]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/base/regmap/regmap.c
regmap: add regmap_fields_update_bits_base()
[linux-beck.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22
23 #define CREATE_TRACE_POINTS
24 #include "trace.h"
25
26 #include "internal.h"
27
28 /*
29  * Sometimes for failures during very early init the trace
30  * infrastructure isn't available early enough to be used.  For this
31  * sort of problem defining LOG_DEVICE will add printks for basic
32  * register I/O on a specific device.
33  */
34 #undef LOG_DEVICE
35
36 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
37                                unsigned int mask, unsigned int val,
38                                bool *change, bool force_write);
39
40 static int _regmap_bus_reg_read(void *context, unsigned int reg,
41                                 unsigned int *val);
42 static int _regmap_bus_read(void *context, unsigned int reg,
43                             unsigned int *val);
44 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
45                                        unsigned int val);
46 static int _regmap_bus_reg_write(void *context, unsigned int reg,
47                                  unsigned int val);
48 static int _regmap_bus_raw_write(void *context, unsigned int reg,
49                                  unsigned int val);
50
51 bool regmap_reg_in_ranges(unsigned int reg,
52                           const struct regmap_range *ranges,
53                           unsigned int nranges)
54 {
55         const struct regmap_range *r;
56         int i;
57
58         for (i = 0, r = ranges; i < nranges; i++, r++)
59                 if (regmap_reg_in_range(reg, r))
60                         return true;
61         return false;
62 }
63 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
64
65 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
66                               const struct regmap_access_table *table)
67 {
68         /* Check "no ranges" first */
69         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
70                 return false;
71
72         /* In case zero "yes ranges" are supplied, any reg is OK */
73         if (!table->n_yes_ranges)
74                 return true;
75
76         return regmap_reg_in_ranges(reg, table->yes_ranges,
77                                     table->n_yes_ranges);
78 }
79 EXPORT_SYMBOL_GPL(regmap_check_range_table);
80
81 bool regmap_writeable(struct regmap *map, unsigned int reg)
82 {
83         if (map->max_register && reg > map->max_register)
84                 return false;
85
86         if (map->writeable_reg)
87                 return map->writeable_reg(map->dev, reg);
88
89         if (map->wr_table)
90                 return regmap_check_range_table(map, reg, map->wr_table);
91
92         return true;
93 }
94
95 bool regmap_readable(struct regmap *map, unsigned int reg)
96 {
97         if (!map->reg_read)
98                 return false;
99
100         if (map->max_register && reg > map->max_register)
101                 return false;
102
103         if (map->format.format_write)
104                 return false;
105
106         if (map->readable_reg)
107                 return map->readable_reg(map->dev, reg);
108
109         if (map->rd_table)
110                 return regmap_check_range_table(map, reg, map->rd_table);
111
112         return true;
113 }
114
115 bool regmap_volatile(struct regmap *map, unsigned int reg)
116 {
117         if (!map->format.format_write && !regmap_readable(map, reg))
118                 return false;
119
120         if (map->volatile_reg)
121                 return map->volatile_reg(map->dev, reg);
122
123         if (map->volatile_table)
124                 return regmap_check_range_table(map, reg, map->volatile_table);
125
126         if (map->cache_ops)
127                 return false;
128         else
129                 return true;
130 }
131
132 bool regmap_precious(struct regmap *map, unsigned int reg)
133 {
134         if (!regmap_readable(map, reg))
135                 return false;
136
137         if (map->precious_reg)
138                 return map->precious_reg(map->dev, reg);
139
140         if (map->precious_table)
141                 return regmap_check_range_table(map, reg, map->precious_table);
142
143         return false;
144 }
145
146 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
147         size_t num)
148 {
149         unsigned int i;
150
151         for (i = 0; i < num; i++)
152                 if (!regmap_volatile(map, reg + i))
153                         return false;
154
155         return true;
156 }
157
158 static void regmap_format_2_6_write(struct regmap *map,
159                                      unsigned int reg, unsigned int val)
160 {
161         u8 *out = map->work_buf;
162
163         *out = (reg << 6) | val;
164 }
165
166 static void regmap_format_4_12_write(struct regmap *map,
167                                      unsigned int reg, unsigned int val)
168 {
169         __be16 *out = map->work_buf;
170         *out = cpu_to_be16((reg << 12) | val);
171 }
172
173 static void regmap_format_7_9_write(struct regmap *map,
174                                     unsigned int reg, unsigned int val)
175 {
176         __be16 *out = map->work_buf;
177         *out = cpu_to_be16((reg << 9) | val);
178 }
179
180 static void regmap_format_10_14_write(struct regmap *map,
181                                     unsigned int reg, unsigned int val)
182 {
183         u8 *out = map->work_buf;
184
185         out[2] = val;
186         out[1] = (val >> 8) | (reg << 6);
187         out[0] = reg >> 2;
188 }
189
190 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
191 {
192         u8 *b = buf;
193
194         b[0] = val << shift;
195 }
196
197 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
198 {
199         __be16 *b = buf;
200
201         b[0] = cpu_to_be16(val << shift);
202 }
203
204 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
205 {
206         __le16 *b = buf;
207
208         b[0] = cpu_to_le16(val << shift);
209 }
210
211 static void regmap_format_16_native(void *buf, unsigned int val,
212                                     unsigned int shift)
213 {
214         *(u16 *)buf = val << shift;
215 }
216
217 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
218 {
219         u8 *b = buf;
220
221         val <<= shift;
222
223         b[0] = val >> 16;
224         b[1] = val >> 8;
225         b[2] = val;
226 }
227
228 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
229 {
230         __be32 *b = buf;
231
232         b[0] = cpu_to_be32(val << shift);
233 }
234
235 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
236 {
237         __le32 *b = buf;
238
239         b[0] = cpu_to_le32(val << shift);
240 }
241
242 static void regmap_format_32_native(void *buf, unsigned int val,
243                                     unsigned int shift)
244 {
245         *(u32 *)buf = val << shift;
246 }
247
248 #ifdef CONFIG_64BIT
249 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
250 {
251         __be64 *b = buf;
252
253         b[0] = cpu_to_be64((u64)val << shift);
254 }
255
256 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
257 {
258         __le64 *b = buf;
259
260         b[0] = cpu_to_le64((u64)val << shift);
261 }
262
263 static void regmap_format_64_native(void *buf, unsigned int val,
264                                     unsigned int shift)
265 {
266         *(u64 *)buf = (u64)val << shift;
267 }
268 #endif
269
270 static void regmap_parse_inplace_noop(void *buf)
271 {
272 }
273
274 static unsigned int regmap_parse_8(const void *buf)
275 {
276         const u8 *b = buf;
277
278         return b[0];
279 }
280
281 static unsigned int regmap_parse_16_be(const void *buf)
282 {
283         const __be16 *b = buf;
284
285         return be16_to_cpu(b[0]);
286 }
287
288 static unsigned int regmap_parse_16_le(const void *buf)
289 {
290         const __le16 *b = buf;
291
292         return le16_to_cpu(b[0]);
293 }
294
295 static void regmap_parse_16_be_inplace(void *buf)
296 {
297         __be16 *b = buf;
298
299         b[0] = be16_to_cpu(b[0]);
300 }
301
302 static void regmap_parse_16_le_inplace(void *buf)
303 {
304         __le16 *b = buf;
305
306         b[0] = le16_to_cpu(b[0]);
307 }
308
309 static unsigned int regmap_parse_16_native(const void *buf)
310 {
311         return *(u16 *)buf;
312 }
313
314 static unsigned int regmap_parse_24(const void *buf)
315 {
316         const u8 *b = buf;
317         unsigned int ret = b[2];
318         ret |= ((unsigned int)b[1]) << 8;
319         ret |= ((unsigned int)b[0]) << 16;
320
321         return ret;
322 }
323
324 static unsigned int regmap_parse_32_be(const void *buf)
325 {
326         const __be32 *b = buf;
327
328         return be32_to_cpu(b[0]);
329 }
330
331 static unsigned int regmap_parse_32_le(const void *buf)
332 {
333         const __le32 *b = buf;
334
335         return le32_to_cpu(b[0]);
336 }
337
338 static void regmap_parse_32_be_inplace(void *buf)
339 {
340         __be32 *b = buf;
341
342         b[0] = be32_to_cpu(b[0]);
343 }
344
345 static void regmap_parse_32_le_inplace(void *buf)
346 {
347         __le32 *b = buf;
348
349         b[0] = le32_to_cpu(b[0]);
350 }
351
352 static unsigned int regmap_parse_32_native(const void *buf)
353 {
354         return *(u32 *)buf;
355 }
356
357 #ifdef CONFIG_64BIT
358 static unsigned int regmap_parse_64_be(const void *buf)
359 {
360         const __be64 *b = buf;
361
362         return be64_to_cpu(b[0]);
363 }
364
365 static unsigned int regmap_parse_64_le(const void *buf)
366 {
367         const __le64 *b = buf;
368
369         return le64_to_cpu(b[0]);
370 }
371
372 static void regmap_parse_64_be_inplace(void *buf)
373 {
374         __be64 *b = buf;
375
376         b[0] = be64_to_cpu(b[0]);
377 }
378
379 static void regmap_parse_64_le_inplace(void *buf)
380 {
381         __le64 *b = buf;
382
383         b[0] = le64_to_cpu(b[0]);
384 }
385
386 static unsigned int regmap_parse_64_native(const void *buf)
387 {
388         return *(u64 *)buf;
389 }
390 #endif
391
392 static void regmap_lock_mutex(void *__map)
393 {
394         struct regmap *map = __map;
395         mutex_lock(&map->mutex);
396 }
397
398 static void regmap_unlock_mutex(void *__map)
399 {
400         struct regmap *map = __map;
401         mutex_unlock(&map->mutex);
402 }
403
404 static void regmap_lock_spinlock(void *__map)
405 __acquires(&map->spinlock)
406 {
407         struct regmap *map = __map;
408         unsigned long flags;
409
410         spin_lock_irqsave(&map->spinlock, flags);
411         map->spinlock_flags = flags;
412 }
413
414 static void regmap_unlock_spinlock(void *__map)
415 __releases(&map->spinlock)
416 {
417         struct regmap *map = __map;
418         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
419 }
420
421 static void dev_get_regmap_release(struct device *dev, void *res)
422 {
423         /*
424          * We don't actually have anything to do here; the goal here
425          * is not to manage the regmap but to provide a simple way to
426          * get the regmap back given a struct device.
427          */
428 }
429
430 static bool _regmap_range_add(struct regmap *map,
431                               struct regmap_range_node *data)
432 {
433         struct rb_root *root = &map->range_tree;
434         struct rb_node **new = &(root->rb_node), *parent = NULL;
435
436         while (*new) {
437                 struct regmap_range_node *this =
438                         container_of(*new, struct regmap_range_node, node);
439
440                 parent = *new;
441                 if (data->range_max < this->range_min)
442                         new = &((*new)->rb_left);
443                 else if (data->range_min > this->range_max)
444                         new = &((*new)->rb_right);
445                 else
446                         return false;
447         }
448
449         rb_link_node(&data->node, parent, new);
450         rb_insert_color(&data->node, root);
451
452         return true;
453 }
454
455 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
456                                                       unsigned int reg)
457 {
458         struct rb_node *node = map->range_tree.rb_node;
459
460         while (node) {
461                 struct regmap_range_node *this =
462                         container_of(node, struct regmap_range_node, node);
463
464                 if (reg < this->range_min)
465                         node = node->rb_left;
466                 else if (reg > this->range_max)
467                         node = node->rb_right;
468                 else
469                         return this;
470         }
471
472         return NULL;
473 }
474
475 static void regmap_range_exit(struct regmap *map)
476 {
477         struct rb_node *next;
478         struct regmap_range_node *range_node;
479
480         next = rb_first(&map->range_tree);
481         while (next) {
482                 range_node = rb_entry(next, struct regmap_range_node, node);
483                 next = rb_next(&range_node->node);
484                 rb_erase(&range_node->node, &map->range_tree);
485                 kfree(range_node);
486         }
487
488         kfree(map->selector_work_buf);
489 }
490
491 int regmap_attach_dev(struct device *dev, struct regmap *map,
492                       const struct regmap_config *config)
493 {
494         struct regmap **m;
495
496         map->dev = dev;
497
498         regmap_debugfs_init(map, config->name);
499
500         /* Add a devres resource for dev_get_regmap() */
501         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
502         if (!m) {
503                 regmap_debugfs_exit(map);
504                 return -ENOMEM;
505         }
506         *m = map;
507         devres_add(dev, m);
508
509         return 0;
510 }
511 EXPORT_SYMBOL_GPL(regmap_attach_dev);
512
513 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
514                                         const struct regmap_config *config)
515 {
516         enum regmap_endian endian;
517
518         /* Retrieve the endianness specification from the regmap config */
519         endian = config->reg_format_endian;
520
521         /* If the regmap config specified a non-default value, use that */
522         if (endian != REGMAP_ENDIAN_DEFAULT)
523                 return endian;
524
525         /* Retrieve the endianness specification from the bus config */
526         if (bus && bus->reg_format_endian_default)
527                 endian = bus->reg_format_endian_default;
528
529         /* If the bus specified a non-default value, use that */
530         if (endian != REGMAP_ENDIAN_DEFAULT)
531                 return endian;
532
533         /* Use this if no other value was found */
534         return REGMAP_ENDIAN_BIG;
535 }
536
537 enum regmap_endian regmap_get_val_endian(struct device *dev,
538                                          const struct regmap_bus *bus,
539                                          const struct regmap_config *config)
540 {
541         struct device_node *np;
542         enum regmap_endian endian;
543
544         /* Retrieve the endianness specification from the regmap config */
545         endian = config->val_format_endian;
546
547         /* If the regmap config specified a non-default value, use that */
548         if (endian != REGMAP_ENDIAN_DEFAULT)
549                 return endian;
550
551         /* If the dev and dev->of_node exist try to get endianness from DT */
552         if (dev && dev->of_node) {
553                 np = dev->of_node;
554
555                 /* Parse the device's DT node for an endianness specification */
556                 if (of_property_read_bool(np, "big-endian"))
557                         endian = REGMAP_ENDIAN_BIG;
558                 else if (of_property_read_bool(np, "little-endian"))
559                         endian = REGMAP_ENDIAN_LITTLE;
560
561                 /* If the endianness was specified in DT, use that */
562                 if (endian != REGMAP_ENDIAN_DEFAULT)
563                         return endian;
564         }
565
566         /* Retrieve the endianness specification from the bus config */
567         if (bus && bus->val_format_endian_default)
568                 endian = bus->val_format_endian_default;
569
570         /* If the bus specified a non-default value, use that */
571         if (endian != REGMAP_ENDIAN_DEFAULT)
572                 return endian;
573
574         /* Use this if no other value was found */
575         return REGMAP_ENDIAN_BIG;
576 }
577 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
578
579 struct regmap *__regmap_init(struct device *dev,
580                              const struct regmap_bus *bus,
581                              void *bus_context,
582                              const struct regmap_config *config,
583                              struct lock_class_key *lock_key,
584                              const char *lock_name)
585 {
586         struct regmap *map;
587         int ret = -EINVAL;
588         enum regmap_endian reg_endian, val_endian;
589         int i, j;
590
591         if (!config)
592                 goto err;
593
594         map = kzalloc(sizeof(*map), GFP_KERNEL);
595         if (map == NULL) {
596                 ret = -ENOMEM;
597                 goto err;
598         }
599
600         if (config->lock && config->unlock) {
601                 map->lock = config->lock;
602                 map->unlock = config->unlock;
603                 map->lock_arg = config->lock_arg;
604         } else {
605                 if ((bus && bus->fast_io) ||
606                     config->fast_io) {
607                         spin_lock_init(&map->spinlock);
608                         map->lock = regmap_lock_spinlock;
609                         map->unlock = regmap_unlock_spinlock;
610                         lockdep_set_class_and_name(&map->spinlock,
611                                                    lock_key, lock_name);
612                 } else {
613                         mutex_init(&map->mutex);
614                         map->lock = regmap_lock_mutex;
615                         map->unlock = regmap_unlock_mutex;
616                         lockdep_set_class_and_name(&map->mutex,
617                                                    lock_key, lock_name);
618                 }
619                 map->lock_arg = map;
620         }
621
622         /*
623          * When we write in fast-paths with regmap_bulk_write() don't allocate
624          * scratch buffers with sleeping allocations.
625          */
626         if ((bus && bus->fast_io) || config->fast_io)
627                 map->alloc_flags = GFP_ATOMIC;
628         else
629                 map->alloc_flags = GFP_KERNEL;
630
631         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
632         map->format.pad_bytes = config->pad_bits / 8;
633         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
634         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
635                         config->val_bits + config->pad_bits, 8);
636         map->reg_shift = config->pad_bits % 8;
637         if (config->reg_stride)
638                 map->reg_stride = config->reg_stride;
639         else
640                 map->reg_stride = 1;
641         map->use_single_read = config->use_single_rw || !bus || !bus->read;
642         map->use_single_write = config->use_single_rw || !bus || !bus->write;
643         map->can_multi_write = config->can_multi_write && bus && bus->write;
644         if (bus) {
645                 map->max_raw_read = bus->max_raw_read;
646                 map->max_raw_write = bus->max_raw_write;
647         }
648         map->dev = dev;
649         map->bus = bus;
650         map->bus_context = bus_context;
651         map->max_register = config->max_register;
652         map->wr_table = config->wr_table;
653         map->rd_table = config->rd_table;
654         map->volatile_table = config->volatile_table;
655         map->precious_table = config->precious_table;
656         map->writeable_reg = config->writeable_reg;
657         map->readable_reg = config->readable_reg;
658         map->volatile_reg = config->volatile_reg;
659         map->precious_reg = config->precious_reg;
660         map->cache_type = config->cache_type;
661         map->name = config->name;
662
663         spin_lock_init(&map->async_lock);
664         INIT_LIST_HEAD(&map->async_list);
665         INIT_LIST_HEAD(&map->async_free);
666         init_waitqueue_head(&map->async_waitq);
667
668         if (config->read_flag_mask || config->write_flag_mask) {
669                 map->read_flag_mask = config->read_flag_mask;
670                 map->write_flag_mask = config->write_flag_mask;
671         } else if (bus) {
672                 map->read_flag_mask = bus->read_flag_mask;
673         }
674
675         if (!bus) {
676                 map->reg_read  = config->reg_read;
677                 map->reg_write = config->reg_write;
678
679                 map->defer_caching = false;
680                 goto skip_format_initialization;
681         } else if (!bus->read || !bus->write) {
682                 map->reg_read = _regmap_bus_reg_read;
683                 map->reg_write = _regmap_bus_reg_write;
684
685                 map->defer_caching = false;
686                 goto skip_format_initialization;
687         } else {
688                 map->reg_read  = _regmap_bus_read;
689                 map->reg_update_bits = bus->reg_update_bits;
690         }
691
692         reg_endian = regmap_get_reg_endian(bus, config);
693         val_endian = regmap_get_val_endian(dev, bus, config);
694
695         switch (config->reg_bits + map->reg_shift) {
696         case 2:
697                 switch (config->val_bits) {
698                 case 6:
699                         map->format.format_write = regmap_format_2_6_write;
700                         break;
701                 default:
702                         goto err_map;
703                 }
704                 break;
705
706         case 4:
707                 switch (config->val_bits) {
708                 case 12:
709                         map->format.format_write = regmap_format_4_12_write;
710                         break;
711                 default:
712                         goto err_map;
713                 }
714                 break;
715
716         case 7:
717                 switch (config->val_bits) {
718                 case 9:
719                         map->format.format_write = regmap_format_7_9_write;
720                         break;
721                 default:
722                         goto err_map;
723                 }
724                 break;
725
726         case 10:
727                 switch (config->val_bits) {
728                 case 14:
729                         map->format.format_write = regmap_format_10_14_write;
730                         break;
731                 default:
732                         goto err_map;
733                 }
734                 break;
735
736         case 8:
737                 map->format.format_reg = regmap_format_8;
738                 break;
739
740         case 16:
741                 switch (reg_endian) {
742                 case REGMAP_ENDIAN_BIG:
743                         map->format.format_reg = regmap_format_16_be;
744                         break;
745                 case REGMAP_ENDIAN_NATIVE:
746                         map->format.format_reg = regmap_format_16_native;
747                         break;
748                 default:
749                         goto err_map;
750                 }
751                 break;
752
753         case 24:
754                 if (reg_endian != REGMAP_ENDIAN_BIG)
755                         goto err_map;
756                 map->format.format_reg = regmap_format_24;
757                 break;
758
759         case 32:
760                 switch (reg_endian) {
761                 case REGMAP_ENDIAN_BIG:
762                         map->format.format_reg = regmap_format_32_be;
763                         break;
764                 case REGMAP_ENDIAN_NATIVE:
765                         map->format.format_reg = regmap_format_32_native;
766                         break;
767                 default:
768                         goto err_map;
769                 }
770                 break;
771
772 #ifdef CONFIG_64BIT
773         case 64:
774                 switch (reg_endian) {
775                 case REGMAP_ENDIAN_BIG:
776                         map->format.format_reg = regmap_format_64_be;
777                         break;
778                 case REGMAP_ENDIAN_NATIVE:
779                         map->format.format_reg = regmap_format_64_native;
780                         break;
781                 default:
782                         goto err_map;
783                 }
784                 break;
785 #endif
786
787         default:
788                 goto err_map;
789         }
790
791         if (val_endian == REGMAP_ENDIAN_NATIVE)
792                 map->format.parse_inplace = regmap_parse_inplace_noop;
793
794         switch (config->val_bits) {
795         case 8:
796                 map->format.format_val = regmap_format_8;
797                 map->format.parse_val = regmap_parse_8;
798                 map->format.parse_inplace = regmap_parse_inplace_noop;
799                 break;
800         case 16:
801                 switch (val_endian) {
802                 case REGMAP_ENDIAN_BIG:
803                         map->format.format_val = regmap_format_16_be;
804                         map->format.parse_val = regmap_parse_16_be;
805                         map->format.parse_inplace = regmap_parse_16_be_inplace;
806                         break;
807                 case REGMAP_ENDIAN_LITTLE:
808                         map->format.format_val = regmap_format_16_le;
809                         map->format.parse_val = regmap_parse_16_le;
810                         map->format.parse_inplace = regmap_parse_16_le_inplace;
811                         break;
812                 case REGMAP_ENDIAN_NATIVE:
813                         map->format.format_val = regmap_format_16_native;
814                         map->format.parse_val = regmap_parse_16_native;
815                         break;
816                 default:
817                         goto err_map;
818                 }
819                 break;
820         case 24:
821                 if (val_endian != REGMAP_ENDIAN_BIG)
822                         goto err_map;
823                 map->format.format_val = regmap_format_24;
824                 map->format.parse_val = regmap_parse_24;
825                 break;
826         case 32:
827                 switch (val_endian) {
828                 case REGMAP_ENDIAN_BIG:
829                         map->format.format_val = regmap_format_32_be;
830                         map->format.parse_val = regmap_parse_32_be;
831                         map->format.parse_inplace = regmap_parse_32_be_inplace;
832                         break;
833                 case REGMAP_ENDIAN_LITTLE:
834                         map->format.format_val = regmap_format_32_le;
835                         map->format.parse_val = regmap_parse_32_le;
836                         map->format.parse_inplace = regmap_parse_32_le_inplace;
837                         break;
838                 case REGMAP_ENDIAN_NATIVE:
839                         map->format.format_val = regmap_format_32_native;
840                         map->format.parse_val = regmap_parse_32_native;
841                         break;
842                 default:
843                         goto err_map;
844                 }
845                 break;
846 #ifdef CONFIG_64BIT
847         case 64:
848                 switch (val_endian) {
849                 case REGMAP_ENDIAN_BIG:
850                         map->format.format_val = regmap_format_64_be;
851                         map->format.parse_val = regmap_parse_64_be;
852                         map->format.parse_inplace = regmap_parse_64_be_inplace;
853                         break;
854                 case REGMAP_ENDIAN_LITTLE:
855                         map->format.format_val = regmap_format_64_le;
856                         map->format.parse_val = regmap_parse_64_le;
857                         map->format.parse_inplace = regmap_parse_64_le_inplace;
858                         break;
859                 case REGMAP_ENDIAN_NATIVE:
860                         map->format.format_val = regmap_format_64_native;
861                         map->format.parse_val = regmap_parse_64_native;
862                         break;
863                 default:
864                         goto err_map;
865                 }
866                 break;
867 #endif
868         }
869
870         if (map->format.format_write) {
871                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
872                     (val_endian != REGMAP_ENDIAN_BIG))
873                         goto err_map;
874                 map->use_single_write = true;
875         }
876
877         if (!map->format.format_write &&
878             !(map->format.format_reg && map->format.format_val))
879                 goto err_map;
880
881         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
882         if (map->work_buf == NULL) {
883                 ret = -ENOMEM;
884                 goto err_map;
885         }
886
887         if (map->format.format_write) {
888                 map->defer_caching = false;
889                 map->reg_write = _regmap_bus_formatted_write;
890         } else if (map->format.format_val) {
891                 map->defer_caching = true;
892                 map->reg_write = _regmap_bus_raw_write;
893         }
894
895 skip_format_initialization:
896
897         map->range_tree = RB_ROOT;
898         for (i = 0; i < config->num_ranges; i++) {
899                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
900                 struct regmap_range_node *new;
901
902                 /* Sanity check */
903                 if (range_cfg->range_max < range_cfg->range_min) {
904                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
905                                 range_cfg->range_max, range_cfg->range_min);
906                         goto err_range;
907                 }
908
909                 if (range_cfg->range_max > map->max_register) {
910                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
911                                 range_cfg->range_max, map->max_register);
912                         goto err_range;
913                 }
914
915                 if (range_cfg->selector_reg > map->max_register) {
916                         dev_err(map->dev,
917                                 "Invalid range %d: selector out of map\n", i);
918                         goto err_range;
919                 }
920
921                 if (range_cfg->window_len == 0) {
922                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
923                                 i);
924                         goto err_range;
925                 }
926
927                 /* Make sure, that this register range has no selector
928                    or data window within its boundary */
929                 for (j = 0; j < config->num_ranges; j++) {
930                         unsigned sel_reg = config->ranges[j].selector_reg;
931                         unsigned win_min = config->ranges[j].window_start;
932                         unsigned win_max = win_min +
933                                            config->ranges[j].window_len - 1;
934
935                         /* Allow data window inside its own virtual range */
936                         if (j == i)
937                                 continue;
938
939                         if (range_cfg->range_min <= sel_reg &&
940                             sel_reg <= range_cfg->range_max) {
941                                 dev_err(map->dev,
942                                         "Range %d: selector for %d in window\n",
943                                         i, j);
944                                 goto err_range;
945                         }
946
947                         if (!(win_max < range_cfg->range_min ||
948                               win_min > range_cfg->range_max)) {
949                                 dev_err(map->dev,
950                                         "Range %d: window for %d in window\n",
951                                         i, j);
952                                 goto err_range;
953                         }
954                 }
955
956                 new = kzalloc(sizeof(*new), GFP_KERNEL);
957                 if (new == NULL) {
958                         ret = -ENOMEM;
959                         goto err_range;
960                 }
961
962                 new->map = map;
963                 new->name = range_cfg->name;
964                 new->range_min = range_cfg->range_min;
965                 new->range_max = range_cfg->range_max;
966                 new->selector_reg = range_cfg->selector_reg;
967                 new->selector_mask = range_cfg->selector_mask;
968                 new->selector_shift = range_cfg->selector_shift;
969                 new->window_start = range_cfg->window_start;
970                 new->window_len = range_cfg->window_len;
971
972                 if (!_regmap_range_add(map, new)) {
973                         dev_err(map->dev, "Failed to add range %d\n", i);
974                         kfree(new);
975                         goto err_range;
976                 }
977
978                 if (map->selector_work_buf == NULL) {
979                         map->selector_work_buf =
980                                 kzalloc(map->format.buf_size, GFP_KERNEL);
981                         if (map->selector_work_buf == NULL) {
982                                 ret = -ENOMEM;
983                                 goto err_range;
984                         }
985                 }
986         }
987
988         ret = regcache_init(map, config);
989         if (ret != 0)
990                 goto err_range;
991
992         if (dev) {
993                 ret = regmap_attach_dev(dev, map, config);
994                 if (ret != 0)
995                         goto err_regcache;
996         }
997
998         return map;
999
1000 err_regcache:
1001         regcache_exit(map);
1002 err_range:
1003         regmap_range_exit(map);
1004         kfree(map->work_buf);
1005 err_map:
1006         kfree(map);
1007 err:
1008         return ERR_PTR(ret);
1009 }
1010 EXPORT_SYMBOL_GPL(__regmap_init);
1011
1012 static void devm_regmap_release(struct device *dev, void *res)
1013 {
1014         regmap_exit(*(struct regmap **)res);
1015 }
1016
1017 struct regmap *__devm_regmap_init(struct device *dev,
1018                                   const struct regmap_bus *bus,
1019                                   void *bus_context,
1020                                   const struct regmap_config *config,
1021                                   struct lock_class_key *lock_key,
1022                                   const char *lock_name)
1023 {
1024         struct regmap **ptr, *regmap;
1025
1026         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1027         if (!ptr)
1028                 return ERR_PTR(-ENOMEM);
1029
1030         regmap = __regmap_init(dev, bus, bus_context, config,
1031                                lock_key, lock_name);
1032         if (!IS_ERR(regmap)) {
1033                 *ptr = regmap;
1034                 devres_add(dev, ptr);
1035         } else {
1036                 devres_free(ptr);
1037         }
1038
1039         return regmap;
1040 }
1041 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1042
1043 static void regmap_field_init(struct regmap_field *rm_field,
1044         struct regmap *regmap, struct reg_field reg_field)
1045 {
1046         rm_field->regmap = regmap;
1047         rm_field->reg = reg_field.reg;
1048         rm_field->shift = reg_field.lsb;
1049         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1050         rm_field->id_size = reg_field.id_size;
1051         rm_field->id_offset = reg_field.id_offset;
1052 }
1053
1054 /**
1055  * devm_regmap_field_alloc(): Allocate and initialise a register field
1056  * in a register map.
1057  *
1058  * @dev: Device that will be interacted with
1059  * @regmap: regmap bank in which this register field is located.
1060  * @reg_field: Register field with in the bank.
1061  *
1062  * The return value will be an ERR_PTR() on error or a valid pointer
1063  * to a struct regmap_field. The regmap_field will be automatically freed
1064  * by the device management code.
1065  */
1066 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1067                 struct regmap *regmap, struct reg_field reg_field)
1068 {
1069         struct regmap_field *rm_field = devm_kzalloc(dev,
1070                                         sizeof(*rm_field), GFP_KERNEL);
1071         if (!rm_field)
1072                 return ERR_PTR(-ENOMEM);
1073
1074         regmap_field_init(rm_field, regmap, reg_field);
1075
1076         return rm_field;
1077
1078 }
1079 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1080
1081 /**
1082  * devm_regmap_field_free(): Free register field allocated using
1083  * devm_regmap_field_alloc. Usally drivers need not call this function,
1084  * as the memory allocated via devm will be freed as per device-driver
1085  * life-cyle.
1086  *
1087  * @dev: Device that will be interacted with
1088  * @field: regmap field which should be freed.
1089  */
1090 void devm_regmap_field_free(struct device *dev,
1091         struct regmap_field *field)
1092 {
1093         devm_kfree(dev, field);
1094 }
1095 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1096
1097 /**
1098  * regmap_field_alloc(): Allocate and initialise a register field
1099  * in a register map.
1100  *
1101  * @regmap: regmap bank in which this register field is located.
1102  * @reg_field: Register field with in the bank.
1103  *
1104  * The return value will be an ERR_PTR() on error or a valid pointer
1105  * to a struct regmap_field. The regmap_field should be freed by the
1106  * user once its finished working with it using regmap_field_free().
1107  */
1108 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1109                 struct reg_field reg_field)
1110 {
1111         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1112
1113         if (!rm_field)
1114                 return ERR_PTR(-ENOMEM);
1115
1116         regmap_field_init(rm_field, regmap, reg_field);
1117
1118         return rm_field;
1119 }
1120 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1121
1122 /**
1123  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1124  *
1125  * @field: regmap field which should be freed.
1126  */
1127 void regmap_field_free(struct regmap_field *field)
1128 {
1129         kfree(field);
1130 }
1131 EXPORT_SYMBOL_GPL(regmap_field_free);
1132
1133 /**
1134  * regmap_reinit_cache(): Reinitialise the current register cache
1135  *
1136  * @map: Register map to operate on.
1137  * @config: New configuration.  Only the cache data will be used.
1138  *
1139  * Discard any existing register cache for the map and initialize a
1140  * new cache.  This can be used to restore the cache to defaults or to
1141  * update the cache configuration to reflect runtime discovery of the
1142  * hardware.
1143  *
1144  * No explicit locking is done here, the user needs to ensure that
1145  * this function will not race with other calls to regmap.
1146  */
1147 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1148 {
1149         regcache_exit(map);
1150         regmap_debugfs_exit(map);
1151
1152         map->max_register = config->max_register;
1153         map->writeable_reg = config->writeable_reg;
1154         map->readable_reg = config->readable_reg;
1155         map->volatile_reg = config->volatile_reg;
1156         map->precious_reg = config->precious_reg;
1157         map->cache_type = config->cache_type;
1158
1159         regmap_debugfs_init(map, config->name);
1160
1161         map->cache_bypass = false;
1162         map->cache_only = false;
1163
1164         return regcache_init(map, config);
1165 }
1166 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1167
1168 /**
1169  * regmap_exit(): Free a previously allocated register map
1170  */
1171 void regmap_exit(struct regmap *map)
1172 {
1173         struct regmap_async *async;
1174
1175         regcache_exit(map);
1176         regmap_debugfs_exit(map);
1177         regmap_range_exit(map);
1178         if (map->bus && map->bus->free_context)
1179                 map->bus->free_context(map->bus_context);
1180         kfree(map->work_buf);
1181         while (!list_empty(&map->async_free)) {
1182                 async = list_first_entry_or_null(&map->async_free,
1183                                                  struct regmap_async,
1184                                                  list);
1185                 list_del(&async->list);
1186                 kfree(async->work_buf);
1187                 kfree(async);
1188         }
1189         kfree(map);
1190 }
1191 EXPORT_SYMBOL_GPL(regmap_exit);
1192
1193 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1194 {
1195         struct regmap **r = res;
1196         if (!r || !*r) {
1197                 WARN_ON(!r || !*r);
1198                 return 0;
1199         }
1200
1201         /* If the user didn't specify a name match any */
1202         if (data)
1203                 return (*r)->name == data;
1204         else
1205                 return 1;
1206 }
1207
1208 /**
1209  * dev_get_regmap(): Obtain the regmap (if any) for a device
1210  *
1211  * @dev: Device to retrieve the map for
1212  * @name: Optional name for the register map, usually NULL.
1213  *
1214  * Returns the regmap for the device if one is present, or NULL.  If
1215  * name is specified then it must match the name specified when
1216  * registering the device, if it is NULL then the first regmap found
1217  * will be used.  Devices with multiple register maps are very rare,
1218  * generic code should normally not need to specify a name.
1219  */
1220 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1221 {
1222         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1223                                         dev_get_regmap_match, (void *)name);
1224
1225         if (!r)
1226                 return NULL;
1227         return *r;
1228 }
1229 EXPORT_SYMBOL_GPL(dev_get_regmap);
1230
1231 /**
1232  * regmap_get_device(): Obtain the device from a regmap
1233  *
1234  * @map: Register map to operate on.
1235  *
1236  * Returns the underlying device that the regmap has been created for.
1237  */
1238 struct device *regmap_get_device(struct regmap *map)
1239 {
1240         return map->dev;
1241 }
1242 EXPORT_SYMBOL_GPL(regmap_get_device);
1243
1244 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1245                                struct regmap_range_node *range,
1246                                unsigned int val_num)
1247 {
1248         void *orig_work_buf;
1249         unsigned int win_offset;
1250         unsigned int win_page;
1251         bool page_chg;
1252         int ret;
1253
1254         win_offset = (*reg - range->range_min) % range->window_len;
1255         win_page = (*reg - range->range_min) / range->window_len;
1256
1257         if (val_num > 1) {
1258                 /* Bulk write shouldn't cross range boundary */
1259                 if (*reg + val_num - 1 > range->range_max)
1260                         return -EINVAL;
1261
1262                 /* ... or single page boundary */
1263                 if (val_num > range->window_len - win_offset)
1264                         return -EINVAL;
1265         }
1266
1267         /* It is possible to have selector register inside data window.
1268            In that case, selector register is located on every page and
1269            it needs no page switching, when accessed alone. */
1270         if (val_num > 1 ||
1271             range->window_start + win_offset != range->selector_reg) {
1272                 /* Use separate work_buf during page switching */
1273                 orig_work_buf = map->work_buf;
1274                 map->work_buf = map->selector_work_buf;
1275
1276                 ret = _regmap_update_bits(map, range->selector_reg,
1277                                           range->selector_mask,
1278                                           win_page << range->selector_shift,
1279                                           &page_chg, false);
1280
1281                 map->work_buf = orig_work_buf;
1282
1283                 if (ret != 0)
1284                         return ret;
1285         }
1286
1287         *reg = range->window_start + win_offset;
1288
1289         return 0;
1290 }
1291
1292 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1293                       const void *val, size_t val_len)
1294 {
1295         struct regmap_range_node *range;
1296         unsigned long flags;
1297         u8 *u8 = map->work_buf;
1298         void *work_val = map->work_buf + map->format.reg_bytes +
1299                 map->format.pad_bytes;
1300         void *buf;
1301         int ret = -ENOTSUPP;
1302         size_t len;
1303         int i;
1304
1305         WARN_ON(!map->bus);
1306
1307         /* Check for unwritable registers before we start */
1308         if (map->writeable_reg)
1309                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1310                         if (!map->writeable_reg(map->dev,
1311                                                 reg + (i * map->reg_stride)))
1312                                 return -EINVAL;
1313
1314         if (!map->cache_bypass && map->format.parse_val) {
1315                 unsigned int ival;
1316                 int val_bytes = map->format.val_bytes;
1317                 for (i = 0; i < val_len / val_bytes; i++) {
1318                         ival = map->format.parse_val(val + (i * val_bytes));
1319                         ret = regcache_write(map, reg + (i * map->reg_stride),
1320                                              ival);
1321                         if (ret) {
1322                                 dev_err(map->dev,
1323                                         "Error in caching of register: %x ret: %d\n",
1324                                         reg + i, ret);
1325                                 return ret;
1326                         }
1327                 }
1328                 if (map->cache_only) {
1329                         map->cache_dirty = true;
1330                         return 0;
1331                 }
1332         }
1333
1334         range = _regmap_range_lookup(map, reg);
1335         if (range) {
1336                 int val_num = val_len / map->format.val_bytes;
1337                 int win_offset = (reg - range->range_min) % range->window_len;
1338                 int win_residue = range->window_len - win_offset;
1339
1340                 /* If the write goes beyond the end of the window split it */
1341                 while (val_num > win_residue) {
1342                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1343                                 win_residue, val_len / map->format.val_bytes);
1344                         ret = _regmap_raw_write(map, reg, val, win_residue *
1345                                                 map->format.val_bytes);
1346                         if (ret != 0)
1347                                 return ret;
1348
1349                         reg += win_residue;
1350                         val_num -= win_residue;
1351                         val += win_residue * map->format.val_bytes;
1352                         val_len -= win_residue * map->format.val_bytes;
1353
1354                         win_offset = (reg - range->range_min) %
1355                                 range->window_len;
1356                         win_residue = range->window_len - win_offset;
1357                 }
1358
1359                 ret = _regmap_select_page(map, &reg, range, val_num);
1360                 if (ret != 0)
1361                         return ret;
1362         }
1363
1364         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1365
1366         u8[0] |= map->write_flag_mask;
1367
1368         /*
1369          * Essentially all I/O mechanisms will be faster with a single
1370          * buffer to write.  Since register syncs often generate raw
1371          * writes of single registers optimise that case.
1372          */
1373         if (val != work_val && val_len == map->format.val_bytes) {
1374                 memcpy(work_val, val, map->format.val_bytes);
1375                 val = work_val;
1376         }
1377
1378         if (map->async && map->bus->async_write) {
1379                 struct regmap_async *async;
1380
1381                 trace_regmap_async_write_start(map, reg, val_len);
1382
1383                 spin_lock_irqsave(&map->async_lock, flags);
1384                 async = list_first_entry_or_null(&map->async_free,
1385                                                  struct regmap_async,
1386                                                  list);
1387                 if (async)
1388                         list_del(&async->list);
1389                 spin_unlock_irqrestore(&map->async_lock, flags);
1390
1391                 if (!async) {
1392                         async = map->bus->async_alloc();
1393                         if (!async)
1394                                 return -ENOMEM;
1395
1396                         async->work_buf = kzalloc(map->format.buf_size,
1397                                                   GFP_KERNEL | GFP_DMA);
1398                         if (!async->work_buf) {
1399                                 kfree(async);
1400                                 return -ENOMEM;
1401                         }
1402                 }
1403
1404                 async->map = map;
1405
1406                 /* If the caller supplied the value we can use it safely. */
1407                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1408                        map->format.reg_bytes + map->format.val_bytes);
1409
1410                 spin_lock_irqsave(&map->async_lock, flags);
1411                 list_add_tail(&async->list, &map->async_list);
1412                 spin_unlock_irqrestore(&map->async_lock, flags);
1413
1414                 if (val != work_val)
1415                         ret = map->bus->async_write(map->bus_context,
1416                                                     async->work_buf,
1417                                                     map->format.reg_bytes +
1418                                                     map->format.pad_bytes,
1419                                                     val, val_len, async);
1420                 else
1421                         ret = map->bus->async_write(map->bus_context,
1422                                                     async->work_buf,
1423                                                     map->format.reg_bytes +
1424                                                     map->format.pad_bytes +
1425                                                     val_len, NULL, 0, async);
1426
1427                 if (ret != 0) {
1428                         dev_err(map->dev, "Failed to schedule write: %d\n",
1429                                 ret);
1430
1431                         spin_lock_irqsave(&map->async_lock, flags);
1432                         list_move(&async->list, &map->async_free);
1433                         spin_unlock_irqrestore(&map->async_lock, flags);
1434                 }
1435
1436                 return ret;
1437         }
1438
1439         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1440
1441         /* If we're doing a single register write we can probably just
1442          * send the work_buf directly, otherwise try to do a gather
1443          * write.
1444          */
1445         if (val == work_val)
1446                 ret = map->bus->write(map->bus_context, map->work_buf,
1447                                       map->format.reg_bytes +
1448                                       map->format.pad_bytes +
1449                                       val_len);
1450         else if (map->bus->gather_write)
1451                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1452                                              map->format.reg_bytes +
1453                                              map->format.pad_bytes,
1454                                              val, val_len);
1455
1456         /* If that didn't work fall back on linearising by hand. */
1457         if (ret == -ENOTSUPP) {
1458                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1459                 buf = kzalloc(len, GFP_KERNEL);
1460                 if (!buf)
1461                         return -ENOMEM;
1462
1463                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1464                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1465                        val, val_len);
1466                 ret = map->bus->write(map->bus_context, buf, len);
1467
1468                 kfree(buf);
1469         }
1470
1471         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1472
1473         return ret;
1474 }
1475
1476 /**
1477  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1478  *
1479  * @map: Map to check.
1480  */
1481 bool regmap_can_raw_write(struct regmap *map)
1482 {
1483         return map->bus && map->bus->write && map->format.format_val &&
1484                 map->format.format_reg;
1485 }
1486 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1487
1488 /**
1489  * regmap_get_raw_read_max - Get the maximum size we can read
1490  *
1491  * @map: Map to check.
1492  */
1493 size_t regmap_get_raw_read_max(struct regmap *map)
1494 {
1495         return map->max_raw_read;
1496 }
1497 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1498
1499 /**
1500  * regmap_get_raw_write_max - Get the maximum size we can read
1501  *
1502  * @map: Map to check.
1503  */
1504 size_t regmap_get_raw_write_max(struct regmap *map)
1505 {
1506         return map->max_raw_write;
1507 }
1508 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1509
1510 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1511                                        unsigned int val)
1512 {
1513         int ret;
1514         struct regmap_range_node *range;
1515         struct regmap *map = context;
1516
1517         WARN_ON(!map->bus || !map->format.format_write);
1518
1519         range = _regmap_range_lookup(map, reg);
1520         if (range) {
1521                 ret = _regmap_select_page(map, &reg, range, 1);
1522                 if (ret != 0)
1523                         return ret;
1524         }
1525
1526         map->format.format_write(map, reg, val);
1527
1528         trace_regmap_hw_write_start(map, reg, 1);
1529
1530         ret = map->bus->write(map->bus_context, map->work_buf,
1531                               map->format.buf_size);
1532
1533         trace_regmap_hw_write_done(map, reg, 1);
1534
1535         return ret;
1536 }
1537
1538 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1539                                  unsigned int val)
1540 {
1541         struct regmap *map = context;
1542
1543         return map->bus->reg_write(map->bus_context, reg, val);
1544 }
1545
1546 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1547                                  unsigned int val)
1548 {
1549         struct regmap *map = context;
1550
1551         WARN_ON(!map->bus || !map->format.format_val);
1552
1553         map->format.format_val(map->work_buf + map->format.reg_bytes
1554                                + map->format.pad_bytes, val, 0);
1555         return _regmap_raw_write(map, reg,
1556                                  map->work_buf +
1557                                  map->format.reg_bytes +
1558                                  map->format.pad_bytes,
1559                                  map->format.val_bytes);
1560 }
1561
1562 static inline void *_regmap_map_get_context(struct regmap *map)
1563 {
1564         return (map->bus) ? map : map->bus_context;
1565 }
1566
1567 int _regmap_write(struct regmap *map, unsigned int reg,
1568                   unsigned int val)
1569 {
1570         int ret;
1571         void *context = _regmap_map_get_context(map);
1572
1573         if (!regmap_writeable(map, reg))
1574                 return -EIO;
1575
1576         if (!map->cache_bypass && !map->defer_caching) {
1577                 ret = regcache_write(map, reg, val);
1578                 if (ret != 0)
1579                         return ret;
1580                 if (map->cache_only) {
1581                         map->cache_dirty = true;
1582                         return 0;
1583                 }
1584         }
1585
1586 #ifdef LOG_DEVICE
1587         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1588                 dev_info(map->dev, "%x <= %x\n", reg, val);
1589 #endif
1590
1591         trace_regmap_reg_write(map, reg, val);
1592
1593         return map->reg_write(context, reg, val);
1594 }
1595
1596 /**
1597  * regmap_write(): Write a value to a single register
1598  *
1599  * @map: Register map to write to
1600  * @reg: Register to write to
1601  * @val: Value to be written
1602  *
1603  * A value of zero will be returned on success, a negative errno will
1604  * be returned in error cases.
1605  */
1606 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1607 {
1608         int ret;
1609
1610         if (!IS_ALIGNED(reg, map->reg_stride))
1611                 return -EINVAL;
1612
1613         map->lock(map->lock_arg);
1614
1615         ret = _regmap_write(map, reg, val);
1616
1617         map->unlock(map->lock_arg);
1618
1619         return ret;
1620 }
1621 EXPORT_SYMBOL_GPL(regmap_write);
1622
1623 /**
1624  * regmap_write_async(): Write a value to a single register asynchronously
1625  *
1626  * @map: Register map to write to
1627  * @reg: Register to write to
1628  * @val: Value to be written
1629  *
1630  * A value of zero will be returned on success, a negative errno will
1631  * be returned in error cases.
1632  */
1633 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1634 {
1635         int ret;
1636
1637         if (!IS_ALIGNED(reg, map->reg_stride))
1638                 return -EINVAL;
1639
1640         map->lock(map->lock_arg);
1641
1642         map->async = true;
1643
1644         ret = _regmap_write(map, reg, val);
1645
1646         map->async = false;
1647
1648         map->unlock(map->lock_arg);
1649
1650         return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(regmap_write_async);
1653
1654 /**
1655  * regmap_raw_write(): Write raw values to one or more registers
1656  *
1657  * @map: Register map to write to
1658  * @reg: Initial register to write to
1659  * @val: Block of data to be written, laid out for direct transmission to the
1660  *       device
1661  * @val_len: Length of data pointed to by val.
1662  *
1663  * This function is intended to be used for things like firmware
1664  * download where a large block of data needs to be transferred to the
1665  * device.  No formatting will be done on the data provided.
1666  *
1667  * A value of zero will be returned on success, a negative errno will
1668  * be returned in error cases.
1669  */
1670 int regmap_raw_write(struct regmap *map, unsigned int reg,
1671                      const void *val, size_t val_len)
1672 {
1673         int ret;
1674
1675         if (!regmap_can_raw_write(map))
1676                 return -EINVAL;
1677         if (val_len % map->format.val_bytes)
1678                 return -EINVAL;
1679         if (map->max_raw_write && map->max_raw_write > val_len)
1680                 return -E2BIG;
1681
1682         map->lock(map->lock_arg);
1683
1684         ret = _regmap_raw_write(map, reg, val, val_len);
1685
1686         map->unlock(map->lock_arg);
1687
1688         return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(regmap_raw_write);
1691
1692 /**
1693  * regmap_field_update_bits_base():
1694  *      Perform a read/modify/write cycle on the register field
1695  *      with change, async, force option
1696  *
1697  * @field: Register field to write to
1698  * @mask: Bitmask to change
1699  * @val: Value to be written
1700  * @change: Boolean indicating if a write was done
1701  * @async: Boolean indicating asynchronously
1702  * @force: Boolean indicating use force update
1703  *
1704  * A value of zero will be returned on success, a negative errno will
1705  * be returned in error cases.
1706  */
1707 int regmap_field_update_bits_base(struct regmap_field *field,
1708                                   unsigned int mask, unsigned int val,
1709                                   bool *change, bool async, bool force)
1710 {
1711         mask = (mask << field->shift) & field->mask;
1712
1713         return regmap_update_bits_base(field->regmap, field->reg,
1714                                        mask, val << field->shift,
1715                                        change, async, force);
1716 }
1717 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1718
1719 /**
1720  * regmap_fields_update_bits_base():
1721  *      Perform a read/modify/write cycle on the register field
1722  *      with change, async, force option
1723  *
1724  * @field: Register field to write to
1725  * @id: port ID
1726  * @mask: Bitmask to change
1727  * @val: Value to be written
1728  * @change: Boolean indicating if a write was done
1729  * @async: Boolean indicating asynchronously
1730  * @force: Boolean indicating use force update
1731  *
1732  * A value of zero will be returned on success, a negative errno will
1733  * be returned in error cases.
1734  */
1735 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1736                                    unsigned int mask, unsigned int val,
1737                                    bool *change, bool async, bool force)
1738 {
1739         if (id >= field->id_size)
1740                 return -EINVAL;
1741
1742         mask = (mask << field->shift) & field->mask;
1743
1744         return regmap_update_bits_base(field->regmap,
1745                                        field->reg + (field->id_offset * id),
1746                                        mask, val << field->shift,
1747                                        change, async, force);
1748 }
1749 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1750
1751 /**
1752  * regmap_fields_write(): Write a value to a single register field with port ID
1753  *
1754  * @field: Register field to write to
1755  * @id: port ID
1756  * @val: Value to be written
1757  *
1758  * A value of zero will be returned on success, a negative errno will
1759  * be returned in error cases.
1760  */
1761 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1762                         unsigned int val)
1763 {
1764         if (id >= field->id_size)
1765                 return -EINVAL;
1766
1767         return regmap_update_bits(field->regmap,
1768                                   field->reg + (field->id_offset * id),
1769                                   field->mask, val << field->shift);
1770 }
1771 EXPORT_SYMBOL_GPL(regmap_fields_write);
1772
1773 int regmap_fields_force_write(struct regmap_field *field, unsigned int id,
1774                         unsigned int val)
1775 {
1776         if (id >= field->id_size)
1777                 return -EINVAL;
1778
1779         return regmap_write_bits(field->regmap,
1780                                   field->reg + (field->id_offset * id),
1781                                   field->mask, val << field->shift);
1782 }
1783 EXPORT_SYMBOL_GPL(regmap_fields_force_write);
1784
1785 /**
1786  * regmap_fields_update_bits(): Perform a read/modify/write cycle
1787  *                              on the register field
1788  *
1789  * @field: Register field to write to
1790  * @id: port ID
1791  * @mask: Bitmask to change
1792  * @val: Value to be written
1793  *
1794  * A value of zero will be returned on success, a negative errno will
1795  * be returned in error cases.
1796  */
1797 int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1798                               unsigned int mask, unsigned int val)
1799 {
1800         if (id >= field->id_size)
1801                 return -EINVAL;
1802
1803         mask = (mask << field->shift) & field->mask;
1804
1805         return regmap_update_bits(field->regmap,
1806                                   field->reg + (field->id_offset * id),
1807                                   mask, val << field->shift);
1808 }
1809 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1810
1811 /*
1812  * regmap_bulk_write(): Write multiple registers to the device
1813  *
1814  * @map: Register map to write to
1815  * @reg: First register to be write from
1816  * @val: Block of data to be written, in native register size for device
1817  * @val_count: Number of registers to write
1818  *
1819  * This function is intended to be used for writing a large block of
1820  * data to the device either in single transfer or multiple transfer.
1821  *
1822  * A value of zero will be returned on success, a negative errno will
1823  * be returned in error cases.
1824  */
1825 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1826                      size_t val_count)
1827 {
1828         int ret = 0, i;
1829         size_t val_bytes = map->format.val_bytes;
1830         size_t total_size = val_bytes * val_count;
1831
1832         if (map->bus && !map->format.parse_inplace)
1833                 return -EINVAL;
1834         if (!IS_ALIGNED(reg, map->reg_stride))
1835                 return -EINVAL;
1836
1837         /*
1838          * Some devices don't support bulk write, for
1839          * them we have a series of single write operations in the first two if
1840          * blocks.
1841          *
1842          * The first if block is used for memory mapped io. It does not allow
1843          * val_bytes of 3 for example.
1844          * The second one is used for busses which do not have this limitation
1845          * and can write arbitrary value lengths.
1846          */
1847         if (!map->bus) {
1848                 map->lock(map->lock_arg);
1849                 for (i = 0; i < val_count; i++) {
1850                         unsigned int ival;
1851
1852                         switch (val_bytes) {
1853                         case 1:
1854                                 ival = *(u8 *)(val + (i * val_bytes));
1855                                 break;
1856                         case 2:
1857                                 ival = *(u16 *)(val + (i * val_bytes));
1858                                 break;
1859                         case 4:
1860                                 ival = *(u32 *)(val + (i * val_bytes));
1861                                 break;
1862 #ifdef CONFIG_64BIT
1863                         case 8:
1864                                 ival = *(u64 *)(val + (i * val_bytes));
1865                                 break;
1866 #endif
1867                         default:
1868                                 ret = -EINVAL;
1869                                 goto out;
1870                         }
1871
1872                         ret = _regmap_write(map, reg + (i * map->reg_stride),
1873                                         ival);
1874                         if (ret != 0)
1875                                 goto out;
1876                 }
1877 out:
1878                 map->unlock(map->lock_arg);
1879         } else if (map->use_single_write ||
1880                    (map->max_raw_write && map->max_raw_write < total_size)) {
1881                 int chunk_stride = map->reg_stride;
1882                 size_t chunk_size = val_bytes;
1883                 size_t chunk_count = val_count;
1884
1885                 if (!map->use_single_write) {
1886                         chunk_size = map->max_raw_write;
1887                         if (chunk_size % val_bytes)
1888                                 chunk_size -= chunk_size % val_bytes;
1889                         chunk_count = total_size / chunk_size;
1890                         chunk_stride *= chunk_size / val_bytes;
1891                 }
1892
1893                 map->lock(map->lock_arg);
1894                 /* Write as many bytes as possible with chunk_size */
1895                 for (i = 0; i < chunk_count; i++) {
1896                         ret = _regmap_raw_write(map,
1897                                                 reg + (i * chunk_stride),
1898                                                 val + (i * chunk_size),
1899                                                 chunk_size);
1900                         if (ret)
1901                                 break;
1902                 }
1903
1904                 /* Write remaining bytes */
1905                 if (!ret && chunk_size * i < total_size) {
1906                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1907                                                 val + (i * chunk_size),
1908                                                 total_size - i * chunk_size);
1909                 }
1910                 map->unlock(map->lock_arg);
1911         } else {
1912                 void *wval;
1913
1914                 if (!val_count)
1915                         return -EINVAL;
1916
1917                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1918                 if (!wval) {
1919                         dev_err(map->dev, "Error in memory allocation\n");
1920                         return -ENOMEM;
1921                 }
1922                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1923                         map->format.parse_inplace(wval + i);
1924
1925                 map->lock(map->lock_arg);
1926                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1927                 map->unlock(map->lock_arg);
1928
1929                 kfree(wval);
1930         }
1931         return ret;
1932 }
1933 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1934
1935 /*
1936  * _regmap_raw_multi_reg_write()
1937  *
1938  * the (register,newvalue) pairs in regs have not been formatted, but
1939  * they are all in the same page and have been changed to being page
1940  * relative. The page register has been written if that was necessary.
1941  */
1942 static int _regmap_raw_multi_reg_write(struct regmap *map,
1943                                        const struct reg_sequence *regs,
1944                                        size_t num_regs)
1945 {
1946         int ret;
1947         void *buf;
1948         int i;
1949         u8 *u8;
1950         size_t val_bytes = map->format.val_bytes;
1951         size_t reg_bytes = map->format.reg_bytes;
1952         size_t pad_bytes = map->format.pad_bytes;
1953         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1954         size_t len = pair_size * num_regs;
1955
1956         if (!len)
1957                 return -EINVAL;
1958
1959         buf = kzalloc(len, GFP_KERNEL);
1960         if (!buf)
1961                 return -ENOMEM;
1962
1963         /* We have to linearise by hand. */
1964
1965         u8 = buf;
1966
1967         for (i = 0; i < num_regs; i++) {
1968                 unsigned int reg = regs[i].reg;
1969                 unsigned int val = regs[i].def;
1970                 trace_regmap_hw_write_start(map, reg, 1);
1971                 map->format.format_reg(u8, reg, map->reg_shift);
1972                 u8 += reg_bytes + pad_bytes;
1973                 map->format.format_val(u8, val, 0);
1974                 u8 += val_bytes;
1975         }
1976         u8 = buf;
1977         *u8 |= map->write_flag_mask;
1978
1979         ret = map->bus->write(map->bus_context, buf, len);
1980
1981         kfree(buf);
1982
1983         for (i = 0; i < num_regs; i++) {
1984                 int reg = regs[i].reg;
1985                 trace_regmap_hw_write_done(map, reg, 1);
1986         }
1987         return ret;
1988 }
1989
1990 static unsigned int _regmap_register_page(struct regmap *map,
1991                                           unsigned int reg,
1992                                           struct regmap_range_node *range)
1993 {
1994         unsigned int win_page = (reg - range->range_min) / range->window_len;
1995
1996         return win_page;
1997 }
1998
1999 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2000                                                struct reg_sequence *regs,
2001                                                size_t num_regs)
2002 {
2003         int ret;
2004         int i, n;
2005         struct reg_sequence *base;
2006         unsigned int this_page = 0;
2007         unsigned int page_change = 0;
2008         /*
2009          * the set of registers are not neccessarily in order, but
2010          * since the order of write must be preserved this algorithm
2011          * chops the set each time the page changes. This also applies
2012          * if there is a delay required at any point in the sequence.
2013          */
2014         base = regs;
2015         for (i = 0, n = 0; i < num_regs; i++, n++) {
2016                 unsigned int reg = regs[i].reg;
2017                 struct regmap_range_node *range;
2018
2019                 range = _regmap_range_lookup(map, reg);
2020                 if (range) {
2021                         unsigned int win_page = _regmap_register_page(map, reg,
2022                                                                       range);
2023
2024                         if (i == 0)
2025                                 this_page = win_page;
2026                         if (win_page != this_page) {
2027                                 this_page = win_page;
2028                                 page_change = 1;
2029                         }
2030                 }
2031
2032                 /* If we have both a page change and a delay make sure to
2033                  * write the regs and apply the delay before we change the
2034                  * page.
2035                  */
2036
2037                 if (page_change || regs[i].delay_us) {
2038
2039                                 /* For situations where the first write requires
2040                                  * a delay we need to make sure we don't call
2041                                  * raw_multi_reg_write with n=0
2042                                  * This can't occur with page breaks as we
2043                                  * never write on the first iteration
2044                                  */
2045                                 if (regs[i].delay_us && i == 0)
2046                                         n = 1;
2047
2048                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2049                                 if (ret != 0)
2050                                         return ret;
2051
2052                                 if (regs[i].delay_us)
2053                                         udelay(regs[i].delay_us);
2054
2055                                 base += n;
2056                                 n = 0;
2057
2058                                 if (page_change) {
2059                                         ret = _regmap_select_page(map,
2060                                                                   &base[n].reg,
2061                                                                   range, 1);
2062                                         if (ret != 0)
2063                                                 return ret;
2064
2065                                         page_change = 0;
2066                                 }
2067
2068                 }
2069
2070         }
2071         if (n > 0)
2072                 return _regmap_raw_multi_reg_write(map, base, n);
2073         return 0;
2074 }
2075
2076 static int _regmap_multi_reg_write(struct regmap *map,
2077                                    const struct reg_sequence *regs,
2078                                    size_t num_regs)
2079 {
2080         int i;
2081         int ret;
2082
2083         if (!map->can_multi_write) {
2084                 for (i = 0; i < num_regs; i++) {
2085                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2086                         if (ret != 0)
2087                                 return ret;
2088
2089                         if (regs[i].delay_us)
2090                                 udelay(regs[i].delay_us);
2091                 }
2092                 return 0;
2093         }
2094
2095         if (!map->format.parse_inplace)
2096                 return -EINVAL;
2097
2098         if (map->writeable_reg)
2099                 for (i = 0; i < num_regs; i++) {
2100                         int reg = regs[i].reg;
2101                         if (!map->writeable_reg(map->dev, reg))
2102                                 return -EINVAL;
2103                         if (!IS_ALIGNED(reg, map->reg_stride))
2104                                 return -EINVAL;
2105                 }
2106
2107         if (!map->cache_bypass) {
2108                 for (i = 0; i < num_regs; i++) {
2109                         unsigned int val = regs[i].def;
2110                         unsigned int reg = regs[i].reg;
2111                         ret = regcache_write(map, reg, val);
2112                         if (ret) {
2113                                 dev_err(map->dev,
2114                                 "Error in caching of register: %x ret: %d\n",
2115                                                                 reg, ret);
2116                                 return ret;
2117                         }
2118                 }
2119                 if (map->cache_only) {
2120                         map->cache_dirty = true;
2121                         return 0;
2122                 }
2123         }
2124
2125         WARN_ON(!map->bus);
2126
2127         for (i = 0; i < num_regs; i++) {
2128                 unsigned int reg = regs[i].reg;
2129                 struct regmap_range_node *range;
2130
2131                 /* Coalesce all the writes between a page break or a delay
2132                  * in a sequence
2133                  */
2134                 range = _regmap_range_lookup(map, reg);
2135                 if (range || regs[i].delay_us) {
2136                         size_t len = sizeof(struct reg_sequence)*num_regs;
2137                         struct reg_sequence *base = kmemdup(regs, len,
2138                                                            GFP_KERNEL);
2139                         if (!base)
2140                                 return -ENOMEM;
2141                         ret = _regmap_range_multi_paged_reg_write(map, base,
2142                                                                   num_regs);
2143                         kfree(base);
2144
2145                         return ret;
2146                 }
2147         }
2148         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2149 }
2150
2151 /*
2152  * regmap_multi_reg_write(): Write multiple registers to the device
2153  *
2154  * where the set of register,value pairs are supplied in any order,
2155  * possibly not all in a single range.
2156  *
2157  * @map: Register map to write to
2158  * @regs: Array of structures containing register,value to be written
2159  * @num_regs: Number of registers to write
2160  *
2161  * The 'normal' block write mode will send ultimately send data on the
2162  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2163  * addressed. However, this alternative block multi write mode will send
2164  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2165  * must of course support the mode.
2166  *
2167  * A value of zero will be returned on success, a negative errno will be
2168  * returned in error cases.
2169  */
2170 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2171                            int num_regs)
2172 {
2173         int ret;
2174
2175         map->lock(map->lock_arg);
2176
2177         ret = _regmap_multi_reg_write(map, regs, num_regs);
2178
2179         map->unlock(map->lock_arg);
2180
2181         return ret;
2182 }
2183 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2184
2185 /*
2186  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2187  *                                    device but not the cache
2188  *
2189  * where the set of register are supplied in any order
2190  *
2191  * @map: Register map to write to
2192  * @regs: Array of structures containing register,value to be written
2193  * @num_regs: Number of registers to write
2194  *
2195  * This function is intended to be used for writing a large block of data
2196  * atomically to the device in single transfer for those I2C client devices
2197  * that implement this alternative block write mode.
2198  *
2199  * A value of zero will be returned on success, a negative errno will
2200  * be returned in error cases.
2201  */
2202 int regmap_multi_reg_write_bypassed(struct regmap *map,
2203                                     const struct reg_sequence *regs,
2204                                     int num_regs)
2205 {
2206         int ret;
2207         bool bypass;
2208
2209         map->lock(map->lock_arg);
2210
2211         bypass = map->cache_bypass;
2212         map->cache_bypass = true;
2213
2214         ret = _regmap_multi_reg_write(map, regs, num_regs);
2215
2216         map->cache_bypass = bypass;
2217
2218         map->unlock(map->lock_arg);
2219
2220         return ret;
2221 }
2222 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2223
2224 /**
2225  * regmap_raw_write_async(): Write raw values to one or more registers
2226  *                           asynchronously
2227  *
2228  * @map: Register map to write to
2229  * @reg: Initial register to write to
2230  * @val: Block of data to be written, laid out for direct transmission to the
2231  *       device.  Must be valid until regmap_async_complete() is called.
2232  * @val_len: Length of data pointed to by val.
2233  *
2234  * This function is intended to be used for things like firmware
2235  * download where a large block of data needs to be transferred to the
2236  * device.  No formatting will be done on the data provided.
2237  *
2238  * If supported by the underlying bus the write will be scheduled
2239  * asynchronously, helping maximise I/O speed on higher speed buses
2240  * like SPI.  regmap_async_complete() can be called to ensure that all
2241  * asynchrnous writes have been completed.
2242  *
2243  * A value of zero will be returned on success, a negative errno will
2244  * be returned in error cases.
2245  */
2246 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2247                            const void *val, size_t val_len)
2248 {
2249         int ret;
2250
2251         if (val_len % map->format.val_bytes)
2252                 return -EINVAL;
2253         if (!IS_ALIGNED(reg, map->reg_stride))
2254                 return -EINVAL;
2255
2256         map->lock(map->lock_arg);
2257
2258         map->async = true;
2259
2260         ret = _regmap_raw_write(map, reg, val, val_len);
2261
2262         map->async = false;
2263
2264         map->unlock(map->lock_arg);
2265
2266         return ret;
2267 }
2268 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2269
2270 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2271                             unsigned int val_len)
2272 {
2273         struct regmap_range_node *range;
2274         u8 *u8 = map->work_buf;
2275         int ret;
2276
2277         WARN_ON(!map->bus);
2278
2279         range = _regmap_range_lookup(map, reg);
2280         if (range) {
2281                 ret = _regmap_select_page(map, &reg, range,
2282                                           val_len / map->format.val_bytes);
2283                 if (ret != 0)
2284                         return ret;
2285         }
2286
2287         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2288
2289         /*
2290          * Some buses or devices flag reads by setting the high bits in the
2291          * register address; since it's always the high bits for all
2292          * current formats we can do this here rather than in
2293          * formatting.  This may break if we get interesting formats.
2294          */
2295         u8[0] |= map->read_flag_mask;
2296
2297         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2298
2299         ret = map->bus->read(map->bus_context, map->work_buf,
2300                              map->format.reg_bytes + map->format.pad_bytes,
2301                              val, val_len);
2302
2303         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2304
2305         return ret;
2306 }
2307
2308 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2309                                 unsigned int *val)
2310 {
2311         struct regmap *map = context;
2312
2313         return map->bus->reg_read(map->bus_context, reg, val);
2314 }
2315
2316 static int _regmap_bus_read(void *context, unsigned int reg,
2317                             unsigned int *val)
2318 {
2319         int ret;
2320         struct regmap *map = context;
2321
2322         if (!map->format.parse_val)
2323                 return -EINVAL;
2324
2325         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2326         if (ret == 0)
2327                 *val = map->format.parse_val(map->work_buf);
2328
2329         return ret;
2330 }
2331
2332 static int _regmap_read(struct regmap *map, unsigned int reg,
2333                         unsigned int *val)
2334 {
2335         int ret;
2336         void *context = _regmap_map_get_context(map);
2337
2338         if (!map->cache_bypass) {
2339                 ret = regcache_read(map, reg, val);
2340                 if (ret == 0)
2341                         return 0;
2342         }
2343
2344         if (map->cache_only)
2345                 return -EBUSY;
2346
2347         if (!regmap_readable(map, reg))
2348                 return -EIO;
2349
2350         ret = map->reg_read(context, reg, val);
2351         if (ret == 0) {
2352 #ifdef LOG_DEVICE
2353                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2354                         dev_info(map->dev, "%x => %x\n", reg, *val);
2355 #endif
2356
2357                 trace_regmap_reg_read(map, reg, *val);
2358
2359                 if (!map->cache_bypass)
2360                         regcache_write(map, reg, *val);
2361         }
2362
2363         return ret;
2364 }
2365
2366 /**
2367  * regmap_read(): Read a value from a single register
2368  *
2369  * @map: Register map to read from
2370  * @reg: Register to be read from
2371  * @val: Pointer to store read value
2372  *
2373  * A value of zero will be returned on success, a negative errno will
2374  * be returned in error cases.
2375  */
2376 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2377 {
2378         int ret;
2379
2380         if (!IS_ALIGNED(reg, map->reg_stride))
2381                 return -EINVAL;
2382
2383         map->lock(map->lock_arg);
2384
2385         ret = _regmap_read(map, reg, val);
2386
2387         map->unlock(map->lock_arg);
2388
2389         return ret;
2390 }
2391 EXPORT_SYMBOL_GPL(regmap_read);
2392
2393 /**
2394  * regmap_raw_read(): Read raw data from the device
2395  *
2396  * @map: Register map to read from
2397  * @reg: First register to be read from
2398  * @val: Pointer to store read value
2399  * @val_len: Size of data to read
2400  *
2401  * A value of zero will be returned on success, a negative errno will
2402  * be returned in error cases.
2403  */
2404 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2405                     size_t val_len)
2406 {
2407         size_t val_bytes = map->format.val_bytes;
2408         size_t val_count = val_len / val_bytes;
2409         unsigned int v;
2410         int ret, i;
2411
2412         if (!map->bus)
2413                 return -EINVAL;
2414         if (val_len % map->format.val_bytes)
2415                 return -EINVAL;
2416         if (!IS_ALIGNED(reg, map->reg_stride))
2417                 return -EINVAL;
2418         if (val_count == 0)
2419                 return -EINVAL;
2420
2421         map->lock(map->lock_arg);
2422
2423         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2424             map->cache_type == REGCACHE_NONE) {
2425                 if (!map->bus->read) {
2426                         ret = -ENOTSUPP;
2427                         goto out;
2428                 }
2429                 if (map->max_raw_read && map->max_raw_read < val_len) {
2430                         ret = -E2BIG;
2431                         goto out;
2432                 }
2433
2434                 /* Physical block read if there's no cache involved */
2435                 ret = _regmap_raw_read(map, reg, val, val_len);
2436
2437         } else {
2438                 /* Otherwise go word by word for the cache; should be low
2439                  * cost as we expect to hit the cache.
2440                  */
2441                 for (i = 0; i < val_count; i++) {
2442                         ret = _regmap_read(map, reg + (i * map->reg_stride),
2443                                            &v);
2444                         if (ret != 0)
2445                                 goto out;
2446
2447                         map->format.format_val(val + (i * val_bytes), v, 0);
2448                 }
2449         }
2450
2451  out:
2452         map->unlock(map->lock_arg);
2453
2454         return ret;
2455 }
2456 EXPORT_SYMBOL_GPL(regmap_raw_read);
2457
2458 /**
2459  * regmap_field_read(): Read a value to a single register field
2460  *
2461  * @field: Register field to read from
2462  * @val: Pointer to store read value
2463  *
2464  * A value of zero will be returned on success, a negative errno will
2465  * be returned in error cases.
2466  */
2467 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2468 {
2469         int ret;
2470         unsigned int reg_val;
2471         ret = regmap_read(field->regmap, field->reg, &reg_val);
2472         if (ret != 0)
2473                 return ret;
2474
2475         reg_val &= field->mask;
2476         reg_val >>= field->shift;
2477         *val = reg_val;
2478
2479         return ret;
2480 }
2481 EXPORT_SYMBOL_GPL(regmap_field_read);
2482
2483 /**
2484  * regmap_fields_read(): Read a value to a single register field with port ID
2485  *
2486  * @field: Register field to read from
2487  * @id: port ID
2488  * @val: Pointer to store read value
2489  *
2490  * A value of zero will be returned on success, a negative errno will
2491  * be returned in error cases.
2492  */
2493 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2494                        unsigned int *val)
2495 {
2496         int ret;
2497         unsigned int reg_val;
2498
2499         if (id >= field->id_size)
2500                 return -EINVAL;
2501
2502         ret = regmap_read(field->regmap,
2503                           field->reg + (field->id_offset * id),
2504                           &reg_val);
2505         if (ret != 0)
2506                 return ret;
2507
2508         reg_val &= field->mask;
2509         reg_val >>= field->shift;
2510         *val = reg_val;
2511
2512         return ret;
2513 }
2514 EXPORT_SYMBOL_GPL(regmap_fields_read);
2515
2516 /**
2517  * regmap_bulk_read(): Read multiple registers from the device
2518  *
2519  * @map: Register map to read from
2520  * @reg: First register to be read from
2521  * @val: Pointer to store read value, in native register size for device
2522  * @val_count: Number of registers to read
2523  *
2524  * A value of zero will be returned on success, a negative errno will
2525  * be returned in error cases.
2526  */
2527 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2528                      size_t val_count)
2529 {
2530         int ret, i;
2531         size_t val_bytes = map->format.val_bytes;
2532         bool vol = regmap_volatile_range(map, reg, val_count);
2533
2534         if (!IS_ALIGNED(reg, map->reg_stride))
2535                 return -EINVAL;
2536
2537         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2538                 /*
2539                  * Some devices does not support bulk read, for
2540                  * them we have a series of single read operations.
2541                  */
2542                 size_t total_size = val_bytes * val_count;
2543
2544                 if (!map->use_single_read &&
2545                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2546                         ret = regmap_raw_read(map, reg, val,
2547                                               val_bytes * val_count);
2548                         if (ret != 0)
2549                                 return ret;
2550                 } else {
2551                         /*
2552                          * Some devices do not support bulk read or do not
2553                          * support large bulk reads, for them we have a series
2554                          * of read operations.
2555                          */
2556                         int chunk_stride = map->reg_stride;
2557                         size_t chunk_size = val_bytes;
2558                         size_t chunk_count = val_count;
2559
2560                         if (!map->use_single_read) {
2561                                 chunk_size = map->max_raw_read;
2562                                 if (chunk_size % val_bytes)
2563                                         chunk_size -= chunk_size % val_bytes;
2564                                 chunk_count = total_size / chunk_size;
2565                                 chunk_stride *= chunk_size / val_bytes;
2566                         }
2567
2568                         /* Read bytes that fit into a multiple of chunk_size */
2569                         for (i = 0; i < chunk_count; i++) {
2570                                 ret = regmap_raw_read(map,
2571                                                       reg + (i * chunk_stride),
2572                                                       val + (i * chunk_size),
2573                                                       chunk_size);
2574                                 if (ret != 0)
2575                                         return ret;
2576                         }
2577
2578                         /* Read remaining bytes */
2579                         if (chunk_size * i < total_size) {
2580                                 ret = regmap_raw_read(map,
2581                                                       reg + (i * chunk_stride),
2582                                                       val + (i * chunk_size),
2583                                                       total_size - i * chunk_size);
2584                                 if (ret != 0)
2585                                         return ret;
2586                         }
2587                 }
2588
2589                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2590                         map->format.parse_inplace(val + i);
2591         } else {
2592                 for (i = 0; i < val_count; i++) {
2593                         unsigned int ival;
2594                         ret = regmap_read(map, reg + (i * map->reg_stride),
2595                                           &ival);
2596                         if (ret != 0)
2597                                 return ret;
2598
2599                         if (map->format.format_val) {
2600                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2601                         } else {
2602                                 /* Devices providing read and write
2603                                  * operations can use the bulk I/O
2604                                  * functions if they define a val_bytes,
2605                                  * we assume that the values are native
2606                                  * endian.
2607                                  */
2608 #ifdef CONFIG_64BIT
2609                                 u64 *u64 = val;
2610 #endif
2611                                 u32 *u32 = val;
2612                                 u16 *u16 = val;
2613                                 u8 *u8 = val;
2614
2615                                 switch (map->format.val_bytes) {
2616 #ifdef CONFIG_64BIT
2617                                 case 8:
2618                                         u64[i] = ival;
2619                                         break;
2620 #endif
2621                                 case 4:
2622                                         u32[i] = ival;
2623                                         break;
2624                                 case 2:
2625                                         u16[i] = ival;
2626                                         break;
2627                                 case 1:
2628                                         u8[i] = ival;
2629                                         break;
2630                                 default:
2631                                         return -EINVAL;
2632                                 }
2633                         }
2634                 }
2635         }
2636
2637         return 0;
2638 }
2639 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2640
2641 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2642                                unsigned int mask, unsigned int val,
2643                                bool *change, bool force_write)
2644 {
2645         int ret;
2646         unsigned int tmp, orig;
2647
2648         if (change)
2649                 *change = false;
2650
2651         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2652                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2653                 if (ret == 0 && change)
2654                         *change = true;
2655         } else {
2656                 ret = _regmap_read(map, reg, &orig);
2657                 if (ret != 0)
2658                         return ret;
2659
2660                 tmp = orig & ~mask;
2661                 tmp |= val & mask;
2662
2663                 if (force_write || (tmp != orig)) {
2664                         ret = _regmap_write(map, reg, tmp);
2665                         if (ret == 0 && change)
2666                                 *change = true;
2667                 }
2668         }
2669
2670         return ret;
2671 }
2672
2673 /**
2674  * regmap_update_bits_base:
2675  *      Perform a read/modify/write cycle on the
2676  *      register map with change, async, force option
2677  *
2678  * @map: Register map to update
2679  * @reg: Register to update
2680  * @mask: Bitmask to change
2681  * @val: New value for bitmask
2682  * @change: Boolean indicating if a write was done
2683  * @async: Boolean indicating asynchronously
2684  * @force: Boolean indicating use force update
2685  *
2686  * if async was true,
2687  * With most buses the read must be done synchronously so this is most
2688  * useful for devices with a cache which do not need to interact with
2689  * the hardware to determine the current register value.
2690  *
2691  * Returns zero for success, a negative number on error.
2692  */
2693 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2694                             unsigned int mask, unsigned int val,
2695                             bool *change, bool async, bool force)
2696 {
2697         int ret;
2698
2699         map->lock(map->lock_arg);
2700
2701         map->async = async;
2702
2703         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2704
2705         map->async = false;
2706
2707         map->unlock(map->lock_arg);
2708
2709         return ret;
2710 }
2711 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2712
2713 /**
2714  * regmap_write_bits: Perform a read/modify/write cycle on the register map
2715  *
2716  * @map: Register map to update
2717  * @reg: Register to update
2718  * @mask: Bitmask to change
2719  * @val: New value for bitmask
2720  *
2721  * Returns zero for success, a negative number on error.
2722  */
2723 int regmap_write_bits(struct regmap *map, unsigned int reg,
2724                       unsigned int mask, unsigned int val)
2725 {
2726         int ret;
2727
2728         map->lock(map->lock_arg);
2729         ret = _regmap_update_bits(map, reg, mask, val, NULL, true);
2730         map->unlock(map->lock_arg);
2731
2732         return ret;
2733 }
2734 EXPORT_SYMBOL_GPL(regmap_write_bits);
2735
2736 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2737 {
2738         struct regmap *map = async->map;
2739         bool wake;
2740
2741         trace_regmap_async_io_complete(map);
2742
2743         spin_lock(&map->async_lock);
2744         list_move(&async->list, &map->async_free);
2745         wake = list_empty(&map->async_list);
2746
2747         if (ret != 0)
2748                 map->async_ret = ret;
2749
2750         spin_unlock(&map->async_lock);
2751
2752         if (wake)
2753                 wake_up(&map->async_waitq);
2754 }
2755 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2756
2757 static int regmap_async_is_done(struct regmap *map)
2758 {
2759         unsigned long flags;
2760         int ret;
2761
2762         spin_lock_irqsave(&map->async_lock, flags);
2763         ret = list_empty(&map->async_list);
2764         spin_unlock_irqrestore(&map->async_lock, flags);
2765
2766         return ret;
2767 }
2768
2769 /**
2770  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2771  *
2772  * @map: Map to operate on.
2773  *
2774  * Blocks until any pending asynchronous I/O has completed.  Returns
2775  * an error code for any failed I/O operations.
2776  */
2777 int regmap_async_complete(struct regmap *map)
2778 {
2779         unsigned long flags;
2780         int ret;
2781
2782         /* Nothing to do with no async support */
2783         if (!map->bus || !map->bus->async_write)
2784                 return 0;
2785
2786         trace_regmap_async_complete_start(map);
2787
2788         wait_event(map->async_waitq, regmap_async_is_done(map));
2789
2790         spin_lock_irqsave(&map->async_lock, flags);
2791         ret = map->async_ret;
2792         map->async_ret = 0;
2793         spin_unlock_irqrestore(&map->async_lock, flags);
2794
2795         trace_regmap_async_complete_done(map);
2796
2797         return ret;
2798 }
2799 EXPORT_SYMBOL_GPL(regmap_async_complete);
2800
2801 /**
2802  * regmap_register_patch: Register and apply register updates to be applied
2803  *                        on device initialistion
2804  *
2805  * @map: Register map to apply updates to.
2806  * @regs: Values to update.
2807  * @num_regs: Number of entries in regs.
2808  *
2809  * Register a set of register updates to be applied to the device
2810  * whenever the device registers are synchronised with the cache and
2811  * apply them immediately.  Typically this is used to apply
2812  * corrections to be applied to the device defaults on startup, such
2813  * as the updates some vendors provide to undocumented registers.
2814  *
2815  * The caller must ensure that this function cannot be called
2816  * concurrently with either itself or regcache_sync().
2817  */
2818 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2819                           int num_regs)
2820 {
2821         struct reg_sequence *p;
2822         int ret;
2823         bool bypass;
2824
2825         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2826             num_regs))
2827                 return 0;
2828
2829         p = krealloc(map->patch,
2830                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2831                      GFP_KERNEL);
2832         if (p) {
2833                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2834                 map->patch = p;
2835                 map->patch_regs += num_regs;
2836         } else {
2837                 return -ENOMEM;
2838         }
2839
2840         map->lock(map->lock_arg);
2841
2842         bypass = map->cache_bypass;
2843
2844         map->cache_bypass = true;
2845         map->async = true;
2846
2847         ret = _regmap_multi_reg_write(map, regs, num_regs);
2848
2849         map->async = false;
2850         map->cache_bypass = bypass;
2851
2852         map->unlock(map->lock_arg);
2853
2854         regmap_async_complete(map);
2855
2856         return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(regmap_register_patch);
2859
2860 /*
2861  * regmap_get_val_bytes(): Report the size of a register value
2862  *
2863  * Report the size of a register value, mainly intended to for use by
2864  * generic infrastructure built on top of regmap.
2865  */
2866 int regmap_get_val_bytes(struct regmap *map)
2867 {
2868         if (map->format.format_write)
2869                 return -EINVAL;
2870
2871         return map->format.val_bytes;
2872 }
2873 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2874
2875 /**
2876  * regmap_get_max_register(): Report the max register value
2877  *
2878  * Report the max register value, mainly intended to for use by
2879  * generic infrastructure built on top of regmap.
2880  */
2881 int regmap_get_max_register(struct regmap *map)
2882 {
2883         return map->max_register ? map->max_register : -EINVAL;
2884 }
2885 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2886
2887 /**
2888  * regmap_get_reg_stride(): Report the register address stride
2889  *
2890  * Report the register address stride, mainly intended to for use by
2891  * generic infrastructure built on top of regmap.
2892  */
2893 int regmap_get_reg_stride(struct regmap *map)
2894 {
2895         return map->reg_stride;
2896 }
2897 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2898
2899 int regmap_parse_val(struct regmap *map, const void *buf,
2900                         unsigned int *val)
2901 {
2902         if (!map->format.parse_val)
2903                 return -EINVAL;
2904
2905         *val = map->format.parse_val(buf);
2906
2907         return 0;
2908 }
2909 EXPORT_SYMBOL_GPL(regmap_parse_val);
2910
2911 static int __init regmap_initcall(void)
2912 {
2913         regmap_debugfs_initcall();
2914
2915         return 0;
2916 }
2917 postcore_initcall(regmap_initcall);