]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/base/regmap/regmap.c
Merge remote-tracking branches 'asoc/topic/fsl-sai', 'asoc/topic/fsl-ssl', 'asoc...
[karo-tx-linux.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25
26 #include "internal.h"
27
28 /*
29  * Sometimes for failures during very early init the trace
30  * infrastructure isn't available early enough to be used.  For this
31  * sort of problem defining LOG_DEVICE will add printks for basic
32  * register I/O on a specific device.
33  */
34 #undef LOG_DEVICE
35
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37                                unsigned int mask, unsigned int val,
38                                bool *change, bool force_write);
39
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41                                 unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43                             unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45                                        unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47                                  unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49                                  unsigned int val);
50
51 bool regmap_reg_in_ranges(unsigned int reg,
52                           const struct regmap_range *ranges,
53                           unsigned int nranges)
54 {
55         const struct regmap_range *r;
56         int i;
57
58         for (i = 0, r = ranges; i < nranges; i++, r++)
59                 if (regmap_reg_in_range(reg, r))
60                         return true;
61         return false;
62 }
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66                               const struct regmap_access_table *table)
67 {
68         /* Check "no ranges" first */
69         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70                 return false;
71
72         /* In case zero "yes ranges" are supplied, any reg is OK */
73         if (!table->n_yes_ranges)
74                 return true;
75
76         return regmap_reg_in_ranges(reg, table->yes_ranges,
77                                     table->n_yes_ranges);
78 }
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
80
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
82 {
83         if (map->max_register && reg > map->max_register)
84                 return false;
85
86         if (map->writeable_reg)
87                 return map->writeable_reg(map->dev, reg);
88
89         if (map->wr_table)
90                 return regmap_check_range_table(map, reg, map->wr_table);
91
92         return true;
93 }
94
95 bool regmap_readable(struct regmap *map, unsigned int reg)
96 {
97         if (!map->reg_read)
98                 return false;
99
100         if (map->max_register && reg > map->max_register)
101                 return false;
102
103         if (map->format.format_write)
104                 return false;
105
106         if (map->readable_reg)
107                 return map->readable_reg(map->dev, reg);
108
109         if (map->rd_table)
110                 return regmap_check_range_table(map, reg, map->rd_table);
111
112         return true;
113 }
114
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117         if (!map->format.format_write && !regmap_readable(map, reg))
118                 return false;
119
120         if (map->volatile_reg)
121                 return map->volatile_reg(map->dev, reg);
122
123         if (map->volatile_table)
124                 return regmap_check_range_table(map, reg, map->volatile_table);
125
126         if (map->cache_ops)
127                 return false;
128         else
129                 return true;
130 }
131
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134         if (!regmap_readable(map, reg))
135                 return false;
136
137         if (map->precious_reg)
138                 return map->precious_reg(map->dev, reg);
139
140         if (map->precious_table)
141                 return regmap_check_range_table(map, reg, map->precious_table);
142
143         return false;
144 }
145
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147         size_t num)
148 {
149         unsigned int i;
150
151         for (i = 0; i < num; i++)
152                 if (!regmap_volatile(map, reg + i))
153                         return false;
154
155         return true;
156 }
157
158 static void regmap_format_2_6_write(struct regmap *map,
159                                      unsigned int reg, unsigned int val)
160 {
161         u8 *out = map->work_buf;
162
163         *out = (reg << 6) | val;
164 }
165
166 static void regmap_format_4_12_write(struct regmap *map,
167                                      unsigned int reg, unsigned int val)
168 {
169         __be16 *out = map->work_buf;
170         *out = cpu_to_be16((reg << 12) | val);
171 }
172
173 static void regmap_format_7_9_write(struct regmap *map,
174                                     unsigned int reg, unsigned int val)
175 {
176         __be16 *out = map->work_buf;
177         *out = cpu_to_be16((reg << 9) | val);
178 }
179
180 static void regmap_format_10_14_write(struct regmap *map,
181                                     unsigned int reg, unsigned int val)
182 {
183         u8 *out = map->work_buf;
184
185         out[2] = val;
186         out[1] = (val >> 8) | (reg << 6);
187         out[0] = reg >> 2;
188 }
189
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192         u8 *b = buf;
193
194         b[0] = val << shift;
195 }
196
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199         __be16 *b = buf;
200
201         b[0] = cpu_to_be16(val << shift);
202 }
203
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205 {
206         __le16 *b = buf;
207
208         b[0] = cpu_to_le16(val << shift);
209 }
210
211 static void regmap_format_16_native(void *buf, unsigned int val,
212                                     unsigned int shift)
213 {
214         *(u16 *)buf = val << shift;
215 }
216
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 {
219         u8 *b = buf;
220
221         val <<= shift;
222
223         b[0] = val >> 16;
224         b[1] = val >> 8;
225         b[2] = val;
226 }
227
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 {
230         __be32 *b = buf;
231
232         b[0] = cpu_to_be32(val << shift);
233 }
234
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236 {
237         __le32 *b = buf;
238
239         b[0] = cpu_to_le32(val << shift);
240 }
241
242 static void regmap_format_32_native(void *buf, unsigned int val,
243                                     unsigned int shift)
244 {
245         *(u32 *)buf = val << shift;
246 }
247
248 #ifdef CONFIG_64BIT
249 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
250 {
251         __be64 *b = buf;
252
253         b[0] = cpu_to_be64((u64)val << shift);
254 }
255
256 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
257 {
258         __le64 *b = buf;
259
260         b[0] = cpu_to_le64((u64)val << shift);
261 }
262
263 static void regmap_format_64_native(void *buf, unsigned int val,
264                                     unsigned int shift)
265 {
266         *(u64 *)buf = (u64)val << shift;
267 }
268 #endif
269
270 static void regmap_parse_inplace_noop(void *buf)
271 {
272 }
273
274 static unsigned int regmap_parse_8(const void *buf)
275 {
276         const u8 *b = buf;
277
278         return b[0];
279 }
280
281 static unsigned int regmap_parse_16_be(const void *buf)
282 {
283         const __be16 *b = buf;
284
285         return be16_to_cpu(b[0]);
286 }
287
288 static unsigned int regmap_parse_16_le(const void *buf)
289 {
290         const __le16 *b = buf;
291
292         return le16_to_cpu(b[0]);
293 }
294
295 static void regmap_parse_16_be_inplace(void *buf)
296 {
297         __be16 *b = buf;
298
299         b[0] = be16_to_cpu(b[0]);
300 }
301
302 static void regmap_parse_16_le_inplace(void *buf)
303 {
304         __le16 *b = buf;
305
306         b[0] = le16_to_cpu(b[0]);
307 }
308
309 static unsigned int regmap_parse_16_native(const void *buf)
310 {
311         return *(u16 *)buf;
312 }
313
314 static unsigned int regmap_parse_24(const void *buf)
315 {
316         const u8 *b = buf;
317         unsigned int ret = b[2];
318         ret |= ((unsigned int)b[1]) << 8;
319         ret |= ((unsigned int)b[0]) << 16;
320
321         return ret;
322 }
323
324 static unsigned int regmap_parse_32_be(const void *buf)
325 {
326         const __be32 *b = buf;
327
328         return be32_to_cpu(b[0]);
329 }
330
331 static unsigned int regmap_parse_32_le(const void *buf)
332 {
333         const __le32 *b = buf;
334
335         return le32_to_cpu(b[0]);
336 }
337
338 static void regmap_parse_32_be_inplace(void *buf)
339 {
340         __be32 *b = buf;
341
342         b[0] = be32_to_cpu(b[0]);
343 }
344
345 static void regmap_parse_32_le_inplace(void *buf)
346 {
347         __le32 *b = buf;
348
349         b[0] = le32_to_cpu(b[0]);
350 }
351
352 static unsigned int regmap_parse_32_native(const void *buf)
353 {
354         return *(u32 *)buf;
355 }
356
357 #ifdef CONFIG_64BIT
358 static unsigned int regmap_parse_64_be(const void *buf)
359 {
360         const __be64 *b = buf;
361
362         return be64_to_cpu(b[0]);
363 }
364
365 static unsigned int regmap_parse_64_le(const void *buf)
366 {
367         const __le64 *b = buf;
368
369         return le64_to_cpu(b[0]);
370 }
371
372 static void regmap_parse_64_be_inplace(void *buf)
373 {
374         __be64 *b = buf;
375
376         b[0] = be64_to_cpu(b[0]);
377 }
378
379 static void regmap_parse_64_le_inplace(void *buf)
380 {
381         __le64 *b = buf;
382
383         b[0] = le64_to_cpu(b[0]);
384 }
385
386 static unsigned int regmap_parse_64_native(const void *buf)
387 {
388         return *(u64 *)buf;
389 }
390 #endif
391
392 static void regmap_lock_mutex(void *__map)
393 {
394         struct regmap *map = __map;
395         mutex_lock(&map->mutex);
396 }
397
398 static void regmap_unlock_mutex(void *__map)
399 {
400         struct regmap *map = __map;
401         mutex_unlock(&map->mutex);
402 }
403
404 static void regmap_lock_spinlock(void *__map)
405 __acquires(&map->spinlock)
406 {
407         struct regmap *map = __map;
408         unsigned long flags;
409
410         spin_lock_irqsave(&map->spinlock, flags);
411         map->spinlock_flags = flags;
412 }
413
414 static void regmap_unlock_spinlock(void *__map)
415 __releases(&map->spinlock)
416 {
417         struct regmap *map = __map;
418         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 }
420
421 static void dev_get_regmap_release(struct device *dev, void *res)
422 {
423         /*
424          * We don't actually have anything to do here; the goal here
425          * is not to manage the regmap but to provide a simple way to
426          * get the regmap back given a struct device.
427          */
428 }
429
430 static bool _regmap_range_add(struct regmap *map,
431                               struct regmap_range_node *data)
432 {
433         struct rb_root *root = &map->range_tree;
434         struct rb_node **new = &(root->rb_node), *parent = NULL;
435
436         while (*new) {
437                 struct regmap_range_node *this =
438                         container_of(*new, struct regmap_range_node, node);
439
440                 parent = *new;
441                 if (data->range_max < this->range_min)
442                         new = &((*new)->rb_left);
443                 else if (data->range_min > this->range_max)
444                         new = &((*new)->rb_right);
445                 else
446                         return false;
447         }
448
449         rb_link_node(&data->node, parent, new);
450         rb_insert_color(&data->node, root);
451
452         return true;
453 }
454
455 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
456                                                       unsigned int reg)
457 {
458         struct rb_node *node = map->range_tree.rb_node;
459
460         while (node) {
461                 struct regmap_range_node *this =
462                         container_of(node, struct regmap_range_node, node);
463
464                 if (reg < this->range_min)
465                         node = node->rb_left;
466                 else if (reg > this->range_max)
467                         node = node->rb_right;
468                 else
469                         return this;
470         }
471
472         return NULL;
473 }
474
475 static void regmap_range_exit(struct regmap *map)
476 {
477         struct rb_node *next;
478         struct regmap_range_node *range_node;
479
480         next = rb_first(&map->range_tree);
481         while (next) {
482                 range_node = rb_entry(next, struct regmap_range_node, node);
483                 next = rb_next(&range_node->node);
484                 rb_erase(&range_node->node, &map->range_tree);
485                 kfree(range_node);
486         }
487
488         kfree(map->selector_work_buf);
489 }
490
491 int regmap_attach_dev(struct device *dev, struct regmap *map,
492                       const struct regmap_config *config)
493 {
494         struct regmap **m;
495
496         map->dev = dev;
497
498         regmap_debugfs_init(map, config->name);
499
500         /* Add a devres resource for dev_get_regmap() */
501         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
502         if (!m) {
503                 regmap_debugfs_exit(map);
504                 return -ENOMEM;
505         }
506         *m = map;
507         devres_add(dev, m);
508
509         return 0;
510 }
511 EXPORT_SYMBOL_GPL(regmap_attach_dev);
512
513 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
514                                         const struct regmap_config *config)
515 {
516         enum regmap_endian endian;
517
518         /* Retrieve the endianness specification from the regmap config */
519         endian = config->reg_format_endian;
520
521         /* If the regmap config specified a non-default value, use that */
522         if (endian != REGMAP_ENDIAN_DEFAULT)
523                 return endian;
524
525         /* Retrieve the endianness specification from the bus config */
526         if (bus && bus->reg_format_endian_default)
527                 endian = bus->reg_format_endian_default;
528
529         /* If the bus specified a non-default value, use that */
530         if (endian != REGMAP_ENDIAN_DEFAULT)
531                 return endian;
532
533         /* Use this if no other value was found */
534         return REGMAP_ENDIAN_BIG;
535 }
536
537 enum regmap_endian regmap_get_val_endian(struct device *dev,
538                                          const struct regmap_bus *bus,
539                                          const struct regmap_config *config)
540 {
541         struct device_node *np;
542         enum regmap_endian endian;
543
544         /* Retrieve the endianness specification from the regmap config */
545         endian = config->val_format_endian;
546
547         /* If the regmap config specified a non-default value, use that */
548         if (endian != REGMAP_ENDIAN_DEFAULT)
549                 return endian;
550
551         /* If the dev and dev->of_node exist try to get endianness from DT */
552         if (dev && dev->of_node) {
553                 np = dev->of_node;
554
555                 /* Parse the device's DT node for an endianness specification */
556                 if (of_property_read_bool(np, "big-endian"))
557                         endian = REGMAP_ENDIAN_BIG;
558                 else if (of_property_read_bool(np, "little-endian"))
559                         endian = REGMAP_ENDIAN_LITTLE;
560                 else if (of_property_read_bool(np, "native-endian"))
561                         endian = REGMAP_ENDIAN_NATIVE;
562
563                 /* If the endianness was specified in DT, use that */
564                 if (endian != REGMAP_ENDIAN_DEFAULT)
565                         return endian;
566         }
567
568         /* Retrieve the endianness specification from the bus config */
569         if (bus && bus->val_format_endian_default)
570                 endian = bus->val_format_endian_default;
571
572         /* If the bus specified a non-default value, use that */
573         if (endian != REGMAP_ENDIAN_DEFAULT)
574                 return endian;
575
576         /* Use this if no other value was found */
577         return REGMAP_ENDIAN_BIG;
578 }
579 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
580
581 struct regmap *__regmap_init(struct device *dev,
582                              const struct regmap_bus *bus,
583                              void *bus_context,
584                              const struct regmap_config *config,
585                              struct lock_class_key *lock_key,
586                              const char *lock_name)
587 {
588         struct regmap *map;
589         int ret = -EINVAL;
590         enum regmap_endian reg_endian, val_endian;
591         int i, j;
592
593         if (!config)
594                 goto err;
595
596         map = kzalloc(sizeof(*map), GFP_KERNEL);
597         if (map == NULL) {
598                 ret = -ENOMEM;
599                 goto err;
600         }
601
602         if (config->lock && config->unlock) {
603                 map->lock = config->lock;
604                 map->unlock = config->unlock;
605                 map->lock_arg = config->lock_arg;
606         } else {
607                 if ((bus && bus->fast_io) ||
608                     config->fast_io) {
609                         spin_lock_init(&map->spinlock);
610                         map->lock = regmap_lock_spinlock;
611                         map->unlock = regmap_unlock_spinlock;
612                         lockdep_set_class_and_name(&map->spinlock,
613                                                    lock_key, lock_name);
614                 } else {
615                         mutex_init(&map->mutex);
616                         map->lock = regmap_lock_mutex;
617                         map->unlock = regmap_unlock_mutex;
618                         lockdep_set_class_and_name(&map->mutex,
619                                                    lock_key, lock_name);
620                 }
621                 map->lock_arg = map;
622         }
623
624         /*
625          * When we write in fast-paths with regmap_bulk_write() don't allocate
626          * scratch buffers with sleeping allocations.
627          */
628         if ((bus && bus->fast_io) || config->fast_io)
629                 map->alloc_flags = GFP_ATOMIC;
630         else
631                 map->alloc_flags = GFP_KERNEL;
632
633         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
634         map->format.pad_bytes = config->pad_bits / 8;
635         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
636         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
637                         config->val_bits + config->pad_bits, 8);
638         map->reg_shift = config->pad_bits % 8;
639         if (config->reg_stride)
640                 map->reg_stride = config->reg_stride;
641         else
642                 map->reg_stride = 1;
643         map->use_single_read = config->use_single_rw || !bus || !bus->read;
644         map->use_single_write = config->use_single_rw || !bus || !bus->write;
645         map->can_multi_write = config->can_multi_write && bus && bus->write;
646         if (bus) {
647                 map->max_raw_read = bus->max_raw_read;
648                 map->max_raw_write = bus->max_raw_write;
649         }
650         map->dev = dev;
651         map->bus = bus;
652         map->bus_context = bus_context;
653         map->max_register = config->max_register;
654         map->wr_table = config->wr_table;
655         map->rd_table = config->rd_table;
656         map->volatile_table = config->volatile_table;
657         map->precious_table = config->precious_table;
658         map->writeable_reg = config->writeable_reg;
659         map->readable_reg = config->readable_reg;
660         map->volatile_reg = config->volatile_reg;
661         map->precious_reg = config->precious_reg;
662         map->cache_type = config->cache_type;
663         map->name = config->name;
664
665         spin_lock_init(&map->async_lock);
666         INIT_LIST_HEAD(&map->async_list);
667         INIT_LIST_HEAD(&map->async_free);
668         init_waitqueue_head(&map->async_waitq);
669
670         if (config->read_flag_mask || config->write_flag_mask) {
671                 map->read_flag_mask = config->read_flag_mask;
672                 map->write_flag_mask = config->write_flag_mask;
673         } else if (bus) {
674                 map->read_flag_mask = bus->read_flag_mask;
675         }
676
677         if (!bus) {
678                 map->reg_read  = config->reg_read;
679                 map->reg_write = config->reg_write;
680
681                 map->defer_caching = false;
682                 goto skip_format_initialization;
683         } else if (!bus->read || !bus->write) {
684                 map->reg_read = _regmap_bus_reg_read;
685                 map->reg_write = _regmap_bus_reg_write;
686
687                 map->defer_caching = false;
688                 goto skip_format_initialization;
689         } else {
690                 map->reg_read  = _regmap_bus_read;
691                 map->reg_update_bits = bus->reg_update_bits;
692         }
693
694         reg_endian = regmap_get_reg_endian(bus, config);
695         val_endian = regmap_get_val_endian(dev, bus, config);
696
697         switch (config->reg_bits + map->reg_shift) {
698         case 2:
699                 switch (config->val_bits) {
700                 case 6:
701                         map->format.format_write = regmap_format_2_6_write;
702                         break;
703                 default:
704                         goto err_map;
705                 }
706                 break;
707
708         case 4:
709                 switch (config->val_bits) {
710                 case 12:
711                         map->format.format_write = regmap_format_4_12_write;
712                         break;
713                 default:
714                         goto err_map;
715                 }
716                 break;
717
718         case 7:
719                 switch (config->val_bits) {
720                 case 9:
721                         map->format.format_write = regmap_format_7_9_write;
722                         break;
723                 default:
724                         goto err_map;
725                 }
726                 break;
727
728         case 10:
729                 switch (config->val_bits) {
730                 case 14:
731                         map->format.format_write = regmap_format_10_14_write;
732                         break;
733                 default:
734                         goto err_map;
735                 }
736                 break;
737
738         case 8:
739                 map->format.format_reg = regmap_format_8;
740                 break;
741
742         case 16:
743                 switch (reg_endian) {
744                 case REGMAP_ENDIAN_BIG:
745                         map->format.format_reg = regmap_format_16_be;
746                         break;
747                 case REGMAP_ENDIAN_NATIVE:
748                         map->format.format_reg = regmap_format_16_native;
749                         break;
750                 default:
751                         goto err_map;
752                 }
753                 break;
754
755         case 24:
756                 if (reg_endian != REGMAP_ENDIAN_BIG)
757                         goto err_map;
758                 map->format.format_reg = regmap_format_24;
759                 break;
760
761         case 32:
762                 switch (reg_endian) {
763                 case REGMAP_ENDIAN_BIG:
764                         map->format.format_reg = regmap_format_32_be;
765                         break;
766                 case REGMAP_ENDIAN_NATIVE:
767                         map->format.format_reg = regmap_format_32_native;
768                         break;
769                 default:
770                         goto err_map;
771                 }
772                 break;
773
774 #ifdef CONFIG_64BIT
775         case 64:
776                 switch (reg_endian) {
777                 case REGMAP_ENDIAN_BIG:
778                         map->format.format_reg = regmap_format_64_be;
779                         break;
780                 case REGMAP_ENDIAN_NATIVE:
781                         map->format.format_reg = regmap_format_64_native;
782                         break;
783                 default:
784                         goto err_map;
785                 }
786                 break;
787 #endif
788
789         default:
790                 goto err_map;
791         }
792
793         if (val_endian == REGMAP_ENDIAN_NATIVE)
794                 map->format.parse_inplace = regmap_parse_inplace_noop;
795
796         switch (config->val_bits) {
797         case 8:
798                 map->format.format_val = regmap_format_8;
799                 map->format.parse_val = regmap_parse_8;
800                 map->format.parse_inplace = regmap_parse_inplace_noop;
801                 break;
802         case 16:
803                 switch (val_endian) {
804                 case REGMAP_ENDIAN_BIG:
805                         map->format.format_val = regmap_format_16_be;
806                         map->format.parse_val = regmap_parse_16_be;
807                         map->format.parse_inplace = regmap_parse_16_be_inplace;
808                         break;
809                 case REGMAP_ENDIAN_LITTLE:
810                         map->format.format_val = regmap_format_16_le;
811                         map->format.parse_val = regmap_parse_16_le;
812                         map->format.parse_inplace = regmap_parse_16_le_inplace;
813                         break;
814                 case REGMAP_ENDIAN_NATIVE:
815                         map->format.format_val = regmap_format_16_native;
816                         map->format.parse_val = regmap_parse_16_native;
817                         break;
818                 default:
819                         goto err_map;
820                 }
821                 break;
822         case 24:
823                 if (val_endian != REGMAP_ENDIAN_BIG)
824                         goto err_map;
825                 map->format.format_val = regmap_format_24;
826                 map->format.parse_val = regmap_parse_24;
827                 break;
828         case 32:
829                 switch (val_endian) {
830                 case REGMAP_ENDIAN_BIG:
831                         map->format.format_val = regmap_format_32_be;
832                         map->format.parse_val = regmap_parse_32_be;
833                         map->format.parse_inplace = regmap_parse_32_be_inplace;
834                         break;
835                 case REGMAP_ENDIAN_LITTLE:
836                         map->format.format_val = regmap_format_32_le;
837                         map->format.parse_val = regmap_parse_32_le;
838                         map->format.parse_inplace = regmap_parse_32_le_inplace;
839                         break;
840                 case REGMAP_ENDIAN_NATIVE:
841                         map->format.format_val = regmap_format_32_native;
842                         map->format.parse_val = regmap_parse_32_native;
843                         break;
844                 default:
845                         goto err_map;
846                 }
847                 break;
848 #ifdef CONFIG_64BIT
849         case 64:
850                 switch (val_endian) {
851                 case REGMAP_ENDIAN_BIG:
852                         map->format.format_val = regmap_format_64_be;
853                         map->format.parse_val = regmap_parse_64_be;
854                         map->format.parse_inplace = regmap_parse_64_be_inplace;
855                         break;
856                 case REGMAP_ENDIAN_LITTLE:
857                         map->format.format_val = regmap_format_64_le;
858                         map->format.parse_val = regmap_parse_64_le;
859                         map->format.parse_inplace = regmap_parse_64_le_inplace;
860                         break;
861                 case REGMAP_ENDIAN_NATIVE:
862                         map->format.format_val = regmap_format_64_native;
863                         map->format.parse_val = regmap_parse_64_native;
864                         break;
865                 default:
866                         goto err_map;
867                 }
868                 break;
869 #endif
870         }
871
872         if (map->format.format_write) {
873                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
874                     (val_endian != REGMAP_ENDIAN_BIG))
875                         goto err_map;
876                 map->use_single_write = true;
877         }
878
879         if (!map->format.format_write &&
880             !(map->format.format_reg && map->format.format_val))
881                 goto err_map;
882
883         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
884         if (map->work_buf == NULL) {
885                 ret = -ENOMEM;
886                 goto err_map;
887         }
888
889         if (map->format.format_write) {
890                 map->defer_caching = false;
891                 map->reg_write = _regmap_bus_formatted_write;
892         } else if (map->format.format_val) {
893                 map->defer_caching = true;
894                 map->reg_write = _regmap_bus_raw_write;
895         }
896
897 skip_format_initialization:
898
899         map->range_tree = RB_ROOT;
900         for (i = 0; i < config->num_ranges; i++) {
901                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
902                 struct regmap_range_node *new;
903
904                 /* Sanity check */
905                 if (range_cfg->range_max < range_cfg->range_min) {
906                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
907                                 range_cfg->range_max, range_cfg->range_min);
908                         goto err_range;
909                 }
910
911                 if (range_cfg->range_max > map->max_register) {
912                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
913                                 range_cfg->range_max, map->max_register);
914                         goto err_range;
915                 }
916
917                 if (range_cfg->selector_reg > map->max_register) {
918                         dev_err(map->dev,
919                                 "Invalid range %d: selector out of map\n", i);
920                         goto err_range;
921                 }
922
923                 if (range_cfg->window_len == 0) {
924                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
925                                 i);
926                         goto err_range;
927                 }
928
929                 /* Make sure, that this register range has no selector
930                    or data window within its boundary */
931                 for (j = 0; j < config->num_ranges; j++) {
932                         unsigned sel_reg = config->ranges[j].selector_reg;
933                         unsigned win_min = config->ranges[j].window_start;
934                         unsigned win_max = win_min +
935                                            config->ranges[j].window_len - 1;
936
937                         /* Allow data window inside its own virtual range */
938                         if (j == i)
939                                 continue;
940
941                         if (range_cfg->range_min <= sel_reg &&
942                             sel_reg <= range_cfg->range_max) {
943                                 dev_err(map->dev,
944                                         "Range %d: selector for %d in window\n",
945                                         i, j);
946                                 goto err_range;
947                         }
948
949                         if (!(win_max < range_cfg->range_min ||
950                               win_min > range_cfg->range_max)) {
951                                 dev_err(map->dev,
952                                         "Range %d: window for %d in window\n",
953                                         i, j);
954                                 goto err_range;
955                         }
956                 }
957
958                 new = kzalloc(sizeof(*new), GFP_KERNEL);
959                 if (new == NULL) {
960                         ret = -ENOMEM;
961                         goto err_range;
962                 }
963
964                 new->map = map;
965                 new->name = range_cfg->name;
966                 new->range_min = range_cfg->range_min;
967                 new->range_max = range_cfg->range_max;
968                 new->selector_reg = range_cfg->selector_reg;
969                 new->selector_mask = range_cfg->selector_mask;
970                 new->selector_shift = range_cfg->selector_shift;
971                 new->window_start = range_cfg->window_start;
972                 new->window_len = range_cfg->window_len;
973
974                 if (!_regmap_range_add(map, new)) {
975                         dev_err(map->dev, "Failed to add range %d\n", i);
976                         kfree(new);
977                         goto err_range;
978                 }
979
980                 if (map->selector_work_buf == NULL) {
981                         map->selector_work_buf =
982                                 kzalloc(map->format.buf_size, GFP_KERNEL);
983                         if (map->selector_work_buf == NULL) {
984                                 ret = -ENOMEM;
985                                 goto err_range;
986                         }
987                 }
988         }
989
990         ret = regcache_init(map, config);
991         if (ret != 0)
992                 goto err_range;
993
994         if (dev) {
995                 ret = regmap_attach_dev(dev, map, config);
996                 if (ret != 0)
997                         goto err_regcache;
998         }
999
1000         return map;
1001
1002 err_regcache:
1003         regcache_exit(map);
1004 err_range:
1005         regmap_range_exit(map);
1006         kfree(map->work_buf);
1007 err_map:
1008         kfree(map);
1009 err:
1010         return ERR_PTR(ret);
1011 }
1012 EXPORT_SYMBOL_GPL(__regmap_init);
1013
1014 static void devm_regmap_release(struct device *dev, void *res)
1015 {
1016         regmap_exit(*(struct regmap **)res);
1017 }
1018
1019 struct regmap *__devm_regmap_init(struct device *dev,
1020                                   const struct regmap_bus *bus,
1021                                   void *bus_context,
1022                                   const struct regmap_config *config,
1023                                   struct lock_class_key *lock_key,
1024                                   const char *lock_name)
1025 {
1026         struct regmap **ptr, *regmap;
1027
1028         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1029         if (!ptr)
1030                 return ERR_PTR(-ENOMEM);
1031
1032         regmap = __regmap_init(dev, bus, bus_context, config,
1033                                lock_key, lock_name);
1034         if (!IS_ERR(regmap)) {
1035                 *ptr = regmap;
1036                 devres_add(dev, ptr);
1037         } else {
1038                 devres_free(ptr);
1039         }
1040
1041         return regmap;
1042 }
1043 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1044
1045 static void regmap_field_init(struct regmap_field *rm_field,
1046         struct regmap *regmap, struct reg_field reg_field)
1047 {
1048         rm_field->regmap = regmap;
1049         rm_field->reg = reg_field.reg;
1050         rm_field->shift = reg_field.lsb;
1051         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1052         rm_field->id_size = reg_field.id_size;
1053         rm_field->id_offset = reg_field.id_offset;
1054 }
1055
1056 /**
1057  * devm_regmap_field_alloc(): Allocate and initialise a register field
1058  * in a register map.
1059  *
1060  * @dev: Device that will be interacted with
1061  * @regmap: regmap bank in which this register field is located.
1062  * @reg_field: Register field with in the bank.
1063  *
1064  * The return value will be an ERR_PTR() on error or a valid pointer
1065  * to a struct regmap_field. The regmap_field will be automatically freed
1066  * by the device management code.
1067  */
1068 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1069                 struct regmap *regmap, struct reg_field reg_field)
1070 {
1071         struct regmap_field *rm_field = devm_kzalloc(dev,
1072                                         sizeof(*rm_field), GFP_KERNEL);
1073         if (!rm_field)
1074                 return ERR_PTR(-ENOMEM);
1075
1076         regmap_field_init(rm_field, regmap, reg_field);
1077
1078         return rm_field;
1079
1080 }
1081 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1082
1083 /**
1084  * devm_regmap_field_free(): Free register field allocated using
1085  * devm_regmap_field_alloc. Usally drivers need not call this function,
1086  * as the memory allocated via devm will be freed as per device-driver
1087  * life-cyle.
1088  *
1089  * @dev: Device that will be interacted with
1090  * @field: regmap field which should be freed.
1091  */
1092 void devm_regmap_field_free(struct device *dev,
1093         struct regmap_field *field)
1094 {
1095         devm_kfree(dev, field);
1096 }
1097 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1098
1099 /**
1100  * regmap_field_alloc(): Allocate and initialise a register field
1101  * in a register map.
1102  *
1103  * @regmap: regmap bank in which this register field is located.
1104  * @reg_field: Register field with in the bank.
1105  *
1106  * The return value will be an ERR_PTR() on error or a valid pointer
1107  * to a struct regmap_field. The regmap_field should be freed by the
1108  * user once its finished working with it using regmap_field_free().
1109  */
1110 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1111                 struct reg_field reg_field)
1112 {
1113         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1114
1115         if (!rm_field)
1116                 return ERR_PTR(-ENOMEM);
1117
1118         regmap_field_init(rm_field, regmap, reg_field);
1119
1120         return rm_field;
1121 }
1122 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1123
1124 /**
1125  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1126  *
1127  * @field: regmap field which should be freed.
1128  */
1129 void regmap_field_free(struct regmap_field *field)
1130 {
1131         kfree(field);
1132 }
1133 EXPORT_SYMBOL_GPL(regmap_field_free);
1134
1135 /**
1136  * regmap_reinit_cache(): Reinitialise the current register cache
1137  *
1138  * @map: Register map to operate on.
1139  * @config: New configuration.  Only the cache data will be used.
1140  *
1141  * Discard any existing register cache for the map and initialize a
1142  * new cache.  This can be used to restore the cache to defaults or to
1143  * update the cache configuration to reflect runtime discovery of the
1144  * hardware.
1145  *
1146  * No explicit locking is done here, the user needs to ensure that
1147  * this function will not race with other calls to regmap.
1148  */
1149 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1150 {
1151         regcache_exit(map);
1152         regmap_debugfs_exit(map);
1153
1154         map->max_register = config->max_register;
1155         map->writeable_reg = config->writeable_reg;
1156         map->readable_reg = config->readable_reg;
1157         map->volatile_reg = config->volatile_reg;
1158         map->precious_reg = config->precious_reg;
1159         map->cache_type = config->cache_type;
1160
1161         regmap_debugfs_init(map, config->name);
1162
1163         map->cache_bypass = false;
1164         map->cache_only = false;
1165
1166         return regcache_init(map, config);
1167 }
1168 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1169
1170 /**
1171  * regmap_exit(): Free a previously allocated register map
1172  */
1173 void regmap_exit(struct regmap *map)
1174 {
1175         struct regmap_async *async;
1176
1177         regcache_exit(map);
1178         regmap_debugfs_exit(map);
1179         regmap_range_exit(map);
1180         if (map->bus && map->bus->free_context)
1181                 map->bus->free_context(map->bus_context);
1182         kfree(map->work_buf);
1183         while (!list_empty(&map->async_free)) {
1184                 async = list_first_entry_or_null(&map->async_free,
1185                                                  struct regmap_async,
1186                                                  list);
1187                 list_del(&async->list);
1188                 kfree(async->work_buf);
1189                 kfree(async);
1190         }
1191         kfree(map);
1192 }
1193 EXPORT_SYMBOL_GPL(regmap_exit);
1194
1195 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1196 {
1197         struct regmap **r = res;
1198         if (!r || !*r) {
1199                 WARN_ON(!r || !*r);
1200                 return 0;
1201         }
1202
1203         /* If the user didn't specify a name match any */
1204         if (data)
1205                 return (*r)->name == data;
1206         else
1207                 return 1;
1208 }
1209
1210 /**
1211  * dev_get_regmap(): Obtain the regmap (if any) for a device
1212  *
1213  * @dev: Device to retrieve the map for
1214  * @name: Optional name for the register map, usually NULL.
1215  *
1216  * Returns the regmap for the device if one is present, or NULL.  If
1217  * name is specified then it must match the name specified when
1218  * registering the device, if it is NULL then the first regmap found
1219  * will be used.  Devices with multiple register maps are very rare,
1220  * generic code should normally not need to specify a name.
1221  */
1222 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1223 {
1224         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1225                                         dev_get_regmap_match, (void *)name);
1226
1227         if (!r)
1228                 return NULL;
1229         return *r;
1230 }
1231 EXPORT_SYMBOL_GPL(dev_get_regmap);
1232
1233 /**
1234  * regmap_get_device(): Obtain the device from a regmap
1235  *
1236  * @map: Register map to operate on.
1237  *
1238  * Returns the underlying device that the regmap has been created for.
1239  */
1240 struct device *regmap_get_device(struct regmap *map)
1241 {
1242         return map->dev;
1243 }
1244 EXPORT_SYMBOL_GPL(regmap_get_device);
1245
1246 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1247                                struct regmap_range_node *range,
1248                                unsigned int val_num)
1249 {
1250         void *orig_work_buf;
1251         unsigned int win_offset;
1252         unsigned int win_page;
1253         bool page_chg;
1254         int ret;
1255
1256         win_offset = (*reg - range->range_min) % range->window_len;
1257         win_page = (*reg - range->range_min) / range->window_len;
1258
1259         if (val_num > 1) {
1260                 /* Bulk write shouldn't cross range boundary */
1261                 if (*reg + val_num - 1 > range->range_max)
1262                         return -EINVAL;
1263
1264                 /* ... or single page boundary */
1265                 if (val_num > range->window_len - win_offset)
1266                         return -EINVAL;
1267         }
1268
1269         /* It is possible to have selector register inside data window.
1270            In that case, selector register is located on every page and
1271            it needs no page switching, when accessed alone. */
1272         if (val_num > 1 ||
1273             range->window_start + win_offset != range->selector_reg) {
1274                 /* Use separate work_buf during page switching */
1275                 orig_work_buf = map->work_buf;
1276                 map->work_buf = map->selector_work_buf;
1277
1278                 ret = _regmap_update_bits(map, range->selector_reg,
1279                                           range->selector_mask,
1280                                           win_page << range->selector_shift,
1281                                           &page_chg, false);
1282
1283                 map->work_buf = orig_work_buf;
1284
1285                 if (ret != 0)
1286                         return ret;
1287         }
1288
1289         *reg = range->window_start + win_offset;
1290
1291         return 0;
1292 }
1293
1294 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1295                       const void *val, size_t val_len)
1296 {
1297         struct regmap_range_node *range;
1298         unsigned long flags;
1299         u8 *u8 = map->work_buf;
1300         void *work_val = map->work_buf + map->format.reg_bytes +
1301                 map->format.pad_bytes;
1302         void *buf;
1303         int ret = -ENOTSUPP;
1304         size_t len;
1305         int i;
1306
1307         WARN_ON(!map->bus);
1308
1309         /* Check for unwritable registers before we start */
1310         if (map->writeable_reg)
1311                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1312                         if (!map->writeable_reg(map->dev,
1313                                                 reg + (i * map->reg_stride)))
1314                                 return -EINVAL;
1315
1316         if (!map->cache_bypass && map->format.parse_val) {
1317                 unsigned int ival;
1318                 int val_bytes = map->format.val_bytes;
1319                 for (i = 0; i < val_len / val_bytes; i++) {
1320                         ival = map->format.parse_val(val + (i * val_bytes));
1321                         ret = regcache_write(map, reg + (i * map->reg_stride),
1322                                              ival);
1323                         if (ret) {
1324                                 dev_err(map->dev,
1325                                         "Error in caching of register: %x ret: %d\n",
1326                                         reg + i, ret);
1327                                 return ret;
1328                         }
1329                 }
1330                 if (map->cache_only) {
1331                         map->cache_dirty = true;
1332                         return 0;
1333                 }
1334         }
1335
1336         range = _regmap_range_lookup(map, reg);
1337         if (range) {
1338                 int val_num = val_len / map->format.val_bytes;
1339                 int win_offset = (reg - range->range_min) % range->window_len;
1340                 int win_residue = range->window_len - win_offset;
1341
1342                 /* If the write goes beyond the end of the window split it */
1343                 while (val_num > win_residue) {
1344                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1345                                 win_residue, val_len / map->format.val_bytes);
1346                         ret = _regmap_raw_write(map, reg, val, win_residue *
1347                                                 map->format.val_bytes);
1348                         if (ret != 0)
1349                                 return ret;
1350
1351                         reg += win_residue;
1352                         val_num -= win_residue;
1353                         val += win_residue * map->format.val_bytes;
1354                         val_len -= win_residue * map->format.val_bytes;
1355
1356                         win_offset = (reg - range->range_min) %
1357                                 range->window_len;
1358                         win_residue = range->window_len - win_offset;
1359                 }
1360
1361                 ret = _regmap_select_page(map, &reg, range, val_num);
1362                 if (ret != 0)
1363                         return ret;
1364         }
1365
1366         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1367
1368         u8[0] |= map->write_flag_mask;
1369
1370         /*
1371          * Essentially all I/O mechanisms will be faster with a single
1372          * buffer to write.  Since register syncs often generate raw
1373          * writes of single registers optimise that case.
1374          */
1375         if (val != work_val && val_len == map->format.val_bytes) {
1376                 memcpy(work_val, val, map->format.val_bytes);
1377                 val = work_val;
1378         }
1379
1380         if (map->async && map->bus->async_write) {
1381                 struct regmap_async *async;
1382
1383                 trace_regmap_async_write_start(map, reg, val_len);
1384
1385                 spin_lock_irqsave(&map->async_lock, flags);
1386                 async = list_first_entry_or_null(&map->async_free,
1387                                                  struct regmap_async,
1388                                                  list);
1389                 if (async)
1390                         list_del(&async->list);
1391                 spin_unlock_irqrestore(&map->async_lock, flags);
1392
1393                 if (!async) {
1394                         async = map->bus->async_alloc();
1395                         if (!async)
1396                                 return -ENOMEM;
1397
1398                         async->work_buf = kzalloc(map->format.buf_size,
1399                                                   GFP_KERNEL | GFP_DMA);
1400                         if (!async->work_buf) {
1401                                 kfree(async);
1402                                 return -ENOMEM;
1403                         }
1404                 }
1405
1406                 async->map = map;
1407
1408                 /* If the caller supplied the value we can use it safely. */
1409                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1410                        map->format.reg_bytes + map->format.val_bytes);
1411
1412                 spin_lock_irqsave(&map->async_lock, flags);
1413                 list_add_tail(&async->list, &map->async_list);
1414                 spin_unlock_irqrestore(&map->async_lock, flags);
1415
1416                 if (val != work_val)
1417                         ret = map->bus->async_write(map->bus_context,
1418                                                     async->work_buf,
1419                                                     map->format.reg_bytes +
1420                                                     map->format.pad_bytes,
1421                                                     val, val_len, async);
1422                 else
1423                         ret = map->bus->async_write(map->bus_context,
1424                                                     async->work_buf,
1425                                                     map->format.reg_bytes +
1426                                                     map->format.pad_bytes +
1427                                                     val_len, NULL, 0, async);
1428
1429                 if (ret != 0) {
1430                         dev_err(map->dev, "Failed to schedule write: %d\n",
1431                                 ret);
1432
1433                         spin_lock_irqsave(&map->async_lock, flags);
1434                         list_move(&async->list, &map->async_free);
1435                         spin_unlock_irqrestore(&map->async_lock, flags);
1436                 }
1437
1438                 return ret;
1439         }
1440
1441         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1442
1443         /* If we're doing a single register write we can probably just
1444          * send the work_buf directly, otherwise try to do a gather
1445          * write.
1446          */
1447         if (val == work_val)
1448                 ret = map->bus->write(map->bus_context, map->work_buf,
1449                                       map->format.reg_bytes +
1450                                       map->format.pad_bytes +
1451                                       val_len);
1452         else if (map->bus->gather_write)
1453                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1454                                              map->format.reg_bytes +
1455                                              map->format.pad_bytes,
1456                                              val, val_len);
1457
1458         /* If that didn't work fall back on linearising by hand. */
1459         if (ret == -ENOTSUPP) {
1460                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1461                 buf = kzalloc(len, GFP_KERNEL);
1462                 if (!buf)
1463                         return -ENOMEM;
1464
1465                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1466                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1467                        val, val_len);
1468                 ret = map->bus->write(map->bus_context, buf, len);
1469
1470                 kfree(buf);
1471         }
1472
1473         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1474
1475         return ret;
1476 }
1477
1478 /**
1479  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1480  *
1481  * @map: Map to check.
1482  */
1483 bool regmap_can_raw_write(struct regmap *map)
1484 {
1485         return map->bus && map->bus->write && map->format.format_val &&
1486                 map->format.format_reg;
1487 }
1488 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1489
1490 /**
1491  * regmap_get_raw_read_max - Get the maximum size we can read
1492  *
1493  * @map: Map to check.
1494  */
1495 size_t regmap_get_raw_read_max(struct regmap *map)
1496 {
1497         return map->max_raw_read;
1498 }
1499 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1500
1501 /**
1502  * regmap_get_raw_write_max - Get the maximum size we can read
1503  *
1504  * @map: Map to check.
1505  */
1506 size_t regmap_get_raw_write_max(struct regmap *map)
1507 {
1508         return map->max_raw_write;
1509 }
1510 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1511
1512 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1513                                        unsigned int val)
1514 {
1515         int ret;
1516         struct regmap_range_node *range;
1517         struct regmap *map = context;
1518
1519         WARN_ON(!map->bus || !map->format.format_write);
1520
1521         range = _regmap_range_lookup(map, reg);
1522         if (range) {
1523                 ret = _regmap_select_page(map, &reg, range, 1);
1524                 if (ret != 0)
1525                         return ret;
1526         }
1527
1528         map->format.format_write(map, reg, val);
1529
1530         trace_regmap_hw_write_start(map, reg, 1);
1531
1532         ret = map->bus->write(map->bus_context, map->work_buf,
1533                               map->format.buf_size);
1534
1535         trace_regmap_hw_write_done(map, reg, 1);
1536
1537         return ret;
1538 }
1539
1540 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1541                                  unsigned int val)
1542 {
1543         struct regmap *map = context;
1544
1545         return map->bus->reg_write(map->bus_context, reg, val);
1546 }
1547
1548 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1549                                  unsigned int val)
1550 {
1551         struct regmap *map = context;
1552
1553         WARN_ON(!map->bus || !map->format.format_val);
1554
1555         map->format.format_val(map->work_buf + map->format.reg_bytes
1556                                + map->format.pad_bytes, val, 0);
1557         return _regmap_raw_write(map, reg,
1558                                  map->work_buf +
1559                                  map->format.reg_bytes +
1560                                  map->format.pad_bytes,
1561                                  map->format.val_bytes);
1562 }
1563
1564 static inline void *_regmap_map_get_context(struct regmap *map)
1565 {
1566         return (map->bus) ? map : map->bus_context;
1567 }
1568
1569 int _regmap_write(struct regmap *map, unsigned int reg,
1570                   unsigned int val)
1571 {
1572         int ret;
1573         void *context = _regmap_map_get_context(map);
1574
1575         if (!regmap_writeable(map, reg))
1576                 return -EIO;
1577
1578         if (!map->cache_bypass && !map->defer_caching) {
1579                 ret = regcache_write(map, reg, val);
1580                 if (ret != 0)
1581                         return ret;
1582                 if (map->cache_only) {
1583                         map->cache_dirty = true;
1584                         return 0;
1585                 }
1586         }
1587
1588 #ifdef LOG_DEVICE
1589         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1590                 dev_info(map->dev, "%x <= %x\n", reg, val);
1591 #endif
1592
1593         trace_regmap_reg_write(map, reg, val);
1594
1595         return map->reg_write(context, reg, val);
1596 }
1597
1598 /**
1599  * regmap_write(): Write a value to a single register
1600  *
1601  * @map: Register map to write to
1602  * @reg: Register to write to
1603  * @val: Value to be written
1604  *
1605  * A value of zero will be returned on success, a negative errno will
1606  * be returned in error cases.
1607  */
1608 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1609 {
1610         int ret;
1611
1612         if (!IS_ALIGNED(reg, map->reg_stride))
1613                 return -EINVAL;
1614
1615         map->lock(map->lock_arg);
1616
1617         ret = _regmap_write(map, reg, val);
1618
1619         map->unlock(map->lock_arg);
1620
1621         return ret;
1622 }
1623 EXPORT_SYMBOL_GPL(regmap_write);
1624
1625 /**
1626  * regmap_write_async(): Write a value to a single register asynchronously
1627  *
1628  * @map: Register map to write to
1629  * @reg: Register to write to
1630  * @val: Value to be written
1631  *
1632  * A value of zero will be returned on success, a negative errno will
1633  * be returned in error cases.
1634  */
1635 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1636 {
1637         int ret;
1638
1639         if (!IS_ALIGNED(reg, map->reg_stride))
1640                 return -EINVAL;
1641
1642         map->lock(map->lock_arg);
1643
1644         map->async = true;
1645
1646         ret = _regmap_write(map, reg, val);
1647
1648         map->async = false;
1649
1650         map->unlock(map->lock_arg);
1651
1652         return ret;
1653 }
1654 EXPORT_SYMBOL_GPL(regmap_write_async);
1655
1656 /**
1657  * regmap_raw_write(): Write raw values to one or more registers
1658  *
1659  * @map: Register map to write to
1660  * @reg: Initial register to write to
1661  * @val: Block of data to be written, laid out for direct transmission to the
1662  *       device
1663  * @val_len: Length of data pointed to by val.
1664  *
1665  * This function is intended to be used for things like firmware
1666  * download where a large block of data needs to be transferred to the
1667  * device.  No formatting will be done on the data provided.
1668  *
1669  * A value of zero will be returned on success, a negative errno will
1670  * be returned in error cases.
1671  */
1672 int regmap_raw_write(struct regmap *map, unsigned int reg,
1673                      const void *val, size_t val_len)
1674 {
1675         int ret;
1676
1677         if (!regmap_can_raw_write(map))
1678                 return -EINVAL;
1679         if (val_len % map->format.val_bytes)
1680                 return -EINVAL;
1681         if (map->max_raw_write && map->max_raw_write > val_len)
1682                 return -E2BIG;
1683
1684         map->lock(map->lock_arg);
1685
1686         ret = _regmap_raw_write(map, reg, val, val_len);
1687
1688         map->unlock(map->lock_arg);
1689
1690         return ret;
1691 }
1692 EXPORT_SYMBOL_GPL(regmap_raw_write);
1693
1694 /**
1695  * regmap_field_write(): Write a value to a single register field
1696  *
1697  * @field: Register field to write to
1698  * @val: Value to be written
1699  *
1700  * A value of zero will be returned on success, a negative errno will
1701  * be returned in error cases.
1702  */
1703 int regmap_field_write(struct regmap_field *field, unsigned int val)
1704 {
1705         return regmap_update_bits(field->regmap, field->reg,
1706                                 field->mask, val << field->shift);
1707 }
1708 EXPORT_SYMBOL_GPL(regmap_field_write);
1709
1710 /**
1711  * regmap_field_update_bits():  Perform a read/modify/write cycle
1712  *                              on the register field
1713  *
1714  * @field: Register field to write to
1715  * @mask: Bitmask to change
1716  * @val: Value to be written
1717  *
1718  * A value of zero will be returned on success, a negative errno will
1719  * be returned in error cases.
1720  */
1721 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1722 {
1723         mask = (mask << field->shift) & field->mask;
1724
1725         return regmap_update_bits(field->regmap, field->reg,
1726                                   mask, val << field->shift);
1727 }
1728 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1729
1730 /**
1731  * regmap_fields_write(): Write a value to a single register field with port ID
1732  *
1733  * @field: Register field to write to
1734  * @id: port ID
1735  * @val: Value to be written
1736  *
1737  * A value of zero will be returned on success, a negative errno will
1738  * be returned in error cases.
1739  */
1740 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1741                         unsigned int val)
1742 {
1743         if (id >= field->id_size)
1744                 return -EINVAL;
1745
1746         return regmap_update_bits(field->regmap,
1747                                   field->reg + (field->id_offset * id),
1748                                   field->mask, val << field->shift);
1749 }
1750 EXPORT_SYMBOL_GPL(regmap_fields_write);
1751
1752 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1753                         unsigned int val)
1754 {
1755         if (id >= field->id_size)
1756                 return -EINVAL;
1757
1758         return regmap_write_bits(field->regmap,
1759                                   field->reg + (field->id_offset * id),
1760                                   field->mask, val << field->shift);
1761 }
1762 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1763
1764 /**
1765  * regmap_fields_update_bits(): Perform a read/modify/write cycle
1766  *                              on the register field
1767  *
1768  * @field: Register field to write to
1769  * @id: port ID
1770  * @mask: Bitmask to change
1771  * @val: Value to be written
1772  *
1773  * A value of zero will be returned on success, a negative errno will
1774  * be returned in error cases.
1775  */
1776 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1777                               unsigned int mask, unsigned int val)
1778 {
1779         if (id >= field->id_size)
1780                 return -EINVAL;
1781
1782         mask = (mask << field->shift) & field->mask;
1783
1784         return regmap_update_bits(field->regmap,
1785                                   field->reg + (field->id_offset * id),
1786                                   mask, val << field->shift);
1787 }
1788 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1789
1790 /*
1791  * regmap_bulk_write(): Write multiple registers to the device
1792  *
1793  * @map: Register map to write to
1794  * @reg: First register to be write from
1795  * @val: Block of data to be written, in native register size for device
1796  * @val_count: Number of registers to write
1797  *
1798  * This function is intended to be used for writing a large block of
1799  * data to the device either in single transfer or multiple transfer.
1800  *
1801  * A value of zero will be returned on success, a negative errno will
1802  * be returned in error cases.
1803  */
1804 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1805                      size_t val_count)
1806 {
1807         int ret = 0, i;
1808         size_t val_bytes = map->format.val_bytes;
1809         size_t total_size = val_bytes * val_count;
1810
1811         if (map->bus && !map->format.parse_inplace)
1812                 return -EINVAL;
1813         if (!IS_ALIGNED(reg, map->reg_stride))
1814                 return -EINVAL;
1815
1816         /*
1817          * Some devices don't support bulk write, for
1818          * them we have a series of single write operations in the first two if
1819          * blocks.
1820          *
1821          * The first if block is used for memory mapped io. It does not allow
1822          * val_bytes of 3 for example.
1823          * The second one is used for busses which do not have this limitation
1824          * and can write arbitrary value lengths.
1825          */
1826         if (!map->bus) {
1827                 map->lock(map->lock_arg);
1828                 for (i = 0; i < val_count; i++) {
1829                         unsigned int ival;
1830
1831                         switch (val_bytes) {
1832                         case 1:
1833                                 ival = *(u8 *)(val + (i * val_bytes));
1834                                 break;
1835                         case 2:
1836                                 ival = *(u16 *)(val + (i * val_bytes));
1837                                 break;
1838                         case 4:
1839                                 ival = *(u32 *)(val + (i * val_bytes));
1840                                 break;
1841 #ifdef CONFIG_64BIT
1842                         case 8:
1843                                 ival = *(u64 *)(val + (i * val_bytes));
1844                                 break;
1845 #endif
1846                         default:
1847                                 ret = -EINVAL;
1848                                 goto out;
1849                         }
1850
1851                         ret = _regmap_write(map, reg + (i * map->reg_stride),
1852                                         ival);
1853                         if (ret != 0)
1854                                 goto out;
1855                 }
1856 out:
1857                 map->unlock(map->lock_arg);
1858         } else if (map->use_single_write ||
1859                    (map->max_raw_write && map->max_raw_write < total_size)) {
1860                 int chunk_stride = map->reg_stride;
1861                 size_t chunk_size = val_bytes;
1862                 size_t chunk_count = val_count;
1863
1864                 if (!map->use_single_write) {
1865                         chunk_size = map->max_raw_write;
1866                         if (chunk_size % val_bytes)
1867                                 chunk_size -= chunk_size % val_bytes;
1868                         chunk_count = total_size / chunk_size;
1869                         chunk_stride *= chunk_size / val_bytes;
1870                 }
1871
1872                 map->lock(map->lock_arg);
1873                 /* Write as many bytes as possible with chunk_size */
1874                 for (i = 0; i < chunk_count; i++) {
1875                         ret = _regmap_raw_write(map,
1876                                                 reg + (i * chunk_stride),
1877                                                 val + (i * chunk_size),
1878                                                 chunk_size);
1879                         if (ret)
1880                                 break;
1881                 }
1882
1883                 /* Write remaining bytes */
1884                 if (!ret && chunk_size * i < total_size) {
1885                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1886                                                 val + (i * chunk_size),
1887                                                 total_size - i * chunk_size);
1888                 }
1889                 map->unlock(map->lock_arg);
1890         } else {
1891                 void *wval;
1892
1893                 if (!val_count)
1894                         return -EINVAL;
1895
1896                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1897                 if (!wval) {
1898                         dev_err(map->dev, "Error in memory allocation\n");
1899                         return -ENOMEM;
1900                 }
1901                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1902                         map->format.parse_inplace(wval + i);
1903
1904                 map->lock(map->lock_arg);
1905                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1906                 map->unlock(map->lock_arg);
1907
1908                 kfree(wval);
1909         }
1910         return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1913
1914 /*
1915  * _regmap_raw_multi_reg_write()
1916  *
1917  * the (register,newvalue) pairs in regs have not been formatted, but
1918  * they are all in the same page and have been changed to being page
1919  * relative. The page register has been written if that was necessary.
1920  */
1921 static int _regmap_raw_multi_reg_write(struct regmap *map,
1922                                        const struct reg_sequence *regs,
1923                                        size_t num_regs)
1924 {
1925         int ret;
1926         void *buf;
1927         int i;
1928         u8 *u8;
1929         size_t val_bytes = map->format.val_bytes;
1930         size_t reg_bytes = map->format.reg_bytes;
1931         size_t pad_bytes = map->format.pad_bytes;
1932         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1933         size_t len = pair_size * num_regs;
1934
1935         if (!len)
1936                 return -EINVAL;
1937
1938         buf = kzalloc(len, GFP_KERNEL);
1939         if (!buf)
1940                 return -ENOMEM;
1941
1942         /* We have to linearise by hand. */
1943
1944         u8 = buf;
1945
1946         for (i = 0; i < num_regs; i++) {
1947                 unsigned int reg = regs[i].reg;
1948                 unsigned int val = regs[i].def;
1949                 trace_regmap_hw_write_start(map, reg, 1);
1950                 map->format.format_reg(u8, reg, map->reg_shift);
1951                 u8 += reg_bytes + pad_bytes;
1952                 map->format.format_val(u8, val, 0);
1953                 u8 += val_bytes;
1954         }
1955         u8 = buf;
1956         *u8 |= map->write_flag_mask;
1957
1958         ret = map->bus->write(map->bus_context, buf, len);
1959
1960         kfree(buf);
1961
1962         for (i = 0; i < num_regs; i++) {
1963                 int reg = regs[i].reg;
1964                 trace_regmap_hw_write_done(map, reg, 1);
1965         }
1966         return ret;
1967 }
1968
1969 static unsigned int _regmap_register_page(struct regmap *map,
1970                                           unsigned int reg,
1971                                           struct regmap_range_node *range)
1972 {
1973         unsigned int win_page = (reg - range->range_min) / range->window_len;
1974
1975         return win_page;
1976 }
1977
1978 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1979                                                struct reg_sequence *regs,
1980                                                size_t num_regs)
1981 {
1982         int ret;
1983         int i, n;
1984         struct reg_sequence *base;
1985         unsigned int this_page = 0;
1986         unsigned int page_change = 0;
1987         /*
1988          * the set of registers are not neccessarily in order, but
1989          * since the order of write must be preserved this algorithm
1990          * chops the set each time the page changes. This also applies
1991          * if there is a delay required at any point in the sequence.
1992          */
1993         base = regs;
1994         for (i = 0, n = 0; i < num_regs; i++, n++) {
1995                 unsigned int reg = regs[i].reg;
1996                 struct regmap_range_node *range;
1997
1998                 range = _regmap_range_lookup(map, reg);
1999                 if (range) {
2000                         unsigned int win_page = _regmap_register_page(map, reg,
2001                                                                       range);
2002
2003                         if (i == 0)
2004                                 this_page = win_page;
2005                         if (win_page != this_page) {
2006                                 this_page = win_page;
2007                                 page_change = 1;
2008                         }
2009                 }
2010
2011                 /* If we have both a page change and a delay make sure to
2012                  * write the regs and apply the delay before we change the
2013                  * page.
2014                  */
2015
2016                 if (page_change || regs[i].delay_us) {
2017
2018                                 /* For situations where the first write requires
2019                                  * a delay we need to make sure we don't call
2020                                  * raw_multi_reg_write with n=0
2021                                  * This can't occur with page breaks as we
2022                                  * never write on the first iteration
2023                                  */
2024                                 if (regs[i].delay_us && i == 0)
2025                                         n = 1;
2026
2027                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2028                                 if (ret != 0)
2029                                         return ret;
2030
2031                                 if (regs[i].delay_us)
2032                                         udelay(regs[i].delay_us);
2033
2034                                 base += n;
2035                                 n = 0;
2036
2037                                 if (page_change) {
2038                                         ret = _regmap_select_page(map,
2039                                                                   &base[n].reg,
2040                                                                   range, 1);
2041                                         if (ret != 0)
2042                                                 return ret;
2043
2044                                         page_change = 0;
2045                                 }
2046
2047                 }
2048
2049         }
2050         if (n > 0)
2051                 return _regmap_raw_multi_reg_write(map, base, n);
2052         return 0;
2053 }
2054
2055 static int _regmap_multi_reg_write(struct regmap *map,
2056                                    const struct reg_sequence *regs,
2057                                    size_t num_regs)
2058 {
2059         int i;
2060         int ret;
2061
2062         if (!map->can_multi_write) {
2063                 for (i = 0; i < num_regs; i++) {
2064                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2065                         if (ret != 0)
2066                                 return ret;
2067
2068                         if (regs[i].delay_us)
2069                                 udelay(regs[i].delay_us);
2070                 }
2071                 return 0;
2072         }
2073
2074         if (!map->format.parse_inplace)
2075                 return -EINVAL;
2076
2077         if (map->writeable_reg)
2078                 for (i = 0; i < num_regs; i++) {
2079                         int reg = regs[i].reg;
2080                         if (!map->writeable_reg(map->dev, reg))
2081                                 return -EINVAL;
2082                         if (!IS_ALIGNED(reg, map->reg_stride))
2083                                 return -EINVAL;
2084                 }
2085
2086         if (!map->cache_bypass) {
2087                 for (i = 0; i < num_regs; i++) {
2088                         unsigned int val = regs[i].def;
2089                         unsigned int reg = regs[i].reg;
2090                         ret = regcache_write(map, reg, val);
2091                         if (ret) {
2092                                 dev_err(map->dev,
2093                                 "Error in caching of register: %x ret: %d\n",
2094                                                                 reg, ret);
2095                                 return ret;
2096                         }
2097                 }
2098                 if (map->cache_only) {
2099                         map->cache_dirty = true;
2100                         return 0;
2101                 }
2102         }
2103
2104         WARN_ON(!map->bus);
2105
2106         for (i = 0; i < num_regs; i++) {
2107                 unsigned int reg = regs[i].reg;
2108                 struct regmap_range_node *range;
2109
2110                 /* Coalesce all the writes between a page break or a delay
2111                  * in a sequence
2112                  */
2113                 range = _regmap_range_lookup(map, reg);
2114                 if (range || regs[i].delay_us) {
2115                         size_t len = sizeof(struct reg_sequence)*num_regs;
2116                         struct reg_sequence *base = kmemdup(regs, len,
2117                                                            GFP_KERNEL);
2118                         if (!base)
2119                                 return -ENOMEM;
2120                         ret = _regmap_range_multi_paged_reg_write(map, base,
2121                                                                   num_regs);
2122                         kfree(base);
2123
2124                         return ret;
2125                 }
2126         }
2127         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2128 }
2129
2130 /*
2131  * regmap_multi_reg_write(): Write multiple registers to the device
2132  *
2133  * where the set of register,value pairs are supplied in any order,
2134  * possibly not all in a single range.
2135  *
2136  * @map: Register map to write to
2137  * @regs: Array of structures containing register,value to be written
2138  * @num_regs: Number of registers to write
2139  *
2140  * The 'normal' block write mode will send ultimately send data on the
2141  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2142  * addressed. However, this alternative block multi write mode will send
2143  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2144  * must of course support the mode.
2145  *
2146  * A value of zero will be returned on success, a negative errno will be
2147  * returned in error cases.
2148  */
2149 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2150                            int num_regs)
2151 {
2152         int ret;
2153
2154         map->lock(map->lock_arg);
2155
2156         ret = _regmap_multi_reg_write(map, regs, num_regs);
2157
2158         map->unlock(map->lock_arg);
2159
2160         return ret;
2161 }
2162 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2163
2164 /*
2165  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2166  *                                    device but not the cache
2167  *
2168  * where the set of register are supplied in any order
2169  *
2170  * @map: Register map to write to
2171  * @regs: Array of structures containing register,value to be written
2172  * @num_regs: Number of registers to write
2173  *
2174  * This function is intended to be used for writing a large block of data
2175  * atomically to the device in single transfer for those I2C client devices
2176  * that implement this alternative block write mode.
2177  *
2178  * A value of zero will be returned on success, a negative errno will
2179  * be returned in error cases.
2180  */
2181 int regmap_multi_reg_write_bypassed(struct regmap *map,
2182                                     const struct reg_sequence *regs,
2183                                     int num_regs)
2184 {
2185         int ret;
2186         bool bypass;
2187
2188         map->lock(map->lock_arg);
2189
2190         bypass = map->cache_bypass;
2191         map->cache_bypass = true;
2192
2193         ret = _regmap_multi_reg_write(map, regs, num_regs);
2194
2195         map->cache_bypass = bypass;
2196
2197         map->unlock(map->lock_arg);
2198
2199         return ret;
2200 }
2201 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2202
2203 /**
2204  * regmap_raw_write_async(): Write raw values to one or more registers
2205  *                           asynchronously
2206  *
2207  * @map: Register map to write to
2208  * @reg: Initial register to write to
2209  * @val: Block of data to be written, laid out for direct transmission to the
2210  *       device.  Must be valid until regmap_async_complete() is called.
2211  * @val_len: Length of data pointed to by val.
2212  *
2213  * This function is intended to be used for things like firmware
2214  * download where a large block of data needs to be transferred to the
2215  * device.  No formatting will be done on the data provided.
2216  *
2217  * If supported by the underlying bus the write will be scheduled
2218  * asynchronously, helping maximise I/O speed on higher speed buses
2219  * like SPI.  regmap_async_complete() can be called to ensure that all
2220  * asynchrnous writes have been completed.
2221  *
2222  * A value of zero will be returned on success, a negative errno will
2223  * be returned in error cases.
2224  */
2225 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2226                            const void *val, size_t val_len)
2227 {
2228         int ret;
2229
2230         if (val_len % map->format.val_bytes)
2231                 return -EINVAL;
2232         if (!IS_ALIGNED(reg, map->reg_stride))
2233                 return -EINVAL;
2234
2235         map->lock(map->lock_arg);
2236
2237         map->async = true;
2238
2239         ret = _regmap_raw_write(map, reg, val, val_len);
2240
2241         map->async = false;
2242
2243         map->unlock(map->lock_arg);
2244
2245         return ret;
2246 }
2247 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2248
2249 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2250                             unsigned int val_len)
2251 {
2252         struct regmap_range_node *range;
2253         u8 *u8 = map->work_buf;
2254         int ret;
2255
2256         WARN_ON(!map->bus);
2257
2258         if (!map->bus || !map->bus->read)
2259                 return -EINVAL;
2260
2261         range = _regmap_range_lookup(map, reg);
2262         if (range) {
2263                 ret = _regmap_select_page(map, &reg, range,
2264                                           val_len / map->format.val_bytes);
2265                 if (ret != 0)
2266                         return ret;
2267         }
2268
2269         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2270
2271         /*
2272          * Some buses or devices flag reads by setting the high bits in the
2273          * register address; since it's always the high bits for all
2274          * current formats we can do this here rather than in
2275          * formatting.  This may break if we get interesting formats.
2276          */
2277         u8[0] |= map->read_flag_mask;
2278
2279         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2280
2281         ret = map->bus->read(map->bus_context, map->work_buf,
2282                              map->format.reg_bytes + map->format.pad_bytes,
2283                              val, val_len);
2284
2285         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2286
2287         return ret;
2288 }
2289
2290 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2291                                 unsigned int *val)
2292 {
2293         struct regmap *map = context;
2294
2295         return map->bus->reg_read(map->bus_context, reg, val);
2296 }
2297
2298 static int _regmap_bus_read(void *context, unsigned int reg,
2299                             unsigned int *val)
2300 {
2301         int ret;
2302         struct regmap *map = context;
2303
2304         if (!map->format.parse_val)
2305                 return -EINVAL;
2306
2307         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2308         if (ret == 0)
2309                 *val = map->format.parse_val(map->work_buf);
2310
2311         return ret;
2312 }
2313
2314 static int _regmap_read(struct regmap *map, unsigned int reg,
2315                         unsigned int *val)
2316 {
2317         int ret;
2318         void *context = _regmap_map_get_context(map);
2319
2320         if (!map->cache_bypass) {
2321                 ret = regcache_read(map, reg, val);
2322                 if (ret == 0)
2323                         return 0;
2324         }
2325
2326         if (map->cache_only)
2327                 return -EBUSY;
2328
2329         if (!regmap_readable(map, reg))
2330                 return -EIO;
2331
2332         ret = map->reg_read(context, reg, val);
2333         if (ret == 0) {
2334 #ifdef LOG_DEVICE
2335                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2336                         dev_info(map->dev, "%x => %x\n", reg, *val);
2337 #endif
2338
2339                 trace_regmap_reg_read(map, reg, *val);
2340
2341                 if (!map->cache_bypass)
2342                         regcache_write(map, reg, *val);
2343         }
2344
2345         return ret;
2346 }
2347
2348 /**
2349  * regmap_read(): Read a value from a single register
2350  *
2351  * @map: Register map to read from
2352  * @reg: Register to be read from
2353  * @val: Pointer to store read value
2354  *
2355  * A value of zero will be returned on success, a negative errno will
2356  * be returned in error cases.
2357  */
2358 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2359 {
2360         int ret;
2361
2362         if (!IS_ALIGNED(reg, map->reg_stride))
2363                 return -EINVAL;
2364
2365         map->lock(map->lock_arg);
2366
2367         ret = _regmap_read(map, reg, val);
2368
2369         map->unlock(map->lock_arg);
2370
2371         return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(regmap_read);
2374
2375 /**
2376  * regmap_raw_read(): Read raw data from the device
2377  *
2378  * @map: Register map to read from
2379  * @reg: First register to be read from
2380  * @val: Pointer to store read value
2381  * @val_len: Size of data to read
2382  *
2383  * A value of zero will be returned on success, a negative errno will
2384  * be returned in error cases.
2385  */
2386 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2387                     size_t val_len)
2388 {
2389         size_t val_bytes = map->format.val_bytes;
2390         size_t val_count = val_len / val_bytes;
2391         unsigned int v;
2392         int ret, i;
2393
2394         if (!map->bus)
2395                 return -EINVAL;
2396         if (val_len % map->format.val_bytes)
2397                 return -EINVAL;
2398         if (!IS_ALIGNED(reg, map->reg_stride))
2399                 return -EINVAL;
2400         if (val_count == 0)
2401                 return -EINVAL;
2402
2403         map->lock(map->lock_arg);
2404
2405         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2406             map->cache_type == REGCACHE_NONE) {
2407                 if (!map->bus->read) {
2408                         ret = -ENOTSUPP;
2409                         goto out;
2410                 }
2411                 if (map->max_raw_read && map->max_raw_read < val_len) {
2412                         ret = -E2BIG;
2413                         goto out;
2414                 }
2415
2416                 /* Physical block read if there's no cache involved */
2417                 ret = _regmap_raw_read(map, reg, val, val_len);
2418
2419         } else {
2420                 /* Otherwise go word by word for the cache; should be low
2421                  * cost as we expect to hit the cache.
2422                  */
2423                 for (i = 0; i < val_count; i++) {
2424                         ret = _regmap_read(map, reg + (i * map->reg_stride),
2425                                            &v);
2426                         if (ret != 0)
2427                                 goto out;
2428
2429                         map->format.format_val(val + (i * val_bytes), v, 0);
2430                 }
2431         }
2432
2433  out:
2434         map->unlock(map->lock_arg);
2435
2436         return ret;
2437 }
2438 EXPORT_SYMBOL_GPL(regmap_raw_read);
2439
2440 /**
2441  * regmap_field_read(): Read a value to a single register field
2442  *
2443  * @field: Register field to read from
2444  * @val: Pointer to store read value
2445  *
2446  * A value of zero will be returned on success, a negative errno will
2447  * be returned in error cases.
2448  */
2449 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2450 {
2451         int ret;
2452         unsigned int reg_val;
2453         ret = regmap_read(field->regmap, field->reg, &reg_val);
2454         if (ret != 0)
2455                 return ret;
2456
2457         reg_val &= field->mask;
2458         reg_val >>= field->shift;
2459         *val = reg_val;
2460
2461         return ret;
2462 }
2463 EXPORT_SYMBOL_GPL(regmap_field_read);
2464
2465 /**
2466  * regmap_fields_read(): Read a value to a single register field with port ID
2467  *
2468  * @field: Register field to read from
2469  * @id: port ID
2470  * @val: Pointer to store read value
2471  *
2472  * A value of zero will be returned on success, a negative errno will
2473  * be returned in error cases.
2474  */
2475 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2476                        unsigned int *val)
2477 {
2478         int ret;
2479         unsigned int reg_val;
2480
2481         if (id >= field->id_size)
2482                 return -EINVAL;
2483
2484         ret = regmap_read(field->regmap,
2485                           field->reg + (field->id_offset * id),
2486                           &reg_val);
2487         if (ret != 0)
2488                 return ret;
2489
2490         reg_val &= field->mask;
2491         reg_val >>= field->shift;
2492         *val = reg_val;
2493
2494         return ret;
2495 }
2496 EXPORT_SYMBOL_GPL(regmap_fields_read);
2497
2498 /**
2499  * regmap_bulk_read(): Read multiple registers from the device
2500  *
2501  * @map: Register map to read from
2502  * @reg: First register to be read from
2503  * @val: Pointer to store read value, in native register size for device
2504  * @val_count: Number of registers to read
2505  *
2506  * A value of zero will be returned on success, a negative errno will
2507  * be returned in error cases.
2508  */
2509 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2510                      size_t val_count)
2511 {
2512         int ret, i;
2513         size_t val_bytes = map->format.val_bytes;
2514         bool vol = regmap_volatile_range(map, reg, val_count);
2515
2516         if (!IS_ALIGNED(reg, map->reg_stride))
2517                 return -EINVAL;
2518
2519         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2520                 /*
2521                  * Some devices does not support bulk read, for
2522                  * them we have a series of single read operations.
2523                  */
2524                 size_t total_size = val_bytes * val_count;
2525
2526                 if (!map->use_single_read &&
2527                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2528                         ret = regmap_raw_read(map, reg, val,
2529                                               val_bytes * val_count);
2530                         if (ret != 0)
2531                                 return ret;
2532                 } else {
2533                         /*
2534                          * Some devices do not support bulk read or do not
2535                          * support large bulk reads, for them we have a series
2536                          * of read operations.
2537                          */
2538                         int chunk_stride = map->reg_stride;
2539                         size_t chunk_size = val_bytes;
2540                         size_t chunk_count = val_count;
2541
2542                         if (!map->use_single_read) {
2543                                 chunk_size = map->max_raw_read;
2544                                 if (chunk_size % val_bytes)
2545                                         chunk_size -= chunk_size % val_bytes;
2546                                 chunk_count = total_size / chunk_size;
2547                                 chunk_stride *= chunk_size / val_bytes;
2548                         }
2549
2550                         /* Read bytes that fit into a multiple of chunk_size */
2551                         for (i = 0; i < chunk_count; i++) {
2552                                 ret = regmap_raw_read(map,
2553                                                       reg + (i * chunk_stride),
2554                                                       val + (i * chunk_size),
2555                                                       chunk_size);
2556                                 if (ret != 0)
2557                                         return ret;
2558                         }
2559
2560                         /* Read remaining bytes */
2561                         if (chunk_size * i < total_size) {
2562                                 ret = regmap_raw_read(map,
2563                                                       reg + (i * chunk_stride),
2564                                                       val + (i * chunk_size),
2565                                                       total_size - i * chunk_size);
2566                                 if (ret != 0)
2567                                         return ret;
2568                         }
2569                 }
2570
2571                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2572                         map->format.parse_inplace(val + i);
2573         } else {
2574                 for (i = 0; i < val_count; i++) {
2575                         unsigned int ival;
2576                         ret = regmap_read(map, reg + (i * map->reg_stride),
2577                                           &ival);
2578                         if (ret != 0)
2579                                 return ret;
2580
2581                         if (map->format.format_val) {
2582                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2583                         } else {
2584                                 /* Devices providing read and write
2585                                  * operations can use the bulk I/O
2586                                  * functions if they define a val_bytes,
2587                                  * we assume that the values are native
2588                                  * endian.
2589                                  */
2590 #ifdef CONFIG_64BIT
2591                                 u64 *u64 = val;
2592 #endif
2593                                 u32 *u32 = val;
2594                                 u16 *u16 = val;
2595                                 u8 *u8 = val;
2596
2597                                 switch (map->format.val_bytes) {
2598 #ifdef CONFIG_64BIT
2599                                 case 8:
2600                                         u64[i] = ival;
2601                                         break;
2602 #endif
2603                                 case 4:
2604                                         u32[i] = ival;
2605                                         break;
2606                                 case 2:
2607                                         u16[i] = ival;
2608                                         break;
2609                                 case 1:
2610                                         u8[i] = ival;
2611                                         break;
2612                                 default:
2613                                         return -EINVAL;
2614                                 }
2615                         }
2616                 }
2617         }
2618
2619         return 0;
2620 }
2621 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2622
2623 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2624                                unsigned int mask, unsigned int val,
2625                                bool *change, bool force_write)
2626 {
2627         int ret;
2628         unsigned int tmp, orig;
2629
2630         if (change)
2631                 *change = false;
2632
2633         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2634                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2635                 if (ret == 0 && change)
2636                         *change = true;
2637         } else {
2638                 ret = _regmap_read(map, reg, &orig);
2639                 if (ret != 0)
2640                         return ret;
2641
2642                 tmp = orig & ~mask;
2643                 tmp |= val & mask;
2644
2645                 if (force_write || (tmp != orig)) {
2646                         ret = _regmap_write(map, reg, tmp);
2647                         if (ret == 0 && change)
2648                                 *change = true;
2649                 }
2650         }
2651
2652         return ret;
2653 }
2654
2655 /**
2656  * regmap_update_bits: Perform a read/modify/write cycle on the register map
2657  *
2658  * @map: Register map to update
2659  * @reg: Register to update
2660  * @mask: Bitmask to change
2661  * @val: New value for bitmask
2662  *
2663  * Returns zero for success, a negative number on error.
2664  */
2665 int regmap_update_bits(struct regmap *map, unsigned int reg,
2666                        unsigned int mask, unsigned int val)
2667 {
2668         int ret;
2669
2670         map->lock(map->lock_arg);
2671         ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2672         map->unlock(map->lock_arg);
2673
2674         return ret;
2675 }
2676 EXPORT_SYMBOL_GPL(regmap_update_bits);
2677
2678 /**
2679  * regmap_write_bits: Perform a read/modify/write cycle on the register map
2680  *
2681  * @map: Register map to update
2682  * @reg: Register to update
2683  * @mask: Bitmask to change
2684  * @val: New value for bitmask
2685  *
2686  * Returns zero for success, a negative number on error.
2687  */
2688 int regmap_write_bits(struct regmap *map, unsigned int reg,
2689                       unsigned int mask, unsigned int val)
2690 {
2691         int ret;
2692
2693         map->lock(map->lock_arg);
2694         ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2695         map->unlock(map->lock_arg);
2696
2697         return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(regmap_write_bits);
2700
2701 /**
2702  * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2703  *                           map asynchronously
2704  *
2705  * @map: Register map to update
2706  * @reg: Register to update
2707  * @mask: Bitmask to change
2708  * @val: New value for bitmask
2709  *
2710  * With most buses the read must be done synchronously so this is most
2711  * useful for devices with a cache which do not need to interact with
2712  * the hardware to determine the current register value.
2713  *
2714  * Returns zero for success, a negative number on error.
2715  */
2716 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2717                              unsigned int mask, unsigned int val)
2718 {
2719         int ret;
2720
2721         map->lock(map->lock_arg);
2722
2723         map->async = true;
2724
2725         ret = _regmap_update_bits(map, reg, mask, val, NULL, false);
2726
2727         map->async = false;
2728
2729         map->unlock(map->lock_arg);
2730
2731         return ret;
2732 }
2733 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2734
2735 /**
2736  * regmap_update_bits_check: Perform a read/modify/write cycle on the
2737  *                           register map and report if updated
2738  *
2739  * @map: Register map to update
2740  * @reg: Register to update
2741  * @mask: Bitmask to change
2742  * @val: New value for bitmask
2743  * @change: Boolean indicating if a write was done
2744  *
2745  * Returns zero for success, a negative number on error.
2746  */
2747 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2748                              unsigned int mask, unsigned int val,
2749                              bool *change)
2750 {
2751         int ret;
2752
2753         map->lock(map->lock_arg);
2754         ret = _regmap_update_bits(map, reg, mask, val, change, false);
2755         map->unlock(map->lock_arg);
2756         return ret;
2757 }
2758 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2759
2760 /**
2761  * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2762  *                                 register map asynchronously and report if
2763  *                                 updated
2764  *
2765  * @map: Register map to update
2766  * @reg: Register to update
2767  * @mask: Bitmask to change
2768  * @val: New value for bitmask
2769  * @change: Boolean indicating if a write was done
2770  *
2771  * With most buses the read must be done synchronously so this is most
2772  * useful for devices with a cache which do not need to interact with
2773  * the hardware to determine the current register value.
2774  *
2775  * Returns zero for success, a negative number on error.
2776  */
2777 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2778                                    unsigned int mask, unsigned int val,
2779                                    bool *change)
2780 {
2781         int ret;
2782
2783         map->lock(map->lock_arg);
2784
2785         map->async = true;
2786
2787         ret = _regmap_update_bits(map, reg, mask, val, change, false);
2788
2789         map->async = false;
2790
2791         map->unlock(map->lock_arg);
2792
2793         return ret;
2794 }
2795 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2796
2797 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2798 {
2799         struct regmap *map = async->map;
2800         bool wake;
2801
2802         trace_regmap_async_io_complete(map);
2803
2804         spin_lock(&map->async_lock);
2805         list_move(&async->list, &map->async_free);
2806         wake = list_empty(&map->async_list);
2807
2808         if (ret != 0)
2809                 map->async_ret = ret;
2810
2811         spin_unlock(&map->async_lock);
2812
2813         if (wake)
2814                 wake_up(&map->async_waitq);
2815 }
2816 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2817
2818 static int regmap_async_is_done(struct regmap *map)
2819 {
2820         unsigned long flags;
2821         int ret;
2822
2823         spin_lock_irqsave(&map->async_lock, flags);
2824         ret = list_empty(&map->async_list);
2825         spin_unlock_irqrestore(&map->async_lock, flags);
2826
2827         return ret;
2828 }
2829
2830 /**
2831  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2832  *
2833  * @map: Map to operate on.
2834  *
2835  * Blocks until any pending asynchronous I/O has completed.  Returns
2836  * an error code for any failed I/O operations.
2837  */
2838 int regmap_async_complete(struct regmap *map)
2839 {
2840         unsigned long flags;
2841         int ret;
2842
2843         /* Nothing to do with no async support */
2844         if (!map->bus || !map->bus->async_write)
2845                 return 0;
2846
2847         trace_regmap_async_complete_start(map);
2848
2849         wait_event(map->async_waitq, regmap_async_is_done(map));
2850
2851         spin_lock_irqsave(&map->async_lock, flags);
2852         ret = map->async_ret;
2853         map->async_ret = 0;
2854         spin_unlock_irqrestore(&map->async_lock, flags);
2855
2856         trace_regmap_async_complete_done(map);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(regmap_async_complete);
2861
2862 /**
2863  * regmap_register_patch: Register and apply register updates to be applied
2864  *                        on device initialistion
2865  *
2866  * @map: Register map to apply updates to.
2867  * @regs: Values to update.
2868  * @num_regs: Number of entries in regs.
2869  *
2870  * Register a set of register updates to be applied to the device
2871  * whenever the device registers are synchronised with the cache and
2872  * apply them immediately.  Typically this is used to apply
2873  * corrections to be applied to the device defaults on startup, such
2874  * as the updates some vendors provide to undocumented registers.
2875  *
2876  * The caller must ensure that this function cannot be called
2877  * concurrently with either itself or regcache_sync().
2878  */
2879 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2880                           int num_regs)
2881 {
2882         struct reg_sequence *p;
2883         int ret;
2884         bool bypass;
2885
2886         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2887             num_regs))
2888                 return 0;
2889
2890         p = krealloc(map->patch,
2891                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2892                      GFP_KERNEL);
2893         if (p) {
2894                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2895                 map->patch = p;
2896                 map->patch_regs += num_regs;
2897         } else {
2898                 return -ENOMEM;
2899         }
2900
2901         map->lock(map->lock_arg);
2902
2903         bypass = map->cache_bypass;
2904
2905         map->cache_bypass = true;
2906         map->async = true;
2907
2908         ret = _regmap_multi_reg_write(map, regs, num_regs);
2909
2910         map->async = false;
2911         map->cache_bypass = bypass;
2912
2913         map->unlock(map->lock_arg);
2914
2915         regmap_async_complete(map);
2916
2917         return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(regmap_register_patch);
2920
2921 /*
2922  * regmap_get_val_bytes(): Report the size of a register value
2923  *
2924  * Report the size of a register value, mainly intended to for use by
2925  * generic infrastructure built on top of regmap.
2926  */
2927 int regmap_get_val_bytes(struct regmap *map)
2928 {
2929         if (map->format.format_write)
2930                 return -EINVAL;
2931
2932         return map->format.val_bytes;
2933 }
2934 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2935
2936 /**
2937  * regmap_get_max_register(): Report the max register value
2938  *
2939  * Report the max register value, mainly intended to for use by
2940  * generic infrastructure built on top of regmap.
2941  */
2942 int regmap_get_max_register(struct regmap *map)
2943 {
2944         return map->max_register ? map->max_register : -EINVAL;
2945 }
2946 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2947
2948 /**
2949  * regmap_get_reg_stride(): Report the register address stride
2950  *
2951  * Report the register address stride, mainly intended to for use by
2952  * generic infrastructure built on top of regmap.
2953  */
2954 int regmap_get_reg_stride(struct regmap *map)
2955 {
2956         return map->reg_stride;
2957 }
2958 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2959
2960 int regmap_parse_val(struct regmap *map, const void *buf,
2961                         unsigned int *val)
2962 {
2963         if (!map->format.parse_val)
2964                 return -EINVAL;
2965
2966         *val = map->format.parse_val(buf);
2967
2968         return 0;
2969 }
2970 EXPORT_SYMBOL_GPL(regmap_parse_val);
2971
2972 static int __init regmap_initcall(void)
2973 {
2974         regmap_debugfs_initcall();
2975
2976         return 0;
2977 }
2978 postcore_initcall(regmap_initcall);