2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 static int cciss_allow_hpsa;
72 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
73 MODULE_PARM_DESC(cciss_allow_hpsa,
74 "Prevent cciss driver from accessing hardware known to be "
75 " supported by the hpsa driver");
77 #include "cciss_cmd.h"
79 #include <linux/cciss_ioctl.h>
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id[] = {
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
90 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
91 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
113 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
115 /* board_id = Subsystem Device ID & Vendor ID
116 * product = Marketing Name for the board
117 * access = Address of the struct of function pointers
119 static struct board_type products[] = {
120 {0x40700E11, "Smart Array 5300", &SA5_access},
121 {0x40800E11, "Smart Array 5i", &SA5B_access},
122 {0x40820E11, "Smart Array 532", &SA5B_access},
123 {0x40830E11, "Smart Array 5312", &SA5B_access},
124 {0x409A0E11, "Smart Array 641", &SA5_access},
125 {0x409B0E11, "Smart Array 642", &SA5_access},
126 {0x409C0E11, "Smart Array 6400", &SA5_access},
127 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
128 {0x40910E11, "Smart Array 6i", &SA5_access},
129 {0x3225103C, "Smart Array P600", &SA5_access},
130 {0x3235103C, "Smart Array P400i", &SA5_access},
131 {0x3211103C, "Smart Array E200i", &SA5_access},
132 {0x3212103C, "Smart Array E200", &SA5_access},
133 {0x3213103C, "Smart Array E200i", &SA5_access},
134 {0x3214103C, "Smart Array E200i", &SA5_access},
135 {0x3215103C, "Smart Array E200i", &SA5_access},
136 {0x3237103C, "Smart Array E500", &SA5_access},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139 {0x3223103C, "Smart Array P800", &SA5_access},
140 {0x3234103C, "Smart Array P400", &SA5_access},
141 {0x323D103C, "Smart Array P700m", &SA5_access},
142 {0x3241103C, "Smart Array P212", &SA5_access},
143 {0x3243103C, "Smart Array P410", &SA5_access},
144 {0x3245103C, "Smart Array P410i", &SA5_access},
145 {0x3247103C, "Smart Array P411", &SA5_access},
146 {0x3249103C, "Smart Array P812", &SA5_access},
147 {0x324A103C, "Smart Array P712m", &SA5_access},
148 {0x324B103C, "Smart Array P711m", &SA5_access},
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG 8
163 static ctlr_info_t *hba[MAX_CTLR];
165 static struct task_struct *cciss_scan_thread;
166 static DEFINE_MUTEX(scan_mutex);
167 static LIST_HEAD(scan_q);
169 static void do_cciss_request(struct request_queue *q);
170 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
171 static int cciss_open(struct block_device *bdev, fmode_t mode);
172 static int cciss_release(struct gendisk *disk, fmode_t mode);
173 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
174 unsigned int cmd, unsigned long arg);
175 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
177 static int cciss_revalidate(struct gendisk *disk);
178 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
179 static int deregister_disk(ctlr_info_t *h, int drv_index,
180 int clear_all, int via_ioctl);
182 static void cciss_read_capacity(int ctlr, int logvol,
183 sector_t *total_size, unsigned int *block_size);
184 static void cciss_read_capacity_16(int ctlr, int logvol,
185 sector_t *total_size, unsigned int *block_size);
186 static void cciss_geometry_inquiry(int ctlr, int logvol,
188 unsigned int block_size, InquiryData_struct *inq_buff,
189 drive_info_struct *drv);
190 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
192 static void start_io(ctlr_info_t *h);
193 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
194 __u8 page_code, unsigned char scsi3addr[],
196 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
198 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
200 static void fail_all_cmds(unsigned long ctlr);
201 static int add_to_scan_list(struct ctlr_info *h);
202 static int scan_thread(void *data);
203 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
204 static void cciss_hba_release(struct device *dev);
205 static void cciss_device_release(struct device *dev);
206 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
207 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
209 #ifdef CONFIG_PROC_FS
210 static void cciss_procinit(int i);
212 static void cciss_procinit(int i)
215 #endif /* CONFIG_PROC_FS */
218 static int cciss_compat_ioctl(struct block_device *, fmode_t,
219 unsigned, unsigned long);
222 static const struct block_device_operations cciss_fops = {
223 .owner = THIS_MODULE,
225 .release = cciss_release,
226 .locked_ioctl = cciss_ioctl,
227 .getgeo = cciss_getgeo,
229 .compat_ioctl = cciss_compat_ioctl,
231 .revalidate_disk = cciss_revalidate,
235 * Enqueuing and dequeuing functions for cmdlists.
237 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
239 hlist_add_head(&c->list, list);
242 static inline void removeQ(CommandList_struct *c)
245 * After kexec/dump some commands might still
246 * be in flight, which the firmware will try
247 * to complete. Resetting the firmware doesn't work
248 * with old fw revisions, so we have to mark
249 * them off as 'stale' to prevent the driver from
252 if (WARN_ON(hlist_unhashed(&c->list))) {
253 c->cmd_type = CMD_MSG_STALE;
257 hlist_del_init(&c->list);
260 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
267 for (i = 0; i < nr_cmds; i++) {
268 kfree(cmd_sg_list[i]);
269 cmd_sg_list[i] = NULL;
274 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
275 ctlr_info_t *h, int chainsize, int nr_cmds)
278 SGDescriptor_struct **cmd_sg_list;
283 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
287 /* Build up chain blocks for each command */
288 for (j = 0; j < nr_cmds; j++) {
289 /* Need a block of chainsized s/g elements. */
290 cmd_sg_list[j] = kmalloc((chainsize *
291 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
292 if (!cmd_sg_list[j]) {
293 dev_err(&h->pdev->dev, "Cannot get memory "
294 "for s/g chains.\n");
300 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
304 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
306 SGDescriptor_struct *chain_sg;
309 if (c->Header.SGTotal <= h->max_cmd_sgentries)
312 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
313 temp64.val32.lower = chain_sg->Addr.lower;
314 temp64.val32.upper = chain_sg->Addr.upper;
315 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
318 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
319 SGDescriptor_struct *chain_block, int len)
321 SGDescriptor_struct *chain_sg;
324 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
325 chain_sg->Ext = CCISS_SG_CHAIN;
327 temp64.val = pci_map_single(h->pdev, chain_block, len,
329 chain_sg->Addr.lower = temp64.val32.lower;
330 chain_sg->Addr.upper = temp64.val32.upper;
333 #include "cciss_scsi.c" /* For SCSI tape support */
335 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
338 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
340 #ifdef CONFIG_PROC_FS
343 * Report information about this controller.
345 #define ENG_GIG 1000000000
346 #define ENG_GIG_FACTOR (ENG_GIG/512)
347 #define ENGAGE_SCSI "engage scsi"
349 static struct proc_dir_entry *proc_cciss;
351 static void cciss_seq_show_header(struct seq_file *seq)
353 ctlr_info_t *h = seq->private;
355 seq_printf(seq, "%s: HP %s Controller\n"
356 "Board ID: 0x%08lx\n"
357 "Firmware Version: %c%c%c%c\n"
359 "Logical drives: %d\n"
360 "Current Q depth: %d\n"
361 "Current # commands on controller: %d\n"
362 "Max Q depth since init: %d\n"
363 "Max # commands on controller since init: %d\n"
364 "Max SG entries since init: %d\n",
367 (unsigned long)h->board_id,
368 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
369 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
371 h->Qdepth, h->commands_outstanding,
372 h->maxQsinceinit, h->max_outstanding, h->maxSG);
374 #ifdef CONFIG_CISS_SCSI_TAPE
375 cciss_seq_tape_report(seq, h->ctlr);
376 #endif /* CONFIG_CISS_SCSI_TAPE */
379 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
381 ctlr_info_t *h = seq->private;
382 unsigned ctlr = h->ctlr;
385 /* prevent displaying bogus info during configuration
386 * or deconfiguration of a logical volume
388 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
389 if (h->busy_configuring) {
390 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
391 return ERR_PTR(-EBUSY);
393 h->busy_configuring = 1;
394 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
397 cciss_seq_show_header(seq);
402 static int cciss_seq_show(struct seq_file *seq, void *v)
404 sector_t vol_sz, vol_sz_frac;
405 ctlr_info_t *h = seq->private;
406 unsigned ctlr = h->ctlr;
408 drive_info_struct *drv = h->drv[*pos];
410 if (*pos > h->highest_lun)
413 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
419 vol_sz = drv->nr_blocks;
420 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
422 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
424 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
425 drv->raid_level = RAID_UNKNOWN;
426 seq_printf(seq, "cciss/c%dd%d:"
427 "\t%4u.%02uGB\tRAID %s\n",
428 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
429 raid_label[drv->raid_level]);
433 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
435 ctlr_info_t *h = seq->private;
437 if (*pos > h->highest_lun)
444 static void cciss_seq_stop(struct seq_file *seq, void *v)
446 ctlr_info_t *h = seq->private;
448 /* Only reset h->busy_configuring if we succeeded in setting
449 * it during cciss_seq_start. */
450 if (v == ERR_PTR(-EBUSY))
453 h->busy_configuring = 0;
456 static const struct seq_operations cciss_seq_ops = {
457 .start = cciss_seq_start,
458 .show = cciss_seq_show,
459 .next = cciss_seq_next,
460 .stop = cciss_seq_stop,
463 static int cciss_seq_open(struct inode *inode, struct file *file)
465 int ret = seq_open(file, &cciss_seq_ops);
466 struct seq_file *seq = file->private_data;
469 seq->private = PDE(inode)->data;
475 cciss_proc_write(struct file *file, const char __user *buf,
476 size_t length, loff_t *ppos)
481 #ifndef CONFIG_CISS_SCSI_TAPE
485 if (!buf || length > PAGE_SIZE - 1)
488 buffer = (char *)__get_free_page(GFP_KERNEL);
493 if (copy_from_user(buffer, buf, length))
495 buffer[length] = '\0';
497 #ifdef CONFIG_CISS_SCSI_TAPE
498 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
499 struct seq_file *seq = file->private_data;
500 ctlr_info_t *h = seq->private;
502 err = cciss_engage_scsi(h->ctlr);
506 #endif /* CONFIG_CISS_SCSI_TAPE */
508 /* might be nice to have "disengage" too, but it's not
509 safely possible. (only 1 module use count, lock issues.) */
512 free_page((unsigned long)buffer);
516 static const struct file_operations cciss_proc_fops = {
517 .owner = THIS_MODULE,
518 .open = cciss_seq_open,
521 .release = seq_release,
522 .write = cciss_proc_write,
525 static void __devinit cciss_procinit(int i)
527 struct proc_dir_entry *pde;
529 if (proc_cciss == NULL)
530 proc_cciss = proc_mkdir("driver/cciss", NULL);
533 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
535 &cciss_proc_fops, hba[i]);
537 #endif /* CONFIG_PROC_FS */
539 #define MAX_PRODUCT_NAME_LEN 19
541 #define to_hba(n) container_of(n, struct ctlr_info, dev)
542 #define to_drv(n) container_of(n, drive_info_struct, dev)
544 static ssize_t host_store_rescan(struct device *dev,
545 struct device_attribute *attr,
546 const char *buf, size_t count)
548 struct ctlr_info *h = to_hba(dev);
551 wake_up_process(cciss_scan_thread);
552 wait_for_completion_interruptible(&h->scan_wait);
556 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
558 static ssize_t dev_show_unique_id(struct device *dev,
559 struct device_attribute *attr,
562 drive_info_struct *drv = to_drv(dev);
563 struct ctlr_info *h = to_hba(drv->dev.parent);
568 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
569 if (h->busy_configuring)
572 memcpy(sn, drv->serial_no, sizeof(sn));
573 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
578 return snprintf(buf, 16 * 2 + 2,
579 "%02X%02X%02X%02X%02X%02X%02X%02X"
580 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
581 sn[0], sn[1], sn[2], sn[3],
582 sn[4], sn[5], sn[6], sn[7],
583 sn[8], sn[9], sn[10], sn[11],
584 sn[12], sn[13], sn[14], sn[15]);
586 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
588 static ssize_t dev_show_vendor(struct device *dev,
589 struct device_attribute *attr,
592 drive_info_struct *drv = to_drv(dev);
593 struct ctlr_info *h = to_hba(drv->dev.parent);
594 char vendor[VENDOR_LEN + 1];
598 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
599 if (h->busy_configuring)
602 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
603 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
608 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
610 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
612 static ssize_t dev_show_model(struct device *dev,
613 struct device_attribute *attr,
616 drive_info_struct *drv = to_drv(dev);
617 struct ctlr_info *h = to_hba(drv->dev.parent);
618 char model[MODEL_LEN + 1];
622 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
623 if (h->busy_configuring)
626 memcpy(model, drv->model, MODEL_LEN + 1);
627 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
632 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
634 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
636 static ssize_t dev_show_rev(struct device *dev,
637 struct device_attribute *attr,
640 drive_info_struct *drv = to_drv(dev);
641 struct ctlr_info *h = to_hba(drv->dev.parent);
642 char rev[REV_LEN + 1];
646 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
647 if (h->busy_configuring)
650 memcpy(rev, drv->rev, REV_LEN + 1);
651 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
656 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
658 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
660 static ssize_t cciss_show_lunid(struct device *dev,
661 struct device_attribute *attr, char *buf)
663 drive_info_struct *drv = to_drv(dev);
664 struct ctlr_info *h = to_hba(drv->dev.parent);
666 unsigned char lunid[8];
668 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
669 if (h->busy_configuring) {
670 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
674 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
677 memcpy(lunid, drv->LunID, sizeof(lunid));
678 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
679 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
680 lunid[0], lunid[1], lunid[2], lunid[3],
681 lunid[4], lunid[5], lunid[6], lunid[7]);
683 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
685 static ssize_t cciss_show_raid_level(struct device *dev,
686 struct device_attribute *attr, char *buf)
688 drive_info_struct *drv = to_drv(dev);
689 struct ctlr_info *h = to_hba(drv->dev.parent);
693 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
694 if (h->busy_configuring) {
695 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
698 raid = drv->raid_level;
699 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
700 if (raid < 0 || raid > RAID_UNKNOWN)
703 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
706 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
708 static ssize_t cciss_show_usage_count(struct device *dev,
709 struct device_attribute *attr, char *buf)
711 drive_info_struct *drv = to_drv(dev);
712 struct ctlr_info *h = to_hba(drv->dev.parent);
716 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
717 if (h->busy_configuring) {
718 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
721 count = drv->usage_count;
722 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
723 return snprintf(buf, 20, "%d\n", count);
725 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
727 static struct attribute *cciss_host_attrs[] = {
728 &dev_attr_rescan.attr,
732 static struct attribute_group cciss_host_attr_group = {
733 .attrs = cciss_host_attrs,
736 static const struct attribute_group *cciss_host_attr_groups[] = {
737 &cciss_host_attr_group,
741 static struct device_type cciss_host_type = {
742 .name = "cciss_host",
743 .groups = cciss_host_attr_groups,
744 .release = cciss_hba_release,
747 static struct attribute *cciss_dev_attrs[] = {
748 &dev_attr_unique_id.attr,
749 &dev_attr_model.attr,
750 &dev_attr_vendor.attr,
752 &dev_attr_lunid.attr,
753 &dev_attr_raid_level.attr,
754 &dev_attr_usage_count.attr,
758 static struct attribute_group cciss_dev_attr_group = {
759 .attrs = cciss_dev_attrs,
762 static const struct attribute_group *cciss_dev_attr_groups[] = {
763 &cciss_dev_attr_group,
767 static struct device_type cciss_dev_type = {
768 .name = "cciss_device",
769 .groups = cciss_dev_attr_groups,
770 .release = cciss_device_release,
773 static struct bus_type cciss_bus_type = {
778 * cciss_hba_release is called when the reference count
779 * of h->dev goes to zero.
781 static void cciss_hba_release(struct device *dev)
784 * nothing to do, but need this to avoid a warning
785 * about not having a release handler from lib/kref.c.
790 * Initialize sysfs entry for each controller. This sets up and registers
791 * the 'cciss#' directory for each individual controller under
792 * /sys/bus/pci/devices/<dev>/.
794 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
796 device_initialize(&h->dev);
797 h->dev.type = &cciss_host_type;
798 h->dev.bus = &cciss_bus_type;
799 dev_set_name(&h->dev, "%s", h->devname);
800 h->dev.parent = &h->pdev->dev;
802 return device_add(&h->dev);
806 * Remove sysfs entries for an hba.
808 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
811 put_device(&h->dev); /* final put. */
814 /* cciss_device_release is called when the reference count
815 * of h->drv[x]dev goes to zero.
817 static void cciss_device_release(struct device *dev)
819 drive_info_struct *drv = to_drv(dev);
824 * Initialize sysfs for each logical drive. This sets up and registers
825 * the 'c#d#' directory for each individual logical drive under
826 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
827 * /sys/block/cciss!c#d# to this entry.
829 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
834 if (h->drv[drv_index]->device_initialized)
837 dev = &h->drv[drv_index]->dev;
838 device_initialize(dev);
839 dev->type = &cciss_dev_type;
840 dev->bus = &cciss_bus_type;
841 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
842 dev->parent = &h->dev;
843 h->drv[drv_index]->device_initialized = 1;
844 return device_add(dev);
848 * Remove sysfs entries for a logical drive.
850 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
853 struct device *dev = &h->drv[drv_index]->dev;
855 /* special case for c*d0, we only destroy it on controller exit */
856 if (drv_index == 0 && !ctlr_exiting)
860 put_device(dev); /* the "final" put. */
861 h->drv[drv_index] = NULL;
865 * For operations that cannot sleep, a command block is allocated at init,
866 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
867 * which ones are free or in use. For operations that can wait for kmalloc
868 * to possible sleep, this routine can be called with get_from_pool set to 0.
869 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
871 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
873 CommandList_struct *c;
876 dma_addr_t cmd_dma_handle, err_dma_handle;
878 if (!get_from_pool) {
879 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
880 sizeof(CommandList_struct), &cmd_dma_handle);
883 memset(c, 0, sizeof(CommandList_struct));
887 c->err_info = (ErrorInfo_struct *)
888 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
891 if (c->err_info == NULL) {
892 pci_free_consistent(h->pdev,
893 sizeof(CommandList_struct), c, cmd_dma_handle);
896 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
897 } else { /* get it out of the controllers pool */
900 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
903 } while (test_and_set_bit
904 (i & (BITS_PER_LONG - 1),
905 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
907 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
910 memset(c, 0, sizeof(CommandList_struct));
911 cmd_dma_handle = h->cmd_pool_dhandle
912 + i * sizeof(CommandList_struct);
913 c->err_info = h->errinfo_pool + i;
914 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
915 err_dma_handle = h->errinfo_pool_dhandle
916 + i * sizeof(ErrorInfo_struct);
922 INIT_HLIST_NODE(&c->list);
923 c->busaddr = (__u32) cmd_dma_handle;
924 temp64.val = (__u64) err_dma_handle;
925 c->ErrDesc.Addr.lower = temp64.val32.lower;
926 c->ErrDesc.Addr.upper = temp64.val32.upper;
927 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
934 * Frees a command block that was previously allocated with cmd_alloc().
936 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
941 if (!got_from_pool) {
942 temp64.val32.lower = c->ErrDesc.Addr.lower;
943 temp64.val32.upper = c->ErrDesc.Addr.upper;
944 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
945 c->err_info, (dma_addr_t) temp64.val);
946 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
947 c, (dma_addr_t) c->busaddr);
950 clear_bit(i & (BITS_PER_LONG - 1),
951 h->cmd_pool_bits + (i / BITS_PER_LONG));
956 static inline ctlr_info_t *get_host(struct gendisk *disk)
958 return disk->queue->queuedata;
961 static inline drive_info_struct *get_drv(struct gendisk *disk)
963 return disk->private_data;
967 * Open. Make sure the device is really there.
969 static int cciss_open(struct block_device *bdev, fmode_t mode)
971 ctlr_info_t *host = get_host(bdev->bd_disk);
972 drive_info_struct *drv = get_drv(bdev->bd_disk);
975 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
976 #endif /* CCISS_DEBUG */
978 if (drv->busy_configuring)
981 * Root is allowed to open raw volume zero even if it's not configured
982 * so array config can still work. Root is also allowed to open any
983 * volume that has a LUN ID, so it can issue IOCTL to reread the
984 * disk information. I don't think I really like this
985 * but I'm already using way to many device nodes to claim another one
986 * for "raw controller".
988 if (drv->heads == 0) {
989 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
990 /* if not node 0 make sure it is a partition = 0 */
991 if (MINOR(bdev->bd_dev) & 0x0f) {
993 /* if it is, make sure we have a LUN ID */
994 } else if (memcmp(drv->LunID, CTLR_LUNID,
995 sizeof(drv->LunID))) {
999 if (!capable(CAP_SYS_ADMIN))
1003 host->usage_count++;
1008 * Close. Sync first.
1010 static int cciss_release(struct gendisk *disk, fmode_t mode)
1012 ctlr_info_t *host = get_host(disk);
1013 drive_info_struct *drv = get_drv(disk);
1016 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
1017 #endif /* CCISS_DEBUG */
1020 host->usage_count--;
1024 #ifdef CONFIG_COMPAT
1026 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1027 unsigned cmd, unsigned long arg)
1031 ret = cciss_ioctl(bdev, mode, cmd, arg);
1036 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1037 unsigned cmd, unsigned long arg);
1038 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1039 unsigned cmd, unsigned long arg);
1041 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1042 unsigned cmd, unsigned long arg)
1045 case CCISS_GETPCIINFO:
1046 case CCISS_GETINTINFO:
1047 case CCISS_SETINTINFO:
1048 case CCISS_GETNODENAME:
1049 case CCISS_SETNODENAME:
1050 case CCISS_GETHEARTBEAT:
1051 case CCISS_GETBUSTYPES:
1052 case CCISS_GETFIRMVER:
1053 case CCISS_GETDRIVVER:
1054 case CCISS_REVALIDVOLS:
1055 case CCISS_DEREGDISK:
1056 case CCISS_REGNEWDISK:
1058 case CCISS_RESCANDISK:
1059 case CCISS_GETLUNINFO:
1060 return do_ioctl(bdev, mode, cmd, arg);
1062 case CCISS_PASSTHRU32:
1063 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1064 case CCISS_BIG_PASSTHRU32:
1065 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1068 return -ENOIOCTLCMD;
1072 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1073 unsigned cmd, unsigned long arg)
1075 IOCTL32_Command_struct __user *arg32 =
1076 (IOCTL32_Command_struct __user *) arg;
1077 IOCTL_Command_struct arg64;
1078 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1084 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1085 sizeof(arg64.LUN_info));
1087 copy_from_user(&arg64.Request, &arg32->Request,
1088 sizeof(arg64.Request));
1090 copy_from_user(&arg64.error_info, &arg32->error_info,
1091 sizeof(arg64.error_info));
1092 err |= get_user(arg64.buf_size, &arg32->buf_size);
1093 err |= get_user(cp, &arg32->buf);
1094 arg64.buf = compat_ptr(cp);
1095 err |= copy_to_user(p, &arg64, sizeof(arg64));
1100 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1104 copy_in_user(&arg32->error_info, &p->error_info,
1105 sizeof(arg32->error_info));
1111 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1112 unsigned cmd, unsigned long arg)
1114 BIG_IOCTL32_Command_struct __user *arg32 =
1115 (BIG_IOCTL32_Command_struct __user *) arg;
1116 BIG_IOCTL_Command_struct arg64;
1117 BIG_IOCTL_Command_struct __user *p =
1118 compat_alloc_user_space(sizeof(arg64));
1124 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1125 sizeof(arg64.LUN_info));
1127 copy_from_user(&arg64.Request, &arg32->Request,
1128 sizeof(arg64.Request));
1130 copy_from_user(&arg64.error_info, &arg32->error_info,
1131 sizeof(arg64.error_info));
1132 err |= get_user(arg64.buf_size, &arg32->buf_size);
1133 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1134 err |= get_user(cp, &arg32->buf);
1135 arg64.buf = compat_ptr(cp);
1136 err |= copy_to_user(p, &arg64, sizeof(arg64));
1141 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1145 copy_in_user(&arg32->error_info, &p->error_info,
1146 sizeof(arg32->error_info));
1153 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1155 drive_info_struct *drv = get_drv(bdev->bd_disk);
1157 if (!drv->cylinders)
1160 geo->heads = drv->heads;
1161 geo->sectors = drv->sectors;
1162 geo->cylinders = drv->cylinders;
1166 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
1168 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1169 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1170 (void)check_for_unit_attention(host, c);
1175 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1176 unsigned int cmd, unsigned long arg)
1178 struct gendisk *disk = bdev->bd_disk;
1179 ctlr_info_t *host = get_host(disk);
1180 drive_info_struct *drv = get_drv(disk);
1181 int ctlr = host->ctlr;
1182 void __user *argp = (void __user *)arg;
1185 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
1186 #endif /* CCISS_DEBUG */
1189 case CCISS_GETPCIINFO:
1191 cciss_pci_info_struct pciinfo;
1195 pciinfo.domain = pci_domain_nr(host->pdev->bus);
1196 pciinfo.bus = host->pdev->bus->number;
1197 pciinfo.dev_fn = host->pdev->devfn;
1198 pciinfo.board_id = host->board_id;
1200 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1204 case CCISS_GETINTINFO:
1206 cciss_coalint_struct intinfo;
1210 readl(&host->cfgtable->HostWrite.CoalIntDelay);
1212 readl(&host->cfgtable->HostWrite.CoalIntCount);
1214 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1218 case CCISS_SETINTINFO:
1220 cciss_coalint_struct intinfo;
1221 unsigned long flags;
1226 if (!capable(CAP_SYS_ADMIN))
1229 (&intinfo, argp, sizeof(cciss_coalint_struct)))
1231 if ((intinfo.delay == 0) && (intinfo.count == 0))
1233 // printk("cciss_ioctl: delay and count cannot be 0\n");
1236 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1237 /* Update the field, and then ring the doorbell */
1238 writel(intinfo.delay,
1239 &(host->cfgtable->HostWrite.CoalIntDelay));
1240 writel(intinfo.count,
1241 &(host->cfgtable->HostWrite.CoalIntCount));
1242 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1244 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1245 if (!(readl(host->vaddr + SA5_DOORBELL)
1246 & CFGTBL_ChangeReq))
1248 /* delay and try again */
1251 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1252 if (i >= MAX_IOCTL_CONFIG_WAIT)
1256 case CCISS_GETNODENAME:
1258 NodeName_type NodeName;
1263 for (i = 0; i < 16; i++)
1265 readb(&host->cfgtable->ServerName[i]);
1266 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1270 case CCISS_SETNODENAME:
1272 NodeName_type NodeName;
1273 unsigned long flags;
1278 if (!capable(CAP_SYS_ADMIN))
1282 (NodeName, argp, sizeof(NodeName_type)))
1285 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1287 /* Update the field, and then ring the doorbell */
1288 for (i = 0; i < 16; i++)
1290 &host->cfgtable->ServerName[i]);
1292 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1294 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1295 if (!(readl(host->vaddr + SA5_DOORBELL)
1296 & CFGTBL_ChangeReq))
1298 /* delay and try again */
1301 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1302 if (i >= MAX_IOCTL_CONFIG_WAIT)
1307 case CCISS_GETHEARTBEAT:
1309 Heartbeat_type heartbeat;
1313 heartbeat = readl(&host->cfgtable->HeartBeat);
1315 (argp, &heartbeat, sizeof(Heartbeat_type)))
1319 case CCISS_GETBUSTYPES:
1321 BusTypes_type BusTypes;
1325 BusTypes = readl(&host->cfgtable->BusTypes);
1327 (argp, &BusTypes, sizeof(BusTypes_type)))
1331 case CCISS_GETFIRMVER:
1333 FirmwareVer_type firmware;
1337 memcpy(firmware, host->firm_ver, 4);
1340 (argp, firmware, sizeof(FirmwareVer_type)))
1344 case CCISS_GETDRIVVER:
1346 DriverVer_type DriverVer = DRIVER_VERSION;
1352 (argp, &DriverVer, sizeof(DriverVer_type)))
1357 case CCISS_DEREGDISK:
1359 case CCISS_REVALIDVOLS:
1360 return rebuild_lun_table(host, 0, 1);
1362 case CCISS_GETLUNINFO:{
1363 LogvolInfo_struct luninfo;
1365 memcpy(&luninfo.LunID, drv->LunID,
1366 sizeof(luninfo.LunID));
1367 luninfo.num_opens = drv->usage_count;
1368 luninfo.num_parts = 0;
1369 if (copy_to_user(argp, &luninfo,
1370 sizeof(LogvolInfo_struct)))
1374 case CCISS_PASSTHRU:
1376 IOCTL_Command_struct iocommand;
1377 CommandList_struct *c;
1380 unsigned long flags;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1386 if (!capable(CAP_SYS_RAWIO))
1390 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1392 if ((iocommand.buf_size < 1) &&
1393 (iocommand.Request.Type.Direction != XFER_NONE)) {
1396 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1397 /* Check kmalloc limits */
1398 if (iocommand.buf_size > 128000)
1401 if (iocommand.buf_size > 0) {
1402 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1406 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1407 /* Copy the data into the buffer we created */
1409 (buff, iocommand.buf, iocommand.buf_size)) {
1414 memset(buff, 0, iocommand.buf_size);
1416 if ((c = cmd_alloc(host, 0)) == NULL) {
1420 /* Fill in the command type */
1421 c->cmd_type = CMD_IOCTL_PEND;
1422 /* Fill in Command Header */
1423 c->Header.ReplyQueue = 0; /* unused in simple mode */
1424 if (iocommand.buf_size > 0) /* buffer to fill */
1426 c->Header.SGList = 1;
1427 c->Header.SGTotal = 1;
1428 } else /* no buffers to fill */
1430 c->Header.SGList = 0;
1431 c->Header.SGTotal = 0;
1433 c->Header.LUN = iocommand.LUN_info;
1434 /* use the kernel address the cmd block for tag */
1435 c->Header.Tag.lower = c->busaddr;
1437 /* Fill in Request block */
1438 c->Request = iocommand.Request;
1440 /* Fill in the scatter gather information */
1441 if (iocommand.buf_size > 0) {
1442 temp64.val = pci_map_single(host->pdev, buff,
1444 PCI_DMA_BIDIRECTIONAL);
1445 c->SG[0].Addr.lower = temp64.val32.lower;
1446 c->SG[0].Addr.upper = temp64.val32.upper;
1447 c->SG[0].Len = iocommand.buf_size;
1448 c->SG[0].Ext = 0; /* we are not chaining */
1452 /* Put the request on the tail of the request queue */
1453 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1454 addQ(&host->reqQ, c);
1457 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1459 wait_for_completion(&wait);
1461 /* unlock the buffers from DMA */
1462 temp64.val32.lower = c->SG[0].Addr.lower;
1463 temp64.val32.upper = c->SG[0].Addr.upper;
1464 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1466 PCI_DMA_BIDIRECTIONAL);
1468 check_ioctl_unit_attention(host, c);
1470 /* Copy the error information out */
1471 iocommand.error_info = *(c->err_info);
1473 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1475 cmd_free(host, c, 0);
1479 if (iocommand.Request.Type.Direction == XFER_READ) {
1480 /* Copy the data out of the buffer we created */
1482 (iocommand.buf, buff, iocommand.buf_size)) {
1484 cmd_free(host, c, 0);
1489 cmd_free(host, c, 0);
1492 case CCISS_BIG_PASSTHRU:{
1493 BIG_IOCTL_Command_struct *ioc;
1494 CommandList_struct *c;
1495 unsigned char **buff = NULL;
1496 int *buff_size = NULL;
1498 unsigned long flags;
1502 DECLARE_COMPLETION_ONSTACK(wait);
1505 BYTE __user *data_ptr;
1509 if (!capable(CAP_SYS_RAWIO))
1511 ioc = (BIG_IOCTL_Command_struct *)
1512 kmalloc(sizeof(*ioc), GFP_KERNEL);
1517 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1521 if ((ioc->buf_size < 1) &&
1522 (ioc->Request.Type.Direction != XFER_NONE)) {
1526 /* Check kmalloc limits using all SGs */
1527 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1531 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1536 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1541 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1547 left = ioc->buf_size;
1548 data_ptr = ioc->buf;
1551 ioc->malloc_size) ? ioc->
1553 buff_size[sg_used] = sz;
1554 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1555 if (buff[sg_used] == NULL) {
1559 if (ioc->Request.Type.Direction == XFER_WRITE) {
1561 (buff[sg_used], data_ptr, sz)) {
1566 memset(buff[sg_used], 0, sz);
1572 if ((c = cmd_alloc(host, 0)) == NULL) {
1576 c->cmd_type = CMD_IOCTL_PEND;
1577 c->Header.ReplyQueue = 0;
1579 if (ioc->buf_size > 0) {
1580 c->Header.SGList = sg_used;
1581 c->Header.SGTotal = sg_used;
1583 c->Header.SGList = 0;
1584 c->Header.SGTotal = 0;
1586 c->Header.LUN = ioc->LUN_info;
1587 c->Header.Tag.lower = c->busaddr;
1589 c->Request = ioc->Request;
1590 if (ioc->buf_size > 0) {
1591 for (i = 0; i < sg_used; i++) {
1593 pci_map_single(host->pdev, buff[i],
1595 PCI_DMA_BIDIRECTIONAL);
1596 c->SG[i].Addr.lower =
1598 c->SG[i].Addr.upper =
1600 c->SG[i].Len = buff_size[i];
1601 c->SG[i].Ext = 0; /* we are not chaining */
1605 /* Put the request on the tail of the request queue */
1606 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1607 addQ(&host->reqQ, c);
1610 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1611 wait_for_completion(&wait);
1612 /* unlock the buffers from DMA */
1613 for (i = 0; i < sg_used; i++) {
1614 temp64.val32.lower = c->SG[i].Addr.lower;
1615 temp64.val32.upper = c->SG[i].Addr.upper;
1616 pci_unmap_single(host->pdev,
1617 (dma_addr_t) temp64.val, buff_size[i],
1618 PCI_DMA_BIDIRECTIONAL);
1620 check_ioctl_unit_attention(host, c);
1621 /* Copy the error information out */
1622 ioc->error_info = *(c->err_info);
1623 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1624 cmd_free(host, c, 0);
1628 if (ioc->Request.Type.Direction == XFER_READ) {
1629 /* Copy the data out of the buffer we created */
1630 BYTE __user *ptr = ioc->buf;
1631 for (i = 0; i < sg_used; i++) {
1633 (ptr, buff[i], buff_size[i])) {
1634 cmd_free(host, c, 0);
1638 ptr += buff_size[i];
1641 cmd_free(host, c, 0);
1645 for (i = 0; i < sg_used; i++)
1654 /* scsi_cmd_ioctl handles these, below, though some are not */
1655 /* very meaningful for cciss. SG_IO is the main one people want. */
1657 case SG_GET_VERSION_NUM:
1658 case SG_SET_TIMEOUT:
1659 case SG_GET_TIMEOUT:
1660 case SG_GET_RESERVED_SIZE:
1661 case SG_SET_RESERVED_SIZE:
1662 case SG_EMULATED_HOST:
1664 case SCSI_IOCTL_SEND_COMMAND:
1665 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1667 /* scsi_cmd_ioctl would normally handle these, below, but */
1668 /* they aren't a good fit for cciss, as CD-ROMs are */
1669 /* not supported, and we don't have any bus/target/lun */
1670 /* which we present to the kernel. */
1672 case CDROM_SEND_PACKET:
1673 case CDROMCLOSETRAY:
1675 case SCSI_IOCTL_GET_IDLUN:
1676 case SCSI_IOCTL_GET_BUS_NUMBER:
1682 static void cciss_check_queues(ctlr_info_t *h)
1684 int start_queue = h->next_to_run;
1687 /* check to see if we have maxed out the number of commands that can
1688 * be placed on the queue. If so then exit. We do this check here
1689 * in case the interrupt we serviced was from an ioctl and did not
1690 * free any new commands.
1692 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1695 /* We have room on the queue for more commands. Now we need to queue
1696 * them up. We will also keep track of the next queue to run so
1697 * that every queue gets a chance to be started first.
1699 for (i = 0; i < h->highest_lun + 1; i++) {
1700 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1701 /* make sure the disk has been added and the drive is real
1702 * because this can be called from the middle of init_one.
1704 if (!h->drv[curr_queue])
1706 if (!(h->drv[curr_queue]->queue) ||
1707 !(h->drv[curr_queue]->heads))
1709 blk_start_queue(h->gendisk[curr_queue]->queue);
1711 /* check to see if we have maxed out the number of commands
1712 * that can be placed on the queue.
1714 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1715 if (curr_queue == start_queue) {
1717 (start_queue + 1) % (h->highest_lun + 1);
1720 h->next_to_run = curr_queue;
1727 static void cciss_softirq_done(struct request *rq)
1729 CommandList_struct *cmd = rq->completion_data;
1730 ctlr_info_t *h = hba[cmd->ctlr];
1731 SGDescriptor_struct *curr_sg = cmd->SG;
1732 unsigned long flags;
1737 if (cmd->Request.Type.Direction == XFER_READ)
1738 ddir = PCI_DMA_FROMDEVICE;
1740 ddir = PCI_DMA_TODEVICE;
1742 /* command did not need to be retried */
1743 /* unmap the DMA mapping for all the scatter gather elements */
1744 for (i = 0; i < cmd->Header.SGList; i++) {
1745 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1746 cciss_unmap_sg_chain_block(h, cmd);
1747 /* Point to the next block */
1748 curr_sg = h->cmd_sg_list[cmd->cmdindex];
1751 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1752 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1753 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1759 printk("Done with %p\n", rq);
1760 #endif /* CCISS_DEBUG */
1762 /* set the residual count for pc requests */
1763 if (blk_pc_request(rq))
1764 rq->resid_len = cmd->err_info->ResidualCnt;
1766 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1768 spin_lock_irqsave(&h->lock, flags);
1769 cmd_free(h, cmd, 1);
1770 cciss_check_queues(h);
1771 spin_unlock_irqrestore(&h->lock, flags);
1774 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1775 unsigned char scsi3addr[], uint32_t log_unit)
1777 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1778 sizeof(h->drv[log_unit]->LunID));
1781 /* This function gets the SCSI vendor, model, and revision of a logical drive
1782 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1783 * they cannot be read.
1785 static void cciss_get_device_descr(int ctlr, int logvol,
1786 char *vendor, char *model, char *rev)
1789 InquiryData_struct *inq_buf;
1790 unsigned char scsi3addr[8];
1796 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1800 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1801 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf, sizeof(*inq_buf), 0,
1802 scsi3addr, TYPE_CMD);
1804 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1805 vendor[VENDOR_LEN] = '\0';
1806 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1807 model[MODEL_LEN] = '\0';
1808 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1809 rev[REV_LEN] = '\0';
1816 /* This function gets the serial number of a logical drive via
1817 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1818 * number cannot be had, for whatever reason, 16 bytes of 0xff
1819 * are returned instead.
1821 static void cciss_get_serial_no(int ctlr, int logvol,
1822 unsigned char *serial_no, int buflen)
1824 #define PAGE_83_INQ_BYTES 64
1827 unsigned char scsi3addr[8];
1831 memset(serial_no, 0xff, buflen);
1832 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1835 memset(serial_no, 0, buflen);
1836 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1837 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1838 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1840 memcpy(serial_no, &buf[8], buflen);
1846 * cciss_add_disk sets up the block device queue for a logical drive
1848 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1851 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1853 goto init_queue_failure;
1854 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1855 disk->major = h->major;
1856 disk->first_minor = drv_index << NWD_SHIFT;
1857 disk->fops = &cciss_fops;
1858 if (cciss_create_ld_sysfs_entry(h, drv_index))
1860 disk->private_data = h->drv[drv_index];
1861 disk->driverfs_dev = &h->drv[drv_index]->dev;
1863 /* Set up queue information */
1864 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1866 /* This is a hardware imposed limit. */
1867 blk_queue_max_segments(disk->queue, h->maxsgentries);
1869 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1871 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1873 disk->queue->queuedata = h;
1875 blk_queue_logical_block_size(disk->queue,
1876 h->drv[drv_index]->block_size);
1878 /* Make sure all queue data is written out before */
1879 /* setting h->drv[drv_index]->queue, as setting this */
1880 /* allows the interrupt handler to start the queue */
1882 h->drv[drv_index]->queue = disk->queue;
1887 blk_cleanup_queue(disk->queue);
1893 /* This function will check the usage_count of the drive to be updated/added.
1894 * If the usage_count is zero and it is a heretofore unknown drive, or,
1895 * the drive's capacity, geometry, or serial number has changed,
1896 * then the drive information will be updated and the disk will be
1897 * re-registered with the kernel. If these conditions don't hold,
1898 * then it will be left alone for the next reboot. The exception to this
1899 * is disk 0 which will always be left registered with the kernel since it
1900 * is also the controller node. Any changes to disk 0 will show up on
1903 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time,
1906 ctlr_info_t *h = hba[ctlr];
1907 struct gendisk *disk;
1908 InquiryData_struct *inq_buff = NULL;
1909 unsigned int block_size;
1910 sector_t total_size;
1911 unsigned long flags = 0;
1913 drive_info_struct *drvinfo;
1915 /* Get information about the disk and modify the driver structure */
1916 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1917 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1918 if (inq_buff == NULL || drvinfo == NULL)
1921 /* testing to see if 16-byte CDBs are already being used */
1922 if (h->cciss_read == CCISS_READ_16) {
1923 cciss_read_capacity_16(h->ctlr, drv_index,
1924 &total_size, &block_size);
1927 cciss_read_capacity(ctlr, drv_index, &total_size, &block_size);
1928 /* if read_capacity returns all F's this volume is >2TB */
1929 /* in size so we switch to 16-byte CDB's for all */
1930 /* read/write ops */
1931 if (total_size == 0xFFFFFFFFULL) {
1932 cciss_read_capacity_16(ctlr, drv_index,
1933 &total_size, &block_size);
1934 h->cciss_read = CCISS_READ_16;
1935 h->cciss_write = CCISS_WRITE_16;
1937 h->cciss_read = CCISS_READ_10;
1938 h->cciss_write = CCISS_WRITE_10;
1942 cciss_geometry_inquiry(ctlr, drv_index, total_size, block_size,
1944 drvinfo->block_size = block_size;
1945 drvinfo->nr_blocks = total_size + 1;
1947 cciss_get_device_descr(ctlr, drv_index, drvinfo->vendor,
1948 drvinfo->model, drvinfo->rev);
1949 cciss_get_serial_no(ctlr, drv_index, drvinfo->serial_no,
1950 sizeof(drvinfo->serial_no));
1951 /* Save the lunid in case we deregister the disk, below. */
1952 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1953 sizeof(drvinfo->LunID));
1955 /* Is it the same disk we already know, and nothing's changed? */
1956 if (h->drv[drv_index]->raid_level != -1 &&
1957 ((memcmp(drvinfo->serial_no,
1958 h->drv[drv_index]->serial_no, 16) == 0) &&
1959 drvinfo->block_size == h->drv[drv_index]->block_size &&
1960 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1961 drvinfo->heads == h->drv[drv_index]->heads &&
1962 drvinfo->sectors == h->drv[drv_index]->sectors &&
1963 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1964 /* The disk is unchanged, nothing to update */
1967 /* If we get here it's not the same disk, or something's changed,
1968 * so we need to * deregister it, and re-register it, if it's not
1970 * If the disk already exists then deregister it before proceeding
1971 * (unless it's the first disk (for the controller node).
1973 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
1974 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1975 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1976 h->drv[drv_index]->busy_configuring = 1;
1977 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1979 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1980 * which keeps the interrupt handler from starting
1983 ret = deregister_disk(h, drv_index, 0, via_ioctl);
1986 /* If the disk is in use return */
1990 /* Save the new information from cciss_geometry_inquiry
1991 * and serial number inquiry. If the disk was deregistered
1992 * above, then h->drv[drv_index] will be NULL.
1994 if (h->drv[drv_index] == NULL) {
1995 drvinfo->device_initialized = 0;
1996 h->drv[drv_index] = drvinfo;
1997 drvinfo = NULL; /* so it won't be freed below. */
1999 /* special case for cxd0 */
2000 h->drv[drv_index]->block_size = drvinfo->block_size;
2001 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2002 h->drv[drv_index]->heads = drvinfo->heads;
2003 h->drv[drv_index]->sectors = drvinfo->sectors;
2004 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2005 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2006 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2007 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2009 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2010 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2014 disk = h->gendisk[drv_index];
2015 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2017 /* If it's not disk 0 (drv_index != 0)
2018 * or if it was disk 0, but there was previously
2019 * no actual corresponding configured logical drive
2020 * (raid_leve == -1) then we want to update the
2021 * logical drive's information.
2023 if (drv_index || first_time) {
2024 if (cciss_add_disk(h, disk, drv_index) != 0) {
2025 cciss_free_gendisk(h, drv_index);
2026 cciss_free_drive_info(h, drv_index);
2027 printk(KERN_WARNING "cciss:%d could not update "
2028 "disk %d\n", h->ctlr, drv_index);
2038 printk(KERN_ERR "cciss: out of memory\n");
2042 /* This function will find the first index of the controllers drive array
2043 * that has a null drv pointer and allocate the drive info struct and
2044 * will return that index This is where new drives will be added.
2045 * If the index to be returned is greater than the highest_lun index for
2046 * the controller then highest_lun is set * to this new index.
2047 * If there are no available indexes or if tha allocation fails, then -1
2048 * is returned. * "controller_node" is used to know if this is a real
2049 * logical drive, or just the controller node, which determines if this
2050 * counts towards highest_lun.
2052 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2055 drive_info_struct *drv;
2057 /* Search for an empty slot for our drive info */
2058 for (i = 0; i < CISS_MAX_LUN; i++) {
2060 /* if not cxd0 case, and it's occupied, skip it. */
2061 if (h->drv[i] && i != 0)
2064 * If it's cxd0 case, and drv is alloc'ed already, and a
2065 * disk is configured there, skip it.
2067 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2071 * We've found an empty slot. Update highest_lun
2072 * provided this isn't just the fake cxd0 controller node.
2074 if (i > h->highest_lun && !controller_node)
2077 /* If adding a real disk at cxd0, and it's already alloc'ed */
2078 if (i == 0 && h->drv[i] != NULL)
2082 * Found an empty slot, not already alloc'ed. Allocate it.
2083 * Mark it with raid_level == -1, so we know it's new later on.
2085 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2088 drv->raid_level = -1; /* so we know it's new */
2095 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2097 kfree(h->drv[drv_index]);
2098 h->drv[drv_index] = NULL;
2101 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2103 put_disk(h->gendisk[drv_index]);
2104 h->gendisk[drv_index] = NULL;
2107 /* cciss_add_gendisk finds a free hba[]->drv structure
2108 * and allocates a gendisk if needed, and sets the lunid
2109 * in the drvinfo structure. It returns the index into
2110 * the ->drv[] array, or -1 if none are free.
2111 * is_controller_node indicates whether highest_lun should
2112 * count this disk, or if it's only being added to provide
2113 * a means to talk to the controller in case no logical
2114 * drives have yet been configured.
2116 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2117 int controller_node)
2121 drv_index = cciss_alloc_drive_info(h, controller_node);
2122 if (drv_index == -1)
2125 /*Check if the gendisk needs to be allocated */
2126 if (!h->gendisk[drv_index]) {
2127 h->gendisk[drv_index] =
2128 alloc_disk(1 << NWD_SHIFT);
2129 if (!h->gendisk[drv_index]) {
2130 printk(KERN_ERR "cciss%d: could not "
2131 "allocate a new disk %d\n",
2132 h->ctlr, drv_index);
2133 goto err_free_drive_info;
2136 memcpy(h->drv[drv_index]->LunID, lunid,
2137 sizeof(h->drv[drv_index]->LunID));
2138 if (cciss_create_ld_sysfs_entry(h, drv_index))
2140 /* Don't need to mark this busy because nobody */
2141 /* else knows about this disk yet to contend */
2142 /* for access to it. */
2143 h->drv[drv_index]->busy_configuring = 0;
2148 cciss_free_gendisk(h, drv_index);
2149 err_free_drive_info:
2150 cciss_free_drive_info(h, drv_index);
2154 /* This is for the special case of a controller which
2155 * has no logical drives. In this case, we still need
2156 * to register a disk so the controller can be accessed
2157 * by the Array Config Utility.
2159 static void cciss_add_controller_node(ctlr_info_t *h)
2161 struct gendisk *disk;
2164 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2167 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2168 if (drv_index == -1)
2170 h->drv[drv_index]->block_size = 512;
2171 h->drv[drv_index]->nr_blocks = 0;
2172 h->drv[drv_index]->heads = 0;
2173 h->drv[drv_index]->sectors = 0;
2174 h->drv[drv_index]->cylinders = 0;
2175 h->drv[drv_index]->raid_level = -1;
2176 memset(h->drv[drv_index]->serial_no, 0, 16);
2177 disk = h->gendisk[drv_index];
2178 if (cciss_add_disk(h, disk, drv_index) == 0)
2180 cciss_free_gendisk(h, drv_index);
2181 cciss_free_drive_info(h, drv_index);
2183 printk(KERN_WARNING "cciss%d: could not "
2184 "add disk 0.\n", h->ctlr);
2188 /* This function will add and remove logical drives from the Logical
2189 * drive array of the controller and maintain persistency of ordering
2190 * so that mount points are preserved until the next reboot. This allows
2191 * for the removal of logical drives in the middle of the drive array
2192 * without a re-ordering of those drives.
2194 * h = The controller to perform the operations on
2196 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2201 ReportLunData_struct *ld_buff = NULL;
2207 unsigned char lunid[8] = CTLR_LUNID;
2208 unsigned long flags;
2210 if (!capable(CAP_SYS_RAWIO))
2213 /* Set busy_configuring flag for this operation */
2214 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2215 if (h->busy_configuring) {
2216 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2219 h->busy_configuring = 1;
2220 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2222 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2223 if (ld_buff == NULL)
2226 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
2227 sizeof(ReportLunData_struct),
2228 0, CTLR_LUNID, TYPE_CMD);
2230 if (return_code == IO_OK)
2231 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2232 else { /* reading number of logical volumes failed */
2233 printk(KERN_WARNING "cciss: report logical volume"
2234 " command failed\n");
2239 num_luns = listlength / 8; /* 8 bytes per entry */
2240 if (num_luns > CISS_MAX_LUN) {
2241 num_luns = CISS_MAX_LUN;
2242 printk(KERN_WARNING "cciss: more luns configured"
2243 " on controller than can be handled by"
2248 cciss_add_controller_node(h);
2250 /* Compare controller drive array to driver's drive array
2251 * to see if any drives are missing on the controller due
2252 * to action of Array Config Utility (user deletes drive)
2253 * and deregister logical drives which have disappeared.
2255 for (i = 0; i <= h->highest_lun; i++) {
2259 /* skip holes in the array from already deleted drives */
2260 if (h->drv[i] == NULL)
2263 for (j = 0; j < num_luns; j++) {
2264 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2265 if (memcmp(h->drv[i]->LunID, lunid,
2266 sizeof(lunid)) == 0) {
2272 /* Deregister it from the OS, it's gone. */
2273 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2274 h->drv[i]->busy_configuring = 1;
2275 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2276 return_code = deregister_disk(h, i, 1, via_ioctl);
2277 if (h->drv[i] != NULL)
2278 h->drv[i]->busy_configuring = 0;
2282 /* Compare controller drive array to driver's drive array.
2283 * Check for updates in the drive information and any new drives
2284 * on the controller due to ACU adding logical drives, or changing
2285 * a logical drive's size, etc. Reregister any new/changed drives
2287 for (i = 0; i < num_luns; i++) {
2292 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2293 /* Find if the LUN is already in the drive array
2294 * of the driver. If so then update its info
2295 * if not in use. If it does not exist then find
2296 * the first free index and add it.
2298 for (j = 0; j <= h->highest_lun; j++) {
2299 if (h->drv[j] != NULL &&
2300 memcmp(h->drv[j]->LunID, lunid,
2301 sizeof(h->drv[j]->LunID)) == 0) {
2308 /* check if the drive was found already in the array */
2310 drv_index = cciss_add_gendisk(h, lunid, 0);
2311 if (drv_index == -1)
2314 cciss_update_drive_info(ctlr, drv_index, first_time,
2320 h->busy_configuring = 0;
2321 /* We return -1 here to tell the ACU that we have registered/updated
2322 * all of the drives that we can and to keep it from calling us
2327 printk(KERN_ERR "cciss: out of memory\n");
2328 h->busy_configuring = 0;
2332 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2334 /* zero out the disk size info */
2335 drive_info->nr_blocks = 0;
2336 drive_info->block_size = 0;
2337 drive_info->heads = 0;
2338 drive_info->sectors = 0;
2339 drive_info->cylinders = 0;
2340 drive_info->raid_level = -1;
2341 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2342 memset(drive_info->model, 0, sizeof(drive_info->model));
2343 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2344 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2346 * don't clear the LUNID though, we need to remember which
2351 /* This function will deregister the disk and it's queue from the
2352 * kernel. It must be called with the controller lock held and the
2353 * drv structures busy_configuring flag set. It's parameters are:
2355 * disk = This is the disk to be deregistered
2356 * drv = This is the drive_info_struct associated with the disk to be
2357 * deregistered. It contains information about the disk used
2359 * clear_all = This flag determines whether or not the disk information
2360 * is going to be completely cleared out and the highest_lun
2361 * reset. Sometimes we want to clear out information about
2362 * the disk in preparation for re-adding it. In this case
2363 * the highest_lun should be left unchanged and the LunID
2364 * should not be cleared.
2366 * This indicates whether we've reached this path via ioctl.
2367 * This affects the maximum usage count allowed for c0d0 to be messed with.
2368 * If this path is reached via ioctl(), then the max_usage_count will
2369 * be 1, as the process calling ioctl() has got to have the device open.
2370 * If we get here via sysfs, then the max usage count will be zero.
2372 static int deregister_disk(ctlr_info_t *h, int drv_index,
2373 int clear_all, int via_ioctl)
2376 struct gendisk *disk;
2377 drive_info_struct *drv;
2378 int recalculate_highest_lun;
2380 if (!capable(CAP_SYS_RAWIO))
2383 drv = h->drv[drv_index];
2384 disk = h->gendisk[drv_index];
2386 /* make sure logical volume is NOT is use */
2387 if (clear_all || (h->gendisk[0] == disk)) {
2388 if (drv->usage_count > via_ioctl)
2390 } else if (drv->usage_count > 0)
2393 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2395 /* invalidate the devices and deregister the disk. If it is disk
2396 * zero do not deregister it but just zero out it's values. This
2397 * allows us to delete disk zero but keep the controller registered.
2399 if (h->gendisk[0] != disk) {
2400 struct request_queue *q = disk->queue;
2401 if (disk->flags & GENHD_FL_UP) {
2402 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2406 blk_cleanup_queue(q);
2407 /* If clear_all is set then we are deleting the logical
2408 * drive, not just refreshing its info. For drives
2409 * other than disk 0 we will call put_disk. We do not
2410 * do this for disk 0 as we need it to be able to
2411 * configure the controller.
2414 /* This isn't pretty, but we need to find the
2415 * disk in our array and NULL our the pointer.
2416 * This is so that we will call alloc_disk if
2417 * this index is used again later.
2419 for (i=0; i < CISS_MAX_LUN; i++){
2420 if (h->gendisk[i] == disk) {
2421 h->gendisk[i] = NULL;
2428 set_capacity(disk, 0);
2429 cciss_clear_drive_info(drv);
2434 /* if it was the last disk, find the new hightest lun */
2435 if (clear_all && recalculate_highest_lun) {
2436 int newhighest = -1;
2437 for (i = 0; i <= h->highest_lun; i++) {
2438 /* if the disk has size > 0, it is available */
2439 if (h->drv[i] && h->drv[i]->heads)
2442 h->highest_lun = newhighest;
2447 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2448 size_t size, __u8 page_code, unsigned char *scsi3addr,
2451 ctlr_info_t *h = hba[ctlr];
2452 u64bit buff_dma_handle;
2455 c->cmd_type = CMD_IOCTL_PEND;
2456 c->Header.ReplyQueue = 0;
2458 c->Header.SGList = 1;
2459 c->Header.SGTotal = 1;
2461 c->Header.SGList = 0;
2462 c->Header.SGTotal = 0;
2464 c->Header.Tag.lower = c->busaddr;
2465 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2467 c->Request.Type.Type = cmd_type;
2468 if (cmd_type == TYPE_CMD) {
2471 /* are we trying to read a vital product page */
2472 if (page_code != 0) {
2473 c->Request.CDB[1] = 0x01;
2474 c->Request.CDB[2] = page_code;
2476 c->Request.CDBLen = 6;
2477 c->Request.Type.Attribute = ATTR_SIMPLE;
2478 c->Request.Type.Direction = XFER_READ;
2479 c->Request.Timeout = 0;
2480 c->Request.CDB[0] = CISS_INQUIRY;
2481 c->Request.CDB[4] = size & 0xFF;
2483 case CISS_REPORT_LOG:
2484 case CISS_REPORT_PHYS:
2485 /* Talking to controller so It's a physical command
2486 mode = 00 target = 0. Nothing to write.
2488 c->Request.CDBLen = 12;
2489 c->Request.Type.Attribute = ATTR_SIMPLE;
2490 c->Request.Type.Direction = XFER_READ;
2491 c->Request.Timeout = 0;
2492 c->Request.CDB[0] = cmd;
2493 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2494 c->Request.CDB[7] = (size >> 16) & 0xFF;
2495 c->Request.CDB[8] = (size >> 8) & 0xFF;
2496 c->Request.CDB[9] = size & 0xFF;
2499 case CCISS_READ_CAPACITY:
2500 c->Request.CDBLen = 10;
2501 c->Request.Type.Attribute = ATTR_SIMPLE;
2502 c->Request.Type.Direction = XFER_READ;
2503 c->Request.Timeout = 0;
2504 c->Request.CDB[0] = cmd;
2506 case CCISS_READ_CAPACITY_16:
2507 c->Request.CDBLen = 16;
2508 c->Request.Type.Attribute = ATTR_SIMPLE;
2509 c->Request.Type.Direction = XFER_READ;
2510 c->Request.Timeout = 0;
2511 c->Request.CDB[0] = cmd;
2512 c->Request.CDB[1] = 0x10;
2513 c->Request.CDB[10] = (size >> 24) & 0xFF;
2514 c->Request.CDB[11] = (size >> 16) & 0xFF;
2515 c->Request.CDB[12] = (size >> 8) & 0xFF;
2516 c->Request.CDB[13] = size & 0xFF;
2517 c->Request.Timeout = 0;
2518 c->Request.CDB[0] = cmd;
2520 case CCISS_CACHE_FLUSH:
2521 c->Request.CDBLen = 12;
2522 c->Request.Type.Attribute = ATTR_SIMPLE;
2523 c->Request.Type.Direction = XFER_WRITE;
2524 c->Request.Timeout = 0;
2525 c->Request.CDB[0] = BMIC_WRITE;
2526 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2528 case TEST_UNIT_READY:
2529 c->Request.CDBLen = 6;
2530 c->Request.Type.Attribute = ATTR_SIMPLE;
2531 c->Request.Type.Direction = XFER_NONE;
2532 c->Request.Timeout = 0;
2536 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2539 } else if (cmd_type == TYPE_MSG) {
2541 case 0: /* ABORT message */
2542 c->Request.CDBLen = 12;
2543 c->Request.Type.Attribute = ATTR_SIMPLE;
2544 c->Request.Type.Direction = XFER_WRITE;
2545 c->Request.Timeout = 0;
2546 c->Request.CDB[0] = cmd; /* abort */
2547 c->Request.CDB[1] = 0; /* abort a command */
2548 /* buff contains the tag of the command to abort */
2549 memcpy(&c->Request.CDB[4], buff, 8);
2551 case 1: /* RESET message */
2552 c->Request.CDBLen = 16;
2553 c->Request.Type.Attribute = ATTR_SIMPLE;
2554 c->Request.Type.Direction = XFER_NONE;
2555 c->Request.Timeout = 0;
2556 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2557 c->Request.CDB[0] = cmd; /* reset */
2558 c->Request.CDB[1] = 0x03; /* reset a target */
2560 case 3: /* No-Op message */
2561 c->Request.CDBLen = 1;
2562 c->Request.Type.Attribute = ATTR_SIMPLE;
2563 c->Request.Type.Direction = XFER_WRITE;
2564 c->Request.Timeout = 0;
2565 c->Request.CDB[0] = cmd;
2569 "cciss%d: unknown message type %d\n", ctlr, cmd);
2574 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2577 /* Fill in the scatter gather information */
2579 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2581 PCI_DMA_BIDIRECTIONAL);
2582 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2583 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2584 c->SG[0].Len = size;
2585 c->SG[0].Ext = 0; /* we are not chaining */
2590 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2592 switch (c->err_info->ScsiStatus) {
2595 case SAM_STAT_CHECK_CONDITION:
2596 switch (0xf & c->err_info->SenseInfo[2]) {
2597 case 0: return IO_OK; /* no sense */
2598 case 1: return IO_OK; /* recovered error */
2600 if (check_for_unit_attention(h, c))
2601 return IO_NEEDS_RETRY;
2602 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2603 "check condition, sense key = 0x%02x\n",
2604 h->ctlr, c->Request.CDB[0],
2605 c->err_info->SenseInfo[2]);
2609 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2610 "scsi status = 0x%02x\n", h->ctlr,
2611 c->Request.CDB[0], c->err_info->ScsiStatus);
2617 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2619 int return_status = IO_OK;
2621 if (c->err_info->CommandStatus == CMD_SUCCESS)
2624 switch (c->err_info->CommandStatus) {
2625 case CMD_TARGET_STATUS:
2626 return_status = check_target_status(h, c);
2628 case CMD_DATA_UNDERRUN:
2629 case CMD_DATA_OVERRUN:
2630 /* expected for inquiry and report lun commands */
2633 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2634 "reported invalid\n", c->Request.CDB[0]);
2635 return_status = IO_ERROR;
2637 case CMD_PROTOCOL_ERR:
2638 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2639 "protocol error \n", c->Request.CDB[0]);
2640 return_status = IO_ERROR;
2642 case CMD_HARDWARE_ERR:
2643 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2644 " hardware error\n", c->Request.CDB[0]);
2645 return_status = IO_ERROR;
2647 case CMD_CONNECTION_LOST:
2648 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2649 "connection lost\n", c->Request.CDB[0]);
2650 return_status = IO_ERROR;
2653 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2654 "aborted\n", c->Request.CDB[0]);
2655 return_status = IO_ERROR;
2657 case CMD_ABORT_FAILED:
2658 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2659 "abort failed\n", c->Request.CDB[0]);
2660 return_status = IO_ERROR;
2662 case CMD_UNSOLICITED_ABORT:
2664 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2666 return_status = IO_NEEDS_RETRY;
2669 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2670 "unknown status %x\n", c->Request.CDB[0],
2671 c->err_info->CommandStatus);
2672 return_status = IO_ERROR;
2674 return return_status;
2677 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2680 DECLARE_COMPLETION_ONSTACK(wait);
2681 u64bit buff_dma_handle;
2682 unsigned long flags;
2683 int return_status = IO_OK;
2687 /* Put the request on the tail of the queue and send it */
2688 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2692 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2694 wait_for_completion(&wait);
2696 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2699 return_status = process_sendcmd_error(h, c);
2701 if (return_status == IO_NEEDS_RETRY &&
2702 c->retry_count < MAX_CMD_RETRIES) {
2703 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2706 /* erase the old error information */
2707 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2708 return_status = IO_OK;
2709 INIT_COMPLETION(wait);
2714 /* unlock the buffers from DMA */
2715 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2716 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2717 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2718 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2719 return return_status;
2722 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2723 __u8 page_code, unsigned char scsi3addr[],
2726 ctlr_info_t *h = hba[ctlr];
2727 CommandList_struct *c;
2730 c = cmd_alloc(h, 0);
2733 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2734 scsi3addr, cmd_type);
2735 if (return_status == IO_OK)
2736 return_status = sendcmd_withirq_core(h, c, 1);
2739 return return_status;
2742 static void cciss_geometry_inquiry(int ctlr, int logvol,
2743 sector_t total_size,
2744 unsigned int block_size,
2745 InquiryData_struct *inq_buff,
2746 drive_info_struct *drv)
2750 unsigned char scsi3addr[8];
2752 memset(inq_buff, 0, sizeof(InquiryData_struct));
2753 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2754 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buff,
2755 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2756 if (return_code == IO_OK) {
2757 if (inq_buff->data_byte[8] == 0xFF) {
2759 "cciss: reading geometry failed, volume "
2760 "does not support reading geometry\n");
2762 drv->sectors = 32; /* Sectors per track */
2763 drv->cylinders = total_size + 1;
2764 drv->raid_level = RAID_UNKNOWN;
2766 drv->heads = inq_buff->data_byte[6];
2767 drv->sectors = inq_buff->data_byte[7];
2768 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2769 drv->cylinders += inq_buff->data_byte[5];
2770 drv->raid_level = inq_buff->data_byte[8];
2772 drv->block_size = block_size;
2773 drv->nr_blocks = total_size + 1;
2774 t = drv->heads * drv->sectors;
2776 sector_t real_size = total_size + 1;
2777 unsigned long rem = sector_div(real_size, t);
2780 drv->cylinders = real_size;
2782 } else { /* Get geometry failed */
2783 printk(KERN_WARNING "cciss: reading geometry failed\n");
2788 cciss_read_capacity(int ctlr, int logvol, sector_t *total_size,
2789 unsigned int *block_size)
2791 ReadCapdata_struct *buf;
2793 unsigned char scsi3addr[8];
2795 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2797 printk(KERN_WARNING "cciss: out of memory\n");
2801 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2802 return_code = sendcmd_withirq(CCISS_READ_CAPACITY, ctlr, buf,
2803 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2804 if (return_code == IO_OK) {
2805 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2806 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2807 } else { /* read capacity command failed */
2808 printk(KERN_WARNING "cciss: read capacity failed\n");
2810 *block_size = BLOCK_SIZE;
2815 static void cciss_read_capacity_16(int ctlr, int logvol,
2816 sector_t *total_size, unsigned int *block_size)
2818 ReadCapdata_struct_16 *buf;
2820 unsigned char scsi3addr[8];
2822 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2824 printk(KERN_WARNING "cciss: out of memory\n");
2828 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2829 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2830 ctlr, buf, sizeof(ReadCapdata_struct_16),
2831 0, scsi3addr, TYPE_CMD);
2832 if (return_code == IO_OK) {
2833 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2834 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2835 } else { /* read capacity command failed */
2836 printk(KERN_WARNING "cciss: read capacity failed\n");
2838 *block_size = BLOCK_SIZE;
2840 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2841 (unsigned long long)*total_size+1, *block_size);
2845 static int cciss_revalidate(struct gendisk *disk)
2847 ctlr_info_t *h = get_host(disk);
2848 drive_info_struct *drv = get_drv(disk);
2851 unsigned int block_size;
2852 sector_t total_size;
2853 InquiryData_struct *inq_buff = NULL;
2855 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2856 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2857 sizeof(drv->LunID)) == 0) {
2866 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2867 if (inq_buff == NULL) {
2868 printk(KERN_WARNING "cciss: out of memory\n");
2871 if (h->cciss_read == CCISS_READ_10) {
2872 cciss_read_capacity(h->ctlr, logvol,
2873 &total_size, &block_size);
2875 cciss_read_capacity_16(h->ctlr, logvol,
2876 &total_size, &block_size);
2878 cciss_geometry_inquiry(h->ctlr, logvol, total_size, block_size,
2881 blk_queue_logical_block_size(drv->queue, drv->block_size);
2882 set_capacity(disk, drv->nr_blocks);
2889 * Map (physical) PCI mem into (virtual) kernel space
2891 static void __iomem *remap_pci_mem(ulong base, ulong size)
2893 ulong page_base = ((ulong) base) & PAGE_MASK;
2894 ulong page_offs = ((ulong) base) - page_base;
2895 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2897 return page_remapped ? (page_remapped + page_offs) : NULL;
2901 * Takes jobs of the Q and sends them to the hardware, then puts it on
2902 * the Q to wait for completion.
2904 static void start_io(ctlr_info_t *h)
2906 CommandList_struct *c;
2908 while (!hlist_empty(&h->reqQ)) {
2909 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2910 /* can't do anything if fifo is full */
2911 if ((h->access.fifo_full(h))) {
2912 printk(KERN_WARNING "cciss: fifo full\n");
2916 /* Get the first entry from the Request Q */
2920 /* Tell the controller execute command */
2921 h->access.submit_command(h, c);
2923 /* Put job onto the completed Q */
2928 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2929 /* Zeros out the error record and then resends the command back */
2930 /* to the controller */
2931 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2933 /* erase the old error information */
2934 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2936 /* add it to software queue and then send it to the controller */
2939 if (h->Qdepth > h->maxQsinceinit)
2940 h->maxQsinceinit = h->Qdepth;
2945 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2946 unsigned int msg_byte, unsigned int host_byte,
2947 unsigned int driver_byte)
2949 /* inverse of macros in scsi.h */
2950 return (scsi_status_byte & 0xff) |
2951 ((msg_byte & 0xff) << 8) |
2952 ((host_byte & 0xff) << 16) |
2953 ((driver_byte & 0xff) << 24);
2956 static inline int evaluate_target_status(ctlr_info_t *h,
2957 CommandList_struct *cmd, int *retry_cmd)
2959 unsigned char sense_key;
2960 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2964 /* If we get in here, it means we got "target status", that is, scsi status */
2965 status_byte = cmd->err_info->ScsiStatus;
2966 driver_byte = DRIVER_OK;
2967 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2969 if (blk_pc_request(cmd->rq))
2970 host_byte = DID_PASSTHROUGH;
2974 error_value = make_status_bytes(status_byte, msg_byte,
2975 host_byte, driver_byte);
2977 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2978 if (!blk_pc_request(cmd->rq))
2979 printk(KERN_WARNING "cciss: cmd %p "
2980 "has SCSI Status 0x%x\n",
2981 cmd, cmd->err_info->ScsiStatus);
2985 /* check the sense key */
2986 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2987 /* no status or recovered error */
2988 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2991 if (check_for_unit_attention(h, cmd)) {
2992 *retry_cmd = !blk_pc_request(cmd->rq);
2996 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2997 if (error_value != 0)
2998 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2999 " sense key = 0x%x\n", cmd, sense_key);
3003 /* SG_IO or similar, copy sense data back */
3004 if (cmd->rq->sense) {
3005 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3006 cmd->rq->sense_len = cmd->err_info->SenseLen;
3007 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3008 cmd->rq->sense_len);
3010 cmd->rq->sense_len = 0;
3015 /* checks the status of the job and calls complete buffers to mark all
3016 * buffers for the completed job. Note that this function does not need
3017 * to hold the hba/queue lock.
3019 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3023 struct request *rq = cmd->rq;
3028 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3030 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3031 goto after_error_processing;
3033 switch (cmd->err_info->CommandStatus) {
3034 case CMD_TARGET_STATUS:
3035 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3037 case CMD_DATA_UNDERRUN:
3038 if (blk_fs_request(cmd->rq)) {
3039 printk(KERN_WARNING "cciss: cmd %p has"
3040 " completed with data underrun "
3042 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3045 case CMD_DATA_OVERRUN:
3046 if (blk_fs_request(cmd->rq))
3047 printk(KERN_WARNING "cciss: cmd %p has"
3048 " completed with data overrun "
3052 printk(KERN_WARNING "cciss: cmd %p is "
3053 "reported invalid\n", cmd);
3054 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3055 cmd->err_info->CommandStatus, DRIVER_OK,
3056 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3058 case CMD_PROTOCOL_ERR:
3059 printk(KERN_WARNING "cciss: cmd %p has "
3060 "protocol error \n", cmd);
3061 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3062 cmd->err_info->CommandStatus, DRIVER_OK,
3063 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3065 case CMD_HARDWARE_ERR:
3066 printk(KERN_WARNING "cciss: cmd %p had "
3067 " hardware error\n", cmd);
3068 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3069 cmd->err_info->CommandStatus, DRIVER_OK,
3070 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3072 case CMD_CONNECTION_LOST:
3073 printk(KERN_WARNING "cciss: cmd %p had "
3074 "connection lost\n", cmd);
3075 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3076 cmd->err_info->CommandStatus, DRIVER_OK,
3077 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3080 printk(KERN_WARNING "cciss: cmd %p was "
3082 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3083 cmd->err_info->CommandStatus, DRIVER_OK,
3084 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3086 case CMD_ABORT_FAILED:
3087 printk(KERN_WARNING "cciss: cmd %p reports "
3088 "abort failed\n", cmd);
3089 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3090 cmd->err_info->CommandStatus, DRIVER_OK,
3091 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3093 case CMD_UNSOLICITED_ABORT:
3094 printk(KERN_WARNING "cciss%d: unsolicited "
3095 "abort %p\n", h->ctlr, cmd);
3096 if (cmd->retry_count < MAX_CMD_RETRIES) {
3099 "cciss%d: retrying %p\n", h->ctlr, cmd);
3103 "cciss%d: %p retried too "
3104 "many times\n", h->ctlr, cmd);
3105 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3106 cmd->err_info->CommandStatus, DRIVER_OK,
3107 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
3110 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
3111 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3112 cmd->err_info->CommandStatus, DRIVER_OK,
3113 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3116 printk(KERN_WARNING "cciss: cmd %p returned "
3117 "unknown status %x\n", cmd,
3118 cmd->err_info->CommandStatus);
3119 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3120 cmd->err_info->CommandStatus, DRIVER_OK,
3121 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
3124 after_error_processing:
3126 /* We need to return this command */
3128 resend_cciss_cmd(h, cmd);
3131 cmd->rq->completion_data = cmd;
3132 blk_complete_request(cmd->rq);
3136 * Get a request and submit it to the controller.
3138 static void do_cciss_request(struct request_queue *q)
3140 ctlr_info_t *h = q->queuedata;
3141 CommandList_struct *c;
3144 struct request *creq;
3146 struct scatterlist *tmp_sg;
3147 SGDescriptor_struct *curr_sg;
3148 drive_info_struct *drv;
3153 /* We call start_io here in case there is a command waiting on the
3154 * queue that has not been sent.
3156 if (blk_queue_plugged(q))
3160 creq = blk_peek_request(q);
3164 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3166 if ((c = cmd_alloc(h, 1)) == NULL)
3169 blk_start_request(creq);
3171 tmp_sg = h->scatter_list[c->cmdindex];
3172 spin_unlock_irq(q->queue_lock);
3174 c->cmd_type = CMD_RWREQ;
3177 /* fill in the request */
3178 drv = creq->rq_disk->private_data;
3179 c->Header.ReplyQueue = 0; /* unused in simple mode */
3180 /* got command from pool, so use the command block index instead */
3181 /* for direct lookups. */
3182 /* The first 2 bits are reserved for controller error reporting. */
3183 c->Header.Tag.lower = (c->cmdindex << 3);
3184 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3185 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3186 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3187 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3188 c->Request.Type.Attribute = ATTR_SIMPLE;
3189 c->Request.Type.Direction =
3190 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3191 c->Request.Timeout = 0; /* Don't time out */
3193 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3194 start_blk = blk_rq_pos(creq);
3196 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3197 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3198 #endif /* CCISS_DEBUG */
3200 sg_init_table(tmp_sg, h->maxsgentries);
3201 seg = blk_rq_map_sg(q, creq, tmp_sg);
3203 /* get the DMA records for the setup */
3204 if (c->Request.Type.Direction == XFER_READ)
3205 dir = PCI_DMA_FROMDEVICE;
3207 dir = PCI_DMA_TODEVICE;
3213 for (i = 0; i < seg; i++) {
3214 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3215 !chained && ((seg - i) > 1)) {
3216 /* Point to next chain block. */
3217 curr_sg = h->cmd_sg_list[c->cmdindex];
3221 curr_sg[sg_index].Len = tmp_sg[i].length;
3222 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3224 tmp_sg[i].length, dir);
3225 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3226 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3227 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3231 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3232 (seg - (h->max_cmd_sgentries - 1)) *
3233 sizeof(SGDescriptor_struct));
3235 /* track how many SG entries we are using */
3240 printk(KERN_DEBUG "cciss: Submitting %ld sectors in %d segments "
3242 blk_rq_sectors(creq), seg, chained);
3243 #endif /* CCISS_DEBUG */
3245 c->Header.SGList = c->Header.SGTotal = seg + chained;
3246 if (seg > h->max_cmd_sgentries)
3247 c->Header.SGList = h->max_cmd_sgentries;
3249 if (likely(blk_fs_request(creq))) {
3250 if(h->cciss_read == CCISS_READ_10) {
3251 c->Request.CDB[1] = 0;
3252 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3253 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3254 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3255 c->Request.CDB[5] = start_blk & 0xff;
3256 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3257 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3258 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3259 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3261 u32 upper32 = upper_32_bits(start_blk);
3263 c->Request.CDBLen = 16;
3264 c->Request.CDB[1]= 0;
3265 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3266 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3267 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3268 c->Request.CDB[5]= upper32 & 0xff;
3269 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3270 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3271 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3272 c->Request.CDB[9]= start_blk & 0xff;
3273 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3274 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3275 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3276 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3277 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3279 } else if (blk_pc_request(creq)) {
3280 c->Request.CDBLen = creq->cmd_len;
3281 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3283 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3287 spin_lock_irq(q->queue_lock);
3291 if (h->Qdepth > h->maxQsinceinit)
3292 h->maxQsinceinit = h->Qdepth;
3298 /* We will already have the driver lock here so not need
3304 static inline unsigned long get_next_completion(ctlr_info_t *h)
3306 return h->access.command_completed(h);
3309 static inline int interrupt_pending(ctlr_info_t *h)
3311 return h->access.intr_pending(h);
3314 static inline long interrupt_not_for_us(ctlr_info_t *h)
3316 return (((h->access.intr_pending(h) == 0) ||
3317 (h->interrupts_enabled == 0)));
3320 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3322 ctlr_info_t *h = dev_id;
3323 CommandList_struct *c;
3324 unsigned long flags;
3327 if (interrupt_not_for_us(h))
3330 * If there are completed commands in the completion queue,
3331 * we had better do something about it.
3333 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3334 while (interrupt_pending(h)) {
3335 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3339 if (a2 >= h->nr_cmds) {
3341 "cciss: controller cciss%d failed, stopping.\n",
3343 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3344 fail_all_cmds(h->ctlr);
3348 c = h->cmd_pool + a2;
3352 struct hlist_node *tmp;
3356 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3357 if (c->busaddr == a)
3362 * If we've found the command, take it off the
3363 * completion Q and free it
3365 if (c && c->busaddr == a) {
3367 if (c->cmd_type == CMD_RWREQ) {
3368 complete_command(h, c, 0);
3369 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3370 complete(c->waiting);
3372 # ifdef CONFIG_CISS_SCSI_TAPE
3373 else if (c->cmd_type == CMD_SCSI)
3374 complete_scsi_command(c, 0, a1);
3381 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3386 * add_to_scan_list() - add controller to rescan queue
3387 * @h: Pointer to the controller.
3389 * Adds the controller to the rescan queue if not already on the queue.
3391 * returns 1 if added to the queue, 0 if skipped (could be on the
3392 * queue already, or the controller could be initializing or shutting
3395 static int add_to_scan_list(struct ctlr_info *h)
3397 struct ctlr_info *test_h;
3401 if (h->busy_initializing)
3404 if (!mutex_trylock(&h->busy_shutting_down))
3407 mutex_lock(&scan_mutex);
3408 list_for_each_entry(test_h, &scan_q, scan_list) {
3414 if (!found && !h->busy_scanning) {
3415 INIT_COMPLETION(h->scan_wait);
3416 list_add_tail(&h->scan_list, &scan_q);
3419 mutex_unlock(&scan_mutex);
3420 mutex_unlock(&h->busy_shutting_down);
3426 * remove_from_scan_list() - remove controller from rescan queue
3427 * @h: Pointer to the controller.
3429 * Removes the controller from the rescan queue if present. Blocks if
3430 * the controller is currently conducting a rescan. The controller
3431 * can be in one of three states:
3432 * 1. Doesn't need a scan
3433 * 2. On the scan list, but not scanning yet (we remove it)
3434 * 3. Busy scanning (and not on the list). In this case we want to wait for
3435 * the scan to complete to make sure the scanning thread for this
3436 * controller is completely idle.
3438 static void remove_from_scan_list(struct ctlr_info *h)
3440 struct ctlr_info *test_h, *tmp_h;
3442 mutex_lock(&scan_mutex);
3443 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3444 if (test_h == h) { /* state 2. */
3445 list_del(&h->scan_list);
3446 complete_all(&h->scan_wait);
3447 mutex_unlock(&scan_mutex);
3451 if (h->busy_scanning) { /* state 3. */
3452 mutex_unlock(&scan_mutex);
3453 wait_for_completion(&h->scan_wait);
3454 } else { /* state 1, nothing to do. */
3455 mutex_unlock(&scan_mutex);
3460 * scan_thread() - kernel thread used to rescan controllers
3463 * A kernel thread used scan for drive topology changes on
3464 * controllers. The thread processes only one controller at a time
3465 * using a queue. Controllers are added to the queue using
3466 * add_to_scan_list() and removed from the queue either after done
3467 * processing or using remove_from_scan_list().
3471 static int scan_thread(void *data)
3473 struct ctlr_info *h;
3476 set_current_state(TASK_INTERRUPTIBLE);
3478 if (kthread_should_stop())
3482 mutex_lock(&scan_mutex);
3483 if (list_empty(&scan_q)) {
3484 mutex_unlock(&scan_mutex);
3488 h = list_entry(scan_q.next,
3491 list_del(&h->scan_list);
3492 h->busy_scanning = 1;
3493 mutex_unlock(&scan_mutex);
3495 rebuild_lun_table(h, 0, 0);
3496 complete_all(&h->scan_wait);
3497 mutex_lock(&scan_mutex);
3498 h->busy_scanning = 0;
3499 mutex_unlock(&scan_mutex);
3506 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3508 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3511 switch (c->err_info->SenseInfo[12]) {
3513 printk(KERN_WARNING "cciss%d: a state change "
3514 "detected, command retried\n", h->ctlr);
3518 printk(KERN_WARNING "cciss%d: LUN failure "
3519 "detected, action required\n", h->ctlr);
3522 case REPORT_LUNS_CHANGED:
3523 printk(KERN_WARNING "cciss%d: report LUN data "
3524 "changed\n", h->ctlr);
3526 * Here, we could call add_to_scan_list and wake up the scan thread,
3527 * except that it's quite likely that we will get more than one
3528 * REPORT_LUNS_CHANGED condition in quick succession, which means
3529 * that those which occur after the first one will likely happen
3530 * *during* the scan_thread's rescan. And the rescan code is not
3531 * robust enough to restart in the middle, undoing what it has already
3532 * done, and it's not clear that it's even possible to do this, since
3533 * part of what it does is notify the block layer, which starts
3534 * doing it's own i/o to read partition tables and so on, and the
3535 * driver doesn't have visibility to know what might need undoing.
3536 * In any event, if possible, it is horribly complicated to get right
3537 * so we just don't do it for now.
3539 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3543 case POWER_OR_RESET:
3544 printk(KERN_WARNING "cciss%d: a power on "
3545 "or device reset detected\n", h->ctlr);
3548 case UNIT_ATTENTION_CLEARED:
3549 printk(KERN_WARNING "cciss%d: unit attention "
3550 "cleared by another initiator\n", h->ctlr);
3554 printk(KERN_WARNING "cciss%d: unknown "
3555 "unit attention detected\n", h->ctlr);
3561 * We cannot read the structure directly, for portability we must use
3563 * This is for debug only.
3566 static void print_cfg_table(CfgTable_struct *tb)
3571 printk("Controller Configuration information\n");
3572 printk("------------------------------------\n");
3573 for (i = 0; i < 4; i++)
3574 temp_name[i] = readb(&(tb->Signature[i]));
3575 temp_name[4] = '\0';
3576 printk(" Signature = %s\n", temp_name);
3577 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3578 printk(" Transport methods supported = 0x%x\n",
3579 readl(&(tb->TransportSupport)));
3580 printk(" Transport methods active = 0x%x\n",
3581 readl(&(tb->TransportActive)));
3582 printk(" Requested transport Method = 0x%x\n",
3583 readl(&(tb->HostWrite.TransportRequest)));
3584 printk(" Coalesce Interrupt Delay = 0x%x\n",
3585 readl(&(tb->HostWrite.CoalIntDelay)));
3586 printk(" Coalesce Interrupt Count = 0x%x\n",
3587 readl(&(tb->HostWrite.CoalIntCount)));
3588 printk(" Max outstanding commands = 0x%d\n",
3589 readl(&(tb->CmdsOutMax)));
3590 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3591 for (i = 0; i < 16; i++)
3592 temp_name[i] = readb(&(tb->ServerName[i]));
3593 temp_name[16] = '\0';
3594 printk(" Server Name = %s\n", temp_name);
3595 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3597 #endif /* CCISS_DEBUG */
3599 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3601 int i, offset, mem_type, bar_type;
3602 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3605 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3606 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3607 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3610 mem_type = pci_resource_flags(pdev, i) &
3611 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3613 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3614 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3615 offset += 4; /* 32 bit */
3617 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3620 default: /* reserved in PCI 2.2 */
3622 "Base address is invalid\n");
3627 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3633 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3634 * controllers that are capable. If not, we use IO-APIC mode.
3637 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3638 struct pci_dev *pdev, __u32 board_id)
3640 #ifdef CONFIG_PCI_MSI
3642 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3646 /* Some boards advertise MSI but don't really support it */
3647 if ((board_id == 0x40700E11) ||
3648 (board_id == 0x40800E11) ||
3649 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3650 goto default_int_mode;
3652 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3653 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3655 c->intr[0] = cciss_msix_entries[0].vector;
3656 c->intr[1] = cciss_msix_entries[1].vector;
3657 c->intr[2] = cciss_msix_entries[2].vector;
3658 c->intr[3] = cciss_msix_entries[3].vector;
3663 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3664 "available\n", err);
3665 goto default_int_mode;
3667 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3669 goto default_int_mode;
3672 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3673 if (!pci_enable_msi(pdev)) {
3676 printk(KERN_WARNING "cciss: MSI init failed\n");
3680 #endif /* CONFIG_PCI_MSI */
3681 /* if we get here we're going to use the default interrupt mode */
3682 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3686 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3688 ushort subsystem_vendor_id, subsystem_device_id, command;
3689 __u32 board_id, scratchpad = 0;
3691 __u32 cfg_base_addr;
3692 __u64 cfg_base_addr_index;
3693 int i, prod_index, err;
3695 subsystem_vendor_id = pdev->subsystem_vendor;
3696 subsystem_device_id = pdev->subsystem_device;
3697 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3698 subsystem_vendor_id);
3700 for (i = 0; i < ARRAY_SIZE(products); i++) {
3701 /* Stand aside for hpsa driver on request */
3702 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3704 if (board_id == products[i].board_id)
3708 if (prod_index == ARRAY_SIZE(products)) {
3709 dev_warn(&pdev->dev,
3710 "unrecognized board ID: 0x%08lx, ignoring.\n",
3711 (unsigned long) board_id);
3715 /* check to see if controller has been disabled */
3716 /* BEFORE trying to enable it */
3717 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3718 if (!(command & 0x02)) {
3720 "cciss: controller appears to be disabled\n");
3724 err = pci_enable_device(pdev);
3726 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3730 err = pci_request_regions(pdev, "cciss");
3732 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3738 printk("command = %x\n", command);
3739 printk("irq = %x\n", pdev->irq);
3740 printk("board_id = %x\n", board_id);
3741 #endif /* CCISS_DEBUG */
3743 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3744 * else we use the IO-APIC interrupt assigned to us by system ROM.
3746 cciss_interrupt_mode(c, pdev, board_id);
3748 /* find the memory BAR */
3749 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3750 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3753 if (i == DEVICE_COUNT_RESOURCE) {
3754 printk(KERN_WARNING "cciss: No memory BAR found\n");
3756 goto err_out_free_res;
3759 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3764 printk("address 0 = %lx\n", c->paddr);
3765 #endif /* CCISS_DEBUG */
3766 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3768 /* Wait for the board to become ready. (PCI hotplug needs this.)
3769 * We poll for up to 120 secs, once per 100ms. */
3770 for (i = 0; i < 1200; i++) {
3771 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3772 if (scratchpad == CCISS_FIRMWARE_READY)
3774 set_current_state(TASK_INTERRUPTIBLE);
3775 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3777 if (scratchpad != CCISS_FIRMWARE_READY) {
3778 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3780 goto err_out_free_res;
3783 /* get the address index number */
3784 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3785 cfg_base_addr &= (__u32) 0x0000ffff;
3787 printk("cfg base address = %x\n", cfg_base_addr);
3788 #endif /* CCISS_DEBUG */
3789 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3791 printk("cfg base address index = %llx\n",
3792 (unsigned long long)cfg_base_addr_index);
3793 #endif /* CCISS_DEBUG */
3794 if (cfg_base_addr_index == -1) {
3795 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3797 goto err_out_free_res;
3800 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3802 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3803 #endif /* CCISS_DEBUG */
3804 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3805 cfg_base_addr_index) +
3806 cfg_offset, sizeof(CfgTable_struct));
3807 c->board_id = board_id;
3810 print_cfg_table(c->cfgtable);
3811 #endif /* CCISS_DEBUG */
3813 /* Some controllers support Zero Memory Raid (ZMR).
3814 * When configured in ZMR mode the number of supported
3815 * commands drops to 64. So instead of just setting an
3816 * arbitrary value we make the driver a little smarter.
3817 * We read the config table to tell us how many commands
3818 * are supported on the controller then subtract 4 to
3819 * leave a little room for ioctl calls.
3821 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3822 c->maxsgentries = readl(&(c->cfgtable->MaxSGElements));
3825 * Limit native command to 32 s/g elements to save dma'able memory.
3826 * Howvever spec says if 0, use 31
3829 c->max_cmd_sgentries = 31;
3830 if (c->maxsgentries > 512) {
3831 c->max_cmd_sgentries = 32;
3832 c->chainsize = c->maxsgentries - c->max_cmd_sgentries + 1;
3833 c->maxsgentries -= 1; /* account for chain pointer */
3835 c->maxsgentries = 31; /* Default to traditional value */
3836 c->chainsize = 0; /* traditional */
3839 c->product_name = products[prod_index].product_name;
3840 c->access = *(products[prod_index].access);
3841 c->nr_cmds = c->max_commands - 4;
3842 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3843 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3844 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3845 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3846 printk("Does not appear to be a valid CISS config table\n");
3848 goto err_out_free_res;
3852 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3854 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3856 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3860 /* Disabling DMA prefetch and refetch for the P600.
3861 * An ASIC bug may result in accesses to invalid memory addresses.
3862 * We've disabled prefetch for some time now. Testing with XEN
3863 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3865 if(board_id == 0x3225103C) {
3868 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3869 dma_prefetch |= 0x8000;
3870 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3871 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3873 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3877 printk("Trying to put board into Simple mode\n");
3878 #endif /* CCISS_DEBUG */
3879 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3880 /* Update the field, and then ring the doorbell */
3881 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3882 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3884 /* under certain very rare conditions, this can take awhile.
3885 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3886 * as we enter this code.) */
3887 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3888 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3890 /* delay and try again */
3891 set_current_state(TASK_INTERRUPTIBLE);
3892 schedule_timeout(msecs_to_jiffies(1));
3896 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3897 readl(c->vaddr + SA5_DOORBELL));
3898 #endif /* CCISS_DEBUG */
3900 print_cfg_table(c->cfgtable);
3901 #endif /* CCISS_DEBUG */
3903 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3904 printk(KERN_WARNING "cciss: unable to get board into"
3907 goto err_out_free_res;
3913 * Deliberately omit pci_disable_device(): it does something nasty to
3914 * Smart Array controllers that pci_enable_device does not undo
3916 pci_release_regions(pdev);
3920 /* Function to find the first free pointer into our hba[] array
3921 * Returns -1 if no free entries are left.
3923 static int alloc_cciss_hba(void)
3927 for (i = 0; i < MAX_CTLR; i++) {
3931 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3938 printk(KERN_WARNING "cciss: This driver supports a maximum"
3939 " of %d controllers.\n", MAX_CTLR);
3942 printk(KERN_ERR "cciss: out of memory.\n");
3946 static void free_hba(int n)
3948 ctlr_info_t *h = hba[n];
3952 for (i = 0; i < h->highest_lun + 1; i++)
3953 if (h->gendisk[i] != NULL)
3954 put_disk(h->gendisk[i]);
3958 /* Send a message CDB to the firmware. */
3959 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3962 CommandListHeader_struct CommandHeader;
3963 RequestBlock_struct Request;
3964 ErrDescriptor_struct ErrorDescriptor;
3966 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3969 uint32_t paddr32, tag;
3970 void __iomem *vaddr;
3973 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3977 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3978 CCISS commands, so they must be allocated from the lower 4GiB of
3980 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3986 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3992 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3993 although there's no guarantee, we assume that the address is at
3994 least 4-byte aligned (most likely, it's page-aligned). */
3997 cmd->CommandHeader.ReplyQueue = 0;
3998 cmd->CommandHeader.SGList = 0;
3999 cmd->CommandHeader.SGTotal = 0;
4000 cmd->CommandHeader.Tag.lower = paddr32;
4001 cmd->CommandHeader.Tag.upper = 0;
4002 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4004 cmd->Request.CDBLen = 16;
4005 cmd->Request.Type.Type = TYPE_MSG;
4006 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4007 cmd->Request.Type.Direction = XFER_NONE;
4008 cmd->Request.Timeout = 0; /* Don't time out */
4009 cmd->Request.CDB[0] = opcode;
4010 cmd->Request.CDB[1] = type;
4011 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4013 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4014 cmd->ErrorDescriptor.Addr.upper = 0;
4015 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4017 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4019 for (i = 0; i < 10; i++) {
4020 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4021 if ((tag & ~3) == paddr32)
4023 schedule_timeout_uninterruptible(HZ);
4028 /* we leak the DMA buffer here ... no choice since the controller could
4029 still complete the command. */
4031 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
4036 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4039 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
4044 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
4049 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4050 #define cciss_noop(p) cciss_message(p, 3, 0)
4052 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4054 /* the #defines are stolen from drivers/pci/msi.h. */
4055 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4056 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4061 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4063 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4064 if (control & PCI_MSI_FLAGS_ENABLE) {
4065 printk(KERN_INFO "cciss: resetting MSI\n");
4066 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4070 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4072 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4073 if (control & PCI_MSIX_FLAGS_ENABLE) {
4074 printk(KERN_INFO "cciss: resetting MSI-X\n");
4075 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4082 /* This does a hard reset of the controller using PCI power management
4084 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
4086 u16 pmcsr, saved_config_space[32];
4089 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
4091 /* This is very nearly the same thing as
4093 pci_save_state(pci_dev);
4094 pci_set_power_state(pci_dev, PCI_D3hot);
4095 pci_set_power_state(pci_dev, PCI_D0);
4096 pci_restore_state(pci_dev);
4098 but we can't use these nice canned kernel routines on
4099 kexec, because they also check the MSI/MSI-X state in PCI
4100 configuration space and do the wrong thing when it is
4101 set/cleared. Also, the pci_save/restore_state functions
4102 violate the ordering requirements for restoring the
4103 configuration space from the CCISS document (see the
4104 comment below). So we roll our own .... */
4106 for (i = 0; i < 32; i++)
4107 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4109 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4111 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
4115 /* Quoting from the Open CISS Specification: "The Power
4116 * Management Control/Status Register (CSR) controls the power
4117 * state of the device. The normal operating state is D0,
4118 * CSR=00h. The software off state is D3, CSR=03h. To reset
4119 * the controller, place the interface device in D3 then to
4120 * D0, this causes a secondary PCI reset which will reset the
4123 /* enter the D3hot power management state */
4124 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4125 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4127 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4129 schedule_timeout_uninterruptible(HZ >> 1);
4131 /* enter the D0 power management state */
4132 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4134 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4136 schedule_timeout_uninterruptible(HZ >> 1);
4138 /* Restore the PCI configuration space. The Open CISS
4139 * Specification says, "Restore the PCI Configuration
4140 * Registers, offsets 00h through 60h. It is important to
4141 * restore the command register, 16-bits at offset 04h,
4142 * last. Do not restore the configuration status register,
4143 * 16-bits at offset 06h." Note that the offset is 2*i. */
4144 for (i = 0; i < 32; i++) {
4145 if (i == 2 || i == 3)
4147 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4150 pci_write_config_word(pdev, 4, saved_config_space[2]);
4156 * This is it. Find all the controllers and register them. I really hate
4157 * stealing all these major device numbers.
4158 * returns the number of block devices registered.
4160 static int __devinit cciss_init_one(struct pci_dev *pdev,
4161 const struct pci_device_id *ent)
4167 int dac, return_code;
4168 InquiryData_struct *inq_buff;
4170 if (reset_devices) {
4171 /* Reset the controller with a PCI power-cycle */
4172 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
4175 /* Now try to get the controller to respond to a no-op. Some
4176 devices (notably the HP Smart Array 5i Controller) need
4177 up to 30 seconds to respond. */
4178 for (i=0; i<30; i++) {
4179 if (cciss_noop(pdev) == 0)
4182 schedule_timeout_uninterruptible(HZ);
4185 printk(KERN_ERR "cciss: controller seems dead\n");
4190 i = alloc_cciss_hba();
4194 hba[i]->busy_initializing = 1;
4195 INIT_HLIST_HEAD(&hba[i]->cmpQ);
4196 INIT_HLIST_HEAD(&hba[i]->reqQ);
4197 mutex_init(&hba[i]->busy_shutting_down);
4199 if (cciss_pci_init(hba[i], pdev) != 0)
4200 goto clean_no_release_regions;
4202 sprintf(hba[i]->devname, "cciss%d", i);
4204 hba[i]->pdev = pdev;
4206 init_completion(&hba[i]->scan_wait);
4208 if (cciss_create_hba_sysfs_entry(hba[i]))
4211 /* configure PCI DMA stuff */
4212 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4214 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4217 printk(KERN_ERR "cciss: no suitable DMA available\n");
4222 * register with the major number, or get a dynamic major number
4223 * by passing 0 as argument. This is done for greater than
4224 * 8 controller support.
4226 if (i < MAX_CTLR_ORIG)
4227 hba[i]->major = COMPAQ_CISS_MAJOR + i;
4228 rc = register_blkdev(hba[i]->major, hba[i]->devname);
4229 if (rc == -EBUSY || rc == -EINVAL) {
4231 "cciss: Unable to get major number %d for %s "
4232 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
4235 if (i >= MAX_CTLR_ORIG)
4239 /* make sure the board interrupts are off */
4240 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
4241 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
4242 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
4243 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
4244 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
4248 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4249 hba[i]->devname, pdev->device, pci_name(pdev),
4250 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
4252 hba[i]->cmd_pool_bits =
4253 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4254 * sizeof(unsigned long), GFP_KERNEL);
4255 hba[i]->cmd_pool = (CommandList_struct *)
4256 pci_alloc_consistent(hba[i]->pdev,
4257 hba[i]->nr_cmds * sizeof(CommandList_struct),
4258 &(hba[i]->cmd_pool_dhandle));
4259 hba[i]->errinfo_pool = (ErrorInfo_struct *)
4260 pci_alloc_consistent(hba[i]->pdev,
4261 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4262 &(hba[i]->errinfo_pool_dhandle));
4263 if ((hba[i]->cmd_pool_bits == NULL)
4264 || (hba[i]->cmd_pool == NULL)
4265 || (hba[i]->errinfo_pool == NULL)) {
4266 printk(KERN_ERR "cciss: out of memory");
4270 /* Need space for temp scatter list */
4271 hba[i]->scatter_list = kmalloc(hba[i]->max_commands *
4272 sizeof(struct scatterlist *),
4274 for (k = 0; k < hba[i]->nr_cmds; k++) {
4275 hba[i]->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4276 hba[i]->maxsgentries,
4278 if (hba[i]->scatter_list[k] == NULL) {
4279 printk(KERN_ERR "cciss%d: could not allocate "
4284 hba[i]->cmd_sg_list = cciss_allocate_sg_chain_blocks(hba[i],
4285 hba[i]->chainsize, hba[i]->nr_cmds);
4286 if (!hba[i]->cmd_sg_list && hba[i]->chainsize > 0)
4289 spin_lock_init(&hba[i]->lock);
4291 /* Initialize the pdev driver private data.
4292 have it point to hba[i]. */
4293 pci_set_drvdata(pdev, hba[i]);
4294 /* command and error info recs zeroed out before
4296 memset(hba[i]->cmd_pool_bits, 0,
4297 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
4298 * sizeof(unsigned long));
4300 hba[i]->num_luns = 0;
4301 hba[i]->highest_lun = -1;
4302 for (j = 0; j < CISS_MAX_LUN; j++) {
4303 hba[i]->drv[j] = NULL;
4304 hba[i]->gendisk[j] = NULL;
4307 cciss_scsi_setup(i);
4309 /* Turn the interrupts on so we can service requests */
4310 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4312 /* Get the firmware version */
4313 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4314 if (inq_buff == NULL) {
4315 printk(KERN_ERR "cciss: out of memory\n");
4319 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4320 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4321 if (return_code == IO_OK) {
4322 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4323 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4324 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4325 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4326 } else { /* send command failed */
4327 printk(KERN_WARNING "cciss: unable to determine firmware"
4328 " version of controller\n");
4334 hba[i]->cciss_max_sectors = 8192;
4336 rebuild_lun_table(hba[i], 1, 0);
4337 hba[i]->busy_initializing = 0;
4341 kfree(hba[i]->cmd_pool_bits);
4342 /* Free up sg elements */
4343 for (k = 0; k < hba[i]->nr_cmds; k++)
4344 kfree(hba[i]->scatter_list[k]);
4345 kfree(hba[i]->scatter_list);
4346 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4347 if (hba[i]->cmd_pool)
4348 pci_free_consistent(hba[i]->pdev,
4349 hba[i]->nr_cmds * sizeof(CommandList_struct),
4350 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4351 if (hba[i]->errinfo_pool)
4352 pci_free_consistent(hba[i]->pdev,
4353 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4354 hba[i]->errinfo_pool,
4355 hba[i]->errinfo_pool_dhandle);
4356 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4358 unregister_blkdev(hba[i]->major, hba[i]->devname);
4360 cciss_destroy_hba_sysfs_entry(hba[i]);
4362 pci_release_regions(pdev);
4363 clean_no_release_regions:
4364 hba[i]->busy_initializing = 0;
4367 * Deliberately omit pci_disable_device(): it does something nasty to
4368 * Smart Array controllers that pci_enable_device does not undo
4370 pci_set_drvdata(pdev, NULL);
4375 static void cciss_shutdown(struct pci_dev *pdev)
4381 h = pci_get_drvdata(pdev);
4382 flush_buf = kzalloc(4, GFP_KERNEL);
4385 "cciss:%d cache not flushed, out of memory.\n",
4389 /* write all data in the battery backed cache to disk */
4390 memset(flush_buf, 0, 4);
4391 return_code = sendcmd_withirq(CCISS_CACHE_FLUSH, h->ctlr, flush_buf,
4392 4, 0, CTLR_LUNID, TYPE_CMD);
4394 if (return_code != IO_OK)
4395 printk(KERN_WARNING "cciss%d: Error flushing cache\n",
4397 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4398 free_irq(h->intr[2], h);
4401 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4403 ctlr_info_t *tmp_ptr;
4406 if (pci_get_drvdata(pdev) == NULL) {
4407 printk(KERN_ERR "cciss: Unable to remove device \n");
4411 tmp_ptr = pci_get_drvdata(pdev);
4413 if (hba[i] == NULL) {
4414 printk(KERN_ERR "cciss: device appears to "
4415 "already be removed \n");
4419 mutex_lock(&hba[i]->busy_shutting_down);
4421 remove_from_scan_list(hba[i]);
4422 remove_proc_entry(hba[i]->devname, proc_cciss);
4423 unregister_blkdev(hba[i]->major, hba[i]->devname);
4425 /* remove it from the disk list */
4426 for (j = 0; j < CISS_MAX_LUN; j++) {
4427 struct gendisk *disk = hba[i]->gendisk[j];
4429 struct request_queue *q = disk->queue;
4431 if (disk->flags & GENHD_FL_UP) {
4432 cciss_destroy_ld_sysfs_entry(hba[i], j, 1);
4436 blk_cleanup_queue(q);
4440 #ifdef CONFIG_CISS_SCSI_TAPE
4441 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4444 cciss_shutdown(pdev);
4446 #ifdef CONFIG_PCI_MSI
4447 if (hba[i]->msix_vector)
4448 pci_disable_msix(hba[i]->pdev);
4449 else if (hba[i]->msi_vector)
4450 pci_disable_msi(hba[i]->pdev);
4451 #endif /* CONFIG_PCI_MSI */
4453 iounmap(hba[i]->vaddr);
4455 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4456 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4457 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4458 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4459 kfree(hba[i]->cmd_pool_bits);
4460 /* Free up sg elements */
4461 for (j = 0; j < hba[i]->nr_cmds; j++)
4462 kfree(hba[i]->scatter_list[j]);
4463 kfree(hba[i]->scatter_list);
4464 cciss_free_sg_chain_blocks(hba[i]->cmd_sg_list, hba[i]->nr_cmds);
4466 * Deliberately omit pci_disable_device(): it does something nasty to
4467 * Smart Array controllers that pci_enable_device does not undo
4469 pci_release_regions(pdev);
4470 pci_set_drvdata(pdev, NULL);
4471 cciss_destroy_hba_sysfs_entry(hba[i]);
4472 mutex_unlock(&hba[i]->busy_shutting_down);
4476 static struct pci_driver cciss_pci_driver = {
4478 .probe = cciss_init_one,
4479 .remove = __devexit_p(cciss_remove_one),
4480 .id_table = cciss_pci_device_id, /* id_table */
4481 .shutdown = cciss_shutdown,
4485 * This is it. Register the PCI driver information for the cards we control
4486 * the OS will call our registered routines when it finds one of our cards.
4488 static int __init cciss_init(void)
4493 * The hardware requires that commands are aligned on a 64-bit
4494 * boundary. Given that we use pci_alloc_consistent() to allocate an
4495 * array of them, the size must be a multiple of 8 bytes.
4497 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4499 printk(KERN_INFO DRIVER_NAME "\n");
4501 err = bus_register(&cciss_bus_type);
4505 /* Start the scan thread */
4506 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4507 if (IS_ERR(cciss_scan_thread)) {
4508 err = PTR_ERR(cciss_scan_thread);
4509 goto err_bus_unregister;
4512 /* Register for our PCI devices */
4513 err = pci_register_driver(&cciss_pci_driver);
4515 goto err_thread_stop;
4520 kthread_stop(cciss_scan_thread);
4522 bus_unregister(&cciss_bus_type);
4527 static void __exit cciss_cleanup(void)
4531 pci_unregister_driver(&cciss_pci_driver);
4532 /* double check that all controller entrys have been removed */
4533 for (i = 0; i < MAX_CTLR; i++) {
4534 if (hba[i] != NULL) {
4535 printk(KERN_WARNING "cciss: had to remove"
4536 " controller %d\n", i);
4537 cciss_remove_one(hba[i]->pdev);
4540 kthread_stop(cciss_scan_thread);
4541 remove_proc_entry("driver/cciss", NULL);
4542 bus_unregister(&cciss_bus_type);
4545 static void fail_all_cmds(unsigned long ctlr)
4547 /* If we get here, the board is apparently dead. */
4548 ctlr_info_t *h = hba[ctlr];
4549 CommandList_struct *c;
4550 unsigned long flags;
4552 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4553 h->alive = 0; /* the controller apparently died... */
4555 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4557 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4559 /* move everything off the request queue onto the completed queue */
4560 while (!hlist_empty(&h->reqQ)) {
4561 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4567 /* Now, fail everything on the completed queue with a HW error */
4568 while (!hlist_empty(&h->cmpQ)) {
4569 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4571 if (c->cmd_type != CMD_MSG_STALE)
4572 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4573 if (c->cmd_type == CMD_RWREQ) {
4574 complete_command(h, c, 0);
4575 } else if (c->cmd_type == CMD_IOCTL_PEND)
4576 complete(c->waiting);
4577 #ifdef CONFIG_CISS_SCSI_TAPE
4578 else if (c->cmd_type == CMD_SCSI)
4579 complete_scsi_command(c, 0, 0);
4582 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4586 module_init(cciss_init);
4587 module_exit(cciss_cleanup);