64
65 static char *pm_verb(int event)
66 {
67         switch (event) {
68         case PM_EVENT_SUSPEND:
69                 return "suspend";
70         case PM_EVENT_RESUME:
71                 return "resume";
72         case PM_EVENT_FREEZE:
73                 return "freeze";
74         case PM_EVENT_QUIESCE:
75                 return "quiesce";
76         case PM_EVENT_HIBERNATE:
77                 return "hibernate";
78         case PM_EVENT_THAW:
79                 return "thaw";
80         case PM_EVENT_RESTORE:
81                 return "restore";
82         case PM_EVENT_RECOVER:
83                 return "recover";
84         default:
85                 return "(unknown PM event)";
86         }
87 }
88
89 /**
90  * device_pm_sleep_init - Initialize system suspend-related device fields.
91  * @dev: Device object being initialized.
92  */
93 void device_pm_sleep_init(struct device *dev)
94 {
95         dev->power.is_prepared = false;
96         dev->power.is_suspended = false;
97         dev->power.is_noirq_suspended = false;
98         dev->power.is_late_suspended = false;
99         init_completion(&dev->power.completion);
100         complete_all(&dev->power.completion);
101         dev->power.wakeup = NULL;
102         INIT_LIST_HEAD(&dev->power.entry);
103 }
104
105 /**
106  * device_pm_lock - Lock the list of active devices used by the PM core.
107  */
108 void device_pm_lock(void)
109 {
110         mutex_lock(&dpm_list_mtx);
111 }
112
113 /**
114  * device_pm_unlock - Unlock the list of active devices used by the PM core.
115  */
116 void device_pm_unlock(void)
117 {
118         mutex_unlock(&dpm_list_mtx);
119 }
120
121 /**
122  * device_pm_add - Add a device to the PM core's list of active devices.
123  * @dev: Device to add to the list.
124  */
125 void device_pm_add(struct device *dev)
126 {
127         pr_debug("PM: Adding info for %s:%s\n",
128                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
129         device_pm_check_callbacks(dev);
130         mutex_lock(&dpm_list_mtx);
131         if (dev->parent && dev->parent->power.is_prepared)
132                 dev_warn(dev, "parent %s should not be sleeping\n",
133                         dev_name(dev->parent));
134         list_add_tail(&dev->power.entry, &dpm_list);
135         dev->power.in_dpm_list = true;
136         mutex_unlock(&dpm_list_mtx);
137 }
138
139 /**
140  * device_pm_remove - Remove a device from the PM core's list of active devices.
141  * @dev: Device to be removed from the list.
142  */
143 void device_pm_remove(struct device *dev)
144 {
145         pr_debug("PM: Removing info for %s:%s\n",
146                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
147         complete_all(&dev->power.completion);
148         mutex_lock(&dpm_list_mtx);
149         list_del_init(&dev->power.entry);
150         dev->power.in_dpm_list = false;
151         mutex_unlock(&dpm_list_mtx);
152         device_wakeup_disable(dev);
153         pm_runtime_remove(dev);
154         device_pm_check_callbacks(dev);
155 }
156
157 /**
158  * device_pm_move_before - Move device in the PM core's list of active devices.
159  * @deva: Device to move in dpm_list.
160  * @devb: Device @deva should come before.
161  */
162 void device_pm_move_before(struct device *deva, struct device *devb)
163 {
164         pr_debug("PM: Moving %s:%s before %s:%s\n",
165                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
166                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
167         /* Delete deva from dpm_list and reinsert before devb. */
168         list_move_tail(&deva->power.entry, &devb->power.entry);
169 }
170
171 /**
172  * device_pm_move_after - Move device in the PM core's list of active devices.
173  * @deva: Device to move in dpm_list.
174  * @devb: Device @deva should come after.
175  */
176 void device_pm_move_after(struct device *deva, struct device *devb)
177 {
178         pr_debug("PM: Moving %s:%s after %s:%s\n",
179                  deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
180                  devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
181         /* Delete deva from dpm_list and reinsert after devb. */
182         list_move(&deva->power.entry, &devb->power.entry);
183 }
184
185 /**
186  * device_pm_move_last - Move device to end of the PM core's list of devices.
187  * @dev: Device to move in dpm_list.
188  */
189 void device_pm_move_last(struct device *dev)
190 {
191         pr_debug("PM: Moving %s:%s to end of list\n",
192                  dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
193         list_move_tail(&dev->power.entry, &dpm_list);
194 }
195
196 static ktime_t initcall_debug_start(struct device *dev)
197 {
198         ktime_t calltime = 0;
199
200         if (pm_print_times_enabled) {
201                 pr_info("calling  %s+ @ %i, parent: %s\n",
202                         dev_name(dev), task_pid_nr(current),
203                         dev->parent ? dev_name(dev->parent) : "none");
204                 calltime = ktime_get();
205         }
206
207         return calltime;
208 }
209
210 static void initcall_debug_report(struct device *dev, ktime_t calltime,
211                                   int error, pm_message_t state, char *info)
212 {
213         ktime_t rettime;
214         s64 nsecs;
215
216         rettime = ktime_get();
217         nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
218
219         if (pm_print_times_enabled) {
220                 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
221                         error, (unsigned long long)nsecs >> 10);
222         }
223 }
224
225 /**
226  * dpm_wait - Wait for a PM operation to complete.
227  * @dev: Device to wait for.
228  * @async: If unset, wait only if the device's power.async_suspend flag is set.
229  */
230 static void dpm_wait(struct device *dev, bool async)
231 {
232         if (!dev)
233                 return;
234
235         if (async || (pm_async_enabled && dev->power.async_suspend))
236                 wait_for_completion(&dev->power.completion);
237 }
238
239 static int dpm_wait_fn(struct device *dev, void *async_ptr)
240 {
241         dpm_wait(dev, *((bool *)async_ptr));
242         return 0;
243 }
244
245 static void dpm_wait_for_children(struct device *dev, bool async)
246 {
247        device_for_each_child(dev, &async, dpm_wait_fn);
248 }
249
250 static void dpm_wait_for_suppliers(struct device *dev, bool async)
251 {
252         struct device_link *link;
253         int idx;
254
255         idx = device_links_read_lock();
256
257         /*
258          * If the supplier goes away right after we've checked the link to it,
259          * we'll wait for its completion to change the state, but that's fine,
260          * because the only things that will block as a result are the SRCU
261          * callbacks freeing the link objects for the links in the list we're
262          * walking.
263          */
264         list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
265                 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
266                         dpm_wait(link->supplier, async);
267
268         device_links_read_unlock(idx);
269 }
270
271 static void dpm_wait_for_superior(struct device *dev, bool async)
272 {
273         dpm_wait(dev->parent, async);
274         dpm_wait_for_suppliers(dev, async);
275 }
276
277 static void dpm_wait_for_consumers(struct device *dev, bool async)
278 {
279         struct device_link *link;
280         int idx;
281
282         idx = device_links_read_lock();
283
284         /*
285          * The status of a device link can only be changed from "dormant" by a
286          * probe, but that cannot happen during system suspend/resume.  In
287          * theory it can change to "dormant" at that time, but then it is
288          * reasonable to wait for the target device anyway (eg. if it goes
289          * away, it's better to wait for it to go away completely and then
290          * continue instead of trying to continue in parallel with its
291          * unregistration).
292          */
293         list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
294                 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
295                         dpm_wait(link->consumer, async);
296
297         device_links_read_unlock(idx);
298 }
299
300 static void dpm_wait_for_subordinate(struct device *dev, bool async)
301 {
302         dpm_wait_for_children(dev, async);
303         dpm_wait_for_consumers(dev, async);
304 }
305
306 /**
307  * pm_op - Return the PM operation appropriate for given PM event.
308  * @ops: PM operations to choose from.
309  * @state: PM transition of the system being carried out.
310  */
311 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
312 {
313         switch (state.event) {
314 #ifdef CONFIG_SUSPEND
315         case PM_EVENT_SUSPEND:
316                 return ops->suspend;
317         case PM_EVENT_RESUME:
318                 return ops->resume;
319 #endif /* CONFIG_SUSPEND */
320 #ifdef CONFIG_HIBERNATE_CALLBACKS
321         case PM_EVENT_FREEZE:
322         case PM_EVENT_QUIESCE:
323                 return ops->freeze;
324         case PM_EVENT_HIBERNATE:
325                 return ops->poweroff;
326         case PM_EVENT_THAW:
327         case PM_EVENT_RECOVER:
328                 return ops->thaw;
329                 break;
330         case PM_EVENT_RESTORE:
331                 return ops->restore;
332 #endif /* CONFIG_HIBERNATE_CALLBACKS */
333         }
334
335         return NULL;
336 }
337
338 /**
339  * pm_late_early_op - Return the PM operation appropriate for given PM event.
340  * @ops: PM operations to choose from.
341  * @state: PM transition of the system being carried out.
342  *
343  * Runtime PM is disabled for @dev while this function is being executed.
344  */
345 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
346                                       pm_message_t state)
347 {
348         switch (state.event) {
349 #ifdef CONFIG_SUSPEND
350         case PM_EVENT_SUSPEND:
351                 return ops->suspend_late;
352         case PM_EVENT_RESUME:
353                 return ops->resume_early;
354 #endif /* CONFIG_SUSPEND */
355 #ifdef CONFIG_HIBERNATE_CALLBACKS
356         case PM_EVENT_FREEZE:
357         case PM_EVENT_QUIESCE:
358                 return ops->freeze_late;
359         case PM_EVENT_HIBERNATE:
360                 return ops->poweroff_late;
361         case PM_EVENT_THAW:
362         case PM_EVENT_RECOVER:
363                 return ops->thaw_early;
364         case PM_EVENT_RESTORE:
365                 return ops->restore_early;
366 #endif /* CONFIG_HIBERNATE_CALLBACKS */
367         }
368
369         return NULL;
370 }
371
372 /**
373  * pm_noirq_op - Return the PM operation appropriate for given PM event.
374  * @ops: PM operations to choose from.
375  * @state: PM transition of the system being carried out.
376  *
377  * The driver of @dev will not receive interrupts while this function is being
378  * executed.
379  */
380 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
381 {
382         switch (state.event) {
383 #ifdef CONFIG_SUSPEND
384         case PM_EVENT_SUSPEND:
385                 return ops->suspend_noirq;
386         case PM_EVENT_RESUME:
387                 return ops->resume_noirq;
388 #endif /* CONFIG_SUSPEND */
389 #ifdef CONFIG_HIBERNATE_CALLBACKS
390         case PM_EVENT_FREEZE:
391         case PM_EVENT_QUIESCE:
392                 return ops->freeze_noirq;
393         case PM_EVENT_HIBERNATE:
394                 return ops->poweroff_noirq;
395         case PM_EVENT_THAW:
396         case PM_EVENT_RECOVER:
397                 return ops->thaw_noirq;
398         case PM_EVENT_RESTORE:
399                 return ops->restore_noirq;
400 #endif /* CONFIG_HIBERNATE_CALLBACKS */
401         }
402
403         return NULL;
404 }
405
406 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
407 {
408         dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
409                 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
410                 ", may wakeup" : "");
411 }
412
413 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
414                         int error)
415 {
416         printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
417                 dev_name(dev), pm_verb(state.event), info, error);
418 }
419
420 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
421 {
422         ktime_t calltime;
423         u64 usecs64;
424         int usecs;
425
426         calltime = ktime_get();
427         usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
428         do_div(usecs64, NSEC_PER_USEC);
429         usecs = usecs64;
430         if (usecs == 0)
431                 usecs = 1;
432         pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
433                 info ?: "", info ? " " : "", pm_verb(state.event),
434                 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
435 }
436
437 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
438                             pm_message_t state, char *info)
439 {
440         ktime_t calltime;
441         int error;
442
443         if (!cb)
444                 return 0;
445
446         calltime = initcall_debug_start(dev);
447
448         pm_dev_dbg(dev, state, info);
449         trace_device_pm_callback_start(dev, info, state.event);
450         error = cb(dev);
451         trace_device_pm_callback_end(dev, error);
452         suspend_report_result(cb, error);
453
454         initcall_debug_report(dev, calltime, error, state, info);
455
456         return error;
457 }
458
459 #ifdef CONFIG_DPM_WATCHDOG
460 struct dpm_watchdog {
461         struct device           *dev;
462         struct task_struct      *tsk;
463         struct timer_list       timer;
464 };
465
466 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
467         struct dpm_watchdog wd
468
469 /**
470  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
471  * @data: Watchdog object address.
472  *
473  * Called when a driver has timed out suspending or resuming.
474  * There's not much we can do here to recover so panic() to
475  * capture a crash-dump in pstore.
476  */
477 static void dpm_watchdog_handler(unsigned long data)
478 {
479         struct dpm_watchdog *wd = (void *)data;
480
481         dev_emerg(wd->dev, "**** DPM device timeout ****\n");
482         show_stack(wd->tsk, NULL);
483         panic("%s %s: unrecoverable failure\n",
484                 dev_driver_string(wd->dev), dev_name(wd->dev));
485 }
486
487 /**
488  * dpm_watchdog_set - Enable pm watchdog for given device.
489  * @wd: Watchdog. Must be allocated on the stack.
490  * @dev: Device to handle.
491  */
492 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
493 {
494         struct timer_list *timer = &wd->timer;
495
496         wd->dev = dev;
497         wd->tsk = current;
498
499         init_timer_on_stack(timer);
500         /* use same timeout value for both suspend and resume */
501         timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
502         timer->function = dpm_watchdog_handler;
503         timer->data = (unsigned long)wd;
504         add_timer(timer);
505 }
506
507 /**
508  * dpm_watchdog_clear - Disable suspend/resume watchdog.
509  * @wd: Watchdog to disable.
510  */
511 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
512 {
513         struct timer_list *timer = &wd->timer;
514
515         del_timer_sync(timer);
516         destroy_timer_on_stack(timer);
517 }
518 #else
519 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
520 #define dpm_watchdog_set(x, y)
521 #define dpm_watchdog_clear(x)
522 #endif
523
524 /*------------------------- Resume routines -------------------------*/
525
526 /**
527  * device_resume_noirq - Execute an "early resume" callback for given device.
528  * @dev: Device to handle.
529  * @state: PM transition of the system being carried out.
530  * @async: If true, the device is being resumed asynchronously.
531  *
532  * The driver of @dev will not receive interrupts while this function is being
533  * executed.
534  */
535 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
536 {
537         pm_callback_t callback = NULL;
538         char *info = NULL;
539         int error = 0;
540
541         TRACE_DEVICE(dev);
542         TRACE_RESUME(0);
543
544         if (dev->power.syscore || dev->power.direct_complete)
545                 goto Out;
546
547         if (!dev->power.is_noirq_suspended)
548                 goto Out;
549
550         dpm_wait_for_superior(dev, async);
551
552         if (dev->pm_domain) {
553                 info = "noirq power domain ";
554                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
555         } else if (dev->type && dev->type->pm) {
556                 info = "noirq type ";
557                 callback = pm_noirq_op(dev->type->pm, state);
558         } else if (dev->class && dev->class->pm) {
559                 info = "noirq class ";
560                 callback = pm_noirq_op(dev->class->pm, state);
561         } else if (dev->bus && dev->bus->pm) {
562                 info = "noirq bus ";
563                 callback = pm_noirq_op(dev->bus->pm, state);
564         }
565
566         if (!callback && dev->driver && dev->driver->pm) {
567                 info = "noirq driver ";
568                 callback = pm_noirq_op(dev->driver->pm, state);
569         }
570
571         error = dpm_run_callback(callback, dev, state, info);
572         dev->power.is_noirq_suspended = false;
573
574  Out:
575         complete_all(&dev->power.completion);
576         TRACE_RESUME(error);
577         return error;
578 }
579
580 static bool is_async(struct device *dev)
581 {
582         return dev->power.async_suspend && pm_async_enabled
583                 && !pm_trace_is_enabled();
584 }
585
586 static void async_resume_noirq(void *data, async_cookie_t cookie)
587 {
588         struct device *dev = (struct device *)data;
589         int error;
590
591         error = device_resume_noirq(dev, pm_transition, true);
592         if (error)
593                 pm_dev_err(dev, pm_transition, " async", error);
594
595         put_device(dev);
596 }
597
598 /**
599  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
600  * @state: PM transition of the system being carried out.
601  *
602  * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
603  * enable device drivers to receive interrupts.
604  */
605 void dpm_resume_noirq(pm_message_t state)
606 {
607         struct device *dev;
608         ktime_t starttime = ktime_get();
609
610         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
611         mutex_lock(&dpm_list_mtx);
612         pm_transition = state;
613
614         /*
615          * Advanced the async threads upfront,
616          * in case the starting of async threads is
617          * delayed by non-async resuming devices.
618          */
619         list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
620                 reinit_completion(&dev->power.completion);
621                 if (is_async(dev)) {
622                         get_device(dev);
623                         async_schedule(async_resume_noirq, dev);
624                 }
625         }
626
627         while (!list_empty(&dpm_noirq_list)) {
628                 dev = to_device(dpm_noirq_list.next);
629                 get_device(dev);
630                 list_move_tail(&dev->power.entry, &dpm_late_early_list);
631                 mutex_unlock(&dpm_list_mtx);
632
633                 if (!is_async(dev)) {
634                         int error;
635
636                         error = device_resume_noirq(dev, state, false);
637                         if (error) {
638                                 suspend_stats.failed_resume_noirq++;
639                                 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
640                                 dpm_save_failed_dev(dev_name(dev));
641                                 pm_dev_err(dev, state, " noirq", error);
642                         }
643                 }
644
645                 mutex_lock(&dpm_list_mtx);
646                 put_device(dev);
647         }
648         mutex_unlock(&dpm_list_mtx);
649         async_synchronize_full();
650         dpm_show_time(starttime, state, "noirq");
651         resume_device_irqs();
652         device_wakeup_disarm_wake_irqs();
653         cpuidle_resume();
654         trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
655 }
656
657 /**
658  * device_resume_early - Execute an "early resume" callback for given device.
659  * @dev: Device to handle.
660  * @state: PM transition of the system being carried out.
661  * @async: If true, the device is being resumed asynchronously.
662  *
663  * Runtime PM is disabled for @dev while this function is being executed.
664  */
665 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
666 {
667         pm_callback_t callback = NULL;
668         char *info = NULL;
669         int error = 0;
670
671         TRACE_DEVICE(dev);
672         TRACE_RESUME(0);
673
674         if (dev->power.syscore || dev->power.direct_complete)
675                 goto Out;
676
677         if (!dev->power.is_late_suspended)
678                 goto Out;
679
680         dpm_wait_for_superior(dev, async);
681
682         if (dev->pm_domain) {
683                 info = "early power domain ";
684                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
685         } else if (dev->type && dev->type->pm) {
686                 info = "early type ";
687                 callback = pm_late_early_op(dev->type->pm, state);
688         } else if (dev->class && dev->class->pm) {
689                 info = "early class ";
690                 callback = pm_late_early_op(dev->class->pm, state);
691         } else if (dev->bus && dev->bus->pm) {
692                 info = "early bus ";
693                 callback = pm_late_early_op(dev->bus->pm, state);
694         }
695
696         if (!callback && dev->driver && dev->driver->pm) {
697                 info = "early driver ";
698                 callback = pm_late_early_op(dev->driver->pm, state);
699         }
700
701         error = dpm_run_callback(callback, dev, state, info);
702         dev->power.is_late_suspended = false;
703
704  Out:
705         TRACE_RESUME(error);
706
707         pm_runtime_enable(dev);
708         complete_all(&dev->power.completion);
709         return error;
710 }
711
712 static void async_resume_early(void *data, async_cookie_t cookie)
713 {
714         struct device *dev = (struct device *)data;
715         int error;
716
717         error = device_resume_early(dev, pm_transition, true);
718         if (error)
719                 pm_dev_err(dev, pm_transition, " async", error);
720
721         put_device(dev);
722 }
723
724 /**
725  * dpm_resume_early - Execute "early resume" callbacks for all devices.
726  * @state: PM transition of the system being carried out.
727  */
728 void dpm_resume_early(pm_message_t state)
729 {
730         struct device *dev;
731         ktime_t starttime = ktime_get();
732
733         trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
734         mutex_lock(&dpm_list_mtx);
735         pm_transition = state;
736
737         /*
738          * Advanced the async threads upfront,
739          * in case the starting of async threads is
740          * delayed by non-async resuming devices.
741          */
742         list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
743                 reinit_completion(&dev->power.completion);
744                 if (is_async(dev)) {
745                         get_device(dev);
746                         async_schedule(async_resume_early, dev);
747                 }
748         }
749
750         while (!list_empty(&dpm_late_early_list)) {
751                 dev = to_device(dpm_late_early_list.next);
752                 get_device(dev);
753                 list_move_tail(&dev->power.entry, &dpm_suspended_list);
754                 mutex_unlock(&dpm_list_mtx);
755
756                 if (!is_async(dev)) {
757                         int error;
758
759                         error = device_resume_early(dev, state, false);
760                         if (error) {
761                                 suspend_stats.failed_resume_early++;
762                                 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
763                                 dpm_save_failed_dev(dev_name(dev));
764                                 pm_dev_err(dev, state, " early", error);
765                         }
766                 }
767                 mutex_lock(&dpm_list_mtx);
768                 put_device(dev);
769         }
770         mutex_unlock(&dpm_list_mtx);
771         async_synchronize_full();
772         dpm_show_time(starttime, state, "early");
773         trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
774 }
775
776 /**
777  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
778  * @state: PM transition of the system being carried out.
779  */
780 void dpm_resume_start(pm_message_t state)
781 {
782         dpm_resume_noirq(state);
783         dpm_resume_early(state);
784 }
785 EXPORT_SYMBOL_GPL(dpm_resume_start);
786
787 /**
788  * device_resume - Execute "resume" callbacks for given device.
789  * @dev: Device to handle.
790  * @state: PM transition of the system being carried out.
791  * @async: If true, the device is being resumed asynchronously.
792  */
793 static int device_resume(struct device *dev, pm_message_t state, bool async)
794 {
795         pm_callback_t callback = NULL;
796         char *info = NULL;
797         int error = 0;
798         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
799
800         TRACE_DEVICE(dev);
801         TRACE_RESUME(0);
802
803         if (dev->power.syscore)
804                 goto Complete;
805
806         if (dev->power.direct_complete) {
807                 /* Match the pm_runtime_disable() in __device_suspend(). */
808                 pm_runtime_enable(dev);
809                 goto Complete;
810         }
811
812         dpm_wait_for_superior(dev, async);
813         dpm_watchdog_set(&wd, dev);
814         device_lock(dev);
815
816         /*
817          * This is a fib.  But we'll allow new children to be added below
818          * a resumed device, even if the device hasn't been completed yet.
819          */
820         dev->power.is_prepared = false;
821
822         if (!dev->power.is_suspended)
823                 goto Unlock;
824
825         if (dev->pm_domain) {
826                 info = "power domain ";
827                 callback = pm_op(&dev->pm_domain->ops, state);
828                 goto Driver;
829         }
830
831         if (dev->type && dev->type->pm) {
832                 info = "type ";
833                 callback = pm_op(dev->type->pm, state);
834                 goto Driver;
835         }
836
837         if (dev->class) {
838                 if (dev->class->pm) {
839                         info = "class ";
840                         callback = pm_op(dev->class->pm, state);
841                         goto Driver;
842                 } else if (dev->class->resume) {
843                         info = "legacy class ";
844                         callback = dev->class->resume;
845                         goto End;
846                 }
847         }
848
849         if (dev->bus) {
850                 if (dev->bus->pm) {
851                         info = "bus ";
852                         callback = pm_op(dev->bus->pm, state);
853                 } else if (dev->bus->resume) {
854                         info = "legacy bus ";
855                         callback = dev->bus->resume;
856                         goto End;
857                 }
858         }
859
860  Driver:
861         if (!callback && dev->driver && dev->driver->pm) {
862                 info = "driver ";
863                 callback = pm_op(dev->driver->pm, state);
864         }
865
866  End:
867         error = dpm_run_callback(callback, dev, state, info);
868         dev->power.is_suspended = false;
869
870  Unlock:
871         device_unlock(dev);
872         dpm_watchdog_clear(&wd);
873
874  Complete:
875         complete_all(&dev->power.completion);
876
877         TRACE_RESUME(error);
878
879         return error;
880 }
881
882 static void async_resume(void *data, async_cookie_t cookie)
883 {
884         struct device *dev = (struct device *)data;
885         int error;
886
887         error = device_resume(dev, pm_transition, true);
888         if (error)
889                 pm_dev_err(dev, pm_transition, " async", error);
890         put_device(dev);
891 }
892
893 /**
894  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
895  * @state: PM transition of the system being carried out.
896  *
897  * Execute the appropriate "resume" callback for all devices whose status
898  * indicates that they are suspended.
899  */
900 void dpm_resume(pm_message_t state)
901 {
902         struct device *dev;
903         ktime_t starttime = ktime_get();
904
905         trace_suspend_resume(TPS("dpm_resume"), state.event, true);
906         might_sleep();
907
908         mutex_lock(&dpm_list_mtx);
909         pm_transition = state;
910         async_error = 0;
911
912         list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
913                 reinit_completion(&dev->power.completion);
914                 if (is_async(dev)) {
915                         get_device(dev);
916                         async_schedule(async_resume, dev);
917                 }
918         }
919
920         while (!list_empty(&dpm_suspended_list)) {
921                 dev = to_device(dpm_suspended_list.next);
922                 get_device(dev);
923                 if (!is_async(dev)) {
924                         int error;
925
926                         mutex_unlock(&dpm_list_mtx);
927
928                         error = device_resume(dev, state, false);
929                         if (error) {
930                                 suspend_stats.failed_resume++;
931                                 dpm_save_failed_step(SUSPEND_RESUME);
932                                 dpm_save_failed_dev(dev_name(dev));
933                                 pm_dev_err(dev, state, "", error);
934                         }
935
936                         mutex_lock(&dpm_list_mtx);
937                 }
938                 if (!list_empty(&dev->power.entry))
939                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
940                 put_device(dev);
941         }
942         mutex_unlock(&dpm_list_mtx);
943         async_synchronize_full();
944         dpm_show_time(starttime, state, NULL);
945
946         cpufreq_resume();
947         trace_suspend_resume(TPS("dpm_resume"), state.event, false);
948 }
949
950 /**
951  * device_complete - Complete a PM transition for given device.
952  * @dev: Device to handle.
953  * @state: PM transition of the system being carried out.
954  */
955 static void device_complete(struct device *dev, pm_message_t state)
956 {
957         void (*callback)(struct device *) = NULL;
958         char *info = NULL;
959
960         if (dev->power.syscore)
961                 return;
962
963         device_lock(dev);
964
965         if (dev->pm_domain) {
966                 info = "completing power domain ";
967                 callback = dev->pm_domain->ops.complete;
968         } else if (dev->type && dev->type->pm) {
969                 info = "completing type ";
970                 callback = dev->type->pm->complete;
971         } else if (dev->class && dev->class->pm) {
972                 info = "completing class ";
973                 callback = dev->class->pm->complete;
974         } else if (dev->bus && dev->bus->pm) {
975                 info = "completing bus ";
976                 callback = dev->bus->pm->complete;
977         }
978
979         if (!callback && dev->driver && dev->driver->pm) {
980                 info = "completing driver ";
981                 callback = dev->driver->pm->complete;
982         }
983
984         if (callback) {
985                 pm_dev_dbg(dev, state, info);
986                 callback(dev);
987         }
988
989         device_unlock(dev);
990
991         pm_runtime_put(dev);
992 }
993
994 /**
995  * dpm_complete - Complete a PM transition for all non-sysdev devices.
996  * @state: PM transition of the system being carried out.
997  *
998  * Execute the ->complete() callbacks for all devices whose PM status is not
999  * DPM_ON (this allows new devices to be registered).
1000  */
1001 void dpm_complete(pm_message_t state)
1002 {
1003         struct list_head list;
1004
1005         trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1006         might_sleep();
1007
1008         INIT_LIST_HEAD(&list);
1009         mutex_lock(&dpm_list_mtx);
1010         while (!list_empty(&dpm_prepared_list)) {
1011                 struct device *dev = to_device(dpm_prepared_list.prev);
1012
1013                 get_device(dev);
1014                 dev->power.is_prepared = false;
1015                 list_move(&dev->power.entry, &list);
1016                 mutex_unlock(&dpm_list_mtx);
1017
1018                 trace_device_pm_callback_start(dev, "", state.event);
1019                 device_complete(dev, state);
1020                 trace_device_pm_callback_end(dev, 0);
1021
1022                 mutex_lock(&dpm_list_mtx);
1023                 put_device(dev);
1024         }
1025         list_splice(&list, &dpm_list);
1026         mutex_unlock(&dpm_list_mtx);
1027
1028         /* Allow device probing and trigger re-probing of deferred devices */
1029         device_unblock_probing();
1030         trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1031 }
1032
1033 /**
1034  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1035  * @state: PM transition of the system being carried out.
1036  *
1037  * Execute "resume" callbacks for all devices and complete the PM transition of
1038  * the system.
1039  */
1040 void dpm_resume_end(pm_message_t state)
1041 {
1042         dpm_resume(state);
1043         dpm_complete(state);
1044 }
1045 EXPORT_SYMBOL_GPL(dpm_resume_end);
1046
1047
1048 /*------------------------- Suspend routines -------------------------*/
1049
1050 /**
1051  * resume_event - Return a "resume" message for given "suspend" sleep state.
1052  * @sleep_state: PM message representing a sleep state.
1053  *
1054  * Return a PM message representing the resume event corresponding to given
1055  * sleep state.
1056  */
1057 static pm_message_t resume_event(pm_message_t sleep_state)
1058 {
1059         switch (sleep_state.event) {
1060         case PM_EVENT_SUSPEND:
1061                 return PMSG_RESUME;
1062         case PM_EVENT_FREEZE:
1063         case PM_EVENT_QUIESCE:
1064                 return PMSG_RECOVER;
1065         case PM_EVENT_HIBERNATE:
1066                 return PMSG_RESTORE;
1067         }
1068         return PMSG_ON;
1069 }
1070
1071 /**
1072  * device_suspend_noirq - Execute a "late suspend" callback for given device.
1073  * @dev: Device to handle.
1074  * @state: PM transition of the system being carried out.
1075  * @async: If true, the device is being suspended asynchronously.
1076  *
1077  * The driver of @dev will not receive interrupts while this function is being
1078  * executed.
1079  */
1080 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1081 {
1082         pm_callback_t callback = NULL;
1083         char *info = NULL;
1084         int error = 0;
1085
1086         TRACE_DEVICE(dev);
1087         TRACE_SUSPEND(0);
1088
1089         dpm_wait_for_subordinate(dev, async);
1090
1091         if (async_error)
1092                 goto Complete;
1093
1094         if (dev->power.syscore || dev->power.direct_complete)
1095                 goto Complete;
1096
1097         if (dev->pm_domain) {
1098                 info = "noirq power domain ";
1099                 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1100         } else if (dev->type && dev->type->pm) {
1101                 info = "noirq type ";
1102                 callback = pm_noirq_op(dev->type->pm, state);
1103         } else if (dev->class && dev->class->pm) {
1104                 info = "noirq class ";
1105                 callback = pm_noirq_op(dev->class->pm, state);
1106         } else if (dev->bus && dev->bus->pm) {
1107                 info = "noirq bus ";
1108                 callback = pm_noirq_op(dev->bus->pm, state);
1109         }
1110
1111         if (!callback && dev->driver && dev->driver->pm) {
1112                 info = "noirq driver ";
1113                 callback = pm_noirq_op(dev->driver->pm, state);
1114         }
1115
1116         error = dpm_run_callback(callback, dev, state, info);
1117         if (!error)
1118                 dev->power.is_noirq_suspended = true;
1119         else
1120                 async_error = error;
1121
1122 Complete:
1123         complete_all(&dev->power.completion);
1124         TRACE_SUSPEND(error);
1125         return error;
1126 }
1127
1128 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1129 {
1130         struct device *dev = (struct device *)data;
1131         int error;
1132
1133         error = __device_suspend_noirq(dev, pm_transition, true);
1134         if (error) {
1135                 dpm_save_failed_dev(dev_name(dev));
1136                 pm_dev_err(dev, pm_transition, " async", error);
1137         }
1138
1139         put_device(dev);
1140 }
1141
1142 static int device_suspend_noirq(struct device *dev)
1143 {
1144         reinit_completion(&dev->power.completion);
1145
1146         if (is_async(dev)) {
1147                 get_device(dev);
1148                 async_schedule(async_suspend_noirq, dev);
1149                 return 0;
1150         }
1151         return __device_suspend_noirq(dev, pm_transition, false);
1152 }
1153
1154 /**
1155  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1156  * @state: PM transition of the system being carried out.
1157  *
1158  * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1159  * handlers for all non-sysdev devices.
1160  */
1161 int dpm_suspend_noirq(pm_message_t state)
1162 {
1163         ktime_t starttime = ktime_get();
1164         int error = 0;
1165
1166         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1167         cpuidle_pause();
1168         device_wakeup_arm_wake_irqs();
1169         suspend_device_irqs();
1170         mutex_lock(&dpm_list_mtx);
1171         pm_transition = state;
1172         async_error = 0;
1173
1174         while (!list_empty(&dpm_late_early_list)) {
1175                 struct device *dev = to_device(dpm_late_early_list.prev);
1176
1177                 get_device(dev);
1178                 mutex_unlock(&dpm_list_mtx);
1179
1180                 error = device_suspend_noirq(dev);
1181
1182                 mutex_lock(&dpm_list_mtx);
1183                 if (error) {
1184                         pm_dev_err(dev, state, " noirq", error);
1185                         dpm_save_failed_dev(dev_name(dev));
1186                         put_device(dev);
1187                         break;
1188                 }
1189                 if (!list_empty(&dev->power.entry))
1190                         list_move(&dev->power.entry, &dpm_noirq_list);
1191                 put_device(dev);
1192
1193                 if (async_error)
1194                         break;
1195         }
1196         mutex_unlock(&dpm_list_mtx);
1197         async_synchronize_full();
1198         if (!error)
1199                 error = async_error;
1200
1201         if (error) {
1202                 suspend_stats.failed_suspend_noirq++;
1203                 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1204                 dpm_resume_noirq(resume_event(state));
1205         } else {
1206                 dpm_show_time(starttime, state, "noirq");
1207         }
1208         trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1209         return error;
1210 }
1211
1212 /**
1213  * device_suspend_late - Execute a "late suspend" callback for given device.
1214  * @dev: Device to handle.
1215  * @state: PM transition of the system being carried out.
1216  * @async: If true, the device is being suspended asynchronously.
1217  *
1218  * Runtime PM is disabled for @dev while this function is being executed.
1219  */
1220 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1221 {
1222         pm_callback_t callback = NULL;
1223         char *info = NULL;
1224         int error = 0;
1225
1226         TRACE_DEVICE(dev);
1227         TRACE_SUSPEND(0);
1228
1229         __pm_runtime_disable(dev, false);
1230
1231         dpm_wait_for_subordinate(dev, async);
1232
1233         if (async_error)
1234                 goto Complete;
1235
1236         if (pm_wakeup_pending()) {
1237                 async_error = -EBUSY;
1238                 goto Complete;
1239         }
1240
1241         if (dev->power.syscore || dev->power.direct_complete)
1242                 goto Complete;
1243
1244         if (dev->pm_domain) {
1245                 info = "late power domain ";
1246                 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1247         } else if (dev->type && dev->type->pm) {
1248                 info = "late type ";
1249                 callback = pm_late_early_op(dev->type->pm, state);
1250         } else if (dev->class && dev->class->pm) {
1251                 info = "late class ";
1252                 callback = pm_late_early_op(dev->class->pm, state);
1253         } else if (dev->bus && dev->bus->pm) {
1254                 info = "late bus ";
1255                 callback = pm_late_early_op(dev->bus->pm, state);
1256         }
1257
1258         if (!callback && dev->driver && dev->driver->pm) {
1259                 info = "late driver ";
1260                 callback = pm_late_early_op(dev->driver->pm, state);
1261         }
1262
1263         error = dpm_run_callback(callback, dev, state, info);
1264         if (!error)
1265                 dev->power.is_late_suspended = true;
1266         else
1267                 async_error = error;
1268
1269 Complete:
1270         TRACE_SUSPEND(error);
1271         complete_all(&dev->power.completion);
1272         return error;
1273 }
1274
1275 static void async_suspend_late(void *data, async_cookie_t cookie)
1276 {
1277         struct device *dev = (struct device *)data;
1278         int error;
1279
1280         error = __device_suspend_late(dev, pm_transition, true);
1281         if (error) {
1282                 dpm_save_failed_dev(dev_name(dev));
1283                 pm_dev_err(dev, pm_transition, " async", error);
1284         }
1285         put_device(dev);
1286 }
1287
1288 static int device_suspend_late(struct device *dev)
1289 {
1290         reinit_completion(&dev->power.completion);
1291
1292         if (is_async(dev)) {
1293                 get_device(dev);
1294                 async_schedule(async_suspend_late, dev);
1295                 return 0;
1296         }
1297
1298         return __device_suspend_late(dev, pm_transition, false);
1299 }
1300
1301 /**
1302  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1303  * @state: PM transition of the system being carried out.
1304  */
1305 int dpm_suspend_late(pm_message_t state)
1306 {
1307         ktime_t starttime = ktime_get();
1308         int error = 0;
1309
1310         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1311         mutex_lock(&dpm_list_mtx);
1312         pm_transition = state;
1313         async_error = 0;
1314
1315         while (!list_empty(&dpm_suspended_list)) {
1316                 struct device *dev = to_device(dpm_suspended_list.prev);
1317
1318                 get_device(dev);
1319                 mutex_unlock(&dpm_list_mtx);
1320
1321                 error = device_suspend_late(dev);
1322
1323                 mutex_lock(&dpm_list_mtx);
1324                 if (!list_empty(&dev->power.entry))
1325                         list_move(&dev->power.entry, &dpm_late_early_list);
1326
1327                 if (error) {
1328                         pm_dev_err(dev, state, " late", error);
1329                         dpm_save_failed_dev(dev_name(dev));
1330                         put_device(dev);
1331                         break;
1332                 }
1333                 put_device(dev);
1334
1335                 if (async_error)
1336                         break;
1337         }
1338         mutex_unlock(&dpm_list_mtx);
1339         async_synchronize_full();
1340         if (!error)
1341                 error = async_error;
1342         if (error) {
1343                 suspend_stats.failed_suspend_late++;
1344                 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1345                 dpm_resume_early(resume_event(state));
1346         } else {
1347                 dpm_show_time(starttime, state, "late");
1348         }
1349         trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1350         return error;
1351 }
1352
1353 /**
1354  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1355  * @state: PM transition of the system being carried out.
1356  */
1357 int dpm_suspend_end(pm_message_t state)
1358 {
1359         int error = dpm_suspend_late(state);
1360         if (error)
1361                 return error;
1362
1363         error = dpm_suspend_noirq(state);
1364         if (error) {
1365                 dpm_resume_early(resume_event(state));
1366                 return error;
1367         }
1368
1369         return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1372
1373 /**
1374  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1375  * @dev: Device to suspend.
1376  * @state: PM transition of the system being carried out.
1377  * @cb: Suspend callback to execute.
1378  * @info: string description of caller.
1379  */
1380 static int legacy_suspend(struct device *dev, pm_message_t state,
1381                           int (*cb)(struct device *dev, pm_message_t state),
1382                           char *info)
1383 {
1384         int error;
1385         ktime_t calltime;
1386
1387         calltime = initcall_debug_start(dev);
1388
1389         trace_device_pm_callback_start(dev, info, state.event);
1390         error = cb(dev, state);
1391         trace_device_pm_callback_end(dev, error);
1392         suspend_report_result(cb, error);
1393
1394         initcall_debug_report(dev, calltime, error, state, info);
1395
1396         return error;
1397 }
1398
1399 static void dpm_clear_suppliers_direct_complete(struct device *dev)
1400 {
1401         struct device_link *link;
1402         int idx;
1403
1404         idx = device_links_read_lock();
1405
1406         list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1407                 spin_lock_irq(&link->supplier->power.lock);
1408                 link->supplier->power.direct_complete = false;
1409                 spin_unlock_irq(&link->supplier->power.lock);
1410         }
1411
1412         device_links_read_unlock(idx);
1413 }
1414
1415 /**
1416  * device_suspend - Execute "suspend" callbacks for given device.
1417  * @dev: Device to handle.
1418  * @state: PM transition of the system being carried out.
1419  * @async: If true, the device is being suspended asynchronously.
1420  */
1421 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1422 {
1423         pm_callback_t callback = NULL;
1424         char *info = NULL;
1425         int error = 0;
1426         DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1427
1428         TRACE_DEVICE(dev);
1429         TRACE_SUSPEND(0);
1430
1431         dpm_wait_for_subordinate(dev, async);
1432
1433         if (async_error)
1434                 goto Complete;
1435
1436         /*
1437          * If a device configured to wake up the system from sleep states
1438          * has been suspended at run time and there's a resume request pending
1439          * for it, this is equivalent to the device signaling wakeup, so the
1440          * system suspend operation should be aborted.
1441          */
1442         if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1443                 pm_wakeup_event(dev, 0);
1444
1445         if (pm_wakeup_pending()) {
1446                 async_error = -EBUSY;
1447                 goto Complete;
1448         }
1449
1450         if (dev->power.syscore)
1451                 goto Complete;
1452
1453         if (dev->power.direct_complete) {
1454                 if (pm_runtime_status_suspended(dev)) {
1455                         pm_runtime_disable(dev);
1456                         if (pm_runtime_status_suspended(dev))
1457                                 goto Complete;
1458
1459                         pm_runtime_enable(dev);
1460                 }
1461                 dev->power.direct_complete = false;
1462         }
1463
1464         dpm_watchdog_set(&wd, dev);
1465         device_lock(dev);
1466
1467         if (dev->pm_domain) {
1468                 info = "power domain ";
1469                 callback = pm_op(&dev->pm_domain->ops, state);
1470                 goto Run;
1471         }
1472
1473         if (dev->type && dev->type->pm) {
1474                 info = "type ";
1475                 callback = pm_op(dev->type->pm, state);
1476                 goto Run;
1477         }
1478
1479         if (dev->class) {
1480                 if (dev->class->pm) {
1481                         info = "class ";
1482                         callback = pm_op(dev->class->pm, state);
1483                         goto Run;
1484                 } else if (dev->class->suspend) {
1485                         pm_dev_dbg(dev, state, "legacy class ");
1486                         error = legacy_suspend(dev, state, dev->class->suspend,
1487                                                 "legacy class ");
1488                         goto End;
1489                 }
1490         }
1491
1492         if (dev->bus) {
1493                 if (dev->bus->pm) {
1494                         info = "bus ";
1495                         callback = pm_op(dev->bus->pm, state);
1496                 } else if (dev->bus->suspend) {
1497                         pm_dev_dbg(dev, state, "legacy bus ");
1498                         error = legacy_suspend(dev, state, dev->bus->suspend,
1499                                                 "legacy bus ");
1500                         goto End;
1501                 }
1502         }
1503
1504  Run:
1505         if (!callback && dev->driver && dev->driver->pm) {
1506                 info = "driver ";
1507                 callback = pm_op(dev->driver->pm, state);
1508         }
1509
1510         error = dpm_run_callback(callback, dev, state, info);
1511
1512  End:
1513         if (!error) {
1514                 struct device *parent = dev->parent;
1515
1516                 dev->power.is_suspended = true;
1517                 if (parent) {
1518                         spin_lock_irq(&parent->power.lock);
1519
1520                         dev->parent->power.direct_complete = false;
1521                         if (dev->power.wakeup_path
1522                             && !dev->parent->power.ignore_children)
1523                                 dev->parent->power.wakeup_path = true;
1524
1525                         spin_unlock_irq(&parent->power.lock);
1526                 }
1527                 dpm_clear_suppliers_direct_complete(dev);
1528         }
1529
1530         device_unlock(dev);
1531         dpm_watchdog_clear(&wd);
1532
1533  Complete:
1534         if (error)
1535                 async_error = error;
1536
1537         complete_all(&dev->power.completion);
1538         TRACE_SUSPEND(error);
1539         return error;
1540 }
1541
1542 static void async_suspend(void *data, async_cookie_t cookie)
1543 {
1544         struct device *dev = (struct device *)data;
1545         int error;
1546
1547         error = __device_suspend(dev, pm_transition, true);
1548         if (error) {
1549                 dpm_save_failed_dev(dev_name(dev));
1550                 pm_dev_err(dev, pm_transition, " async", error);
1551         }
1552
1553         put_device(dev);
1554 }
1555
1556 static int device_suspend(struct device *dev)
1557 {
1558         reinit_completion(&dev->power.completion);
1559
1560         if (is_async(dev)) {
1561                 get_device(dev);
1562                 async_schedule(async_suspend, dev);
1563                 return 0;
1564         }
1565
1566         return __device_suspend(dev, pm_transition, false);
1567 }
1568
1569 /**
1570  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1571  * @state: PM transition of the system being carried out.
1572  */
1573 int dpm_suspend(pm_message_t state)
1574 {
1575         ktime_t starttime = ktime_get();
1576         int error = 0;
1577
1578         trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1579         might_sleep();
1580
1581         cpufreq_suspend();
1582
1583         mutex_lock(&dpm_list_mtx);
1584         pm_transition = state;
1585         async_error = 0;
1586         while (!list_empty(&dpm_prepared_list)) {
1587                 struct device *dev = to_device(dpm_prepared_list.prev);
1588
1589                 get_device(dev);
1590                 mutex_unlock(&dpm_list_mtx);
1591
1592                 error = device_suspend(dev);
1593
1594                 mutex_lock(&dpm_list_mtx);
1595                 if (error) {
1596                         pm_dev_err(dev, state, "", error);
1597                         dpm_save_failed_dev(dev_name(dev));
1598                         put_device(dev);
1599                         break;
1600                 }
1601                 if (!list_empty(&dev->power.entry))
1602                         list_move(&dev->power.entry, &dpm_suspended_list);
1603                 put_device(dev);
1604                 if (async_error)
1605                         break;
1606         }
1607         mutex_unlock(&dpm_list_mtx);
1608         async_synchronize_full();
1609         if (!error)
1610                 error = async_error;
1611         if (error) {
1612                 suspend_stats.failed_suspend++;
1613                 dpm_save_failed_step(SUSPEND_SUSPEND);
1614         } else
1615                 dpm_show_time(starttime, state, NULL);
1616         trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1617         return error;
1618 }
1619
1620 /**
1621  * device_prepare - Prepare a device for system power transition.
1622  * @dev: Device to handle.
1623  * @state: PM transition of the system being carried out.
1624  *
1625  * Execute the ->prepare() callback(s) for given device.  No new children of the
1626  * device may be registered after this function has returned.
1627  */
1628 static int device_prepare(struct device *dev, pm_message_t state)
1629 {
1630         int (*callback)(struct device *) = NULL;
1631         int ret = 0;
1632
1633         if (dev->power.syscore)
1634                 return 0;
1635
1636         /*
1637          * If a device's parent goes into runtime suspend at the wrong time,
1638          * it won't be possible to resume the device.  To prevent this we
1639          * block runtime suspend here, during the prepare phase, and allow
1640          * it again during the complete phase.
1641          */
1642         pm_runtime_get_noresume(dev);
1643
1644         device_lock(dev);
1645
1646         dev->power.wakeup_path = device_may_wakeup(dev);
1647
1648         if (dev->power.no_pm_callbacks) {
1649                 ret = 1;        /* Let device go direct_complete */
1650                 goto unlock;
1651         }
1652
1653         if (dev->pm_domain)
1654                 callback = dev->pm_domain->ops.prepare;
1655         else if (dev->type && dev->type->pm)
1656                 callback = dev->type->pm->prepare;
1657         else if (dev->class && dev->class->pm)
1658                 callback = dev->class->pm->prepare;
1659         else if (dev->bus && dev->bus->pm)
1660                 callback = dev->bus->pm->prepare;
1661
1662         if (!callback && dev->driver && dev->driver->pm)
1663                 callback = dev->driver->pm->prepare;
1664
1665         if (callback)
1666                 ret = callback(dev);
1667
1668 unlock:
1669         device_unlock(dev);
1670
1671         if (ret < 0) {
1672                 suspend_report_result(callback, ret);
1673                 pm_runtime_put(dev);
1674                 return ret;
1675         }
1676         /*
1677          * A positive return value from ->prepare() means "this device appears
1678          * to be runtime-suspended and its state is fine, so if it really is
1679          * runtime-suspended, you can leave it in that state provided that you
1680          * will do the same thing with all of its descendants".  This only
1681          * applies to suspend transitions, however.
1682          */
1683         spin_lock_irq(&dev->power.lock);
1684         dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1685         spin_unlock_irq(&dev->power.lock);
1686         return 0;
1687 }
1688
1689 /**
1690  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1691  * @state: PM transition of the system being carried out.
1692  *
1693  * Execute the ->prepare() callback(s) for all devices.
1694  */
1695 int dpm_prepare(pm_message_t state)
1696 {
1697         int error = 0;
1698
1699         trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1700         might_sleep();
1701
1702         /*
1703          * Give a chance for the known devices to complete their probes, before
1704          * disable probing of devices. This sync point is important at least
1705          * at boot time + hibernation restore.
1706          */
1707         wait_for_device_probe();
1708         /*
1709          * It is unsafe if probing of devices will happen during suspend or
1710          * hibernation and system behavior will be unpredictable in this case.
1711          * So, let's prohibit device's probing here and defer their probes
1712          * instead. The normal behavior will be restored in dpm_complete().
1713          */
1714         device_block_probing();
1715
1716         mutex_lock(&dpm_list_mtx);
1717         while (!list_empty(&dpm_list)) {
1718                 struct device *dev = to_device(dpm_list.next);
1719
1720                 get_device(dev);
1721                 mutex_unlock(&dpm_list_mtx);
1722
1723                 trace_device_pm_callback_start(dev, "", state.event);
1724                 error = device_prepare(dev, state);
1725                 trace_device_pm_callback_end(dev, error);
1726
1727                 mutex_lock(&dpm_list_mtx);
1728                 if (error) {
1729                         if (error == -EAGAIN) {
1730                                 put_device(dev);
1731                                 error = 0;
1732                                 continue;
1733                         }
1734                         printk(KERN_INFO "PM: Device %s not prepared "
1735                                 "for power transition: code %d\n",
1736                                 dev_name(dev), error);
1737                         put_device(dev);
1738                         break;
1739                 }
1740                 dev->power.is_prepared = true;
1741                 if (!list_empty(&dev->power.entry))
1742                         list_move_tail(&dev->power.entry, &dpm_prepared_list);
1743                 put_device(dev);
1744         }
1745         mutex_unlock(&dpm_list_mtx);
1746         trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1747         return error;
1748 }
1749
1750 /**
1751  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1752  * @state: PM transition of the system being carried out.
1753  *
1754  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1755  * callbacks for them.
1756  */
1757 int dpm_suspend_start(pm_message_t state)
1758 {
1759         int error;
1760
1761         error = dpm_prepare(state);
1762         if (error) {
1763                 suspend_stats.failed_prepare++;
1764                 dpm_save_failed_step(SUSPEND_PREPARE);
1765         } else
1766                 error = dpm_suspend(state);
1767         return error;
1768 }
1769 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1770
1771 void __suspend_report_result(const char *function, void *fn, int ret)
1772 {
1773         if (ret)
1774                 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1775 }
1776 EXPORT_SYMBOL_GPL(__suspend_report_result);
1777
1778 /**
1779  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1780  * @dev: Device to wait for.
1781  * @subordinate: Device that needs to wait for @dev.
1782  */
1783 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1784 {
1785         dpm_wait(dev, subordinate->power.async_suspend);
1786         return async_error;
1787 }
1788 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1789
1790 /**
1791  * dpm_for_each_dev - device iterator.
1792  * @data: data for the callback.
1793  * @fn: function to be called for each device.
1794  *
1795  * Iterate over devices in dpm_list, and call @fn for each device,
1796  * passing it @data.
1797  */
1798 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1799 {
1800         struct device *dev;
1801
1802         if (!fn)
1803                 return;
1804
1805         device_pm_lock();
1806         list_for_each_entry(dev, &dpm_list, power.entry)
1807                 fn(dev, data);
1808         device_pm_unlock();
1809 }
1810 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1811
1812 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1813 {
1814         if (!ops)
1815                 return true;
1816
1817         return !ops->prepare &&
1818                !ops->suspend &&
1819                !ops->suspend_late &&
1820                !ops->suspend_noirq &&
1821                !ops->resume_noirq &&
1822                !ops->resume_early &&
1823                !ops->resume &&
1824                !ops->complete;
1825 }
1826
1827 void device_pm_check_callbacks(struct device *dev)
1828 {
1829         spin_lock_irq(&dev->power.lock);
1830         dev->power.no_pm_callbacks =
1831                 (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1832                 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1833                 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1834                 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1835                 (!dev->driver || pm_ops_is_empty(dev->driver->pm));
1836         spin_unlock_irq(&dev->power.lock);
1837 }