]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/base/regmap/regmap.c
regmap: merge regmap_fields_update_bits() into macro
[karo-tx-linux.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25
26 #include "internal.h"
27
28 /*
29  * Sometimes for failures during very early init the trace
30  * infrastructure isn't available early enough to be used.  For this
31  * sort of problem defining LOG_DEVICE will add printks for basic
32  * register I/O on a specific device.
33  */
34 #undef LOG_DEVICE
35
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37                                unsigned int mask, unsigned int val,
38                                bool *change, bool force_write);
39
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41                                 unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43                             unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45                                        unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47                                  unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49                                  unsigned int val);
50
51 bool regmap_reg_in_ranges(unsigned int reg,
52                           const struct regmap_range *ranges,
53                           unsigned int nranges)
54 {
55         const struct regmap_range *r;
56         int i;
57
58         for (i = 0, r = ranges; i < nranges; i++, r++)
59                 if (regmap_reg_in_range(reg, r))
60                         return true;
61         return false;
62 }
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66                               const struct regmap_access_table *table)
67 {
68         /* Check "no ranges" first */
69         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70                 return false;
71
72         /* In case zero "yes ranges" are supplied, any reg is OK */
73         if (!table->n_yes_ranges)
74                 return true;
75
76         return regmap_reg_in_ranges(reg, table->yes_ranges,
77                                     table->n_yes_ranges);
78 }
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
80
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
82 {
83         if (map->max_register && reg > map->max_register)
84                 return false;
85
86         if (map->writeable_reg)
87                 return map->writeable_reg(map->dev, reg);
88
89         if (map->wr_table)
90                 return regmap_check_range_table(map, reg, map->wr_table);
91
92         return true;
93 }
94
95 bool regmap_readable(struct regmap *map, unsigned int reg)
96 {
97         if (!map->reg_read)
98                 return false;
99
100         if (map->max_register && reg > map->max_register)
101                 return false;
102
103         if (map->format.format_write)
104                 return false;
105
106         if (map->readable_reg)
107                 return map->readable_reg(map->dev, reg);
108
109         if (map->rd_table)
110                 return regmap_check_range_table(map, reg, map->rd_table);
111
112         return true;
113 }
114
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117         if (!map->format.format_write && !regmap_readable(map, reg))
118                 return false;
119
120         if (map->volatile_reg)
121                 return map->volatile_reg(map->dev, reg);
122
123         if (map->volatile_table)
124                 return regmap_check_range_table(map, reg, map->volatile_table);
125
126         if (map->cache_ops)
127                 return false;
128         else
129                 return true;
130 }
131
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134         if (!regmap_readable(map, reg))
135                 return false;
136
137         if (map->precious_reg)
138                 return map->precious_reg(map->dev, reg);
139
140         if (map->precious_table)
141                 return regmap_check_range_table(map, reg, map->precious_table);
142
143         return false;
144 }
145
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147         size_t num)
148 {
149         unsigned int i;
150
151         for (i = 0; i < num; i++)
152                 if (!regmap_volatile(map, reg + i))
153                         return false;
154
155         return true;
156 }
157
158 static void regmap_format_2_6_write(struct regmap *map,
159                                      unsigned int reg, unsigned int val)
160 {
161         u8 *out = map->work_buf;
162
163         *out = (reg << 6) | val;
164 }
165
166 static void regmap_format_4_12_write(struct regmap *map,
167                                      unsigned int reg, unsigned int val)
168 {
169         __be16 *out = map->work_buf;
170         *out = cpu_to_be16((reg << 12) | val);
171 }
172
173 static void regmap_format_7_9_write(struct regmap *map,
174                                     unsigned int reg, unsigned int val)
175 {
176         __be16 *out = map->work_buf;
177         *out = cpu_to_be16((reg << 9) | val);
178 }
179
180 static void regmap_format_10_14_write(struct regmap *map,
181                                     unsigned int reg, unsigned int val)
182 {
183         u8 *out = map->work_buf;
184
185         out[2] = val;
186         out[1] = (val >> 8) | (reg << 6);
187         out[0] = reg >> 2;
188 }
189
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192         u8 *b = buf;
193
194         b[0] = val << shift;
195 }
196
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199         __be16 *b = buf;
200
201         b[0] = cpu_to_be16(val << shift);
202 }
203
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205 {
206         __le16 *b = buf;
207
208         b[0] = cpu_to_le16(val << shift);
209 }
210
211 static void regmap_format_16_native(void *buf, unsigned int val,
212                                     unsigned int shift)
213 {
214         *(u16 *)buf = val << shift;
215 }
216
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 {
219         u8 *b = buf;
220
221         val <<= shift;
222
223         b[0] = val >> 16;
224         b[1] = val >> 8;
225         b[2] = val;
226 }
227
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 {
230         __be32 *b = buf;
231
232         b[0] = cpu_to_be32(val << shift);
233 }
234
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236 {
237         __le32 *b = buf;
238
239         b[0] = cpu_to_le32(val << shift);
240 }
241
242 static void regmap_format_32_native(void *buf, unsigned int val,
243                                     unsigned int shift)
244 {
245         *(u32 *)buf = val << shift;
246 }
247
248 #ifdef CONFIG_64BIT
249 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
250 {
251         __be64 *b = buf;
252
253         b[0] = cpu_to_be64((u64)val << shift);
254 }
255
256 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
257 {
258         __le64 *b = buf;
259
260         b[0] = cpu_to_le64((u64)val << shift);
261 }
262
263 static void regmap_format_64_native(void *buf, unsigned int val,
264                                     unsigned int shift)
265 {
266         *(u64 *)buf = (u64)val << shift;
267 }
268 #endif
269
270 static void regmap_parse_inplace_noop(void *buf)
271 {
272 }
273
274 static unsigned int regmap_parse_8(const void *buf)
275 {
276         const u8 *b = buf;
277
278         return b[0];
279 }
280
281 static unsigned int regmap_parse_16_be(const void *buf)
282 {
283         const __be16 *b = buf;
284
285         return be16_to_cpu(b[0]);
286 }
287
288 static unsigned int regmap_parse_16_le(const void *buf)
289 {
290         const __le16 *b = buf;
291
292         return le16_to_cpu(b[0]);
293 }
294
295 static void regmap_parse_16_be_inplace(void *buf)
296 {
297         __be16 *b = buf;
298
299         b[0] = be16_to_cpu(b[0]);
300 }
301
302 static void regmap_parse_16_le_inplace(void *buf)
303 {
304         __le16 *b = buf;
305
306         b[0] = le16_to_cpu(b[0]);
307 }
308
309 static unsigned int regmap_parse_16_native(const void *buf)
310 {
311         return *(u16 *)buf;
312 }
313
314 static unsigned int regmap_parse_24(const void *buf)
315 {
316         const u8 *b = buf;
317         unsigned int ret = b[2];
318         ret |= ((unsigned int)b[1]) << 8;
319         ret |= ((unsigned int)b[0]) << 16;
320
321         return ret;
322 }
323
324 static unsigned int regmap_parse_32_be(const void *buf)
325 {
326         const __be32 *b = buf;
327
328         return be32_to_cpu(b[0]);
329 }
330
331 static unsigned int regmap_parse_32_le(const void *buf)
332 {
333         const __le32 *b = buf;
334
335         return le32_to_cpu(b[0]);
336 }
337
338 static void regmap_parse_32_be_inplace(void *buf)
339 {
340         __be32 *b = buf;
341
342         b[0] = be32_to_cpu(b[0]);
343 }
344
345 static void regmap_parse_32_le_inplace(void *buf)
346 {
347         __le32 *b = buf;
348
349         b[0] = le32_to_cpu(b[0]);
350 }
351
352 static unsigned int regmap_parse_32_native(const void *buf)
353 {
354         return *(u32 *)buf;
355 }
356
357 #ifdef CONFIG_64BIT
358 static unsigned int regmap_parse_64_be(const void *buf)
359 {
360         const __be64 *b = buf;
361
362         return be64_to_cpu(b[0]);
363 }
364
365 static unsigned int regmap_parse_64_le(const void *buf)
366 {
367         const __le64 *b = buf;
368
369         return le64_to_cpu(b[0]);
370 }
371
372 static void regmap_parse_64_be_inplace(void *buf)
373 {
374         __be64 *b = buf;
375
376         b[0] = be64_to_cpu(b[0]);
377 }
378
379 static void regmap_parse_64_le_inplace(void *buf)
380 {
381         __le64 *b = buf;
382
383         b[0] = le64_to_cpu(b[0]);
384 }
385
386 static unsigned int regmap_parse_64_native(const void *buf)
387 {
388         return *(u64 *)buf;
389 }
390 #endif
391
392 static void regmap_lock_mutex(void *__map)
393 {
394         struct regmap *map = __map;
395         mutex_lock(&map->mutex);
396 }
397
398 static void regmap_unlock_mutex(void *__map)
399 {
400         struct regmap *map = __map;
401         mutex_unlock(&map->mutex);
402 }
403
404 static void regmap_lock_spinlock(void *__map)
405 __acquires(&map->spinlock)
406 {
407         struct regmap *map = __map;
408         unsigned long flags;
409
410         spin_lock_irqsave(&map->spinlock, flags);
411         map->spinlock_flags = flags;
412 }
413
414 static void regmap_unlock_spinlock(void *__map)
415 __releases(&map->spinlock)
416 {
417         struct regmap *map = __map;
418         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 }
420
421 static void dev_get_regmap_release(struct device *dev, void *res)
422 {
423         /*
424          * We don't actually have anything to do here; the goal here
425          * is not to manage the regmap but to provide a simple way to
426          * get the regmap back given a struct device.
427          */
428 }
429
430 static bool _regmap_range_add(struct regmap *map,
431                               struct regmap_range_node *data)
432 {
433         struct rb_root *root = &map->range_tree;
434         struct rb_node **new = &(root->rb_node), *parent = NULL;
435
436         while (*new) {
437                 struct regmap_range_node *this =
438                         container_of(*new, struct regmap_range_node, node);
439
440                 parent = *new;
441                 if (data->range_max < this->range_min)
442                         new = &((*new)->rb_left);
443                 else if (data->range_min > this->range_max)
444                         new = &((*new)->rb_right);
445                 else
446                         return false;
447         }
448
449         rb_link_node(&data->node, parent, new);
450         rb_insert_color(&data->node, root);
451
452         return true;
453 }
454
455 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
456                                                       unsigned int reg)
457 {
458         struct rb_node *node = map->range_tree.rb_node;
459
460         while (node) {
461                 struct regmap_range_node *this =
462                         container_of(node, struct regmap_range_node, node);
463
464                 if (reg < this->range_min)
465                         node = node->rb_left;
466                 else if (reg > this->range_max)
467                         node = node->rb_right;
468                 else
469                         return this;
470         }
471
472         return NULL;
473 }
474
475 static void regmap_range_exit(struct regmap *map)
476 {
477         struct rb_node *next;
478         struct regmap_range_node *range_node;
479
480         next = rb_first(&map->range_tree);
481         while (next) {
482                 range_node = rb_entry(next, struct regmap_range_node, node);
483                 next = rb_next(&range_node->node);
484                 rb_erase(&range_node->node, &map->range_tree);
485                 kfree(range_node);
486         }
487
488         kfree(map->selector_work_buf);
489 }
490
491 int regmap_attach_dev(struct device *dev, struct regmap *map,
492                       const struct regmap_config *config)
493 {
494         struct regmap **m;
495
496         map->dev = dev;
497
498         regmap_debugfs_init(map, config->name);
499
500         /* Add a devres resource for dev_get_regmap() */
501         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
502         if (!m) {
503                 regmap_debugfs_exit(map);
504                 return -ENOMEM;
505         }
506         *m = map;
507         devres_add(dev, m);
508
509         return 0;
510 }
511 EXPORT_SYMBOL_GPL(regmap_attach_dev);
512
513 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
514                                         const struct regmap_config *config)
515 {
516         enum regmap_endian endian;
517
518         /* Retrieve the endianness specification from the regmap config */
519         endian = config->reg_format_endian;
520
521         /* If the regmap config specified a non-default value, use that */
522         if (endian != REGMAP_ENDIAN_DEFAULT)
523                 return endian;
524
525         /* Retrieve the endianness specification from the bus config */
526         if (bus && bus->reg_format_endian_default)
527                 endian = bus->reg_format_endian_default;
528
529         /* If the bus specified a non-default value, use that */
530         if (endian != REGMAP_ENDIAN_DEFAULT)
531                 return endian;
532
533         /* Use this if no other value was found */
534         return REGMAP_ENDIAN_BIG;
535 }
536
537 enum regmap_endian regmap_get_val_endian(struct device *dev,
538                                          const struct regmap_bus *bus,
539                                          const struct regmap_config *config)
540 {
541         struct device_node *np;
542         enum regmap_endian endian;
543
544         /* Retrieve the endianness specification from the regmap config */
545         endian = config->val_format_endian;
546
547         /* If the regmap config specified a non-default value, use that */
548         if (endian != REGMAP_ENDIAN_DEFAULT)
549                 return endian;
550
551         /* If the dev and dev->of_node exist try to get endianness from DT */
552         if (dev && dev->of_node) {
553                 np = dev->of_node;
554
555                 /* Parse the device's DT node for an endianness specification */
556                 if (of_property_read_bool(np, "big-endian"))
557                         endian = REGMAP_ENDIAN_BIG;
558                 else if (of_property_read_bool(np, "little-endian"))
559                         endian = REGMAP_ENDIAN_LITTLE;
560
561                 /* If the endianness was specified in DT, use that */
562                 if (endian != REGMAP_ENDIAN_DEFAULT)
563                         return endian;
564         }
565
566         /* Retrieve the endianness specification from the bus config */
567         if (bus && bus->val_format_endian_default)
568                 endian = bus->val_format_endian_default;
569
570         /* If the bus specified a non-default value, use that */
571         if (endian != REGMAP_ENDIAN_DEFAULT)
572                 return endian;
573
574         /* Use this if no other value was found */
575         return REGMAP_ENDIAN_BIG;
576 }
577 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
578
579 struct regmap *__regmap_init(struct device *dev,
580                              const struct regmap_bus *bus,
581                              void *bus_context,
582                              const struct regmap_config *config,
583                              struct lock_class_key *lock_key,
584                              const char *lock_name)
585 {
586         struct regmap *map;
587         int ret = -EINVAL;
588         enum regmap_endian reg_endian, val_endian;
589         int i, j;
590
591         if (!config)
592                 goto err;
593
594         map = kzalloc(sizeof(*map), GFP_KERNEL);
595         if (map == NULL) {
596                 ret = -ENOMEM;
597                 goto err;
598         }
599
600         if (config->lock && config->unlock) {
601                 map->lock = config->lock;
602                 map->unlock = config->unlock;
603                 map->lock_arg = config->lock_arg;
604         } else {
605                 if ((bus && bus->fast_io) ||
606                     config->fast_io) {
607                         spin_lock_init(&map->spinlock);
608                         map->lock = regmap_lock_spinlock;
609                         map->unlock = regmap_unlock_spinlock;
610                         lockdep_set_class_and_name(&map->spinlock,
611                                                    lock_key, lock_name);
612                 } else {
613                         mutex_init(&map->mutex);
614                         map->lock = regmap_lock_mutex;
615                         map->unlock = regmap_unlock_mutex;
616                         lockdep_set_class_and_name(&map->mutex,
617                                                    lock_key, lock_name);
618                 }
619                 map->lock_arg = map;
620         }
621
622         /*
623          * When we write in fast-paths with regmap_bulk_write() don't allocate
624          * scratch buffers with sleeping allocations.
625          */
626         if ((bus && bus->fast_io) || config->fast_io)
627                 map->alloc_flags = GFP_ATOMIC;
628         else
629                 map->alloc_flags = GFP_KERNEL;
630
631         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
632         map->format.pad_bytes = config->pad_bits / 8;
633         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
634         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
635                         config->val_bits + config->pad_bits, 8);
636         map->reg_shift = config->pad_bits % 8;
637         if (config->reg_stride)
638                 map->reg_stride = config->reg_stride;
639         else
640                 map->reg_stride = 1;
641         map->use_single_read = config->use_single_rw || !bus || !bus->read;
642         map->use_single_write = config->use_single_rw || !bus || !bus->write;
643         map->can_multi_write = config->can_multi_write && bus && bus->write;
644         if (bus) {
645                 map->max_raw_read = bus->max_raw_read;
646                 map->max_raw_write = bus->max_raw_write;
647         }
648         map->dev = dev;
649         map->bus = bus;
650         map->bus_context = bus_context;
651         map->max_register = config->max_register;
652         map->wr_table = config->wr_table;
653         map->rd_table = config->rd_table;
654         map->volatile_table = config->volatile_table;
655         map->precious_table = config->precious_table;
656         map->writeable_reg = config->writeable_reg;
657         map->readable_reg = config->readable_reg;
658         map->volatile_reg = config->volatile_reg;
659         map->precious_reg = config->precious_reg;
660         map->cache_type = config->cache_type;
661         map->name = config->name;
662
663         spin_lock_init(&map->async_lock);
664         INIT_LIST_HEAD(&map->async_list);
665         INIT_LIST_HEAD(&map->async_free);
666         init_waitqueue_head(&map->async_waitq);
667
668         if (config->read_flag_mask || config->write_flag_mask) {
669                 map->read_flag_mask = config->read_flag_mask;
670                 map->write_flag_mask = config->write_flag_mask;
671         } else if (bus) {
672                 map->read_flag_mask = bus->read_flag_mask;
673         }
674
675         if (!bus) {
676                 map->reg_read  = config->reg_read;
677                 map->reg_write = config->reg_write;
678
679                 map->defer_caching = false;
680                 goto skip_format_initialization;
681         } else if (!bus->read || !bus->write) {
682                 map->reg_read = _regmap_bus_reg_read;
683                 map->reg_write = _regmap_bus_reg_write;
684
685                 map->defer_caching = false;
686                 goto skip_format_initialization;
687         } else {
688                 map->reg_read  = _regmap_bus_read;
689                 map->reg_update_bits = bus->reg_update_bits;
690         }
691
692         reg_endian = regmap_get_reg_endian(bus, config);
693         val_endian = regmap_get_val_endian(dev, bus, config);
694
695         switch (config->reg_bits + map->reg_shift) {
696         case 2:
697                 switch (config->val_bits) {
698                 case 6:
699                         map->format.format_write = regmap_format_2_6_write;
700                         break;
701                 default:
702                         goto err_map;
703                 }
704                 break;
705
706         case 4:
707                 switch (config->val_bits) {
708                 case 12:
709                         map->format.format_write = regmap_format_4_12_write;
710                         break;
711                 default:
712                         goto err_map;
713                 }
714                 break;
715
716         case 7:
717                 switch (config->val_bits) {
718                 case 9:
719                         map->format.format_write = regmap_format_7_9_write;
720                         break;
721                 default:
722                         goto err_map;
723                 }
724                 break;
725
726         case 10:
727                 switch (config->val_bits) {
728                 case 14:
729                         map->format.format_write = regmap_format_10_14_write;
730                         break;
731                 default:
732                         goto err_map;
733                 }
734                 break;
735
736         case 8:
737                 map->format.format_reg = regmap_format_8;
738                 break;
739
740         case 16:
741                 switch (reg_endian) {
742                 case REGMAP_ENDIAN_BIG:
743                         map->format.format_reg = regmap_format_16_be;
744                         break;
745                 case REGMAP_ENDIAN_NATIVE:
746                         map->format.format_reg = regmap_format_16_native;
747                         break;
748                 default:
749                         goto err_map;
750                 }
751                 break;
752
753         case 24:
754                 if (reg_endian != REGMAP_ENDIAN_BIG)
755                         goto err_map;
756                 map->format.format_reg = regmap_format_24;
757                 break;
758
759         case 32:
760                 switch (reg_endian) {
761                 case REGMAP_ENDIAN_BIG:
762                         map->format.format_reg = regmap_format_32_be;
763                         break;
764                 case REGMAP_ENDIAN_NATIVE:
765                         map->format.format_reg = regmap_format_32_native;
766                         break;
767                 default:
768                         goto err_map;
769                 }
770                 break;
771
772 #ifdef CONFIG_64BIT
773         case 64:
774                 switch (reg_endian) {
775                 case REGMAP_ENDIAN_BIG:
776                         map->format.format_reg = regmap_format_64_be;
777                         break;
778                 case REGMAP_ENDIAN_NATIVE:
779                         map->format.format_reg = regmap_format_64_native;
780                         break;
781                 default:
782                         goto err_map;
783                 }
784                 break;
785 #endif
786
787         default:
788                 goto err_map;
789         }
790
791         if (val_endian == REGMAP_ENDIAN_NATIVE)
792                 map->format.parse_inplace = regmap_parse_inplace_noop;
793
794         switch (config->val_bits) {
795         case 8:
796                 map->format.format_val = regmap_format_8;
797                 map->format.parse_val = regmap_parse_8;
798                 map->format.parse_inplace = regmap_parse_inplace_noop;
799                 break;
800         case 16:
801                 switch (val_endian) {
802                 case REGMAP_ENDIAN_BIG:
803                         map->format.format_val = regmap_format_16_be;
804                         map->format.parse_val = regmap_parse_16_be;
805                         map->format.parse_inplace = regmap_parse_16_be_inplace;
806                         break;
807                 case REGMAP_ENDIAN_LITTLE:
808                         map->format.format_val = regmap_format_16_le;
809                         map->format.parse_val = regmap_parse_16_le;
810                         map->format.parse_inplace = regmap_parse_16_le_inplace;
811                         break;
812                 case REGMAP_ENDIAN_NATIVE:
813                         map->format.format_val = regmap_format_16_native;
814                         map->format.parse_val = regmap_parse_16_native;
815                         break;
816                 default:
817                         goto err_map;
818                 }
819                 break;
820         case 24:
821                 if (val_endian != REGMAP_ENDIAN_BIG)
822                         goto err_map;
823                 map->format.format_val = regmap_format_24;
824                 map->format.parse_val = regmap_parse_24;
825                 break;
826         case 32:
827                 switch (val_endian) {
828                 case REGMAP_ENDIAN_BIG:
829                         map->format.format_val = regmap_format_32_be;
830                         map->format.parse_val = regmap_parse_32_be;
831                         map->format.parse_inplace = regmap_parse_32_be_inplace;
832                         break;
833                 case REGMAP_ENDIAN_LITTLE:
834                         map->format.format_val = regmap_format_32_le;
835                         map->format.parse_val = regmap_parse_32_le;
836                         map->format.parse_inplace = regmap_parse_32_le_inplace;
837                         break;
838                 case REGMAP_ENDIAN_NATIVE:
839                         map->format.format_val = regmap_format_32_native;
840                         map->format.parse_val = regmap_parse_32_native;
841                         break;
842                 default:
843                         goto err_map;
844                 }
845                 break;
846 #ifdef CONFIG_64BIT
847         case 64:
848                 switch (val_endian) {
849                 case REGMAP_ENDIAN_BIG:
850                         map->format.format_val = regmap_format_64_be;
851                         map->format.parse_val = regmap_parse_64_be;
852                         map->format.parse_inplace = regmap_parse_64_be_inplace;
853                         break;
854                 case REGMAP_ENDIAN_LITTLE:
855                         map->format.format_val = regmap_format_64_le;
856                         map->format.parse_val = regmap_parse_64_le;
857                         map->format.parse_inplace = regmap_parse_64_le_inplace;
858                         break;
859                 case REGMAP_ENDIAN_NATIVE:
860                         map->format.format_val = regmap_format_64_native;
861                         map->format.parse_val = regmap_parse_64_native;
862                         break;
863                 default:
864                         goto err_map;
865                 }
866                 break;
867 #endif
868         }
869
870         if (map->format.format_write) {
871                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
872                     (val_endian != REGMAP_ENDIAN_BIG))
873                         goto err_map;
874                 map->use_single_write = true;
875         }
876
877         if (!map->format.format_write &&
878             !(map->format.format_reg && map->format.format_val))
879                 goto err_map;
880
881         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
882         if (map->work_buf == NULL) {
883                 ret = -ENOMEM;
884                 goto err_map;
885         }
886
887         if (map->format.format_write) {
888                 map->defer_caching = false;
889                 map->reg_write = _regmap_bus_formatted_write;
890         } else if (map->format.format_val) {
891                 map->defer_caching = true;
892                 map->reg_write = _regmap_bus_raw_write;
893         }
894
895 skip_format_initialization:
896
897         map->range_tree = RB_ROOT;
898         for (i = 0; i < config->num_ranges; i++) {
899                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
900                 struct regmap_range_node *new;
901
902                 /* Sanity check */
903                 if (range_cfg->range_max < range_cfg->range_min) {
904                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
905                                 range_cfg->range_max, range_cfg->range_min);
906                         goto err_range;
907                 }
908
909                 if (range_cfg->range_max > map->max_register) {
910                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
911                                 range_cfg->range_max, map->max_register);
912                         goto err_range;
913                 }
914
915                 if (range_cfg->selector_reg > map->max_register) {
916                         dev_err(map->dev,
917                                 "Invalid range %d: selector out of map\n", i);
918                         goto err_range;
919                 }
920
921                 if (range_cfg->window_len == 0) {
922                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
923                                 i);
924                         goto err_range;
925                 }
926
927                 /* Make sure, that this register range has no selector
928                    or data window within its boundary */
929                 for (j = 0; j < config->num_ranges; j++) {
930                         unsigned sel_reg = config->ranges[j].selector_reg;
931                         unsigned win_min = config->ranges[j].window_start;
932                         unsigned win_max = win_min +
933                                            config->ranges[j].window_len - 1;
934
935                         /* Allow data window inside its own virtual range */
936                         if (j == i)
937                                 continue;
938
939                         if (range_cfg->range_min <= sel_reg &&
940                             sel_reg <= range_cfg->range_max) {
941                                 dev_err(map->dev,
942                                         "Range %d: selector for %d in window\n",
943                                         i, j);
944                                 goto err_range;
945                         }
946
947                         if (!(win_max < range_cfg->range_min ||
948                               win_min > range_cfg->range_max)) {
949                                 dev_err(map->dev,
950                                         "Range %d: window for %d in window\n",
951                                         i, j);
952                                 goto err_range;
953                         }
954                 }
955
956                 new = kzalloc(sizeof(*new), GFP_KERNEL);
957                 if (new == NULL) {
958                         ret = -ENOMEM;
959                         goto err_range;
960                 }
961
962                 new->map = map;
963                 new->name = range_cfg->name;
964                 new->range_min = range_cfg->range_min;
965                 new->range_max = range_cfg->range_max;
966                 new->selector_reg = range_cfg->selector_reg;
967                 new->selector_mask = range_cfg->selector_mask;
968                 new->selector_shift = range_cfg->selector_shift;
969                 new->window_start = range_cfg->window_start;
970                 new->window_len = range_cfg->window_len;
971
972                 if (!_regmap_range_add(map, new)) {
973                         dev_err(map->dev, "Failed to add range %d\n", i);
974                         kfree(new);
975                         goto err_range;
976                 }
977
978                 if (map->selector_work_buf == NULL) {
979                         map->selector_work_buf =
980                                 kzalloc(map->format.buf_size, GFP_KERNEL);
981                         if (map->selector_work_buf == NULL) {
982                                 ret = -ENOMEM;
983                                 goto err_range;
984                         }
985                 }
986         }
987
988         ret = regcache_init(map, config);
989         if (ret != 0)
990                 goto err_range;
991
992         if (dev) {
993                 ret = regmap_attach_dev(dev, map, config);
994                 if (ret != 0)
995                         goto err_regcache;
996         }
997
998         return map;
999
1000 err_regcache:
1001         regcache_exit(map);
1002 err_range:
1003         regmap_range_exit(map);
1004         kfree(map->work_buf);
1005 err_map:
1006         kfree(map);
1007 err:
1008         return ERR_PTR(ret);
1009 }
1010 EXPORT_SYMBOL_GPL(__regmap_init);
1011
1012 static void devm_regmap_release(struct device *dev, void *res)
1013 {
1014         regmap_exit(*(struct regmap **)res);
1015 }
1016
1017 struct regmap *__devm_regmap_init(struct device *dev,
1018                                   const struct regmap_bus *bus,
1019                                   void *bus_context,
1020                                   const struct regmap_config *config,
1021                                   struct lock_class_key *lock_key,
1022                                   const char *lock_name)
1023 {
1024         struct regmap **ptr, *regmap;
1025
1026         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1027         if (!ptr)
1028                 return ERR_PTR(-ENOMEM);
1029
1030         regmap = __regmap_init(dev, bus, bus_context, config,
1031                                lock_key, lock_name);
1032         if (!IS_ERR(regmap)) {
1033                 *ptr = regmap;
1034                 devres_add(dev, ptr);
1035         } else {
1036                 devres_free(ptr);
1037         }
1038
1039         return regmap;
1040 }
1041 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1042
1043 static void regmap_field_init(struct regmap_field *rm_field,
1044         struct regmap *regmap, struct reg_field reg_field)
1045 {
1046         rm_field->regmap = regmap;
1047         rm_field->reg = reg_field.reg;
1048         rm_field->shift = reg_field.lsb;
1049         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1050         rm_field->id_size = reg_field.id_size;
1051         rm_field->id_offset = reg_field.id_offset;
1052 }
1053
1054 /**
1055  * devm_regmap_field_alloc(): Allocate and initialise a register field
1056  * in a register map.
1057  *
1058  * @dev: Device that will be interacted with
1059  * @regmap: regmap bank in which this register field is located.
1060  * @reg_field: Register field with in the bank.
1061  *
1062  * The return value will be an ERR_PTR() on error or a valid pointer
1063  * to a struct regmap_field. The regmap_field will be automatically freed
1064  * by the device management code.
1065  */
1066 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1067                 struct regmap *regmap, struct reg_field reg_field)
1068 {
1069         struct regmap_field *rm_field = devm_kzalloc(dev,
1070                                         sizeof(*rm_field), GFP_KERNEL);
1071         if (!rm_field)
1072                 return ERR_PTR(-ENOMEM);
1073
1074         regmap_field_init(rm_field, regmap, reg_field);
1075
1076         return rm_field;
1077
1078 }
1079 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1080
1081 /**
1082  * devm_regmap_field_free(): Free register field allocated using
1083  * devm_regmap_field_alloc. Usally drivers need not call this function,
1084  * as the memory allocated via devm will be freed as per device-driver
1085  * life-cyle.
1086  *
1087  * @dev: Device that will be interacted with
1088  * @field: regmap field which should be freed.
1089  */
1090 void devm_regmap_field_free(struct device *dev,
1091         struct regmap_field *field)
1092 {
1093         devm_kfree(dev, field);
1094 }
1095 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1096
1097 /**
1098  * regmap_field_alloc(): Allocate and initialise a register field
1099  * in a register map.
1100  *
1101  * @regmap: regmap bank in which this register field is located.
1102  * @reg_field: Register field with in the bank.
1103  *
1104  * The return value will be an ERR_PTR() on error or a valid pointer
1105  * to a struct regmap_field. The regmap_field should be freed by the
1106  * user once its finished working with it using regmap_field_free().
1107  */
1108 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1109                 struct reg_field reg_field)
1110 {
1111         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1112
1113         if (!rm_field)
1114                 return ERR_PTR(-ENOMEM);
1115
1116         regmap_field_init(rm_field, regmap, reg_field);
1117
1118         return rm_field;
1119 }
1120 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1121
1122 /**
1123  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1124  *
1125  * @field: regmap field which should be freed.
1126  */
1127 void regmap_field_free(struct regmap_field *field)
1128 {
1129         kfree(field);
1130 }
1131 EXPORT_SYMBOL_GPL(regmap_field_free);
1132
1133 /**
1134  * regmap_reinit_cache(): Reinitialise the current register cache
1135  *
1136  * @map: Register map to operate on.
1137  * @config: New configuration.  Only the cache data will be used.
1138  *
1139  * Discard any existing register cache for the map and initialize a
1140  * new cache.  This can be used to restore the cache to defaults or to
1141  * update the cache configuration to reflect runtime discovery of the
1142  * hardware.
1143  *
1144  * No explicit locking is done here, the user needs to ensure that
1145  * this function will not race with other calls to regmap.
1146  */
1147 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1148 {
1149         regcache_exit(map);
1150         regmap_debugfs_exit(map);
1151
1152         map->max_register = config->max_register;
1153         map->writeable_reg = config->writeable_reg;
1154         map->readable_reg = config->readable_reg;
1155         map->volatile_reg = config->volatile_reg;
1156         map->precious_reg = config->precious_reg;
1157         map->cache_type = config->cache_type;
1158
1159         regmap_debugfs_init(map, config->name);
1160
1161         map->cache_bypass = false;
1162         map->cache_only = false;
1163
1164         return regcache_init(map, config);
1165 }
1166 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1167
1168 /**
1169  * regmap_exit(): Free a previously allocated register map
1170  */
1171 void regmap_exit(struct regmap *map)
1172 {
1173         struct regmap_async *async;
1174
1175         regcache_exit(map);
1176         regmap_debugfs_exit(map);
1177         regmap_range_exit(map);
1178         if (map->bus && map->bus->free_context)
1179                 map->bus->free_context(map->bus_context);
1180         kfree(map->work_buf);
1181         while (!list_empty(&map->async_free)) {
1182                 async = list_first_entry_or_null(&map->async_free,
1183                                                  struct regmap_async,
1184                                                  list);
1185                 list_del(&async->list);
1186                 kfree(async->work_buf);
1187                 kfree(async);
1188         }
1189         kfree(map);
1190 }
1191 EXPORT_SYMBOL_GPL(regmap_exit);
1192
1193 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1194 {
1195         struct regmap **r = res;
1196         if (!r || !*r) {
1197                 WARN_ON(!r || !*r);
1198                 return 0;
1199         }
1200
1201         /* If the user didn't specify a name match any */
1202         if (data)
1203                 return (*r)->name == data;
1204         else
1205                 return 1;
1206 }
1207
1208 /**
1209  * dev_get_regmap(): Obtain the regmap (if any) for a device
1210  *
1211  * @dev: Device to retrieve the map for
1212  * @name: Optional name for the register map, usually NULL.
1213  *
1214  * Returns the regmap for the device if one is present, or NULL.  If
1215  * name is specified then it must match the name specified when
1216  * registering the device, if it is NULL then the first regmap found
1217  * will be used.  Devices with multiple register maps are very rare,
1218  * generic code should normally not need to specify a name.
1219  */
1220 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1221 {
1222         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1223                                         dev_get_regmap_match, (void *)name);
1224
1225         if (!r)
1226                 return NULL;
1227         return *r;
1228 }
1229 EXPORT_SYMBOL_GPL(dev_get_regmap);
1230
1231 /**
1232  * regmap_get_device(): Obtain the device from a regmap
1233  *
1234  * @map: Register map to operate on.
1235  *
1236  * Returns the underlying device that the regmap has been created for.
1237  */
1238 struct device *regmap_get_device(struct regmap *map)
1239 {
1240         return map->dev;
1241 }
1242 EXPORT_SYMBOL_GPL(regmap_get_device);
1243
1244 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1245                                struct regmap_range_node *range,
1246                                unsigned int val_num)
1247 {
1248         void *orig_work_buf;
1249         unsigned int win_offset;
1250         unsigned int win_page;
1251         bool page_chg;
1252         int ret;
1253
1254         win_offset = (*reg - range->range_min) % range->window_len;
1255         win_page = (*reg - range->range_min) / range->window_len;
1256
1257         if (val_num > 1) {
1258                 /* Bulk write shouldn't cross range boundary */
1259                 if (*reg + val_num - 1 > range->range_max)
1260                         return -EINVAL;
1261
1262                 /* ... or single page boundary */
1263                 if (val_num > range->window_len - win_offset)
1264                         return -EINVAL;
1265         }
1266
1267         /* It is possible to have selector register inside data window.
1268            In that case, selector register is located on every page and
1269            it needs no page switching, when accessed alone. */
1270         if (val_num > 1 ||
1271             range->window_start + win_offset != range->selector_reg) {
1272                 /* Use separate work_buf during page switching */
1273                 orig_work_buf = map->work_buf;
1274                 map->work_buf = map->selector_work_buf;
1275
1276                 ret = _regmap_update_bits(map, range->selector_reg,
1277                                           range->selector_mask,
1278                                           win_page << range->selector_shift,
1279                                           &page_chg, false);
1280
1281                 map->work_buf = orig_work_buf;
1282
1283                 if (ret != 0)
1284                         return ret;
1285         }
1286
1287         *reg = range->window_start + win_offset;
1288
1289         return 0;
1290 }
1291
1292 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1293                       const void *val, size_t val_len)
1294 {
1295         struct regmap_range_node *range;
1296         unsigned long flags;
1297         u8 *u8 = map->work_buf;
1298         void *work_val = map->work_buf + map->format.reg_bytes +
1299                 map->format.pad_bytes;
1300         void *buf;
1301         int ret = -ENOTSUPP;
1302         size_t len;
1303         int i;
1304
1305         WARN_ON(!map->bus);
1306
1307         /* Check for unwritable registers before we start */
1308         if (map->writeable_reg)
1309                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1310                         if (!map->writeable_reg(map->dev,
1311                                                 reg + (i * map->reg_stride)))
1312                                 return -EINVAL;
1313
1314         if (!map->cache_bypass && map->format.parse_val) {
1315                 unsigned int ival;
1316                 int val_bytes = map->format.val_bytes;
1317                 for (i = 0; i < val_len / val_bytes; i++) {
1318                         ival = map->format.parse_val(val + (i * val_bytes));
1319                         ret = regcache_write(map, reg + (i * map->reg_stride),
1320                                              ival);
1321                         if (ret) {
1322                                 dev_err(map->dev,
1323                                         "Error in caching of register: %x ret: %d\n",
1324                                         reg + i, ret);
1325                                 return ret;
1326                         }
1327                 }
1328                 if (map->cache_only) {
1329                         map->cache_dirty = true;
1330                         return 0;
1331                 }
1332         }
1333
1334         range = _regmap_range_lookup(map, reg);
1335         if (range) {
1336                 int val_num = val_len / map->format.val_bytes;
1337                 int win_offset = (reg - range->range_min) % range->window_len;
1338                 int win_residue = range->window_len - win_offset;
1339
1340                 /* If the write goes beyond the end of the window split it */
1341                 while (val_num > win_residue) {
1342                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1343                                 win_residue, val_len / map->format.val_bytes);
1344                         ret = _regmap_raw_write(map, reg, val, win_residue *
1345                                                 map->format.val_bytes);
1346                         if (ret != 0)
1347                                 return ret;
1348
1349                         reg += win_residue;
1350                         val_num -= win_residue;
1351                         val += win_residue * map->format.val_bytes;
1352                         val_len -= win_residue * map->format.val_bytes;
1353
1354                         win_offset = (reg - range->range_min) %
1355                                 range->window_len;
1356                         win_residue = range->window_len - win_offset;
1357                 }
1358
1359                 ret = _regmap_select_page(map, &reg, range, val_num);
1360                 if (ret != 0)
1361                         return ret;
1362         }
1363
1364         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1365
1366         u8[0] |= map->write_flag_mask;
1367
1368         /*
1369          * Essentially all I/O mechanisms will be faster with a single
1370          * buffer to write.  Since register syncs often generate raw
1371          * writes of single registers optimise that case.
1372          */
1373         if (val != work_val && val_len == map->format.val_bytes) {
1374                 memcpy(work_val, val, map->format.val_bytes);
1375                 val = work_val;
1376         }
1377
1378         if (map->async && map->bus->async_write) {
1379                 struct regmap_async *async;
1380
1381                 trace_regmap_async_write_start(map, reg, val_len);
1382
1383                 spin_lock_irqsave(&map->async_lock, flags);
1384                 async = list_first_entry_or_null(&map->async_free,
1385                                                  struct regmap_async,
1386                                                  list);
1387                 if (async)
1388                         list_del(&async->list);
1389                 spin_unlock_irqrestore(&map->async_lock, flags);
1390
1391                 if (!async) {
1392                         async = map->bus->async_alloc();
1393                         if (!async)
1394                                 return -ENOMEM;
1395
1396                         async->work_buf = kzalloc(map->format.buf_size,
1397                                                   GFP_KERNEL | GFP_DMA);
1398                         if (!async->work_buf) {
1399                                 kfree(async);
1400                                 return -ENOMEM;
1401                         }
1402                 }
1403
1404                 async->map = map;
1405
1406                 /* If the caller supplied the value we can use it safely. */
1407                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1408                        map->format.reg_bytes + map->format.val_bytes);
1409
1410                 spin_lock_irqsave(&map->async_lock, flags);
1411                 list_add_tail(&async->list, &map->async_list);
1412                 spin_unlock_irqrestore(&map->async_lock, flags);
1413
1414                 if (val != work_val)
1415                         ret = map->bus->async_write(map->bus_context,
1416                                                     async->work_buf,
1417                                                     map->format.reg_bytes +
1418                                                     map->format.pad_bytes,
1419                                                     val, val_len, async);
1420                 else
1421                         ret = map->bus->async_write(map->bus_context,
1422                                                     async->work_buf,
1423                                                     map->format.reg_bytes +
1424                                                     map->format.pad_bytes +
1425                                                     val_len, NULL, 0, async);
1426
1427                 if (ret != 0) {
1428                         dev_err(map->dev, "Failed to schedule write: %d\n",
1429                                 ret);
1430
1431                         spin_lock_irqsave(&map->async_lock, flags);
1432                         list_move(&async->list, &map->async_free);
1433                         spin_unlock_irqrestore(&map->async_lock, flags);
1434                 }
1435
1436                 return ret;
1437         }
1438
1439         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1440
1441         /* If we're doing a single register write we can probably just
1442          * send the work_buf directly, otherwise try to do a gather
1443          * write.
1444          */
1445         if (val == work_val)
1446                 ret = map->bus->write(map->bus_context, map->work_buf,
1447                                       map->format.reg_bytes +
1448                                       map->format.pad_bytes +
1449                                       val_len);
1450         else if (map->bus->gather_write)
1451                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1452                                              map->format.reg_bytes +
1453                                              map->format.pad_bytes,
1454                                              val, val_len);
1455
1456         /* If that didn't work fall back on linearising by hand. */
1457         if (ret == -ENOTSUPP) {
1458                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1459                 buf = kzalloc(len, GFP_KERNEL);
1460                 if (!buf)
1461                         return -ENOMEM;
1462
1463                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1464                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1465                        val, val_len);
1466                 ret = map->bus->write(map->bus_context, buf, len);
1467
1468                 kfree(buf);
1469         }
1470
1471         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1472
1473         return ret;
1474 }
1475
1476 /**
1477  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1478  *
1479  * @map: Map to check.
1480  */
1481 bool regmap_can_raw_write(struct regmap *map)
1482 {
1483         return map->bus && map->bus->write && map->format.format_val &&
1484                 map->format.format_reg;
1485 }
1486 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1487
1488 /**
1489  * regmap_get_raw_read_max - Get the maximum size we can read
1490  *
1491  * @map: Map to check.
1492  */
1493 size_t regmap_get_raw_read_max(struct regmap *map)
1494 {
1495         return map->max_raw_read;
1496 }
1497 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1498
1499 /**
1500  * regmap_get_raw_write_max - Get the maximum size we can read
1501  *
1502  * @map: Map to check.
1503  */
1504 size_t regmap_get_raw_write_max(struct regmap *map)
1505 {
1506         return map->max_raw_write;
1507 }
1508 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1509
1510 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1511                                        unsigned int val)
1512 {
1513         int ret;
1514         struct regmap_range_node *range;
1515         struct regmap *map = context;
1516
1517         WARN_ON(!map->bus || !map->format.format_write);
1518
1519         range = _regmap_range_lookup(map, reg);
1520         if (range) {
1521                 ret = _regmap_select_page(map, &reg, range, 1);
1522                 if (ret != 0)
1523                         return ret;
1524         }
1525
1526         map->format.format_write(map, reg, val);
1527
1528         trace_regmap_hw_write_start(map, reg, 1);
1529
1530         ret = map->bus->write(map->bus_context, map->work_buf,
1531                               map->format.buf_size);
1532
1533         trace_regmap_hw_write_done(map, reg, 1);
1534
1535         return ret;
1536 }
1537
1538 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1539                                  unsigned int val)
1540 {
1541         struct regmap *map = context;
1542
1543         return map->bus->reg_write(map->bus_context, reg, val);
1544 }
1545
1546 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1547                                  unsigned int val)
1548 {
1549         struct regmap *map = context;
1550
1551         WARN_ON(!map->bus || !map->format.format_val);
1552
1553         map->format.format_val(map->work_buf + map->format.reg_bytes
1554                                + map->format.pad_bytes, val, 0);
1555         return _regmap_raw_write(map, reg,
1556                                  map->work_buf +
1557                                  map->format.reg_bytes +
1558                                  map->format.pad_bytes,
1559                                  map->format.val_bytes);
1560 }
1561
1562 static inline void *_regmap_map_get_context(struct regmap *map)
1563 {
1564         return (map->bus) ? map : map->bus_context;
1565 }
1566
1567 int _regmap_write(struct regmap *map, unsigned int reg,
1568                   unsigned int val)
1569 {
1570         int ret;
1571         void *context = _regmap_map_get_context(map);
1572
1573         if (!regmap_writeable(map, reg))
1574                 return -EIO;
1575
1576         if (!map->cache_bypass && !map->defer_caching) {
1577                 ret = regcache_write(map, reg, val);
1578                 if (ret != 0)
1579                         return ret;
1580                 if (map->cache_only) {
1581                         map->cache_dirty = true;
1582                         return 0;
1583                 }
1584         }
1585
1586 #ifdef LOG_DEVICE
1587         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1588                 dev_info(map->dev, "%x <= %x\n", reg, val);
1589 #endif
1590
1591         trace_regmap_reg_write(map, reg, val);
1592
1593         return map->reg_write(context, reg, val);
1594 }
1595
1596 /**
1597  * regmap_write(): Write a value to a single register
1598  *
1599  * @map: Register map to write to
1600  * @reg: Register to write to
1601  * @val: Value to be written
1602  *
1603  * A value of zero will be returned on success, a negative errno will
1604  * be returned in error cases.
1605  */
1606 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1607 {
1608         int ret;
1609
1610         if (!IS_ALIGNED(reg, map->reg_stride))
1611                 return -EINVAL;
1612
1613         map->lock(map->lock_arg);
1614
1615         ret = _regmap_write(map, reg, val);
1616
1617         map->unlock(map->lock_arg);
1618
1619         return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(regmap_write);
1622
1623 /**
1624  * regmap_write_async(): Write a value to a single register asynchronously
1625  *
1626  * @map: Register map to write to
1627  * @reg: Register to write to
1628  * @val: Value to be written
1629  *
1630  * A value of zero will be returned on success, a negative errno will
1631  * be returned in error cases.
1632  */
1633 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1634 {
1635         int ret;
1636
1637         if (!IS_ALIGNED(reg, map->reg_stride))
1638                 return -EINVAL;
1639
1640         map->lock(map->lock_arg);
1641
1642         map->async = true;
1643
1644         ret = _regmap_write(map, reg, val);
1645
1646         map->async = false;
1647
1648         map->unlock(map->lock_arg);
1649
1650         return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_write_async);
1653
1654 /**
1655  * regmap_raw_write(): Write raw values to one or more registers
1656  *
1657  * @map: Register map to write to
1658  * @reg: Initial register to write to
1659  * @val: Block of data to be written, laid out for direct transmission to the
1660  *       device
1661  * @val_len: Length of data pointed to by val.
1662  *
1663  * This function is intended to be used for things like firmware
1664  * download where a large block of data needs to be transferred to the
1665  * device.  No formatting will be done on the data provided.
1666  *
1667  * A value of zero will be returned on success, a negative errno will
1668  * be returned in error cases.
1669  */
1670 int regmap_raw_write(struct regmap *map, unsigned int reg,
1671                      const void *val, size_t val_len)
1672 {
1673         int ret;
1674
1675         if (!regmap_can_raw_write(map))
1676                 return -EINVAL;
1677         if (val_len % map->format.val_bytes)
1678                 return -EINVAL;
1679         if (map->max_raw_write && map->max_raw_write > val_len)
1680                 return -E2BIG;
1681
1682         map->lock(map->lock_arg);
1683
1684         ret = _regmap_raw_write(map, reg, val, val_len);
1685
1686         map->unlock(map->lock_arg);
1687
1688         return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(regmap_raw_write);
1691
1692 /**
1693  * regmap_field_update_bits_base():
1694  *      Perform a read/modify/write cycle on the register field
1695  *      with change, async, force option
1696  *
1697  * @field: Register field to write to
1698  * @mask: Bitmask to change
1699  * @val: Value to be written
1700  * @change: Boolean indicating if a write was done
1701  * @async: Boolean indicating asynchronously
1702  * @force: Boolean indicating use force update
1703  *
1704  * A value of zero will be returned on success, a negative errno will
1705  * be returned in error cases.
1706  */
1707 int regmap_field_update_bits_base(struct regmap_field *field,
1708                                   unsigned int mask, unsigned int val,
1709                                   bool *change, bool async, bool force)
1710 {
1711         mask = (mask << field->shift) & field->mask;
1712
1713         return regmap_update_bits_base(field->regmap, field->reg,
1714                                        mask, val << field->shift,
1715                                        change, async, force);
1716 }
1717 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1718
1719 /**
1720  * regmap_fields_update_bits_base():
1721  *      Perform a read/modify/write cycle on the register field
1722  *      with change, async, force option
1723  *
1724  * @field: Register field to write to
1725  * @id: port ID
1726  * @mask: Bitmask to change
1727  * @val: Value to be written
1728  * @change: Boolean indicating if a write was done
1729  * @async: Boolean indicating asynchronously
1730  * @force: Boolean indicating use force update
1731  *
1732  * A value of zero will be returned on success, a negative errno will
1733  * be returned in error cases.
1734  */
1735 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1736                                    unsigned int mask, unsigned int val,
1737                                    bool *change, bool async, bool force)
1738 {
1739         if (id >= field->id_size)
1740                 return -EINVAL;
1741
1742         mask = (mask << field->shift) & field->mask;
1743
1744         return regmap_update_bits_base(field->regmap,
1745                                        field->reg + (field->id_offset * id),
1746                                        mask, val << field->shift,
1747                                        change, async, force);
1748 }
1749 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1750
1751 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1752                         unsigned int val)
1753 {
1754         if (id >= field->id_size)
1755                 return -EINVAL;
1756
1757         return regmap_write_bits(field->regmap,
1758                                   field->reg + (field->id_offset * id),
1759                                   field->mask, val << field->shift);
1760 }
1761 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1762
1763 /*
1764  * regmap_bulk_write(): Write multiple registers to the device
1765  *
1766  * @map: Register map to write to
1767  * @reg: First register to be write from
1768  * @val: Block of data to be written, in native register size for device
1769  * @val_count: Number of registers to write
1770  *
1771  * This function is intended to be used for writing a large block of
1772  * data to the device either in single transfer or multiple transfer.
1773  *
1774  * A value of zero will be returned on success, a negative errno will
1775  * be returned in error cases.
1776  */
1777 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1778                      size_t val_count)
1779 {
1780         int ret = 0, i;
1781         size_t val_bytes = map->format.val_bytes;
1782         size_t total_size = val_bytes * val_count;
1783
1784         if (map->bus && !map->format.parse_inplace)
1785                 return -EINVAL;
1786         if (!IS_ALIGNED(reg, map->reg_stride))
1787                 return -EINVAL;
1788
1789         /*
1790          * Some devices don't support bulk write, for
1791          * them we have a series of single write operations in the first two if
1792          * blocks.
1793          *
1794          * The first if block is used for memory mapped io. It does not allow
1795          * val_bytes of 3 for example.
1796          * The second one is used for busses which do not have this limitation
1797          * and can write arbitrary value lengths.
1798          */
1799         if (!map->bus) {
1800                 map->lock(map->lock_arg);
1801                 for (i = 0; i < val_count; i++) {
1802                         unsigned int ival;
1803
1804                         switch (val_bytes) {
1805                         case 1:
1806                                 ival = *(u8 *)(val + (i * val_bytes));
1807                                 break;
1808                         case 2:
1809                                 ival = *(u16 *)(val + (i * val_bytes));
1810                                 break;
1811                         case 4:
1812                                 ival = *(u32 *)(val + (i * val_bytes));
1813                                 break;
1814 #ifdef CONFIG_64BIT
1815                         case 8:
1816                                 ival = *(u64 *)(val + (i * val_bytes));
1817                                 break;
1818 #endif
1819                         default:
1820                                 ret = -EINVAL;
1821                                 goto out;
1822                         }
1823
1824                         ret = _regmap_write(map, reg + (i * map->reg_stride),
1825                                         ival);
1826                         if (ret != 0)
1827                                 goto out;
1828                 }
1829 out:
1830                 map->unlock(map->lock_arg);
1831         } else if (map->use_single_write ||
1832                    (map->max_raw_write && map->max_raw_write < total_size)) {
1833                 int chunk_stride = map->reg_stride;
1834                 size_t chunk_size = val_bytes;
1835                 size_t chunk_count = val_count;
1836
1837                 if (!map->use_single_write) {
1838                         chunk_size = map->max_raw_write;
1839                         if (chunk_size % val_bytes)
1840                                 chunk_size -= chunk_size % val_bytes;
1841                         chunk_count = total_size / chunk_size;
1842                         chunk_stride *= chunk_size / val_bytes;
1843                 }
1844
1845                 map->lock(map->lock_arg);
1846                 /* Write as many bytes as possible with chunk_size */
1847                 for (i = 0; i < chunk_count; i++) {
1848                         ret = _regmap_raw_write(map,
1849                                                 reg + (i * chunk_stride),
1850                                                 val + (i * chunk_size),
1851                                                 chunk_size);
1852                         if (ret)
1853                                 break;
1854                 }
1855
1856                 /* Write remaining bytes */
1857                 if (!ret && chunk_size * i < total_size) {
1858                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1859                                                 val + (i * chunk_size),
1860                                                 total_size - i * chunk_size);
1861                 }
1862                 map->unlock(map->lock_arg);
1863         } else {
1864                 void *wval;
1865
1866                 if (!val_count)
1867                         return -EINVAL;
1868
1869                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1870                 if (!wval) {
1871                         dev_err(map->dev, "Error in memory allocation\n");
1872                         return -ENOMEM;
1873                 }
1874                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1875                         map->format.parse_inplace(wval + i);
1876
1877                 map->lock(map->lock_arg);
1878                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1879                 map->unlock(map->lock_arg);
1880
1881                 kfree(wval);
1882         }
1883         return ret;
1884 }
1885 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1886
1887 /*
1888  * _regmap_raw_multi_reg_write()
1889  *
1890  * the (register,newvalue) pairs in regs have not been formatted, but
1891  * they are all in the same page and have been changed to being page
1892  * relative. The page register has been written if that was necessary.
1893  */
1894 static int _regmap_raw_multi_reg_write(struct regmap *map,
1895                                        const struct reg_sequence *regs,
1896                                        size_t num_regs)
1897 {
1898         int ret;
1899         void *buf;
1900         int i;
1901         u8 *u8;
1902         size_t val_bytes = map->format.val_bytes;
1903         size_t reg_bytes = map->format.reg_bytes;
1904         size_t pad_bytes = map->format.pad_bytes;
1905         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1906         size_t len = pair_size * num_regs;
1907
1908         if (!len)
1909                 return -EINVAL;
1910
1911         buf = kzalloc(len, GFP_KERNEL);
1912         if (!buf)
1913                 return -ENOMEM;
1914
1915         /* We have to linearise by hand. */
1916
1917         u8 = buf;
1918
1919         for (i = 0; i < num_regs; i++) {
1920                 unsigned int reg = regs[i].reg;
1921                 unsigned int val = regs[i].def;
1922                 trace_regmap_hw_write_start(map, reg, 1);
1923                 map->format.format_reg(u8, reg, map->reg_shift);
1924                 u8 += reg_bytes + pad_bytes;
1925                 map->format.format_val(u8, val, 0);
1926                 u8 += val_bytes;
1927         }
1928         u8 = buf;
1929         *u8 |= map->write_flag_mask;
1930
1931         ret = map->bus->write(map->bus_context, buf, len);
1932
1933         kfree(buf);
1934
1935         for (i = 0; i < num_regs; i++) {
1936                 int reg = regs[i].reg;
1937                 trace_regmap_hw_write_done(map, reg, 1);
1938         }
1939         return ret;
1940 }
1941
1942 static unsigned int _regmap_register_page(struct regmap *map,
1943                                           unsigned int reg,
1944                                           struct regmap_range_node *range)
1945 {
1946         unsigned int win_page = (reg - range->range_min) / range->window_len;
1947
1948         return win_page;
1949 }
1950
1951 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1952                                                struct reg_sequence *regs,
1953                                                size_t num_regs)
1954 {
1955         int ret;
1956         int i, n;
1957         struct reg_sequence *base;
1958         unsigned int this_page = 0;
1959         unsigned int page_change = 0;
1960         /*
1961          * the set of registers are not neccessarily in order, but
1962          * since the order of write must be preserved this algorithm
1963          * chops the set each time the page changes. This also applies
1964          * if there is a delay required at any point in the sequence.
1965          */
1966         base = regs;
1967         for (i = 0, n = 0; i < num_regs; i++, n++) {
1968                 unsigned int reg = regs[i].reg;
1969                 struct regmap_range_node *range;
1970
1971                 range = _regmap_range_lookup(map, reg);
1972                 if (range) {
1973                         unsigned int win_page = _regmap_register_page(map, reg,
1974                                                                       range);
1975
1976                         if (i == 0)
1977                                 this_page = win_page;
1978                         if (win_page != this_page) {
1979                                 this_page = win_page;
1980                                 page_change = 1;
1981                         }
1982                 }
1983
1984                 /* If we have both a page change and a delay make sure to
1985                  * write the regs and apply the delay before we change the
1986                  * page.
1987                  */
1988
1989                 if (page_change || regs[i].delay_us) {
1990
1991                                 /* For situations where the first write requires
1992                                  * a delay we need to make sure we don't call
1993                                  * raw_multi_reg_write with n=0
1994                                  * This can't occur with page breaks as we
1995                                  * never write on the first iteration
1996                                  */
1997                                 if (regs[i].delay_us && i == 0)
1998                                         n = 1;
1999
2000                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2001                                 if (ret != 0)
2002                                         return ret;
2003
2004                                 if (regs[i].delay_us)
2005                                         udelay(regs[i].delay_us);
2006
2007                                 base += n;
2008                                 n = 0;
2009
2010                                 if (page_change) {
2011                                         ret = _regmap_select_page(map,
2012                                                                   &base[n].reg,
2013                                                                   range, 1);
2014                                         if (ret != 0)
2015                                                 return ret;
2016
2017                                         page_change = 0;
2018                                 }
2019
2020                 }
2021
2022         }
2023         if (n > 0)
2024                 return _regmap_raw_multi_reg_write(map, base, n);
2025         return 0;
2026 }
2027
2028 static int _regmap_multi_reg_write(struct regmap *map,
2029                                    const struct reg_sequence *regs,
2030                                    size_t num_regs)
2031 {
2032         int i;
2033         int ret;
2034
2035         if (!map->can_multi_write) {
2036                 for (i = 0; i < num_regs; i++) {
2037                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2038                         if (ret != 0)
2039                                 return ret;
2040
2041                         if (regs[i].delay_us)
2042                                 udelay(regs[i].delay_us);
2043                 }
2044                 return 0;
2045         }
2046
2047         if (!map->format.parse_inplace)
2048                 return -EINVAL;
2049
2050         if (map->writeable_reg)
2051                 for (i = 0; i < num_regs; i++) {
2052                         int reg = regs[i].reg;
2053                         if (!map->writeable_reg(map->dev, reg))
2054                                 return -EINVAL;
2055                         if (!IS_ALIGNED(reg, map->reg_stride))
2056                                 return -EINVAL;
2057                 }
2058
2059         if (!map->cache_bypass) {
2060                 for (i = 0; i < num_regs; i++) {
2061                         unsigned int val = regs[i].def;
2062                         unsigned int reg = regs[i].reg;
2063                         ret = regcache_write(map, reg, val);
2064                         if (ret) {
2065                                 dev_err(map->dev,
2066                                 "Error in caching of register: %x ret: %d\n",
2067                                                                 reg, ret);
2068                                 return ret;
2069                         }
2070                 }
2071                 if (map->cache_only) {
2072                         map->cache_dirty = true;
2073                         return 0;
2074                 }
2075         }
2076
2077         WARN_ON(!map->bus);
2078
2079         for (i = 0; i < num_regs; i++) {
2080                 unsigned int reg = regs[i].reg;
2081                 struct regmap_range_node *range;
2082
2083                 /* Coalesce all the writes between a page break or a delay
2084                  * in a sequence
2085                  */
2086                 range = _regmap_range_lookup(map, reg);
2087                 if (range || regs[i].delay_us) {
2088                         size_t len = sizeof(struct reg_sequence)*num_regs;
2089                         struct reg_sequence *base = kmemdup(regs, len,
2090                                                            GFP_KERNEL);
2091                         if (!base)
2092                                 return -ENOMEM;
2093                         ret = _regmap_range_multi_paged_reg_write(map, base,
2094                                                                   num_regs);
2095                         kfree(base);
2096
2097                         return ret;
2098                 }
2099         }
2100         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2101 }
2102
2103 /*
2104  * regmap_multi_reg_write(): Write multiple registers to the device
2105  *
2106  * where the set of register,value pairs are supplied in any order,
2107  * possibly not all in a single range.
2108  *
2109  * @map: Register map to write to
2110  * @regs: Array of structures containing register,value to be written
2111  * @num_regs: Number of registers to write
2112  *
2113  * The 'normal' block write mode will send ultimately send data on the
2114  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2115  * addressed. However, this alternative block multi write mode will send
2116  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2117  * must of course support the mode.
2118  *
2119  * A value of zero will be returned on success, a negative errno will be
2120  * returned in error cases.
2121  */
2122 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2123                            int num_regs)
2124 {
2125         int ret;
2126
2127         map->lock(map->lock_arg);
2128
2129         ret = _regmap_multi_reg_write(map, regs, num_regs);
2130
2131         map->unlock(map->lock_arg);
2132
2133         return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2136
2137 /*
2138  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2139  *                                    device but not the cache
2140  *
2141  * where the set of register are supplied in any order
2142  *
2143  * @map: Register map to write to
2144  * @regs: Array of structures containing register,value to be written
2145  * @num_regs: Number of registers to write
2146  *
2147  * This function is intended to be used for writing a large block of data
2148  * atomically to the device in single transfer for those I2C client devices
2149  * that implement this alternative block write mode.
2150  *
2151  * A value of zero will be returned on success, a negative errno will
2152  * be returned in error cases.
2153  */
2154 int regmap_multi_reg_write_bypassed(struct regmap *map,
2155                                     const struct reg_sequence *regs,
2156                                     int num_regs)
2157 {
2158         int ret;
2159         bool bypass;
2160
2161         map->lock(map->lock_arg);
2162
2163         bypass = map->cache_bypass;
2164         map->cache_bypass = true;
2165
2166         ret = _regmap_multi_reg_write(map, regs, num_regs);
2167
2168         map->cache_bypass = bypass;
2169
2170         map->unlock(map->lock_arg);
2171
2172         return ret;
2173 }
2174 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2175
2176 /**
2177  * regmap_raw_write_async(): Write raw values to one or more registers
2178  *                           asynchronously
2179  *
2180  * @map: Register map to write to
2181  * @reg: Initial register to write to
2182  * @val: Block of data to be written, laid out for direct transmission to the
2183  *       device.  Must be valid until regmap_async_complete() is called.
2184  * @val_len: Length of data pointed to by val.
2185  *
2186  * This function is intended to be used for things like firmware
2187  * download where a large block of data needs to be transferred to the
2188  * device.  No formatting will be done on the data provided.
2189  *
2190  * If supported by the underlying bus the write will be scheduled
2191  * asynchronously, helping maximise I/O speed on higher speed buses
2192  * like SPI.  regmap_async_complete() can be called to ensure that all
2193  * asynchrnous writes have been completed.
2194  *
2195  * A value of zero will be returned on success, a negative errno will
2196  * be returned in error cases.
2197  */
2198 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2199                            const void *val, size_t val_len)
2200 {
2201         int ret;
2202
2203         if (val_len % map->format.val_bytes)
2204                 return -EINVAL;
2205         if (!IS_ALIGNED(reg, map->reg_stride))
2206                 return -EINVAL;
2207
2208         map->lock(map->lock_arg);
2209
2210         map->async = true;
2211
2212         ret = _regmap_raw_write(map, reg, val, val_len);
2213
2214         map->async = false;
2215
2216         map->unlock(map->lock_arg);
2217
2218         return ret;
2219 }
2220 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2221
2222 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2223                             unsigned int val_len)
2224 {
2225         struct regmap_range_node *range;
2226         u8 *u8 = map->work_buf;
2227         int ret;
2228
2229         WARN_ON(!map->bus);
2230
2231         range = _regmap_range_lookup(map, reg);
2232         if (range) {
2233                 ret = _regmap_select_page(map, &reg, range,
2234                                           val_len / map->format.val_bytes);
2235                 if (ret != 0)
2236                         return ret;
2237         }
2238
2239         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2240
2241         /*
2242          * Some buses or devices flag reads by setting the high bits in the
2243          * register address; since it's always the high bits for all
2244          * current formats we can do this here rather than in
2245          * formatting.  This may break if we get interesting formats.
2246          */
2247         u8[0] |= map->read_flag_mask;
2248
2249         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2250
2251         ret = map->bus->read(map->bus_context, map->work_buf,
2252                              map->format.reg_bytes + map->format.pad_bytes,
2253                              val, val_len);
2254
2255         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2256
2257         return ret;
2258 }
2259
2260 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2261                                 unsigned int *val)
2262 {
2263         struct regmap *map = context;
2264
2265         return map->bus->reg_read(map->bus_context, reg, val);
2266 }
2267
2268 static int _regmap_bus_read(void *context, unsigned int reg,
2269                             unsigned int *val)
2270 {
2271         int ret;
2272         struct regmap *map = context;
2273
2274         if (!map->format.parse_val)
2275                 return -EINVAL;
2276
2277         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2278         if (ret == 0)
2279                 *val = map->format.parse_val(map->work_buf);
2280
2281         return ret;
2282 }
2283
2284 static int _regmap_read(struct regmap *map, unsigned int reg,
2285                         unsigned int *val)
2286 {
2287         int ret;
2288         void *context = _regmap_map_get_context(map);
2289
2290         if (!map->cache_bypass) {
2291                 ret = regcache_read(map, reg, val);
2292                 if (ret == 0)
2293                         return 0;
2294         }
2295
2296         if (map->cache_only)
2297                 return -EBUSY;
2298
2299         if (!regmap_readable(map, reg))
2300                 return -EIO;
2301
2302         ret = map->reg_read(context, reg, val);
2303         if (ret == 0) {
2304 #ifdef LOG_DEVICE
2305                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2306                         dev_info(map->dev, "%x => %x\n", reg, *val);
2307 #endif
2308
2309                 trace_regmap_reg_read(map, reg, *val);
2310
2311                 if (!map->cache_bypass)
2312                         regcache_write(map, reg, *val);
2313         }
2314
2315         return ret;
2316 }
2317
2318 /**
2319  * regmap_read(): Read a value from a single register
2320  *
2321  * @map: Register map to read from
2322  * @reg: Register to be read from
2323  * @val: Pointer to store read value
2324  *
2325  * A value of zero will be returned on success, a negative errno will
2326  * be returned in error cases.
2327  */
2328 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2329 {
2330         int ret;
2331
2332         if (!IS_ALIGNED(reg, map->reg_stride))
2333                 return -EINVAL;
2334
2335         map->lock(map->lock_arg);
2336
2337         ret = _regmap_read(map, reg, val);
2338
2339         map->unlock(map->lock_arg);
2340
2341         return ret;
2342 }
2343 EXPORT_SYMBOL_GPL(regmap_read);
2344
2345 /**
2346  * regmap_raw_read(): Read raw data from the device
2347  *
2348  * @map: Register map to read from
2349  * @reg: First register to be read from
2350  * @val: Pointer to store read value
2351  * @val_len: Size of data to read
2352  *
2353  * A value of zero will be returned on success, a negative errno will
2354  * be returned in error cases.
2355  */
2356 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2357                     size_t val_len)
2358 {
2359         size_t val_bytes = map->format.val_bytes;
2360         size_t val_count = val_len / val_bytes;
2361         unsigned int v;
2362         int ret, i;
2363
2364         if (!map->bus)
2365                 return -EINVAL;
2366         if (val_len % map->format.val_bytes)
2367                 return -EINVAL;
2368         if (!IS_ALIGNED(reg, map->reg_stride))
2369                 return -EINVAL;
2370         if (val_count == 0)
2371                 return -EINVAL;
2372
2373         map->lock(map->lock_arg);
2374
2375         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2376             map->cache_type == REGCACHE_NONE) {
2377                 if (!map->bus->read) {
2378                         ret = -ENOTSUPP;
2379                         goto out;
2380                 }
2381                 if (map->max_raw_read && map->max_raw_read < val_len) {
2382                         ret = -E2BIG;
2383                         goto out;
2384                 }
2385
2386                 /* Physical block read if there's no cache involved */
2387                 ret = _regmap_raw_read(map, reg, val, val_len);
2388
2389         } else {
2390                 /* Otherwise go word by word for the cache; should be low
2391                  * cost as we expect to hit the cache.
2392                  */
2393                 for (i = 0; i < val_count; i++) {
2394                         ret = _regmap_read(map, reg + (i * map->reg_stride),
2395                                            &v);
2396                         if (ret != 0)
2397                                 goto out;
2398
2399                         map->format.format_val(val + (i * val_bytes), v, 0);
2400                 }
2401         }
2402
2403  out:
2404         map->unlock(map->lock_arg);
2405
2406         return ret;
2407 }
2408 EXPORT_SYMBOL_GPL(regmap_raw_read);
2409
2410 /**
2411  * regmap_field_read(): Read a value to a single register field
2412  *
2413  * @field: Register field to read from
2414  * @val: Pointer to store read value
2415  *
2416  * A value of zero will be returned on success, a negative errno will
2417  * be returned in error cases.
2418  */
2419 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2420 {
2421         int ret;
2422         unsigned int reg_val;
2423         ret = regmap_read(field->regmap, field->reg, &reg_val);
2424         if (ret != 0)
2425                 return ret;
2426
2427         reg_val &= field->mask;
2428         reg_val >>= field->shift;
2429         *val = reg_val;
2430
2431         return ret;
2432 }
2433 EXPORT_SYMBOL_GPL(regmap_field_read);
2434
2435 /**
2436  * regmap_fields_read(): Read a value to a single register field with port ID
2437  *
2438  * @field: Register field to read from
2439  * @id: port ID
2440  * @val: Pointer to store read value
2441  *
2442  * A value of zero will be returned on success, a negative errno will
2443  * be returned in error cases.
2444  */
2445 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2446                        unsigned int *val)
2447 {
2448         int ret;
2449         unsigned int reg_val;
2450
2451         if (id >= field->id_size)
2452                 return -EINVAL;
2453
2454         ret = regmap_read(field->regmap,
2455                           field->reg + (field->id_offset * id),
2456                           &reg_val);
2457         if (ret != 0)
2458                 return ret;
2459
2460         reg_val &= field->mask;
2461         reg_val >>= field->shift;
2462         *val = reg_val;
2463
2464         return ret;
2465 }
2466 EXPORT_SYMBOL_GPL(regmap_fields_read);
2467
2468 /**
2469  * regmap_bulk_read(): Read multiple registers from the device
2470  *
2471  * @map: Register map to read from
2472  * @reg: First register to be read from
2473  * @val: Pointer to store read value, in native register size for device
2474  * @val_count: Number of registers to read
2475  *
2476  * A value of zero will be returned on success, a negative errno will
2477  * be returned in error cases.
2478  */
2479 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2480                      size_t val_count)
2481 {
2482         int ret, i;
2483         size_t val_bytes = map->format.val_bytes;
2484         bool vol = regmap_volatile_range(map, reg, val_count);
2485
2486         if (!IS_ALIGNED(reg, map->reg_stride))
2487                 return -EINVAL;
2488
2489         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2490                 /*
2491                  * Some devices does not support bulk read, for
2492                  * them we have a series of single read operations.
2493                  */
2494                 size_t total_size = val_bytes * val_count;
2495
2496                 if (!map->use_single_read &&
2497                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2498                         ret = regmap_raw_read(map, reg, val,
2499                                               val_bytes * val_count);
2500                         if (ret != 0)
2501                                 return ret;
2502                 } else {
2503                         /*
2504                          * Some devices do not support bulk read or do not
2505                          * support large bulk reads, for them we have a series
2506                          * of read operations.
2507                          */
2508                         int chunk_stride = map->reg_stride;
2509                         size_t chunk_size = val_bytes;
2510                         size_t chunk_count = val_count;
2511
2512                         if (!map->use_single_read) {
2513                                 chunk_size = map->max_raw_read;
2514                                 if (chunk_size % val_bytes)
2515                                         chunk_size -= chunk_size % val_bytes;
2516                                 chunk_count = total_size / chunk_size;
2517                                 chunk_stride *= chunk_size / val_bytes;
2518                         }
2519
2520                         /* Read bytes that fit into a multiple of chunk_size */
2521                         for (i = 0; i < chunk_count; i++) {
2522                                 ret = regmap_raw_read(map,
2523                                                       reg + (i * chunk_stride),
2524                                                       val + (i * chunk_size),
2525                                                       chunk_size);
2526                                 if (ret != 0)
2527                                         return ret;
2528                         }
2529
2530                         /* Read remaining bytes */
2531                         if (chunk_size * i < total_size) {
2532                                 ret = regmap_raw_read(map,
2533                                                       reg + (i * chunk_stride),
2534                                                       val + (i * chunk_size),
2535                                                       total_size - i * chunk_size);
2536                                 if (ret != 0)
2537                                         return ret;
2538                         }
2539                 }
2540
2541                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2542                         map->format.parse_inplace(val + i);
2543         } else {
2544                 for (i = 0; i < val_count; i++) {
2545                         unsigned int ival;
2546                         ret = regmap_read(map, reg + (i * map->reg_stride),
2547                                           &ival);
2548                         if (ret != 0)
2549                                 return ret;
2550
2551                         if (map->format.format_val) {
2552                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2553                         } else {
2554                                 /* Devices providing read and write
2555                                  * operations can use the bulk I/O
2556                                  * functions if they define a val_bytes,
2557                                  * we assume that the values are native
2558                                  * endian.
2559                                  */
2560 #ifdef CONFIG_64BIT
2561                                 u64 *u64 = val;
2562 #endif
2563                                 u32 *u32 = val;
2564                                 u16 *u16 = val;
2565                                 u8 *u8 = val;
2566
2567                                 switch (map->format.val_bytes) {
2568 #ifdef CONFIG_64BIT
2569                                 case 8:
2570                                         u64[i] = ival;
2571                                         break;
2572 #endif
2573                                 case 4:
2574                                         u32[i] = ival;
2575                                         break;
2576                                 case 2:
2577                                         u16[i] = ival;
2578                                         break;
2579                                 case 1:
2580                                         u8[i] = ival;
2581                                         break;
2582                                 default:
2583                                         return -EINVAL;
2584                                 }
2585                         }
2586                 }
2587         }
2588
2589         return 0;
2590 }
2591 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2592
2593 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2594                                unsigned int mask, unsigned int val,
2595                                bool *change, bool force_write)
2596 {
2597         int ret;
2598         unsigned int tmp, orig;
2599
2600         if (change)
2601                 *change = false;
2602
2603         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2604                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2605                 if (ret == 0 && change)
2606                         *change = true;
2607         } else {
2608                 ret = _regmap_read(map, reg, &orig);
2609                 if (ret != 0)
2610                         return ret;
2611
2612                 tmp = orig & ~mask;
2613                 tmp |= val & mask;
2614
2615                 if (force_write || (tmp != orig)) {
2616                         ret = _regmap_write(map, reg, tmp);
2617                         if (ret == 0 && change)
2618                                 *change = true;
2619                 }
2620         }
2621
2622         return ret;
2623 }
2624
2625 /**
2626  * regmap_update_bits_base:
2627  *      Perform a read/modify/write cycle on the
2628  *      register map with change, async, force option
2629  *
2630  * @map: Register map to update
2631  * @reg: Register to update
2632  * @mask: Bitmask to change
2633  * @val: New value for bitmask
2634  * @change: Boolean indicating if a write was done
2635  * @async: Boolean indicating asynchronously
2636  * @force: Boolean indicating use force update
2637  *
2638  * if async was true,
2639  * With most buses the read must be done synchronously so this is most
2640  * useful for devices with a cache which do not need to interact with
2641  * the hardware to determine the current register value.
2642  *
2643  * Returns zero for success, a negative number on error.
2644  */
2645 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2646                             unsigned int mask, unsigned int val,
2647                             bool *change, bool async, bool force)
2648 {
2649         int ret;
2650
2651         map->lock(map->lock_arg);
2652
2653         map->async = async;
2654
2655         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2656
2657         map->async = false;
2658
2659         map->unlock(map->lock_arg);
2660
2661         return ret;
2662 }
2663 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2664
2665 /**
2666  * regmap_write_bits: Perform a read/modify/write cycle on the register map
2667  *
2668  * @map: Register map to update
2669  * @reg: Register to update
2670  * @mask: Bitmask to change
2671  * @val: New value for bitmask
2672  *
2673  * Returns zero for success, a negative number on error.
2674  */
2675 int regmap_write_bits(struct regmap *map, unsigned int reg,
2676                       unsigned int mask, unsigned int val)
2677 {
2678         int ret;
2679
2680         map->lock(map->lock_arg);
2681         ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2682         map->unlock(map->lock_arg);
2683
2684         return ret;
2685 }
2686 EXPORT_SYMBOL_GPL(regmap_write_bits);
2687
2688 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2689 {
2690         struct regmap *map = async->map;
2691         bool wake;
2692
2693         trace_regmap_async_io_complete(map);
2694
2695         spin_lock(&map->async_lock);
2696         list_move(&async->list, &map->async_free);
2697         wake = list_empty(&map->async_list);
2698
2699         if (ret != 0)
2700                 map->async_ret = ret;
2701
2702         spin_unlock(&map->async_lock);
2703
2704         if (wake)
2705                 wake_up(&map->async_waitq);
2706 }
2707 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2708
2709 static int regmap_async_is_done(struct regmap *map)
2710 {
2711         unsigned long flags;
2712         int ret;
2713
2714         spin_lock_irqsave(&map->async_lock, flags);
2715         ret = list_empty(&map->async_list);
2716         spin_unlock_irqrestore(&map->async_lock, flags);
2717
2718         return ret;
2719 }
2720
2721 /**
2722  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2723  *
2724  * @map: Map to operate on.
2725  *
2726  * Blocks until any pending asynchronous I/O has completed.  Returns
2727  * an error code for any failed I/O operations.
2728  */
2729 int regmap_async_complete(struct regmap *map)
2730 {
2731         unsigned long flags;
2732         int ret;
2733
2734         /* Nothing to do with no async support */
2735         if (!map->bus || !map->bus->async_write)
2736                 return 0;
2737
2738         trace_regmap_async_complete_start(map);
2739
2740         wait_event(map->async_waitq, regmap_async_is_done(map));
2741
2742         spin_lock_irqsave(&map->async_lock, flags);
2743         ret = map->async_ret;
2744         map->async_ret = 0;
2745         spin_unlock_irqrestore(&map->async_lock, flags);
2746
2747         trace_regmap_async_complete_done(map);
2748
2749         return ret;
2750 }
2751 EXPORT_SYMBOL_GPL(regmap_async_complete);
2752
2753 /**
2754  * regmap_register_patch: Register and apply register updates to be applied
2755  *                        on device initialistion
2756  *
2757  * @map: Register map to apply updates to.
2758  * @regs: Values to update.
2759  * @num_regs: Number of entries in regs.
2760  *
2761  * Register a set of register updates to be applied to the device
2762  * whenever the device registers are synchronised with the cache and
2763  * apply them immediately.  Typically this is used to apply
2764  * corrections to be applied to the device defaults on startup, such
2765  * as the updates some vendors provide to undocumented registers.
2766  *
2767  * The caller must ensure that this function cannot be called
2768  * concurrently with either itself or regcache_sync().
2769  */
2770 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2771                           int num_regs)
2772 {
2773         struct reg_sequence *p;
2774         int ret;
2775         bool bypass;
2776
2777         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2778             num_regs))
2779                 return 0;
2780
2781         p = krealloc(map->patch,
2782                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2783                      GFP_KERNEL);
2784         if (p) {
2785                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2786                 map->patch = p;
2787                 map->patch_regs += num_regs;
2788         } else {
2789                 return -ENOMEM;
2790         }
2791
2792         map->lock(map->lock_arg);
2793
2794         bypass = map->cache_bypass;
2795
2796         map->cache_bypass = true;
2797         map->async = true;
2798
2799         ret = _regmap_multi_reg_write(map, regs, num_regs);
2800
2801         map->async = false;
2802         map->cache_bypass = bypass;
2803
2804         map->unlock(map->lock_arg);
2805
2806         regmap_async_complete(map);
2807
2808         return ret;
2809 }
2810 EXPORT_SYMBOL_GPL(regmap_register_patch);
2811
2812 /*
2813  * regmap_get_val_bytes(): Report the size of a register value
2814  *
2815  * Report the size of a register value, mainly intended to for use by
2816  * generic infrastructure built on top of regmap.
2817  */
2818 int regmap_get_val_bytes(struct regmap *map)
2819 {
2820         if (map->format.format_write)
2821                 return -EINVAL;
2822
2823         return map->format.val_bytes;
2824 }
2825 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2826
2827 /**
2828  * regmap_get_max_register(): Report the max register value
2829  *
2830  * Report the max register value, mainly intended to for use by
2831  * generic infrastructure built on top of regmap.
2832  */
2833 int regmap_get_max_register(struct regmap *map)
2834 {
2835         return map->max_register ? map->max_register : -EINVAL;
2836 }
2837 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2838
2839 /**
2840  * regmap_get_reg_stride(): Report the register address stride
2841  *
2842  * Report the register address stride, mainly intended to for use by
2843  * generic infrastructure built on top of regmap.
2844  */
2845 int regmap_get_reg_stride(struct regmap *map)
2846 {
2847         return map->reg_stride;
2848 }
2849 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2850
2851 int regmap_parse_val(struct regmap *map, const void *buf,
2852                         unsigned int *val)
2853 {
2854         if (!map->format.parse_val)
2855                 return -EINVAL;
2856
2857         *val = map->format.parse_val(buf);
2858
2859         return 0;
2860 }
2861 EXPORT_SYMBOL_GPL(regmap_parse_val);
2862
2863 static int __init regmap_initcall(void)
2864 {
2865         regmap_debugfs_initcall();
2866
2867         return 0;
2868 }
2869 postcore_initcall(regmap_initcall);