]> git.karo-electronics.de Git - mv-sheeva.git/blob - drivers/block/cciss.c
cciss: factor out cciss_getfirmver
[mv-sheeva.git] / drivers / block / cciss.c
1 /*
2  *    Disk Array driver for HP Smart Array controllers.
3  *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  *    General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17  *    02111-1307, USA.
18  *
19  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
32 #include <linux/fs.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
52 #include <scsi/sg.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
57
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
66 MODULE_VERSION("3.6.26");
67 MODULE_LICENSE("GPL");
68
69 static int cciss_allow_hpsa;
70 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71 MODULE_PARM_DESC(cciss_allow_hpsa,
72         "Prevent cciss driver from accessing hardware known to be "
73         " supported by the hpsa driver");
74
75 #include "cciss_cmd.h"
76 #include "cciss.h"
77 #include <linux/cciss_ioctl.h>
78
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id[] = {
81         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
82         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89         {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
113         {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123         {0x40700E11, "Smart Array 5300", &SA5_access},
124         {0x40800E11, "Smart Array 5i", &SA5B_access},
125         {0x40820E11, "Smart Array 532", &SA5B_access},
126         {0x40830E11, "Smart Array 5312", &SA5B_access},
127         {0x409A0E11, "Smart Array 641", &SA5_access},
128         {0x409B0E11, "Smart Array 642", &SA5_access},
129         {0x409C0E11, "Smart Array 6400", &SA5_access},
130         {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131         {0x40910E11, "Smart Array 6i", &SA5_access},
132         {0x3225103C, "Smart Array P600", &SA5_access},
133         {0x3235103C, "Smart Array P400i", &SA5_access},
134         {0x3211103C, "Smart Array E200i", &SA5_access},
135         {0x3212103C, "Smart Array E200", &SA5_access},
136         {0x3213103C, "Smart Array E200i", &SA5_access},
137         {0x3214103C, "Smart Array E200i", &SA5_access},
138         {0x3215103C, "Smart Array E200i", &SA5_access},
139         {0x3237103C, "Smart Array E500", &SA5_access},
140 /* controllers below this line are also supported by the hpsa driver. */
141 #define HPSA_BOUNDARY 0x3223103C
142         {0x3223103C, "Smart Array P800", &SA5_access},
143         {0x3234103C, "Smart Array P400", &SA5_access},
144         {0x323D103C, "Smart Array P700m", &SA5_access},
145         {0x3241103C, "Smart Array P212", &SA5_access},
146         {0x3243103C, "Smart Array P410", &SA5_access},
147         {0x3245103C, "Smart Array P410i", &SA5_access},
148         {0x3247103C, "Smart Array P411", &SA5_access},
149         {0x3249103C, "Smart Array P812", &SA5_access},
150         {0x324A103C, "Smart Array P712m", &SA5_access},
151         {0x324B103C, "Smart Array P711m", &SA5_access},
152         {0x3250103C, "Smart Array", &SA5_access},
153         {0x3251103C, "Smart Array", &SA5_access},
154         {0x3252103C, "Smart Array", &SA5_access},
155         {0x3253103C, "Smart Array", &SA5_access},
156         {0x3254103C, "Smart Array", &SA5_access},
157 };
158
159 /* How long to wait (in milliseconds) for board to go into simple mode */
160 #define MAX_CONFIG_WAIT 30000
161 #define MAX_IOCTL_CONFIG_WAIT 1000
162
163 /*define how many times we will try a command because of bus resets */
164 #define MAX_CMD_RETRIES 3
165
166 #define MAX_CTLR        32
167
168 /* Originally cciss driver only supports 8 major numbers */
169 #define MAX_CTLR_ORIG   8
170
171 static ctlr_info_t *hba[MAX_CTLR];
172
173 static struct task_struct *cciss_scan_thread;
174 static DEFINE_MUTEX(scan_mutex);
175 static LIST_HEAD(scan_q);
176
177 static void do_cciss_request(struct request_queue *q);
178 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
179 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
180 static int cciss_open(struct block_device *bdev, fmode_t mode);
181 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
182 static int cciss_release(struct gendisk *disk, fmode_t mode);
183 static int do_ioctl(struct block_device *bdev, fmode_t mode,
184                     unsigned int cmd, unsigned long arg);
185 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
186                        unsigned int cmd, unsigned long arg);
187 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
188
189 static int cciss_revalidate(struct gendisk *disk);
190 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
191 static int deregister_disk(ctlr_info_t *h, int drv_index,
192                            int clear_all, int via_ioctl);
193
194 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
195                         sector_t *total_size, unsigned int *block_size);
196 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
197                         sector_t *total_size, unsigned int *block_size);
198 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
199                         sector_t total_size,
200                         unsigned int block_size, InquiryData_struct *inq_buff,
201                                    drive_info_struct *drv);
202 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
203 static void start_io(ctlr_info_t *h);
204 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
205                         __u8 page_code, unsigned char scsi3addr[],
206                         int cmd_type);
207 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
208         int attempt_retry);
209 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
210
211 static int add_to_scan_list(struct ctlr_info *h);
212 static int scan_thread(void *data);
213 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
214 static void cciss_hba_release(struct device *dev);
215 static void cciss_device_release(struct device *dev);
216 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
217 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
218 static inline u32 next_command(ctlr_info_t *h);
219 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
220         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
221         u64 *cfg_offset);
222 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
223         unsigned long *memory_bar);
224
225
226 /* performant mode helper functions */
227 static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
228                                 int *bucket_map);
229 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
230
231 #ifdef CONFIG_PROC_FS
232 static void cciss_procinit(ctlr_info_t *h);
233 #else
234 static void cciss_procinit(ctlr_info_t *h)
235 {
236 }
237 #endif                          /* CONFIG_PROC_FS */
238
239 #ifdef CONFIG_COMPAT
240 static int cciss_compat_ioctl(struct block_device *, fmode_t,
241                               unsigned, unsigned long);
242 #endif
243
244 static const struct block_device_operations cciss_fops = {
245         .owner = THIS_MODULE,
246         .open = cciss_unlocked_open,
247         .release = cciss_release,
248         .ioctl = do_ioctl,
249         .getgeo = cciss_getgeo,
250 #ifdef CONFIG_COMPAT
251         .compat_ioctl = cciss_compat_ioctl,
252 #endif
253         .revalidate_disk = cciss_revalidate,
254 };
255
256 /* set_performant_mode: Modify the tag for cciss performant
257  * set bit 0 for pull model, bits 3-1 for block fetch
258  * register number
259  */
260 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
261 {
262         if (likely(h->transMethod == CFGTBL_Trans_Performant))
263                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
264 }
265
266 /*
267  * Enqueuing and dequeuing functions for cmdlists.
268  */
269 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
270 {
271         hlist_add_head(&c->list, list);
272 }
273
274 static inline void removeQ(CommandList_struct *c)
275 {
276         /*
277          * After kexec/dump some commands might still
278          * be in flight, which the firmware will try
279          * to complete. Resetting the firmware doesn't work
280          * with old fw revisions, so we have to mark
281          * them off as 'stale' to prevent the driver from
282          * falling over.
283          */
284         if (WARN_ON(hlist_unhashed(&c->list))) {
285                 c->cmd_type = CMD_MSG_STALE;
286                 return;
287         }
288
289         hlist_del_init(&c->list);
290 }
291
292 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
293         CommandList_struct *c)
294 {
295         unsigned long flags;
296         set_performant_mode(h, c);
297         spin_lock_irqsave(&h->lock, flags);
298         addQ(&h->reqQ, c);
299         h->Qdepth++;
300         start_io(h);
301         spin_unlock_irqrestore(&h->lock, flags);
302 }
303
304 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
305         int nr_cmds)
306 {
307         int i;
308
309         if (!cmd_sg_list)
310                 return;
311         for (i = 0; i < nr_cmds; i++) {
312                 kfree(cmd_sg_list[i]);
313                 cmd_sg_list[i] = NULL;
314         }
315         kfree(cmd_sg_list);
316 }
317
318 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
319         ctlr_info_t *h, int chainsize, int nr_cmds)
320 {
321         int j;
322         SGDescriptor_struct **cmd_sg_list;
323
324         if (chainsize <= 0)
325                 return NULL;
326
327         cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
328         if (!cmd_sg_list)
329                 return NULL;
330
331         /* Build up chain blocks for each command */
332         for (j = 0; j < nr_cmds; j++) {
333                 /* Need a block of chainsized s/g elements. */
334                 cmd_sg_list[j] = kmalloc((chainsize *
335                         sizeof(*cmd_sg_list[j])), GFP_KERNEL);
336                 if (!cmd_sg_list[j]) {
337                         dev_err(&h->pdev->dev, "Cannot get memory "
338                                 "for s/g chains.\n");
339                         goto clean;
340                 }
341         }
342         return cmd_sg_list;
343 clean:
344         cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
345         return NULL;
346 }
347
348 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
349 {
350         SGDescriptor_struct *chain_sg;
351         u64bit temp64;
352
353         if (c->Header.SGTotal <= h->max_cmd_sgentries)
354                 return;
355
356         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
357         temp64.val32.lower = chain_sg->Addr.lower;
358         temp64.val32.upper = chain_sg->Addr.upper;
359         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
360 }
361
362 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
363         SGDescriptor_struct *chain_block, int len)
364 {
365         SGDescriptor_struct *chain_sg;
366         u64bit temp64;
367
368         chain_sg = &c->SG[h->max_cmd_sgentries - 1];
369         chain_sg->Ext = CCISS_SG_CHAIN;
370         chain_sg->Len = len;
371         temp64.val = pci_map_single(h->pdev, chain_block, len,
372                                 PCI_DMA_TODEVICE);
373         chain_sg->Addr.lower = temp64.val32.lower;
374         chain_sg->Addr.upper = temp64.val32.upper;
375 }
376
377 #include "cciss_scsi.c"         /* For SCSI tape support */
378
379 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
380         "UNKNOWN"
381 };
382 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
383
384 #ifdef CONFIG_PROC_FS
385
386 /*
387  * Report information about this controller.
388  */
389 #define ENG_GIG 1000000000
390 #define ENG_GIG_FACTOR (ENG_GIG/512)
391 #define ENGAGE_SCSI     "engage scsi"
392
393 static struct proc_dir_entry *proc_cciss;
394
395 static void cciss_seq_show_header(struct seq_file *seq)
396 {
397         ctlr_info_t *h = seq->private;
398
399         seq_printf(seq, "%s: HP %s Controller\n"
400                 "Board ID: 0x%08lx\n"
401                 "Firmware Version: %c%c%c%c\n"
402                 "IRQ: %d\n"
403                 "Logical drives: %d\n"
404                 "Current Q depth: %d\n"
405                 "Current # commands on controller: %d\n"
406                 "Max Q depth since init: %d\n"
407                 "Max # commands on controller since init: %d\n"
408                 "Max SG entries since init: %d\n",
409                 h->devname,
410                 h->product_name,
411                 (unsigned long)h->board_id,
412                 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
413                 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
414                 h->num_luns,
415                 h->Qdepth, h->commands_outstanding,
416                 h->maxQsinceinit, h->max_outstanding, h->maxSG);
417
418 #ifdef CONFIG_CISS_SCSI_TAPE
419         cciss_seq_tape_report(seq, h);
420 #endif /* CONFIG_CISS_SCSI_TAPE */
421 }
422
423 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
424 {
425         ctlr_info_t *h = seq->private;
426         unsigned long flags;
427
428         /* prevent displaying bogus info during configuration
429          * or deconfiguration of a logical volume
430          */
431         spin_lock_irqsave(&h->lock, flags);
432         if (h->busy_configuring) {
433                 spin_unlock_irqrestore(&h->lock, flags);
434                 return ERR_PTR(-EBUSY);
435         }
436         h->busy_configuring = 1;
437         spin_unlock_irqrestore(&h->lock, flags);
438
439         if (*pos == 0)
440                 cciss_seq_show_header(seq);
441
442         return pos;
443 }
444
445 static int cciss_seq_show(struct seq_file *seq, void *v)
446 {
447         sector_t vol_sz, vol_sz_frac;
448         ctlr_info_t *h = seq->private;
449         unsigned ctlr = h->ctlr;
450         loff_t *pos = v;
451         drive_info_struct *drv = h->drv[*pos];
452
453         if (*pos > h->highest_lun)
454                 return 0;
455
456         if (drv == NULL) /* it's possible for h->drv[] to have holes. */
457                 return 0;
458
459         if (drv->heads == 0)
460                 return 0;
461
462         vol_sz = drv->nr_blocks;
463         vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
464         vol_sz_frac *= 100;
465         sector_div(vol_sz_frac, ENG_GIG_FACTOR);
466
467         if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
468                 drv->raid_level = RAID_UNKNOWN;
469         seq_printf(seq, "cciss/c%dd%d:"
470                         "\t%4u.%02uGB\tRAID %s\n",
471                         ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
472                         raid_label[drv->raid_level]);
473         return 0;
474 }
475
476 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
477 {
478         ctlr_info_t *h = seq->private;
479
480         if (*pos > h->highest_lun)
481                 return NULL;
482         *pos += 1;
483
484         return pos;
485 }
486
487 static void cciss_seq_stop(struct seq_file *seq, void *v)
488 {
489         ctlr_info_t *h = seq->private;
490
491         /* Only reset h->busy_configuring if we succeeded in setting
492          * it during cciss_seq_start. */
493         if (v == ERR_PTR(-EBUSY))
494                 return;
495
496         h->busy_configuring = 0;
497 }
498
499 static const struct seq_operations cciss_seq_ops = {
500         .start = cciss_seq_start,
501         .show  = cciss_seq_show,
502         .next  = cciss_seq_next,
503         .stop  = cciss_seq_stop,
504 };
505
506 static int cciss_seq_open(struct inode *inode, struct file *file)
507 {
508         int ret = seq_open(file, &cciss_seq_ops);
509         struct seq_file *seq = file->private_data;
510
511         if (!ret)
512                 seq->private = PDE(inode)->data;
513
514         return ret;
515 }
516
517 static ssize_t
518 cciss_proc_write(struct file *file, const char __user *buf,
519                  size_t length, loff_t *ppos)
520 {
521         int err;
522         char *buffer;
523
524 #ifndef CONFIG_CISS_SCSI_TAPE
525         return -EINVAL;
526 #endif
527
528         if (!buf || length > PAGE_SIZE - 1)
529                 return -EINVAL;
530
531         buffer = (char *)__get_free_page(GFP_KERNEL);
532         if (!buffer)
533                 return -ENOMEM;
534
535         err = -EFAULT;
536         if (copy_from_user(buffer, buf, length))
537                 goto out;
538         buffer[length] = '\0';
539
540 #ifdef CONFIG_CISS_SCSI_TAPE
541         if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
542                 struct seq_file *seq = file->private_data;
543                 ctlr_info_t *h = seq->private;
544
545                 err = cciss_engage_scsi(h);
546                 if (err == 0)
547                         err = length;
548         } else
549 #endif /* CONFIG_CISS_SCSI_TAPE */
550                 err = -EINVAL;
551         /* might be nice to have "disengage" too, but it's not
552            safely possible. (only 1 module use count, lock issues.) */
553
554 out:
555         free_page((unsigned long)buffer);
556         return err;
557 }
558
559 static const struct file_operations cciss_proc_fops = {
560         .owner   = THIS_MODULE,
561         .open    = cciss_seq_open,
562         .read    = seq_read,
563         .llseek  = seq_lseek,
564         .release = seq_release,
565         .write   = cciss_proc_write,
566 };
567
568 static void __devinit cciss_procinit(ctlr_info_t *h)
569 {
570         struct proc_dir_entry *pde;
571
572         if (proc_cciss == NULL)
573                 proc_cciss = proc_mkdir("driver/cciss", NULL);
574         if (!proc_cciss)
575                 return;
576         pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
577                                         S_IROTH, proc_cciss,
578                                         &cciss_proc_fops, h);
579 }
580 #endif                          /* CONFIG_PROC_FS */
581
582 #define MAX_PRODUCT_NAME_LEN 19
583
584 #define to_hba(n) container_of(n, struct ctlr_info, dev)
585 #define to_drv(n) container_of(n, drive_info_struct, dev)
586
587 static ssize_t host_store_rescan(struct device *dev,
588                                  struct device_attribute *attr,
589                                  const char *buf, size_t count)
590 {
591         struct ctlr_info *h = to_hba(dev);
592
593         add_to_scan_list(h);
594         wake_up_process(cciss_scan_thread);
595         wait_for_completion_interruptible(&h->scan_wait);
596
597         return count;
598 }
599 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
600
601 static ssize_t dev_show_unique_id(struct device *dev,
602                                  struct device_attribute *attr,
603                                  char *buf)
604 {
605         drive_info_struct *drv = to_drv(dev);
606         struct ctlr_info *h = to_hba(drv->dev.parent);
607         __u8 sn[16];
608         unsigned long flags;
609         int ret = 0;
610
611         spin_lock_irqsave(&h->lock, flags);
612         if (h->busy_configuring)
613                 ret = -EBUSY;
614         else
615                 memcpy(sn, drv->serial_no, sizeof(sn));
616         spin_unlock_irqrestore(&h->lock, flags);
617
618         if (ret)
619                 return ret;
620         else
621                 return snprintf(buf, 16 * 2 + 2,
622                                 "%02X%02X%02X%02X%02X%02X%02X%02X"
623                                 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
624                                 sn[0], sn[1], sn[2], sn[3],
625                                 sn[4], sn[5], sn[6], sn[7],
626                                 sn[8], sn[9], sn[10], sn[11],
627                                 sn[12], sn[13], sn[14], sn[15]);
628 }
629 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
630
631 static ssize_t dev_show_vendor(struct device *dev,
632                                struct device_attribute *attr,
633                                char *buf)
634 {
635         drive_info_struct *drv = to_drv(dev);
636         struct ctlr_info *h = to_hba(drv->dev.parent);
637         char vendor[VENDOR_LEN + 1];
638         unsigned long flags;
639         int ret = 0;
640
641         spin_lock_irqsave(&h->lock, flags);
642         if (h->busy_configuring)
643                 ret = -EBUSY;
644         else
645                 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
646         spin_unlock_irqrestore(&h->lock, flags);
647
648         if (ret)
649                 return ret;
650         else
651                 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
652 }
653 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
654
655 static ssize_t dev_show_model(struct device *dev,
656                               struct device_attribute *attr,
657                               char *buf)
658 {
659         drive_info_struct *drv = to_drv(dev);
660         struct ctlr_info *h = to_hba(drv->dev.parent);
661         char model[MODEL_LEN + 1];
662         unsigned long flags;
663         int ret = 0;
664
665         spin_lock_irqsave(&h->lock, flags);
666         if (h->busy_configuring)
667                 ret = -EBUSY;
668         else
669                 memcpy(model, drv->model, MODEL_LEN + 1);
670         spin_unlock_irqrestore(&h->lock, flags);
671
672         if (ret)
673                 return ret;
674         else
675                 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
676 }
677 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
678
679 static ssize_t dev_show_rev(struct device *dev,
680                             struct device_attribute *attr,
681                             char *buf)
682 {
683         drive_info_struct *drv = to_drv(dev);
684         struct ctlr_info *h = to_hba(drv->dev.parent);
685         char rev[REV_LEN + 1];
686         unsigned long flags;
687         int ret = 0;
688
689         spin_lock_irqsave(&h->lock, flags);
690         if (h->busy_configuring)
691                 ret = -EBUSY;
692         else
693                 memcpy(rev, drv->rev, REV_LEN + 1);
694         spin_unlock_irqrestore(&h->lock, flags);
695
696         if (ret)
697                 return ret;
698         else
699                 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
700 }
701 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
702
703 static ssize_t cciss_show_lunid(struct device *dev,
704                                 struct device_attribute *attr, char *buf)
705 {
706         drive_info_struct *drv = to_drv(dev);
707         struct ctlr_info *h = to_hba(drv->dev.parent);
708         unsigned long flags;
709         unsigned char lunid[8];
710
711         spin_lock_irqsave(&h->lock, flags);
712         if (h->busy_configuring) {
713                 spin_unlock_irqrestore(&h->lock, flags);
714                 return -EBUSY;
715         }
716         if (!drv->heads) {
717                 spin_unlock_irqrestore(&h->lock, flags);
718                 return -ENOTTY;
719         }
720         memcpy(lunid, drv->LunID, sizeof(lunid));
721         spin_unlock_irqrestore(&h->lock, flags);
722         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
723                 lunid[0], lunid[1], lunid[2], lunid[3],
724                 lunid[4], lunid[5], lunid[6], lunid[7]);
725 }
726 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
727
728 static ssize_t cciss_show_raid_level(struct device *dev,
729                                      struct device_attribute *attr, char *buf)
730 {
731         drive_info_struct *drv = to_drv(dev);
732         struct ctlr_info *h = to_hba(drv->dev.parent);
733         int raid;
734         unsigned long flags;
735
736         spin_lock_irqsave(&h->lock, flags);
737         if (h->busy_configuring) {
738                 spin_unlock_irqrestore(&h->lock, flags);
739                 return -EBUSY;
740         }
741         raid = drv->raid_level;
742         spin_unlock_irqrestore(&h->lock, flags);
743         if (raid < 0 || raid > RAID_UNKNOWN)
744                 raid = RAID_UNKNOWN;
745
746         return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
747                         raid_label[raid]);
748 }
749 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
750
751 static ssize_t cciss_show_usage_count(struct device *dev,
752                                       struct device_attribute *attr, char *buf)
753 {
754         drive_info_struct *drv = to_drv(dev);
755         struct ctlr_info *h = to_hba(drv->dev.parent);
756         unsigned long flags;
757         int count;
758
759         spin_lock_irqsave(&h->lock, flags);
760         if (h->busy_configuring) {
761                 spin_unlock_irqrestore(&h->lock, flags);
762                 return -EBUSY;
763         }
764         count = drv->usage_count;
765         spin_unlock_irqrestore(&h->lock, flags);
766         return snprintf(buf, 20, "%d\n", count);
767 }
768 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
769
770 static struct attribute *cciss_host_attrs[] = {
771         &dev_attr_rescan.attr,
772         NULL
773 };
774
775 static struct attribute_group cciss_host_attr_group = {
776         .attrs = cciss_host_attrs,
777 };
778
779 static const struct attribute_group *cciss_host_attr_groups[] = {
780         &cciss_host_attr_group,
781         NULL
782 };
783
784 static struct device_type cciss_host_type = {
785         .name           = "cciss_host",
786         .groups         = cciss_host_attr_groups,
787         .release        = cciss_hba_release,
788 };
789
790 static struct attribute *cciss_dev_attrs[] = {
791         &dev_attr_unique_id.attr,
792         &dev_attr_model.attr,
793         &dev_attr_vendor.attr,
794         &dev_attr_rev.attr,
795         &dev_attr_lunid.attr,
796         &dev_attr_raid_level.attr,
797         &dev_attr_usage_count.attr,
798         NULL
799 };
800
801 static struct attribute_group cciss_dev_attr_group = {
802         .attrs = cciss_dev_attrs,
803 };
804
805 static const struct attribute_group *cciss_dev_attr_groups[] = {
806         &cciss_dev_attr_group,
807         NULL
808 };
809
810 static struct device_type cciss_dev_type = {
811         .name           = "cciss_device",
812         .groups         = cciss_dev_attr_groups,
813         .release        = cciss_device_release,
814 };
815
816 static struct bus_type cciss_bus_type = {
817         .name           = "cciss",
818 };
819
820 /*
821  * cciss_hba_release is called when the reference count
822  * of h->dev goes to zero.
823  */
824 static void cciss_hba_release(struct device *dev)
825 {
826         /*
827          * nothing to do, but need this to avoid a warning
828          * about not having a release handler from lib/kref.c.
829          */
830 }
831
832 /*
833  * Initialize sysfs entry for each controller.  This sets up and registers
834  * the 'cciss#' directory for each individual controller under
835  * /sys/bus/pci/devices/<dev>/.
836  */
837 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
838 {
839         device_initialize(&h->dev);
840         h->dev.type = &cciss_host_type;
841         h->dev.bus = &cciss_bus_type;
842         dev_set_name(&h->dev, "%s", h->devname);
843         h->dev.parent = &h->pdev->dev;
844
845         return device_add(&h->dev);
846 }
847
848 /*
849  * Remove sysfs entries for an hba.
850  */
851 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
852 {
853         device_del(&h->dev);
854         put_device(&h->dev); /* final put. */
855 }
856
857 /* cciss_device_release is called when the reference count
858  * of h->drv[x]dev goes to zero.
859  */
860 static void cciss_device_release(struct device *dev)
861 {
862         drive_info_struct *drv = to_drv(dev);
863         kfree(drv);
864 }
865
866 /*
867  * Initialize sysfs for each logical drive.  This sets up and registers
868  * the 'c#d#' directory for each individual logical drive under
869  * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
870  * /sys/block/cciss!c#d# to this entry.
871  */
872 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
873                                        int drv_index)
874 {
875         struct device *dev;
876
877         if (h->drv[drv_index]->device_initialized)
878                 return 0;
879
880         dev = &h->drv[drv_index]->dev;
881         device_initialize(dev);
882         dev->type = &cciss_dev_type;
883         dev->bus = &cciss_bus_type;
884         dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
885         dev->parent = &h->dev;
886         h->drv[drv_index]->device_initialized = 1;
887         return device_add(dev);
888 }
889
890 /*
891  * Remove sysfs entries for a logical drive.
892  */
893 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
894         int ctlr_exiting)
895 {
896         struct device *dev = &h->drv[drv_index]->dev;
897
898         /* special case for c*d0, we only destroy it on controller exit */
899         if (drv_index == 0 && !ctlr_exiting)
900                 return;
901
902         device_del(dev);
903         put_device(dev); /* the "final" put. */
904         h->drv[drv_index] = NULL;
905 }
906
907 /*
908  * For operations that cannot sleep, a command block is allocated at init,
909  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
910  * which ones are free or in use.
911  */
912 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
913 {
914         CommandList_struct *c;
915         int i;
916         u64bit temp64;
917         dma_addr_t cmd_dma_handle, err_dma_handle;
918
919         do {
920                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
921                 if (i == h->nr_cmds)
922                         return NULL;
923         } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
924                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
925         c = h->cmd_pool + i;
926         memset(c, 0, sizeof(CommandList_struct));
927         cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
928         c->err_info = h->errinfo_pool + i;
929         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
930         err_dma_handle = h->errinfo_pool_dhandle
931             + i * sizeof(ErrorInfo_struct);
932         h->nr_allocs++;
933
934         c->cmdindex = i;
935
936         INIT_HLIST_NODE(&c->list);
937         c->busaddr = (__u32) cmd_dma_handle;
938         temp64.val = (__u64) err_dma_handle;
939         c->ErrDesc.Addr.lower = temp64.val32.lower;
940         c->ErrDesc.Addr.upper = temp64.val32.upper;
941         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
942
943         c->ctlr = h->ctlr;
944         return c;
945 }
946
947 /* allocate a command using pci_alloc_consistent, used for ioctls,
948  * etc., not for the main i/o path.
949  */
950 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
951 {
952         CommandList_struct *c;
953         u64bit temp64;
954         dma_addr_t cmd_dma_handle, err_dma_handle;
955
956         c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
957                 sizeof(CommandList_struct), &cmd_dma_handle);
958         if (c == NULL)
959                 return NULL;
960         memset(c, 0, sizeof(CommandList_struct));
961
962         c->cmdindex = -1;
963
964         c->err_info = (ErrorInfo_struct *)
965             pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
966                     &err_dma_handle);
967
968         if (c->err_info == NULL) {
969                 pci_free_consistent(h->pdev,
970                         sizeof(CommandList_struct), c, cmd_dma_handle);
971                 return NULL;
972         }
973         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
974
975         INIT_HLIST_NODE(&c->list);
976         c->busaddr = (__u32) cmd_dma_handle;
977         temp64.val = (__u64) err_dma_handle;
978         c->ErrDesc.Addr.lower = temp64.val32.lower;
979         c->ErrDesc.Addr.upper = temp64.val32.upper;
980         c->ErrDesc.Len = sizeof(ErrorInfo_struct);
981
982         c->ctlr = h->ctlr;
983         return c;
984 }
985
986 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
987 {
988         int i;
989
990         i = c - h->cmd_pool;
991         clear_bit(i & (BITS_PER_LONG - 1),
992                   h->cmd_pool_bits + (i / BITS_PER_LONG));
993         h->nr_frees++;
994 }
995
996 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
997 {
998         u64bit temp64;
999
1000         temp64.val32.lower = c->ErrDesc.Addr.lower;
1001         temp64.val32.upper = c->ErrDesc.Addr.upper;
1002         pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1003                             c->err_info, (dma_addr_t) temp64.val);
1004         pci_free_consistent(h->pdev, sizeof(CommandList_struct),
1005                             c, (dma_addr_t) c->busaddr);
1006 }
1007
1008 static inline ctlr_info_t *get_host(struct gendisk *disk)
1009 {
1010         return disk->queue->queuedata;
1011 }
1012
1013 static inline drive_info_struct *get_drv(struct gendisk *disk)
1014 {
1015         return disk->private_data;
1016 }
1017
1018 /*
1019  * Open.  Make sure the device is really there.
1020  */
1021 static int cciss_open(struct block_device *bdev, fmode_t mode)
1022 {
1023         ctlr_info_t *h = get_host(bdev->bd_disk);
1024         drive_info_struct *drv = get_drv(bdev->bd_disk);
1025
1026         dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1027         if (drv->busy_configuring)
1028                 return -EBUSY;
1029         /*
1030          * Root is allowed to open raw volume zero even if it's not configured
1031          * so array config can still work. Root is also allowed to open any
1032          * volume that has a LUN ID, so it can issue IOCTL to reread the
1033          * disk information.  I don't think I really like this
1034          * but I'm already using way to many device nodes to claim another one
1035          * for "raw controller".
1036          */
1037         if (drv->heads == 0) {
1038                 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1039                         /* if not node 0 make sure it is a partition = 0 */
1040                         if (MINOR(bdev->bd_dev) & 0x0f) {
1041                                 return -ENXIO;
1042                                 /* if it is, make sure we have a LUN ID */
1043                         } else if (memcmp(drv->LunID, CTLR_LUNID,
1044                                 sizeof(drv->LunID))) {
1045                                 return -ENXIO;
1046                         }
1047                 }
1048                 if (!capable(CAP_SYS_ADMIN))
1049                         return -EPERM;
1050         }
1051         drv->usage_count++;
1052         h->usage_count++;
1053         return 0;
1054 }
1055
1056 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1057 {
1058         int ret;
1059
1060         lock_kernel();
1061         ret = cciss_open(bdev, mode);
1062         unlock_kernel();
1063
1064         return ret;
1065 }
1066
1067 /*
1068  * Close.  Sync first.
1069  */
1070 static int cciss_release(struct gendisk *disk, fmode_t mode)
1071 {
1072         ctlr_info_t *h;
1073         drive_info_struct *drv;
1074
1075         lock_kernel();
1076         h = get_host(disk);
1077         drv = get_drv(disk);
1078         dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1079         drv->usage_count--;
1080         h->usage_count--;
1081         unlock_kernel();
1082         return 0;
1083 }
1084
1085 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1086                     unsigned cmd, unsigned long arg)
1087 {
1088         int ret;
1089         lock_kernel();
1090         ret = cciss_ioctl(bdev, mode, cmd, arg);
1091         unlock_kernel();
1092         return ret;
1093 }
1094
1095 #ifdef CONFIG_COMPAT
1096
1097 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1098                                   unsigned cmd, unsigned long arg);
1099 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1100                                       unsigned cmd, unsigned long arg);
1101
1102 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1103                               unsigned cmd, unsigned long arg)
1104 {
1105         switch (cmd) {
1106         case CCISS_GETPCIINFO:
1107         case CCISS_GETINTINFO:
1108         case CCISS_SETINTINFO:
1109         case CCISS_GETNODENAME:
1110         case CCISS_SETNODENAME:
1111         case CCISS_GETHEARTBEAT:
1112         case CCISS_GETBUSTYPES:
1113         case CCISS_GETFIRMVER:
1114         case CCISS_GETDRIVVER:
1115         case CCISS_REVALIDVOLS:
1116         case CCISS_DEREGDISK:
1117         case CCISS_REGNEWDISK:
1118         case CCISS_REGNEWD:
1119         case CCISS_RESCANDISK:
1120         case CCISS_GETLUNINFO:
1121                 return do_ioctl(bdev, mode, cmd, arg);
1122
1123         case CCISS_PASSTHRU32:
1124                 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1125         case CCISS_BIG_PASSTHRU32:
1126                 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1127
1128         default:
1129                 return -ENOIOCTLCMD;
1130         }
1131 }
1132
1133 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1134                                   unsigned cmd, unsigned long arg)
1135 {
1136         IOCTL32_Command_struct __user *arg32 =
1137             (IOCTL32_Command_struct __user *) arg;
1138         IOCTL_Command_struct arg64;
1139         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1140         int err;
1141         u32 cp;
1142
1143         err = 0;
1144         err |=
1145             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1146                            sizeof(arg64.LUN_info));
1147         err |=
1148             copy_from_user(&arg64.Request, &arg32->Request,
1149                            sizeof(arg64.Request));
1150         err |=
1151             copy_from_user(&arg64.error_info, &arg32->error_info,
1152                            sizeof(arg64.error_info));
1153         err |= get_user(arg64.buf_size, &arg32->buf_size);
1154         err |= get_user(cp, &arg32->buf);
1155         arg64.buf = compat_ptr(cp);
1156         err |= copy_to_user(p, &arg64, sizeof(arg64));
1157
1158         if (err)
1159                 return -EFAULT;
1160
1161         err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1162         if (err)
1163                 return err;
1164         err |=
1165             copy_in_user(&arg32->error_info, &p->error_info,
1166                          sizeof(arg32->error_info));
1167         if (err)
1168                 return -EFAULT;
1169         return err;
1170 }
1171
1172 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1173                                       unsigned cmd, unsigned long arg)
1174 {
1175         BIG_IOCTL32_Command_struct __user *arg32 =
1176             (BIG_IOCTL32_Command_struct __user *) arg;
1177         BIG_IOCTL_Command_struct arg64;
1178         BIG_IOCTL_Command_struct __user *p =
1179             compat_alloc_user_space(sizeof(arg64));
1180         int err;
1181         u32 cp;
1182
1183         err = 0;
1184         err |=
1185             copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1186                            sizeof(arg64.LUN_info));
1187         err |=
1188             copy_from_user(&arg64.Request, &arg32->Request,
1189                            sizeof(arg64.Request));
1190         err |=
1191             copy_from_user(&arg64.error_info, &arg32->error_info,
1192                            sizeof(arg64.error_info));
1193         err |= get_user(arg64.buf_size, &arg32->buf_size);
1194         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1195         err |= get_user(cp, &arg32->buf);
1196         arg64.buf = compat_ptr(cp);
1197         err |= copy_to_user(p, &arg64, sizeof(arg64));
1198
1199         if (err)
1200                 return -EFAULT;
1201
1202         err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1203         if (err)
1204                 return err;
1205         err |=
1206             copy_in_user(&arg32->error_info, &p->error_info,
1207                          sizeof(arg32->error_info));
1208         if (err)
1209                 return -EFAULT;
1210         return err;
1211 }
1212 #endif
1213
1214 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1215 {
1216         drive_info_struct *drv = get_drv(bdev->bd_disk);
1217
1218         if (!drv->cylinders)
1219                 return -ENXIO;
1220
1221         geo->heads = drv->heads;
1222         geo->sectors = drv->sectors;
1223         geo->cylinders = drv->cylinders;
1224         return 0;
1225 }
1226
1227 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1228 {
1229         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1230                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1231                 (void)check_for_unit_attention(h, c);
1232 }
1233
1234 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1235 {
1236         cciss_pci_info_struct pciinfo;
1237
1238         if (!argp)
1239                 return -EINVAL;
1240         pciinfo.domain = pci_domain_nr(h->pdev->bus);
1241         pciinfo.bus = h->pdev->bus->number;
1242         pciinfo.dev_fn = h->pdev->devfn;
1243         pciinfo.board_id = h->board_id;
1244         if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1245                 return -EFAULT;
1246         return 0;
1247 }
1248
1249 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1250 {
1251         cciss_coalint_struct intinfo;
1252
1253         if (!argp)
1254                 return -EINVAL;
1255         intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1256         intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1257         if (copy_to_user
1258             (argp, &intinfo, sizeof(cciss_coalint_struct)))
1259                 return -EFAULT;
1260         return 0;
1261 }
1262
1263 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1264 {
1265         cciss_coalint_struct intinfo;
1266         unsigned long flags;
1267         int i;
1268
1269         if (!argp)
1270                 return -EINVAL;
1271         if (!capable(CAP_SYS_ADMIN))
1272                 return -EPERM;
1273         if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1274                 return -EFAULT;
1275         if ((intinfo.delay == 0) && (intinfo.count == 0))
1276                 return -EINVAL;
1277         spin_lock_irqsave(&h->lock, flags);
1278         /* Update the field, and then ring the doorbell */
1279         writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1280         writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1281         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1282
1283         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1284                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1285                         break;
1286                 udelay(1000); /* delay and try again */
1287         }
1288         spin_unlock_irqrestore(&h->lock, flags);
1289         if (i >= MAX_IOCTL_CONFIG_WAIT)
1290                 return -EAGAIN;
1291         return 0;
1292 }
1293
1294 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1295 {
1296         NodeName_type NodeName;
1297         int i;
1298
1299         if (!argp)
1300                 return -EINVAL;
1301         for (i = 0; i < 16; i++)
1302                 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1303         if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1304                 return -EFAULT;
1305         return 0;
1306 }
1307
1308 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1309 {
1310         NodeName_type NodeName;
1311         unsigned long flags;
1312         int i;
1313
1314         if (!argp)
1315                 return -EINVAL;
1316         if (!capable(CAP_SYS_ADMIN))
1317                 return -EPERM;
1318         if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1319                 return -EFAULT;
1320         spin_lock_irqsave(&h->lock, flags);
1321         /* Update the field, and then ring the doorbell */
1322         for (i = 0; i < 16; i++)
1323                 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1324         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1325         for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1326                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1327                         break;
1328                 udelay(1000); /* delay and try again */
1329         }
1330         spin_unlock_irqrestore(&h->lock, flags);
1331         if (i >= MAX_IOCTL_CONFIG_WAIT)
1332                 return -EAGAIN;
1333         return 0;
1334 }
1335
1336 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1337 {
1338         Heartbeat_type heartbeat;
1339
1340         if (!argp)
1341                 return -EINVAL;
1342         heartbeat = readl(&h->cfgtable->HeartBeat);
1343         if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1344                 return -EFAULT;
1345         return 0;
1346 }
1347
1348 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1349 {
1350         BusTypes_type BusTypes;
1351
1352         if (!argp)
1353                 return -EINVAL;
1354         BusTypes = readl(&h->cfgtable->BusTypes);
1355         if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1356                 return -EFAULT;
1357         return 0;
1358 }
1359
1360 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1361 {
1362         FirmwareVer_type firmware;
1363
1364         if (!argp)
1365                 return -EINVAL;
1366         memcpy(firmware, h->firm_ver, 4);
1367
1368         if (copy_to_user
1369             (argp, firmware, sizeof(FirmwareVer_type)))
1370                 return -EFAULT;
1371         return 0;
1372 }
1373
1374 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1375                        unsigned int cmd, unsigned long arg)
1376 {
1377         struct gendisk *disk = bdev->bd_disk;
1378         ctlr_info_t *h = get_host(disk);
1379         drive_info_struct *drv = get_drv(disk);
1380         void __user *argp = (void __user *)arg;
1381
1382         dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1383                 cmd, arg);
1384         switch (cmd) {
1385         case CCISS_GETPCIINFO:
1386                 return cciss_getpciinfo(h, argp);
1387         case CCISS_GETINTINFO:
1388                 return cciss_getintinfo(h, argp);
1389         case CCISS_SETINTINFO:
1390                 return cciss_setintinfo(h, argp);
1391         case CCISS_GETNODENAME:
1392                 return cciss_getnodename(h, argp);
1393         case CCISS_SETNODENAME:
1394                 return cciss_setnodename(h, argp);
1395         case CCISS_GETHEARTBEAT:
1396                 return cciss_getheartbeat(h, argp);
1397         case CCISS_GETBUSTYPES:
1398                 return cciss_getbustypes(h, argp);
1399         case CCISS_GETFIRMVER:
1400                 return cciss_getfirmver(h, argp);
1401         case CCISS_GETDRIVVER:
1402                 {
1403                         DriverVer_type DriverVer = DRIVER_VERSION;
1404
1405                         if (!arg)
1406                                 return -EINVAL;
1407
1408                         if (copy_to_user
1409                             (argp, &DriverVer, sizeof(DriverVer_type)))
1410                                 return -EFAULT;
1411                         return 0;
1412                 }
1413
1414         case CCISS_DEREGDISK:
1415         case CCISS_REGNEWD:
1416         case CCISS_REVALIDVOLS:
1417                 return rebuild_lun_table(h, 0, 1);
1418
1419         case CCISS_GETLUNINFO:{
1420                         LogvolInfo_struct luninfo;
1421
1422                         memcpy(&luninfo.LunID, drv->LunID,
1423                                 sizeof(luninfo.LunID));
1424                         luninfo.num_opens = drv->usage_count;
1425                         luninfo.num_parts = 0;
1426                         if (copy_to_user(argp, &luninfo,
1427                                          sizeof(LogvolInfo_struct)))
1428                                 return -EFAULT;
1429                         return 0;
1430                 }
1431         case CCISS_PASSTHRU:
1432                 {
1433                         IOCTL_Command_struct iocommand;
1434                         CommandList_struct *c;
1435                         char *buff = NULL;
1436                         u64bit temp64;
1437                         DECLARE_COMPLETION_ONSTACK(wait);
1438
1439                         if (!arg)
1440                                 return -EINVAL;
1441
1442                         if (!capable(CAP_SYS_RAWIO))
1443                                 return -EPERM;
1444
1445                         if (copy_from_user
1446                             (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1447                                 return -EFAULT;
1448                         if ((iocommand.buf_size < 1) &&
1449                             (iocommand.Request.Type.Direction != XFER_NONE)) {
1450                                 return -EINVAL;
1451                         }
1452 #if 0                           /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1453                         /* Check kmalloc limits */
1454                         if (iocommand.buf_size > 128000)
1455                                 return -EINVAL;
1456 #endif
1457                         if (iocommand.buf_size > 0) {
1458                                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1459                                 if (buff == NULL)
1460                                         return -EFAULT;
1461                         }
1462                         if (iocommand.Request.Type.Direction == XFER_WRITE) {
1463                                 /* Copy the data into the buffer we created */
1464                                 if (copy_from_user
1465                                     (buff, iocommand.buf, iocommand.buf_size)) {
1466                                         kfree(buff);
1467                                         return -EFAULT;
1468                                 }
1469                         } else {
1470                                 memset(buff, 0, iocommand.buf_size);
1471                         }
1472                         c = cmd_special_alloc(h);
1473                         if (!c) {
1474                                 kfree(buff);
1475                                 return -ENOMEM;
1476                         }
1477                         /* Fill in the command type */
1478                         c->cmd_type = CMD_IOCTL_PEND;
1479                         /* Fill in Command Header */
1480                         c->Header.ReplyQueue = 0;   /* unused in simple mode */
1481                         if (iocommand.buf_size > 0) /* buffer to fill */
1482                         {
1483                                 c->Header.SGList = 1;
1484                                 c->Header.SGTotal = 1;
1485                         } else /* no buffers to fill */
1486                         {
1487                                 c->Header.SGList = 0;
1488                                 c->Header.SGTotal = 0;
1489                         }
1490                         c->Header.LUN = iocommand.LUN_info;
1491                         /* use the kernel address the cmd block for tag */
1492                         c->Header.Tag.lower = c->busaddr;
1493
1494                         /* Fill in Request block */
1495                         c->Request = iocommand.Request;
1496
1497                         /* Fill in the scatter gather information */
1498                         if (iocommand.buf_size > 0) {
1499                                 temp64.val = pci_map_single(h->pdev, buff,
1500                                         iocommand.buf_size,
1501                                         PCI_DMA_BIDIRECTIONAL);
1502                                 c->SG[0].Addr.lower = temp64.val32.lower;
1503                                 c->SG[0].Addr.upper = temp64.val32.upper;
1504                                 c->SG[0].Len = iocommand.buf_size;
1505                                 c->SG[0].Ext = 0;  /* we are not chaining */
1506                         }
1507                         c->waiting = &wait;
1508
1509                         enqueue_cmd_and_start_io(h, c);
1510                         wait_for_completion(&wait);
1511
1512                         /* unlock the buffers from DMA */
1513                         temp64.val32.lower = c->SG[0].Addr.lower;
1514                         temp64.val32.upper = c->SG[0].Addr.upper;
1515                         pci_unmap_single(h->pdev, (dma_addr_t) temp64.val,
1516                                          iocommand.buf_size,
1517                                          PCI_DMA_BIDIRECTIONAL);
1518
1519                         check_ioctl_unit_attention(h, c);
1520
1521                         /* Copy the error information out */
1522                         iocommand.error_info = *(c->err_info);
1523                         if (copy_to_user
1524                             (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1525                                 kfree(buff);
1526                                 cmd_special_free(h, c);
1527                                 return -EFAULT;
1528                         }
1529
1530                         if (iocommand.Request.Type.Direction == XFER_READ) {
1531                                 /* Copy the data out of the buffer we created */
1532                                 if (copy_to_user
1533                                     (iocommand.buf, buff, iocommand.buf_size)) {
1534                                         kfree(buff);
1535                                         cmd_special_free(h, c);
1536                                         return -EFAULT;
1537                                 }
1538                         }
1539                         kfree(buff);
1540                         cmd_special_free(h, c);
1541                         return 0;
1542                 }
1543         case CCISS_BIG_PASSTHRU:{
1544                         BIG_IOCTL_Command_struct *ioc;
1545                         CommandList_struct *c;
1546                         unsigned char **buff = NULL;
1547                         int *buff_size = NULL;
1548                         u64bit temp64;
1549                         BYTE sg_used = 0;
1550                         int status = 0;
1551                         int i;
1552                         DECLARE_COMPLETION_ONSTACK(wait);
1553                         __u32 left;
1554                         __u32 sz;
1555                         BYTE __user *data_ptr;
1556
1557                         if (!arg)
1558                                 return -EINVAL;
1559                         if (!capable(CAP_SYS_RAWIO))
1560                                 return -EPERM;
1561                         ioc = (BIG_IOCTL_Command_struct *)
1562                             kmalloc(sizeof(*ioc), GFP_KERNEL);
1563                         if (!ioc) {
1564                                 status = -ENOMEM;
1565                                 goto cleanup1;
1566                         }
1567                         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1568                                 status = -EFAULT;
1569                                 goto cleanup1;
1570                         }
1571                         if ((ioc->buf_size < 1) &&
1572                             (ioc->Request.Type.Direction != XFER_NONE)) {
1573                                 status = -EINVAL;
1574                                 goto cleanup1;
1575                         }
1576                         /* Check kmalloc limits  using all SGs */
1577                         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1578                                 status = -EINVAL;
1579                                 goto cleanup1;
1580                         }
1581                         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1582                                 status = -EINVAL;
1583                                 goto cleanup1;
1584                         }
1585                         buff =
1586                             kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1587                         if (!buff) {
1588                                 status = -ENOMEM;
1589                                 goto cleanup1;
1590                         }
1591                         buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1592                                                    GFP_KERNEL);
1593                         if (!buff_size) {
1594                                 status = -ENOMEM;
1595                                 goto cleanup1;
1596                         }
1597                         left = ioc->buf_size;
1598                         data_ptr = ioc->buf;
1599                         while (left) {
1600                                 sz = (left >
1601                                       ioc->malloc_size) ? ioc->
1602                                     malloc_size : left;
1603                                 buff_size[sg_used] = sz;
1604                                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1605                                 if (buff[sg_used] == NULL) {
1606                                         status = -ENOMEM;
1607                                         goto cleanup1;
1608                                 }
1609                                 if (ioc->Request.Type.Direction == XFER_WRITE) {
1610                                         if (copy_from_user
1611                                             (buff[sg_used], data_ptr, sz)) {
1612                                                 status = -EFAULT;
1613                                                 goto cleanup1;
1614                                         }
1615                                 } else {
1616                                         memset(buff[sg_used], 0, sz);
1617                                 }
1618                                 left -= sz;
1619                                 data_ptr += sz;
1620                                 sg_used++;
1621                         }
1622                         c = cmd_special_alloc(h);
1623                         if (!c) {
1624                                 status = -ENOMEM;
1625                                 goto cleanup1;
1626                         }
1627                         c->cmd_type = CMD_IOCTL_PEND;
1628                         c->Header.ReplyQueue = 0;
1629
1630                         if (ioc->buf_size > 0) {
1631                                 c->Header.SGList = sg_used;
1632                                 c->Header.SGTotal = sg_used;
1633                         } else {
1634                                 c->Header.SGList = 0;
1635                                 c->Header.SGTotal = 0;
1636                         }
1637                         c->Header.LUN = ioc->LUN_info;
1638                         c->Header.Tag.lower = c->busaddr;
1639
1640                         c->Request = ioc->Request;
1641                         if (ioc->buf_size > 0) {
1642                                 for (i = 0; i < sg_used; i++) {
1643                                         temp64.val =
1644                                             pci_map_single(h->pdev, buff[i],
1645                                                     buff_size[i],
1646                                                     PCI_DMA_BIDIRECTIONAL);
1647                                         c->SG[i].Addr.lower =
1648                                             temp64.val32.lower;
1649                                         c->SG[i].Addr.upper =
1650                                             temp64.val32.upper;
1651                                         c->SG[i].Len = buff_size[i];
1652                                         c->SG[i].Ext = 0;       /* we are not chaining */
1653                                 }
1654                         }
1655                         c->waiting = &wait;
1656                         enqueue_cmd_and_start_io(h, c);
1657                         wait_for_completion(&wait);
1658                         /* unlock the buffers from DMA */
1659                         for (i = 0; i < sg_used; i++) {
1660                                 temp64.val32.lower = c->SG[i].Addr.lower;
1661                                 temp64.val32.upper = c->SG[i].Addr.upper;
1662                                 pci_unmap_single(h->pdev,
1663                                         (dma_addr_t) temp64.val, buff_size[i],
1664                                         PCI_DMA_BIDIRECTIONAL);
1665                         }
1666                         check_ioctl_unit_attention(h, c);
1667                         /* Copy the error information out */
1668                         ioc->error_info = *(c->err_info);
1669                         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1670                                 cmd_special_free(h, c);
1671                                 status = -EFAULT;
1672                                 goto cleanup1;
1673                         }
1674                         if (ioc->Request.Type.Direction == XFER_READ) {
1675                                 /* Copy the data out of the buffer we created */
1676                                 BYTE __user *ptr = ioc->buf;
1677                                 for (i = 0; i < sg_used; i++) {
1678                                         if (copy_to_user
1679                                             (ptr, buff[i], buff_size[i])) {
1680                                                 cmd_special_free(h, c);
1681                                                 status = -EFAULT;
1682                                                 goto cleanup1;
1683                                         }
1684                                         ptr += buff_size[i];
1685                                 }
1686                         }
1687                         cmd_special_free(h, c);
1688                         status = 0;
1689                       cleanup1:
1690                         if (buff) {
1691                                 for (i = 0; i < sg_used; i++)
1692                                         kfree(buff[i]);
1693                                 kfree(buff);
1694                         }
1695                         kfree(buff_size);
1696                         kfree(ioc);
1697                         return status;
1698                 }
1699
1700         /* scsi_cmd_ioctl handles these, below, though some are not */
1701         /* very meaningful for cciss.  SG_IO is the main one people want. */
1702
1703         case SG_GET_VERSION_NUM:
1704         case SG_SET_TIMEOUT:
1705         case SG_GET_TIMEOUT:
1706         case SG_GET_RESERVED_SIZE:
1707         case SG_SET_RESERVED_SIZE:
1708         case SG_EMULATED_HOST:
1709         case SG_IO:
1710         case SCSI_IOCTL_SEND_COMMAND:
1711                 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1712
1713         /* scsi_cmd_ioctl would normally handle these, below, but */
1714         /* they aren't a good fit for cciss, as CD-ROMs are */
1715         /* not supported, and we don't have any bus/target/lun */
1716         /* which we present to the kernel. */
1717
1718         case CDROM_SEND_PACKET:
1719         case CDROMCLOSETRAY:
1720         case CDROMEJECT:
1721         case SCSI_IOCTL_GET_IDLUN:
1722         case SCSI_IOCTL_GET_BUS_NUMBER:
1723         default:
1724                 return -ENOTTY;
1725         }
1726 }
1727
1728 static void cciss_check_queues(ctlr_info_t *h)
1729 {
1730         int start_queue = h->next_to_run;
1731         int i;
1732
1733         /* check to see if we have maxed out the number of commands that can
1734          * be placed on the queue.  If so then exit.  We do this check here
1735          * in case the interrupt we serviced was from an ioctl and did not
1736          * free any new commands.
1737          */
1738         if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1739                 return;
1740
1741         /* We have room on the queue for more commands.  Now we need to queue
1742          * them up.  We will also keep track of the next queue to run so
1743          * that every queue gets a chance to be started first.
1744          */
1745         for (i = 0; i < h->highest_lun + 1; i++) {
1746                 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1747                 /* make sure the disk has been added and the drive is real
1748                  * because this can be called from the middle of init_one.
1749                  */
1750                 if (!h->drv[curr_queue])
1751                         continue;
1752                 if (!(h->drv[curr_queue]->queue) ||
1753                         !(h->drv[curr_queue]->heads))
1754                         continue;
1755                 blk_start_queue(h->gendisk[curr_queue]->queue);
1756
1757                 /* check to see if we have maxed out the number of commands
1758                  * that can be placed on the queue.
1759                  */
1760                 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1761                         if (curr_queue == start_queue) {
1762                                 h->next_to_run =
1763                                     (start_queue + 1) % (h->highest_lun + 1);
1764                                 break;
1765                         } else {
1766                                 h->next_to_run = curr_queue;
1767                                 break;
1768                         }
1769                 }
1770         }
1771 }
1772
1773 static void cciss_softirq_done(struct request *rq)
1774 {
1775         CommandList_struct *c = rq->completion_data;
1776         ctlr_info_t *h = hba[c->ctlr];
1777         SGDescriptor_struct *curr_sg = c->SG;
1778         u64bit temp64;
1779         unsigned long flags;
1780         int i, ddir;
1781         int sg_index = 0;
1782
1783         if (c->Request.Type.Direction == XFER_READ)
1784                 ddir = PCI_DMA_FROMDEVICE;
1785         else
1786                 ddir = PCI_DMA_TODEVICE;
1787
1788         /* command did not need to be retried */
1789         /* unmap the DMA mapping for all the scatter gather elements */
1790         for (i = 0; i < c->Header.SGList; i++) {
1791                 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1792                         cciss_unmap_sg_chain_block(h, c);
1793                         /* Point to the next block */
1794                         curr_sg = h->cmd_sg_list[c->cmdindex];
1795                         sg_index = 0;
1796                 }
1797                 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1798                 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1799                 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1800                                 ddir);
1801                 ++sg_index;
1802         }
1803
1804         dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1805
1806         /* set the residual count for pc requests */
1807         if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1808                 rq->resid_len = c->err_info->ResidualCnt;
1809
1810         blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1811
1812         spin_lock_irqsave(&h->lock, flags);
1813         cmd_free(h, c);
1814         cciss_check_queues(h);
1815         spin_unlock_irqrestore(&h->lock, flags);
1816 }
1817
1818 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1819         unsigned char scsi3addr[], uint32_t log_unit)
1820 {
1821         memcpy(scsi3addr, h->drv[log_unit]->LunID,
1822                 sizeof(h->drv[log_unit]->LunID));
1823 }
1824
1825 /* This function gets the SCSI vendor, model, and revision of a logical drive
1826  * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1827  * they cannot be read.
1828  */
1829 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1830                                    char *vendor, char *model, char *rev)
1831 {
1832         int rc;
1833         InquiryData_struct *inq_buf;
1834         unsigned char scsi3addr[8];
1835
1836         *vendor = '\0';
1837         *model = '\0';
1838         *rev = '\0';
1839
1840         inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1841         if (!inq_buf)
1842                 return;
1843
1844         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1845         rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1846                         scsi3addr, TYPE_CMD);
1847         if (rc == IO_OK) {
1848                 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1849                 vendor[VENDOR_LEN] = '\0';
1850                 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1851                 model[MODEL_LEN] = '\0';
1852                 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1853                 rev[REV_LEN] = '\0';
1854         }
1855
1856         kfree(inq_buf);
1857         return;
1858 }
1859
1860 /* This function gets the serial number of a logical drive via
1861  * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1862  * number cannot be had, for whatever reason, 16 bytes of 0xff
1863  * are returned instead.
1864  */
1865 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1866                                 unsigned char *serial_no, int buflen)
1867 {
1868 #define PAGE_83_INQ_BYTES 64
1869         int rc;
1870         unsigned char *buf;
1871         unsigned char scsi3addr[8];
1872
1873         if (buflen > 16)
1874                 buflen = 16;
1875         memset(serial_no, 0xff, buflen);
1876         buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1877         if (!buf)
1878                 return;
1879         memset(serial_no, 0, buflen);
1880         log_unit_to_scsi3addr(h, scsi3addr, logvol);
1881         rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1882                 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1883         if (rc == IO_OK)
1884                 memcpy(serial_no, &buf[8], buflen);
1885         kfree(buf);
1886         return;
1887 }
1888
1889 /*
1890  * cciss_add_disk sets up the block device queue for a logical drive
1891  */
1892 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1893                                 int drv_index)
1894 {
1895         disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1896         if (!disk->queue)
1897                 goto init_queue_failure;
1898         sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1899         disk->major = h->major;
1900         disk->first_minor = drv_index << NWD_SHIFT;
1901         disk->fops = &cciss_fops;
1902         if (cciss_create_ld_sysfs_entry(h, drv_index))
1903                 goto cleanup_queue;
1904         disk->private_data = h->drv[drv_index];
1905         disk->driverfs_dev = &h->drv[drv_index]->dev;
1906
1907         /* Set up queue information */
1908         blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1909
1910         /* This is a hardware imposed limit. */
1911         blk_queue_max_segments(disk->queue, h->maxsgentries);
1912
1913         blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1914
1915         blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1916
1917         disk->queue->queuedata = h;
1918
1919         blk_queue_logical_block_size(disk->queue,
1920                                      h->drv[drv_index]->block_size);
1921
1922         /* Make sure all queue data is written out before */
1923         /* setting h->drv[drv_index]->queue, as setting this */
1924         /* allows the interrupt handler to start the queue */
1925         wmb();
1926         h->drv[drv_index]->queue = disk->queue;
1927         add_disk(disk);
1928         return 0;
1929
1930 cleanup_queue:
1931         blk_cleanup_queue(disk->queue);
1932         disk->queue = NULL;
1933 init_queue_failure:
1934         return -1;
1935 }
1936
1937 /* This function will check the usage_count of the drive to be updated/added.
1938  * If the usage_count is zero and it is a heretofore unknown drive, or,
1939  * the drive's capacity, geometry, or serial number has changed,
1940  * then the drive information will be updated and the disk will be
1941  * re-registered with the kernel.  If these conditions don't hold,
1942  * then it will be left alone for the next reboot.  The exception to this
1943  * is disk 0 which will always be left registered with the kernel since it
1944  * is also the controller node.  Any changes to disk 0 will show up on
1945  * the next reboot.
1946  */
1947 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1948         int first_time, int via_ioctl)
1949 {
1950         struct gendisk *disk;
1951         InquiryData_struct *inq_buff = NULL;
1952         unsigned int block_size;
1953         sector_t total_size;
1954         unsigned long flags = 0;
1955         int ret = 0;
1956         drive_info_struct *drvinfo;
1957
1958         /* Get information about the disk and modify the driver structure */
1959         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1960         drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1961         if (inq_buff == NULL || drvinfo == NULL)
1962                 goto mem_msg;
1963
1964         /* testing to see if 16-byte CDBs are already being used */
1965         if (h->cciss_read == CCISS_READ_16) {
1966                 cciss_read_capacity_16(h, drv_index,
1967                         &total_size, &block_size);
1968
1969         } else {
1970                 cciss_read_capacity(h, drv_index, &total_size, &block_size);
1971                 /* if read_capacity returns all F's this volume is >2TB */
1972                 /* in size so we switch to 16-byte CDB's for all */
1973                 /* read/write ops */
1974                 if (total_size == 0xFFFFFFFFULL) {
1975                         cciss_read_capacity_16(h, drv_index,
1976                         &total_size, &block_size);
1977                         h->cciss_read = CCISS_READ_16;
1978                         h->cciss_write = CCISS_WRITE_16;
1979                 } else {
1980                         h->cciss_read = CCISS_READ_10;
1981                         h->cciss_write = CCISS_WRITE_10;
1982                 }
1983         }
1984
1985         cciss_geometry_inquiry(h, drv_index, total_size, block_size,
1986                                inq_buff, drvinfo);
1987         drvinfo->block_size = block_size;
1988         drvinfo->nr_blocks = total_size + 1;
1989
1990         cciss_get_device_descr(h, drv_index, drvinfo->vendor,
1991                                 drvinfo->model, drvinfo->rev);
1992         cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
1993                         sizeof(drvinfo->serial_no));
1994         /* Save the lunid in case we deregister the disk, below. */
1995         memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1996                 sizeof(drvinfo->LunID));
1997
1998         /* Is it the same disk we already know, and nothing's changed? */
1999         if (h->drv[drv_index]->raid_level != -1 &&
2000                 ((memcmp(drvinfo->serial_no,
2001                                 h->drv[drv_index]->serial_no, 16) == 0) &&
2002                 drvinfo->block_size == h->drv[drv_index]->block_size &&
2003                 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2004                 drvinfo->heads == h->drv[drv_index]->heads &&
2005                 drvinfo->sectors == h->drv[drv_index]->sectors &&
2006                 drvinfo->cylinders == h->drv[drv_index]->cylinders))
2007                         /* The disk is unchanged, nothing to update */
2008                         goto freeret;
2009
2010         /* If we get here it's not the same disk, or something's changed,
2011          * so we need to * deregister it, and re-register it, if it's not
2012          * in use.
2013          * If the disk already exists then deregister it before proceeding
2014          * (unless it's the first disk (for the controller node).
2015          */
2016         if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2017                 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2018                 spin_lock_irqsave(&h->lock, flags);
2019                 h->drv[drv_index]->busy_configuring = 1;
2020                 spin_unlock_irqrestore(&h->lock, flags);
2021
2022                 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2023                  * which keeps the interrupt handler from starting
2024                  * the queue.
2025                  */
2026                 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2027         }
2028
2029         /* If the disk is in use return */
2030         if (ret)
2031                 goto freeret;
2032
2033         /* Save the new information from cciss_geometry_inquiry
2034          * and serial number inquiry.  If the disk was deregistered
2035          * above, then h->drv[drv_index] will be NULL.
2036          */
2037         if (h->drv[drv_index] == NULL) {
2038                 drvinfo->device_initialized = 0;
2039                 h->drv[drv_index] = drvinfo;
2040                 drvinfo = NULL; /* so it won't be freed below. */
2041         } else {
2042                 /* special case for cxd0 */
2043                 h->drv[drv_index]->block_size = drvinfo->block_size;
2044                 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2045                 h->drv[drv_index]->heads = drvinfo->heads;
2046                 h->drv[drv_index]->sectors = drvinfo->sectors;
2047                 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2048                 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2049                 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2050                 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2051                         VENDOR_LEN + 1);
2052                 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2053                 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2054         }
2055
2056         ++h->num_luns;
2057         disk = h->gendisk[drv_index];
2058         set_capacity(disk, h->drv[drv_index]->nr_blocks);
2059
2060         /* If it's not disk 0 (drv_index != 0)
2061          * or if it was disk 0, but there was previously
2062          * no actual corresponding configured logical drive
2063          * (raid_leve == -1) then we want to update the
2064          * logical drive's information.
2065          */
2066         if (drv_index || first_time) {
2067                 if (cciss_add_disk(h, disk, drv_index) != 0) {
2068                         cciss_free_gendisk(h, drv_index);
2069                         cciss_free_drive_info(h, drv_index);
2070                         dev_warn(&h->pdev->dev, "could not update disk %d\n",
2071                                 drv_index);
2072                         --h->num_luns;
2073                 }
2074         }
2075
2076 freeret:
2077         kfree(inq_buff);
2078         kfree(drvinfo);
2079         return;
2080 mem_msg:
2081         dev_err(&h->pdev->dev, "out of memory\n");
2082         goto freeret;
2083 }
2084
2085 /* This function will find the first index of the controllers drive array
2086  * that has a null drv pointer and allocate the drive info struct and
2087  * will return that index   This is where new drives will be added.
2088  * If the index to be returned is greater than the highest_lun index for
2089  * the controller then highest_lun is set * to this new index.
2090  * If there are no available indexes or if tha allocation fails, then -1
2091  * is returned.  * "controller_node" is used to know if this is a real
2092  * logical drive, or just the controller node, which determines if this
2093  * counts towards highest_lun.
2094  */
2095 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2096 {
2097         int i;
2098         drive_info_struct *drv;
2099
2100         /* Search for an empty slot for our drive info */
2101         for (i = 0; i < CISS_MAX_LUN; i++) {
2102
2103                 /* if not cxd0 case, and it's occupied, skip it. */
2104                 if (h->drv[i] && i != 0)
2105                         continue;
2106                 /*
2107                  * If it's cxd0 case, and drv is alloc'ed already, and a
2108                  * disk is configured there, skip it.
2109                  */
2110                 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2111                         continue;
2112
2113                 /*
2114                  * We've found an empty slot.  Update highest_lun
2115                  * provided this isn't just the fake cxd0 controller node.
2116                  */
2117                 if (i > h->highest_lun && !controller_node)
2118                         h->highest_lun = i;
2119
2120                 /* If adding a real disk at cxd0, and it's already alloc'ed */
2121                 if (i == 0 && h->drv[i] != NULL)
2122                         return i;
2123
2124                 /*
2125                  * Found an empty slot, not already alloc'ed.  Allocate it.
2126                  * Mark it with raid_level == -1, so we know it's new later on.
2127                  */
2128                 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2129                 if (!drv)
2130                         return -1;
2131                 drv->raid_level = -1; /* so we know it's new */
2132                 h->drv[i] = drv;
2133                 return i;
2134         }
2135         return -1;
2136 }
2137
2138 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2139 {
2140         kfree(h->drv[drv_index]);
2141         h->drv[drv_index] = NULL;
2142 }
2143
2144 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2145 {
2146         put_disk(h->gendisk[drv_index]);
2147         h->gendisk[drv_index] = NULL;
2148 }
2149
2150 /* cciss_add_gendisk finds a free hba[]->drv structure
2151  * and allocates a gendisk if needed, and sets the lunid
2152  * in the drvinfo structure.   It returns the index into
2153  * the ->drv[] array, or -1 if none are free.
2154  * is_controller_node indicates whether highest_lun should
2155  * count this disk, or if it's only being added to provide
2156  * a means to talk to the controller in case no logical
2157  * drives have yet been configured.
2158  */
2159 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2160         int controller_node)
2161 {
2162         int drv_index;
2163
2164         drv_index = cciss_alloc_drive_info(h, controller_node);
2165         if (drv_index == -1)
2166                 return -1;
2167
2168         /*Check if the gendisk needs to be allocated */
2169         if (!h->gendisk[drv_index]) {
2170                 h->gendisk[drv_index] =
2171                         alloc_disk(1 << NWD_SHIFT);
2172                 if (!h->gendisk[drv_index]) {
2173                         dev_err(&h->pdev->dev,
2174                                 "could not allocate a new disk %d\n",
2175                                 drv_index);
2176                         goto err_free_drive_info;
2177                 }
2178         }
2179         memcpy(h->drv[drv_index]->LunID, lunid,
2180                 sizeof(h->drv[drv_index]->LunID));
2181         if (cciss_create_ld_sysfs_entry(h, drv_index))
2182                 goto err_free_disk;
2183         /* Don't need to mark this busy because nobody */
2184         /* else knows about this disk yet to contend */
2185         /* for access to it. */
2186         h->drv[drv_index]->busy_configuring = 0;
2187         wmb();
2188         return drv_index;
2189
2190 err_free_disk:
2191         cciss_free_gendisk(h, drv_index);
2192 err_free_drive_info:
2193         cciss_free_drive_info(h, drv_index);
2194         return -1;
2195 }
2196
2197 /* This is for the special case of a controller which
2198  * has no logical drives.  In this case, we still need
2199  * to register a disk so the controller can be accessed
2200  * by the Array Config Utility.
2201  */
2202 static void cciss_add_controller_node(ctlr_info_t *h)
2203 {
2204         struct gendisk *disk;
2205         int drv_index;
2206
2207         if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2208                 return;
2209
2210         drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2211         if (drv_index == -1)
2212                 goto error;
2213         h->drv[drv_index]->block_size = 512;
2214         h->drv[drv_index]->nr_blocks = 0;
2215         h->drv[drv_index]->heads = 0;
2216         h->drv[drv_index]->sectors = 0;
2217         h->drv[drv_index]->cylinders = 0;
2218         h->drv[drv_index]->raid_level = -1;
2219         memset(h->drv[drv_index]->serial_no, 0, 16);
2220         disk = h->gendisk[drv_index];
2221         if (cciss_add_disk(h, disk, drv_index) == 0)
2222                 return;
2223         cciss_free_gendisk(h, drv_index);
2224         cciss_free_drive_info(h, drv_index);
2225 error:
2226         dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2227         return;
2228 }
2229
2230 /* This function will add and remove logical drives from the Logical
2231  * drive array of the controller and maintain persistency of ordering
2232  * so that mount points are preserved until the next reboot.  This allows
2233  * for the removal of logical drives in the middle of the drive array
2234  * without a re-ordering of those drives.
2235  * INPUT
2236  * h            = The controller to perform the operations on
2237  */
2238 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2239         int via_ioctl)
2240 {
2241         int num_luns;
2242         ReportLunData_struct *ld_buff = NULL;
2243         int return_code;
2244         int listlength = 0;
2245         int i;
2246         int drv_found;
2247         int drv_index = 0;
2248         unsigned char lunid[8] = CTLR_LUNID;
2249         unsigned long flags;
2250
2251         if (!capable(CAP_SYS_RAWIO))
2252                 return -EPERM;
2253
2254         /* Set busy_configuring flag for this operation */
2255         spin_lock_irqsave(&h->lock, flags);
2256         if (h->busy_configuring) {
2257                 spin_unlock_irqrestore(&h->lock, flags);
2258                 return -EBUSY;
2259         }
2260         h->busy_configuring = 1;
2261         spin_unlock_irqrestore(&h->lock, flags);
2262
2263         ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2264         if (ld_buff == NULL)
2265                 goto mem_msg;
2266
2267         return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2268                                       sizeof(ReportLunData_struct),
2269                                       0, CTLR_LUNID, TYPE_CMD);
2270
2271         if (return_code == IO_OK)
2272                 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2273         else {  /* reading number of logical volumes failed */
2274                 dev_warn(&h->pdev->dev,
2275                         "report logical volume command failed\n");
2276                 listlength = 0;
2277                 goto freeret;
2278         }
2279
2280         num_luns = listlength / 8;      /* 8 bytes per entry */
2281         if (num_luns > CISS_MAX_LUN) {
2282                 num_luns = CISS_MAX_LUN;
2283                 dev_warn(&h->pdev->dev, "more luns configured"
2284                        " on controller than can be handled by"
2285                        " this driver.\n");
2286         }
2287
2288         if (num_luns == 0)
2289                 cciss_add_controller_node(h);
2290
2291         /* Compare controller drive array to driver's drive array
2292          * to see if any drives are missing on the controller due
2293          * to action of Array Config Utility (user deletes drive)
2294          * and deregister logical drives which have disappeared.
2295          */
2296         for (i = 0; i <= h->highest_lun; i++) {
2297                 int j;
2298                 drv_found = 0;
2299
2300                 /* skip holes in the array from already deleted drives */
2301                 if (h->drv[i] == NULL)
2302                         continue;
2303
2304                 for (j = 0; j < num_luns; j++) {
2305                         memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2306                         if (memcmp(h->drv[i]->LunID, lunid,
2307                                 sizeof(lunid)) == 0) {
2308                                 drv_found = 1;
2309                                 break;
2310                         }
2311                 }
2312                 if (!drv_found) {
2313                         /* Deregister it from the OS, it's gone. */
2314                         spin_lock_irqsave(&h->lock, flags);
2315                         h->drv[i]->busy_configuring = 1;
2316                         spin_unlock_irqrestore(&h->lock, flags);
2317                         return_code = deregister_disk(h, i, 1, via_ioctl);
2318                         if (h->drv[i] != NULL)
2319                                 h->drv[i]->busy_configuring = 0;
2320                 }
2321         }
2322
2323         /* Compare controller drive array to driver's drive array.
2324          * Check for updates in the drive information and any new drives
2325          * on the controller due to ACU adding logical drives, or changing
2326          * a logical drive's size, etc.  Reregister any new/changed drives
2327          */
2328         for (i = 0; i < num_luns; i++) {
2329                 int j;
2330
2331                 drv_found = 0;
2332
2333                 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2334                 /* Find if the LUN is already in the drive array
2335                  * of the driver.  If so then update its info
2336                  * if not in use.  If it does not exist then find
2337                  * the first free index and add it.
2338                  */
2339                 for (j = 0; j <= h->highest_lun; j++) {
2340                         if (h->drv[j] != NULL &&
2341                                 memcmp(h->drv[j]->LunID, lunid,
2342                                         sizeof(h->drv[j]->LunID)) == 0) {
2343                                 drv_index = j;
2344                                 drv_found = 1;
2345                                 break;
2346                         }
2347                 }
2348
2349                 /* check if the drive was found already in the array */
2350                 if (!drv_found) {
2351                         drv_index = cciss_add_gendisk(h, lunid, 0);
2352                         if (drv_index == -1)
2353                                 goto freeret;
2354                 }
2355                 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2356         }               /* end for */
2357
2358 freeret:
2359         kfree(ld_buff);
2360         h->busy_configuring = 0;
2361         /* We return -1 here to tell the ACU that we have registered/updated
2362          * all of the drives that we can and to keep it from calling us
2363          * additional times.
2364          */
2365         return -1;
2366 mem_msg:
2367         dev_err(&h->pdev->dev, "out of memory\n");
2368         h->busy_configuring = 0;
2369         goto freeret;
2370 }
2371
2372 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2373 {
2374         /* zero out the disk size info */
2375         drive_info->nr_blocks = 0;
2376         drive_info->block_size = 0;
2377         drive_info->heads = 0;
2378         drive_info->sectors = 0;
2379         drive_info->cylinders = 0;
2380         drive_info->raid_level = -1;
2381         memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2382         memset(drive_info->model, 0, sizeof(drive_info->model));
2383         memset(drive_info->rev, 0, sizeof(drive_info->rev));
2384         memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2385         /*
2386          * don't clear the LUNID though, we need to remember which
2387          * one this one is.
2388          */
2389 }
2390
2391 /* This function will deregister the disk and it's queue from the
2392  * kernel.  It must be called with the controller lock held and the
2393  * drv structures busy_configuring flag set.  It's parameters are:
2394  *
2395  * disk = This is the disk to be deregistered
2396  * drv  = This is the drive_info_struct associated with the disk to be
2397  *        deregistered.  It contains information about the disk used
2398  *        by the driver.
2399  * clear_all = This flag determines whether or not the disk information
2400  *             is going to be completely cleared out and the highest_lun
2401  *             reset.  Sometimes we want to clear out information about
2402  *             the disk in preparation for re-adding it.  In this case
2403  *             the highest_lun should be left unchanged and the LunID
2404  *             should not be cleared.
2405  * via_ioctl
2406  *    This indicates whether we've reached this path via ioctl.
2407  *    This affects the maximum usage count allowed for c0d0 to be messed with.
2408  *    If this path is reached via ioctl(), then the max_usage_count will
2409  *    be 1, as the process calling ioctl() has got to have the device open.
2410  *    If we get here via sysfs, then the max usage count will be zero.
2411 */
2412 static int deregister_disk(ctlr_info_t *h, int drv_index,
2413                            int clear_all, int via_ioctl)
2414 {
2415         int i;
2416         struct gendisk *disk;
2417         drive_info_struct *drv;
2418         int recalculate_highest_lun;
2419
2420         if (!capable(CAP_SYS_RAWIO))
2421                 return -EPERM;
2422
2423         drv = h->drv[drv_index];
2424         disk = h->gendisk[drv_index];
2425
2426         /* make sure logical volume is NOT is use */
2427         if (clear_all || (h->gendisk[0] == disk)) {
2428                 if (drv->usage_count > via_ioctl)
2429                         return -EBUSY;
2430         } else if (drv->usage_count > 0)
2431                 return -EBUSY;
2432
2433         recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2434
2435         /* invalidate the devices and deregister the disk.  If it is disk
2436          * zero do not deregister it but just zero out it's values.  This
2437          * allows us to delete disk zero but keep the controller registered.
2438          */
2439         if (h->gendisk[0] != disk) {
2440                 struct request_queue *q = disk->queue;
2441                 if (disk->flags & GENHD_FL_UP) {
2442                         cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2443                         del_gendisk(disk);
2444                 }
2445                 if (q)
2446                         blk_cleanup_queue(q);
2447                 /* If clear_all is set then we are deleting the logical
2448                  * drive, not just refreshing its info.  For drives
2449                  * other than disk 0 we will call put_disk.  We do not
2450                  * do this for disk 0 as we need it to be able to
2451                  * configure the controller.
2452                  */
2453                 if (clear_all){
2454                         /* This isn't pretty, but we need to find the
2455                          * disk in our array and NULL our the pointer.
2456                          * This is so that we will call alloc_disk if
2457                          * this index is used again later.
2458                          */
2459                         for (i=0; i < CISS_MAX_LUN; i++){
2460                                 if (h->gendisk[i] == disk) {
2461                                         h->gendisk[i] = NULL;
2462                                         break;
2463                                 }
2464                         }
2465                         put_disk(disk);
2466                 }
2467         } else {
2468                 set_capacity(disk, 0);
2469                 cciss_clear_drive_info(drv);
2470         }
2471
2472         --h->num_luns;
2473
2474         /* if it was the last disk, find the new hightest lun */
2475         if (clear_all && recalculate_highest_lun) {
2476                 int newhighest = -1;
2477                 for (i = 0; i <= h->highest_lun; i++) {
2478                         /* if the disk has size > 0, it is available */
2479                         if (h->drv[i] && h->drv[i]->heads)
2480                                 newhighest = i;
2481                 }
2482                 h->highest_lun = newhighest;
2483         }
2484         return 0;
2485 }
2486
2487 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2488                 size_t size, __u8 page_code, unsigned char *scsi3addr,
2489                 int cmd_type)
2490 {
2491         u64bit buff_dma_handle;
2492         int status = IO_OK;
2493
2494         c->cmd_type = CMD_IOCTL_PEND;
2495         c->Header.ReplyQueue = 0;
2496         if (buff != NULL) {
2497                 c->Header.SGList = 1;
2498                 c->Header.SGTotal = 1;
2499         } else {
2500                 c->Header.SGList = 0;
2501                 c->Header.SGTotal = 0;
2502         }
2503         c->Header.Tag.lower = c->busaddr;
2504         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2505
2506         c->Request.Type.Type = cmd_type;
2507         if (cmd_type == TYPE_CMD) {
2508                 switch (cmd) {
2509                 case CISS_INQUIRY:
2510                         /* are we trying to read a vital product page */
2511                         if (page_code != 0) {
2512                                 c->Request.CDB[1] = 0x01;
2513                                 c->Request.CDB[2] = page_code;
2514                         }
2515                         c->Request.CDBLen = 6;
2516                         c->Request.Type.Attribute = ATTR_SIMPLE;
2517                         c->Request.Type.Direction = XFER_READ;
2518                         c->Request.Timeout = 0;
2519                         c->Request.CDB[0] = CISS_INQUIRY;
2520                         c->Request.CDB[4] = size & 0xFF;
2521                         break;
2522                 case CISS_REPORT_LOG:
2523                 case CISS_REPORT_PHYS:
2524                         /* Talking to controller so It's a physical command
2525                            mode = 00 target = 0.  Nothing to write.
2526                          */
2527                         c->Request.CDBLen = 12;
2528                         c->Request.Type.Attribute = ATTR_SIMPLE;
2529                         c->Request.Type.Direction = XFER_READ;
2530                         c->Request.Timeout = 0;
2531                         c->Request.CDB[0] = cmd;
2532                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2533                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2534                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2535                         c->Request.CDB[9] = size & 0xFF;
2536                         break;
2537
2538                 case CCISS_READ_CAPACITY:
2539                         c->Request.CDBLen = 10;
2540                         c->Request.Type.Attribute = ATTR_SIMPLE;
2541                         c->Request.Type.Direction = XFER_READ;
2542                         c->Request.Timeout = 0;
2543                         c->Request.CDB[0] = cmd;
2544                         break;
2545                 case CCISS_READ_CAPACITY_16:
2546                         c->Request.CDBLen = 16;
2547                         c->Request.Type.Attribute = ATTR_SIMPLE;
2548                         c->Request.Type.Direction = XFER_READ;
2549                         c->Request.Timeout = 0;
2550                         c->Request.CDB[0] = cmd;
2551                         c->Request.CDB[1] = 0x10;
2552                         c->Request.CDB[10] = (size >> 24) & 0xFF;
2553                         c->Request.CDB[11] = (size >> 16) & 0xFF;
2554                         c->Request.CDB[12] = (size >> 8) & 0xFF;
2555                         c->Request.CDB[13] = size & 0xFF;
2556                         c->Request.Timeout = 0;
2557                         c->Request.CDB[0] = cmd;
2558                         break;
2559                 case CCISS_CACHE_FLUSH:
2560                         c->Request.CDBLen = 12;
2561                         c->Request.Type.Attribute = ATTR_SIMPLE;
2562                         c->Request.Type.Direction = XFER_WRITE;
2563                         c->Request.Timeout = 0;
2564                         c->Request.CDB[0] = BMIC_WRITE;
2565                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2566                         break;
2567                 case TEST_UNIT_READY:
2568                         c->Request.CDBLen = 6;
2569                         c->Request.Type.Attribute = ATTR_SIMPLE;
2570                         c->Request.Type.Direction = XFER_NONE;
2571                         c->Request.Timeout = 0;
2572                         break;
2573                 default:
2574                         dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2575                         return IO_ERROR;
2576                 }
2577         } else if (cmd_type == TYPE_MSG) {
2578                 switch (cmd) {
2579                 case 0: /* ABORT message */
2580                         c->Request.CDBLen = 12;
2581                         c->Request.Type.Attribute = ATTR_SIMPLE;
2582                         c->Request.Type.Direction = XFER_WRITE;
2583                         c->Request.Timeout = 0;
2584                         c->Request.CDB[0] = cmd;        /* abort */
2585                         c->Request.CDB[1] = 0;  /* abort a command */
2586                         /* buff contains the tag of the command to abort */
2587                         memcpy(&c->Request.CDB[4], buff, 8);
2588                         break;
2589                 case 1: /* RESET message */
2590                         c->Request.CDBLen = 16;
2591                         c->Request.Type.Attribute = ATTR_SIMPLE;
2592                         c->Request.Type.Direction = XFER_NONE;
2593                         c->Request.Timeout = 0;
2594                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2595                         c->Request.CDB[0] = cmd;        /* reset */
2596                         c->Request.CDB[1] = 0x03;       /* reset a target */
2597                         break;
2598                 case 3: /* No-Op message */
2599                         c->Request.CDBLen = 1;
2600                         c->Request.Type.Attribute = ATTR_SIMPLE;
2601                         c->Request.Type.Direction = XFER_WRITE;
2602                         c->Request.Timeout = 0;
2603                         c->Request.CDB[0] = cmd;
2604                         break;
2605                 default:
2606                         dev_warn(&h->pdev->dev,
2607                                 "unknown message type %d\n", cmd);
2608                         return IO_ERROR;
2609                 }
2610         } else {
2611                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2612                 return IO_ERROR;
2613         }
2614         /* Fill in the scatter gather information */
2615         if (size > 0) {
2616                 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2617                                                              buff, size,
2618                                                              PCI_DMA_BIDIRECTIONAL);
2619                 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2620                 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2621                 c->SG[0].Len = size;
2622                 c->SG[0].Ext = 0;       /* we are not chaining */
2623         }
2624         return status;
2625 }
2626
2627 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2628 {
2629         switch (c->err_info->ScsiStatus) {
2630         case SAM_STAT_GOOD:
2631                 return IO_OK;
2632         case SAM_STAT_CHECK_CONDITION:
2633                 switch (0xf & c->err_info->SenseInfo[2]) {
2634                 case 0: return IO_OK; /* no sense */
2635                 case 1: return IO_OK; /* recovered error */
2636                 default:
2637                         if (check_for_unit_attention(h, c))
2638                                 return IO_NEEDS_RETRY;
2639                         dev_warn(&h->pdev->dev, "cmd 0x%02x "
2640                                 "check condition, sense key = 0x%02x\n",
2641                                 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2642                 }
2643                 break;
2644         default:
2645                 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2646                         "scsi status = 0x%02x\n",
2647                         c->Request.CDB[0], c->err_info->ScsiStatus);
2648                 break;
2649         }
2650         return IO_ERROR;
2651 }
2652
2653 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2654 {
2655         int return_status = IO_OK;
2656
2657         if (c->err_info->CommandStatus == CMD_SUCCESS)
2658                 return IO_OK;
2659
2660         switch (c->err_info->CommandStatus) {
2661         case CMD_TARGET_STATUS:
2662                 return_status = check_target_status(h, c);
2663                 break;
2664         case CMD_DATA_UNDERRUN:
2665         case CMD_DATA_OVERRUN:
2666                 /* expected for inquiry and report lun commands */
2667                 break;
2668         case CMD_INVALID:
2669                 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2670                        "reported invalid\n", c->Request.CDB[0]);
2671                 return_status = IO_ERROR;
2672                 break;
2673         case CMD_PROTOCOL_ERR:
2674                 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2675                        "protocol error\n", c->Request.CDB[0]);
2676                 return_status = IO_ERROR;
2677                 break;
2678         case CMD_HARDWARE_ERR:
2679                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2680                        " hardware error\n", c->Request.CDB[0]);
2681                 return_status = IO_ERROR;
2682                 break;
2683         case CMD_CONNECTION_LOST:
2684                 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2685                        "connection lost\n", c->Request.CDB[0]);
2686                 return_status = IO_ERROR;
2687                 break;
2688         case CMD_ABORTED:
2689                 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2690                        "aborted\n", c->Request.CDB[0]);
2691                 return_status = IO_ERROR;
2692                 break;
2693         case CMD_ABORT_FAILED:
2694                 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2695                        "abort failed\n", c->Request.CDB[0]);
2696                 return_status = IO_ERROR;
2697                 break;
2698         case CMD_UNSOLICITED_ABORT:
2699                 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2700                         c->Request.CDB[0]);
2701                 return_status = IO_NEEDS_RETRY;
2702                 break;
2703         default:
2704                 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2705                        "unknown status %x\n", c->Request.CDB[0],
2706                        c->err_info->CommandStatus);
2707                 return_status = IO_ERROR;
2708         }
2709         return return_status;
2710 }
2711
2712 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2713         int attempt_retry)
2714 {
2715         DECLARE_COMPLETION_ONSTACK(wait);
2716         u64bit buff_dma_handle;
2717         int return_status = IO_OK;
2718
2719 resend_cmd2:
2720         c->waiting = &wait;
2721         enqueue_cmd_and_start_io(h, c);
2722
2723         wait_for_completion(&wait);
2724
2725         if (c->err_info->CommandStatus == 0 || !attempt_retry)
2726                 goto command_done;
2727
2728         return_status = process_sendcmd_error(h, c);
2729
2730         if (return_status == IO_NEEDS_RETRY &&
2731                 c->retry_count < MAX_CMD_RETRIES) {
2732                 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2733                         c->Request.CDB[0]);
2734                 c->retry_count++;
2735                 /* erase the old error information */
2736                 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2737                 return_status = IO_OK;
2738                 INIT_COMPLETION(wait);
2739                 goto resend_cmd2;
2740         }
2741
2742 command_done:
2743         /* unlock the buffers from DMA */
2744         buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2745         buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2746         pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2747                          c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2748         return return_status;
2749 }
2750
2751 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2752                            __u8 page_code, unsigned char scsi3addr[],
2753                         int cmd_type)
2754 {
2755         CommandList_struct *c;
2756         int return_status;
2757
2758         c = cmd_special_alloc(h);
2759         if (!c)
2760                 return -ENOMEM;
2761         return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2762                 scsi3addr, cmd_type);
2763         if (return_status == IO_OK)
2764                 return_status = sendcmd_withirq_core(h, c, 1);
2765
2766         cmd_special_free(h, c);
2767         return return_status;
2768 }
2769
2770 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2771                                    sector_t total_size,
2772                                    unsigned int block_size,
2773                                    InquiryData_struct *inq_buff,
2774                                    drive_info_struct *drv)
2775 {
2776         int return_code;
2777         unsigned long t;
2778         unsigned char scsi3addr[8];
2779
2780         memset(inq_buff, 0, sizeof(InquiryData_struct));
2781         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2782         return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2783                         sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2784         if (return_code == IO_OK) {
2785                 if (inq_buff->data_byte[8] == 0xFF) {
2786                         dev_warn(&h->pdev->dev,
2787                                "reading geometry failed, volume "
2788                                "does not support reading geometry\n");
2789                         drv->heads = 255;
2790                         drv->sectors = 32;      /* Sectors per track */
2791                         drv->cylinders = total_size + 1;
2792                         drv->raid_level = RAID_UNKNOWN;
2793                 } else {
2794                         drv->heads = inq_buff->data_byte[6];
2795                         drv->sectors = inq_buff->data_byte[7];
2796                         drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2797                         drv->cylinders += inq_buff->data_byte[5];
2798                         drv->raid_level = inq_buff->data_byte[8];
2799                 }
2800                 drv->block_size = block_size;
2801                 drv->nr_blocks = total_size + 1;
2802                 t = drv->heads * drv->sectors;
2803                 if (t > 1) {
2804                         sector_t real_size = total_size + 1;
2805                         unsigned long rem = sector_div(real_size, t);
2806                         if (rem)
2807                                 real_size++;
2808                         drv->cylinders = real_size;
2809                 }
2810         } else {                /* Get geometry failed */
2811                 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2812         }
2813 }
2814
2815 static void
2816 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2817                     unsigned int *block_size)
2818 {
2819         ReadCapdata_struct *buf;
2820         int return_code;
2821         unsigned char scsi3addr[8];
2822
2823         buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2824         if (!buf) {
2825                 dev_warn(&h->pdev->dev, "out of memory\n");
2826                 return;
2827         }
2828
2829         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2830         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2831                 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2832         if (return_code == IO_OK) {
2833                 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2834                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2835         } else {                /* read capacity command failed */
2836                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2837                 *total_size = 0;
2838                 *block_size = BLOCK_SIZE;
2839         }
2840         kfree(buf);
2841 }
2842
2843 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2844         sector_t *total_size, unsigned int *block_size)
2845 {
2846         ReadCapdata_struct_16 *buf;
2847         int return_code;
2848         unsigned char scsi3addr[8];
2849
2850         buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2851         if (!buf) {
2852                 dev_warn(&h->pdev->dev, "out of memory\n");
2853                 return;
2854         }
2855
2856         log_unit_to_scsi3addr(h, scsi3addr, logvol);
2857         return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2858                 buf, sizeof(ReadCapdata_struct_16),
2859                         0, scsi3addr, TYPE_CMD);
2860         if (return_code == IO_OK) {
2861                 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2862                 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2863         } else {                /* read capacity command failed */
2864                 dev_warn(&h->pdev->dev, "read capacity failed\n");
2865                 *total_size = 0;
2866                 *block_size = BLOCK_SIZE;
2867         }
2868         dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2869                (unsigned long long)*total_size+1, *block_size);
2870         kfree(buf);
2871 }
2872
2873 static int cciss_revalidate(struct gendisk *disk)
2874 {
2875         ctlr_info_t *h = get_host(disk);
2876         drive_info_struct *drv = get_drv(disk);
2877         int logvol;
2878         int FOUND = 0;
2879         unsigned int block_size;
2880         sector_t total_size;
2881         InquiryData_struct *inq_buff = NULL;
2882
2883         for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2884                 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2885                         sizeof(drv->LunID)) == 0) {
2886                         FOUND = 1;
2887                         break;
2888                 }
2889         }
2890
2891         if (!FOUND)
2892                 return 1;
2893
2894         inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2895         if (inq_buff == NULL) {
2896                 dev_warn(&h->pdev->dev, "out of memory\n");
2897                 return 1;
2898         }
2899         if (h->cciss_read == CCISS_READ_10) {
2900                 cciss_read_capacity(h, logvol,
2901                                         &total_size, &block_size);
2902         } else {
2903                 cciss_read_capacity_16(h, logvol,
2904                                         &total_size, &block_size);
2905         }
2906         cciss_geometry_inquiry(h, logvol, total_size, block_size,
2907                                inq_buff, drv);
2908
2909         blk_queue_logical_block_size(drv->queue, drv->block_size);
2910         set_capacity(disk, drv->nr_blocks);
2911
2912         kfree(inq_buff);
2913         return 0;
2914 }
2915
2916 /*
2917  * Map (physical) PCI mem into (virtual) kernel space
2918  */
2919 static void __iomem *remap_pci_mem(ulong base, ulong size)
2920 {
2921         ulong page_base = ((ulong) base) & PAGE_MASK;
2922         ulong page_offs = ((ulong) base) - page_base;
2923         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2924
2925         return page_remapped ? (page_remapped + page_offs) : NULL;
2926 }
2927
2928 /*
2929  * Takes jobs of the Q and sends them to the hardware, then puts it on
2930  * the Q to wait for completion.
2931  */
2932 static void start_io(ctlr_info_t *h)
2933 {
2934         CommandList_struct *c;
2935
2936         while (!hlist_empty(&h->reqQ)) {
2937                 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2938                 /* can't do anything if fifo is full */
2939                 if ((h->access.fifo_full(h))) {
2940                         dev_warn(&h->pdev->dev, "fifo full\n");
2941                         break;
2942                 }
2943
2944                 /* Get the first entry from the Request Q */
2945                 removeQ(c);
2946                 h->Qdepth--;
2947
2948                 /* Tell the controller execute command */
2949                 h->access.submit_command(h, c);
2950
2951                 /* Put job onto the completed Q */
2952                 addQ(&h->cmpQ, c);
2953         }
2954 }
2955
2956 /* Assumes that h->lock is held. */
2957 /* Zeros out the error record and then resends the command back */
2958 /* to the controller */
2959 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2960 {
2961         /* erase the old error information */
2962         memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2963
2964         /* add it to software queue and then send it to the controller */
2965         addQ(&h->reqQ, c);
2966         h->Qdepth++;
2967         if (h->Qdepth > h->maxQsinceinit)
2968                 h->maxQsinceinit = h->Qdepth;
2969
2970         start_io(h);
2971 }
2972
2973 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2974         unsigned int msg_byte, unsigned int host_byte,
2975         unsigned int driver_byte)
2976 {
2977         /* inverse of macros in scsi.h */
2978         return (scsi_status_byte & 0xff) |
2979                 ((msg_byte & 0xff) << 8) |
2980                 ((host_byte & 0xff) << 16) |
2981                 ((driver_byte & 0xff) << 24);
2982 }
2983
2984 static inline int evaluate_target_status(ctlr_info_t *h,
2985                         CommandList_struct *cmd, int *retry_cmd)
2986 {
2987         unsigned char sense_key;
2988         unsigned char status_byte, msg_byte, host_byte, driver_byte;
2989         int error_value;
2990
2991         *retry_cmd = 0;
2992         /* If we get in here, it means we got "target status", that is, scsi status */
2993         status_byte = cmd->err_info->ScsiStatus;
2994         driver_byte = DRIVER_OK;
2995         msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
2996
2997         if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
2998                 host_byte = DID_PASSTHROUGH;
2999         else
3000                 host_byte = DID_OK;
3001
3002         error_value = make_status_bytes(status_byte, msg_byte,
3003                 host_byte, driver_byte);
3004
3005         if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3006                 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3007                         dev_warn(&h->pdev->dev, "cmd %p "
3008                                "has SCSI Status 0x%x\n",
3009                                cmd, cmd->err_info->ScsiStatus);
3010                 return error_value;
3011         }
3012
3013         /* check the sense key */
3014         sense_key = 0xf & cmd->err_info->SenseInfo[2];
3015         /* no status or recovered error */
3016         if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3017             (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3018                 error_value = 0;
3019
3020         if (check_for_unit_attention(h, cmd)) {
3021                 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3022                 return 0;
3023         }
3024
3025         /* Not SG_IO or similar? */
3026         if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3027                 if (error_value != 0)
3028                         dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3029                                " sense key = 0x%x\n", cmd, sense_key);
3030                 return error_value;
3031         }
3032
3033         /* SG_IO or similar, copy sense data back */
3034         if (cmd->rq->sense) {
3035                 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3036                         cmd->rq->sense_len = cmd->err_info->SenseLen;
3037                 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3038                         cmd->rq->sense_len);
3039         } else
3040                 cmd->rq->sense_len = 0;
3041
3042         return error_value;
3043 }
3044
3045 /* checks the status of the job and calls complete buffers to mark all
3046  * buffers for the completed job. Note that this function does not need
3047  * to hold the hba/queue lock.
3048  */
3049 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3050                                     int timeout)
3051 {
3052         int retry_cmd = 0;
3053         struct request *rq = cmd->rq;
3054
3055         rq->errors = 0;
3056
3057         if (timeout)
3058                 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3059
3060         if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3061                 goto after_error_processing;
3062
3063         switch (cmd->err_info->CommandStatus) {
3064         case CMD_TARGET_STATUS:
3065                 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3066                 break;
3067         case CMD_DATA_UNDERRUN:
3068                 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3069                         dev_warn(&h->pdev->dev, "cmd %p has"
3070                                " completed with data underrun "
3071                                "reported\n", cmd);
3072                         cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3073                 }
3074                 break;
3075         case CMD_DATA_OVERRUN:
3076                 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3077                         dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3078                                " completed with data overrun "
3079                                "reported\n", cmd);
3080                 break;
3081         case CMD_INVALID:
3082                 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3083                        "reported invalid\n", cmd);
3084                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3085                         cmd->err_info->CommandStatus, DRIVER_OK,
3086                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3087                                 DID_PASSTHROUGH : DID_ERROR);
3088                 break;
3089         case CMD_PROTOCOL_ERR:
3090                 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3091                        "protocol error\n", cmd);
3092                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3093                         cmd->err_info->CommandStatus, DRIVER_OK,
3094                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3095                                 DID_PASSTHROUGH : DID_ERROR);
3096                 break;
3097         case CMD_HARDWARE_ERR:
3098                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3099                        " hardware error\n", cmd);
3100                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3101                         cmd->err_info->CommandStatus, DRIVER_OK,
3102                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3103                                 DID_PASSTHROUGH : DID_ERROR);
3104                 break;
3105         case CMD_CONNECTION_LOST:
3106                 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3107                        "connection lost\n", cmd);
3108                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3109                         cmd->err_info->CommandStatus, DRIVER_OK,
3110                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3111                                 DID_PASSTHROUGH : DID_ERROR);
3112                 break;
3113         case CMD_ABORTED:
3114                 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3115                        "aborted\n", cmd);
3116                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3117                         cmd->err_info->CommandStatus, DRIVER_OK,
3118                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3119                                 DID_PASSTHROUGH : DID_ABORT);
3120                 break;
3121         case CMD_ABORT_FAILED:
3122                 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3123                        "abort failed\n", cmd);
3124                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3125                         cmd->err_info->CommandStatus, DRIVER_OK,
3126                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3127                                 DID_PASSTHROUGH : DID_ERROR);
3128                 break;
3129         case CMD_UNSOLICITED_ABORT:
3130                 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3131                        "abort %p\n", h->ctlr, cmd);
3132                 if (cmd->retry_count < MAX_CMD_RETRIES) {
3133                         retry_cmd = 1;
3134                         dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3135                         cmd->retry_count++;
3136                 } else
3137                         dev_warn(&h->pdev->dev,
3138                                 "%p retried too many times\n", cmd);
3139                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3140                         cmd->err_info->CommandStatus, DRIVER_OK,
3141                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3142                                 DID_PASSTHROUGH : DID_ABORT);
3143                 break;
3144         case CMD_TIMEOUT:
3145                 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3146                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3147                         cmd->err_info->CommandStatus, DRIVER_OK,
3148                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3149                                 DID_PASSTHROUGH : DID_ERROR);
3150                 break;
3151         default:
3152                 dev_warn(&h->pdev->dev, "cmd %p returned "
3153                        "unknown status %x\n", cmd,
3154                        cmd->err_info->CommandStatus);
3155                 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3156                         cmd->err_info->CommandStatus, DRIVER_OK,
3157                         (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3158                                 DID_PASSTHROUGH : DID_ERROR);
3159         }
3160
3161 after_error_processing:
3162
3163         /* We need to return this command */
3164         if (retry_cmd) {
3165                 resend_cciss_cmd(h, cmd);
3166                 return;
3167         }
3168         cmd->rq->completion_data = cmd;
3169         blk_complete_request(cmd->rq);
3170 }
3171
3172 static inline u32 cciss_tag_contains_index(u32 tag)
3173 {
3174 #define DIRECT_LOOKUP_BIT 0x10
3175         return tag & DIRECT_LOOKUP_BIT;
3176 }
3177
3178 static inline u32 cciss_tag_to_index(u32 tag)
3179 {
3180 #define DIRECT_LOOKUP_SHIFT 5
3181         return tag >> DIRECT_LOOKUP_SHIFT;
3182 }
3183
3184 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3185 {
3186 #define CCISS_ERROR_BITS 0x03
3187         return tag & ~CCISS_ERROR_BITS;
3188 }
3189
3190 static inline void cciss_mark_tag_indexed(u32 *tag)
3191 {
3192         *tag |= DIRECT_LOOKUP_BIT;
3193 }
3194
3195 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3196 {
3197         *tag |= (index << DIRECT_LOOKUP_SHIFT);
3198 }
3199
3200 /*
3201  * Get a request and submit it to the controller.
3202  */
3203 static void do_cciss_request(struct request_queue *q)
3204 {
3205         ctlr_info_t *h = q->queuedata;
3206         CommandList_struct *c;
3207         sector_t start_blk;
3208         int seg;
3209         struct request *creq;
3210         u64bit temp64;
3211         struct scatterlist *tmp_sg;
3212         SGDescriptor_struct *curr_sg;
3213         drive_info_struct *drv;
3214         int i, dir;
3215         int sg_index = 0;
3216         int chained = 0;
3217
3218         /* We call start_io here in case there is a command waiting on the
3219          * queue that has not been sent.
3220          */
3221         if (blk_queue_plugged(q))
3222                 goto startio;
3223
3224       queue:
3225         creq = blk_peek_request(q);
3226         if (!creq)
3227                 goto startio;
3228
3229         BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3230
3231         c = cmd_alloc(h);
3232         if (!c)
3233                 goto full;
3234
3235         blk_start_request(creq);
3236
3237         tmp_sg = h->scatter_list[c->cmdindex];
3238         spin_unlock_irq(q->queue_lock);
3239
3240         c->cmd_type = CMD_RWREQ;
3241         c->rq = creq;
3242
3243         /* fill in the request */
3244         drv = creq->rq_disk->private_data;
3245         c->Header.ReplyQueue = 0;       /* unused in simple mode */
3246         /* got command from pool, so use the command block index instead */
3247         /* for direct lookups. */
3248         /* The first 2 bits are reserved for controller error reporting. */
3249         cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3250         cciss_mark_tag_indexed(&c->Header.Tag.lower);
3251         memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3252         c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3253         c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3254         c->Request.Type.Attribute = ATTR_SIMPLE;
3255         c->Request.Type.Direction =
3256             (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3257         c->Request.Timeout = 0; /* Don't time out */
3258         c->Request.CDB[0] =
3259             (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3260         start_blk = blk_rq_pos(creq);
3261         dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3262                (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3263         sg_init_table(tmp_sg, h->maxsgentries);
3264         seg = blk_rq_map_sg(q, creq, tmp_sg);
3265
3266         /* get the DMA records for the setup */
3267         if (c->Request.Type.Direction == XFER_READ)
3268                 dir = PCI_DMA_FROMDEVICE;
3269         else
3270                 dir = PCI_DMA_TODEVICE;
3271
3272         curr_sg = c->SG;
3273         sg_index = 0;
3274         chained = 0;
3275
3276         for (i = 0; i < seg; i++) {
3277                 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3278                         !chained && ((seg - i) > 1)) {
3279                         /* Point to next chain block. */
3280                         curr_sg = h->cmd_sg_list[c->cmdindex];
3281                         sg_index = 0;
3282                         chained = 1;
3283                 }
3284                 curr_sg[sg_index].Len = tmp_sg[i].length;
3285                 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3286                                                 tmp_sg[i].offset,
3287                                                 tmp_sg[i].length, dir);
3288                 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3289                 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3290                 curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3291                 ++sg_index;
3292         }
3293         if (chained)
3294                 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3295                         (seg - (h->max_cmd_sgentries - 1)) *
3296                                 sizeof(SGDescriptor_struct));
3297
3298         /* track how many SG entries we are using */
3299         if (seg > h->maxSG)
3300                 h->maxSG = seg;
3301
3302         dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3303                         "chained[%d]\n",
3304                         blk_rq_sectors(creq), seg, chained);
3305
3306         c->Header.SGTotal = seg + chained;
3307         if (seg <= h->max_cmd_sgentries)
3308                 c->Header.SGList = c->Header.SGTotal;
3309         else
3310                 c->Header.SGList = h->max_cmd_sgentries;
3311         set_performant_mode(h, c);
3312
3313         if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3314                 if(h->cciss_read == CCISS_READ_10) {
3315                         c->Request.CDB[1] = 0;
3316                         c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3317                         c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3318                         c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3319                         c->Request.CDB[5] = start_blk & 0xff;
3320                         c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3321                         c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3322                         c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3323                         c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3324                 } else {
3325                         u32 upper32 = upper_32_bits(start_blk);
3326
3327                         c->Request.CDBLen = 16;
3328                         c->Request.CDB[1]= 0;
3329                         c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3330                         c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3331                         c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3332                         c->Request.CDB[5]= upper32 & 0xff;
3333                         c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3334                         c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3335                         c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3336                         c->Request.CDB[9]= start_blk & 0xff;
3337                         c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3338                         c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3339                         c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3340                         c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3341                         c->Request.CDB[14] = c->Request.CDB[15] = 0;
3342                 }
3343         } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3344                 c->Request.CDBLen = creq->cmd_len;
3345                 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3346         } else {
3347                 dev_warn(&h->pdev->dev, "bad request type %d\n",
3348                         creq->cmd_type);
3349                 BUG();
3350         }
3351
3352         spin_lock_irq(q->queue_lock);
3353
3354         addQ(&h->reqQ, c);
3355         h->Qdepth++;
3356         if (h->Qdepth > h->maxQsinceinit)
3357                 h->maxQsinceinit = h->Qdepth;
3358
3359         goto queue;
3360 full:
3361         blk_stop_queue(q);
3362 startio:
3363         /* We will already have the driver lock here so not need
3364          * to lock it.
3365          */
3366         start_io(h);
3367 }
3368
3369 static inline unsigned long get_next_completion(ctlr_info_t *h)
3370 {
3371         return h->access.command_completed(h);
3372 }
3373
3374 static inline int interrupt_pending(ctlr_info_t *h)
3375 {
3376         return h->access.intr_pending(h);
3377 }
3378
3379 static inline long interrupt_not_for_us(ctlr_info_t *h)
3380 {
3381         return ((h->access.intr_pending(h) == 0) ||
3382                 (h->interrupts_enabled == 0));
3383 }
3384
3385 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3386                         u32 raw_tag)
3387 {
3388         if (unlikely(tag_index >= h->nr_cmds)) {
3389                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3390                 return 1;
3391         }
3392         return 0;
3393 }
3394
3395 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3396                                 u32 raw_tag)
3397 {
3398         removeQ(c);
3399         if (likely(c->cmd_type == CMD_RWREQ))
3400                 complete_command(h, c, 0);
3401         else if (c->cmd_type == CMD_IOCTL_PEND)
3402                 complete(c->waiting);
3403 #ifdef CONFIG_CISS_SCSI_TAPE
3404         else if (c->cmd_type == CMD_SCSI)
3405                 complete_scsi_command(c, 0, raw_tag);
3406 #endif
3407 }
3408
3409 static inline u32 next_command(ctlr_info_t *h)
3410 {
3411         u32 a;
3412
3413         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
3414                 return h->access.command_completed(h);
3415
3416         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3417                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3418                 (h->reply_pool_head)++;
3419                 h->commands_outstanding--;
3420         } else {
3421                 a = FIFO_EMPTY;
3422         }
3423         /* Check for wraparound */
3424         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3425                 h->reply_pool_head = h->reply_pool;
3426                 h->reply_pool_wraparound ^= 1;
3427         }
3428         return a;
3429 }
3430
3431 /* process completion of an indexed ("direct lookup") command */
3432 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3433 {
3434         u32 tag_index;
3435         CommandList_struct *c;
3436
3437         tag_index = cciss_tag_to_index(raw_tag);
3438         if (bad_tag(h, tag_index, raw_tag))
3439                 return next_command(h);
3440         c = h->cmd_pool + tag_index;
3441         finish_cmd(h, c, raw_tag);
3442         return next_command(h);
3443 }
3444
3445 /* process completion of a non-indexed command */
3446 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3447 {
3448         u32 tag;
3449         CommandList_struct *c = NULL;
3450         struct hlist_node *tmp;
3451         __u32 busaddr_masked, tag_masked;
3452
3453         tag = cciss_tag_discard_error_bits(raw_tag);
3454         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3455                 busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
3456                 tag_masked = cciss_tag_discard_error_bits(tag);
3457                 if (busaddr_masked == tag_masked) {
3458                         finish_cmd(h, c, raw_tag);
3459                         return next_command(h);
3460                 }
3461         }
3462         bad_tag(h, h->nr_cmds + 1, raw_tag);
3463         return next_command(h);
3464 }
3465
3466 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3467 {
3468         ctlr_info_t *h = dev_id;
3469         unsigned long flags;
3470         u32 raw_tag;
3471
3472         if (interrupt_not_for_us(h))
3473                 return IRQ_NONE;
3474         spin_lock_irqsave(&h->lock, flags);
3475         while (interrupt_pending(h)) {
3476                 raw_tag = get_next_completion(h);
3477                 while (raw_tag != FIFO_EMPTY) {
3478                         if (cciss_tag_contains_index(raw_tag))
3479                                 raw_tag = process_indexed_cmd(h, raw_tag);
3480                         else
3481                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3482                 }
3483         }
3484         spin_unlock_irqrestore(&h->lock, flags);
3485         return IRQ_HANDLED;
3486 }
3487
3488 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3489  * check the interrupt pending register because it is not set.
3490  */
3491 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3492 {
3493         ctlr_info_t *h = dev_id;
3494         unsigned long flags;
3495         u32 raw_tag;
3496
3497         spin_lock_irqsave(&h->lock, flags);
3498         raw_tag = get_next_completion(h);
3499         while (raw_tag != FIFO_EMPTY) {
3500                 if (cciss_tag_contains_index(raw_tag))
3501                         raw_tag = process_indexed_cmd(h, raw_tag);
3502                 else
3503                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3504         }
3505         spin_unlock_irqrestore(&h->lock, flags);
3506         return IRQ_HANDLED;
3507 }
3508
3509 /**
3510  * add_to_scan_list() - add controller to rescan queue
3511  * @h:                Pointer to the controller.
3512  *
3513  * Adds the controller to the rescan queue if not already on the queue.
3514  *
3515  * returns 1 if added to the queue, 0 if skipped (could be on the
3516  * queue already, or the controller could be initializing or shutting
3517  * down).
3518  **/
3519 static int add_to_scan_list(struct ctlr_info *h)
3520 {
3521         struct ctlr_info *test_h;
3522         int found = 0;
3523         int ret = 0;
3524
3525         if (h->busy_initializing)
3526                 return 0;
3527
3528         if (!mutex_trylock(&h->busy_shutting_down))
3529                 return 0;
3530
3531         mutex_lock(&scan_mutex);
3532         list_for_each_entry(test_h, &scan_q, scan_list) {
3533                 if (test_h == h) {
3534                         found = 1;
3535                         break;
3536                 }
3537         }
3538         if (!found && !h->busy_scanning) {
3539                 INIT_COMPLETION(h->scan_wait);
3540                 list_add_tail(&h->scan_list, &scan_q);
3541                 ret = 1;
3542         }
3543         mutex_unlock(&scan_mutex);
3544         mutex_unlock(&h->busy_shutting_down);
3545
3546         return ret;
3547 }
3548
3549 /**
3550  * remove_from_scan_list() - remove controller from rescan queue
3551  * @h:                     Pointer to the controller.
3552  *
3553  * Removes the controller from the rescan queue if present. Blocks if
3554  * the controller is currently conducting a rescan.  The controller
3555  * can be in one of three states:
3556  * 1. Doesn't need a scan
3557  * 2. On the scan list, but not scanning yet (we remove it)
3558  * 3. Busy scanning (and not on the list). In this case we want to wait for
3559  *    the scan to complete to make sure the scanning thread for this
3560  *    controller is completely idle.
3561  **/
3562 static void remove_from_scan_list(struct ctlr_info *h)
3563 {
3564         struct ctlr_info *test_h, *tmp_h;
3565
3566         mutex_lock(&scan_mutex);
3567         list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3568                 if (test_h == h) { /* state 2. */
3569                         list_del(&h->scan_list);
3570                         complete_all(&h->scan_wait);
3571                         mutex_unlock(&scan_mutex);
3572                         return;
3573                 }
3574         }
3575         if (h->busy_scanning) { /* state 3. */
3576                 mutex_unlock(&scan_mutex);
3577                 wait_for_completion(&h->scan_wait);
3578         } else { /* state 1, nothing to do. */
3579                 mutex_unlock(&scan_mutex);
3580         }
3581 }
3582
3583 /**
3584  * scan_thread() - kernel thread used to rescan controllers
3585  * @data:        Ignored.
3586  *
3587  * A kernel thread used scan for drive topology changes on
3588  * controllers. The thread processes only one controller at a time
3589  * using a queue.  Controllers are added to the queue using
3590  * add_to_scan_list() and removed from the queue either after done
3591  * processing or using remove_from_scan_list().
3592  *
3593  * returns 0.
3594  **/
3595 static int scan_thread(void *data)
3596 {
3597         struct ctlr_info *h;
3598
3599         while (1) {
3600                 set_current_state(TASK_INTERRUPTIBLE);
3601                 schedule();
3602                 if (kthread_should_stop())
3603                         break;
3604
3605                 while (1) {
3606                         mutex_lock(&scan_mutex);
3607                         if (list_empty(&scan_q)) {
3608                                 mutex_unlock(&scan_mutex);
3609                                 break;
3610                         }
3611
3612                         h = list_entry(scan_q.next,
3613                                        struct ctlr_info,
3614                                        scan_list);
3615                         list_del(&h->scan_list);
3616                         h->busy_scanning = 1;
3617                         mutex_unlock(&scan_mutex);
3618
3619                         rebuild_lun_table(h, 0, 0);
3620                         complete_all(&h->scan_wait);
3621                         mutex_lock(&scan_mutex);
3622                         h->busy_scanning = 0;
3623                         mutex_unlock(&scan_mutex);
3624                 }
3625         }
3626
3627         return 0;
3628 }
3629
3630 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3631 {
3632         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3633                 return 0;
3634
3635         switch (c->err_info->SenseInfo[12]) {
3636         case STATE_CHANGED:
3637                 dev_warn(&h->pdev->dev, "a state change "
3638                         "detected, command retried\n");
3639                 return 1;
3640         break;
3641         case LUN_FAILED:
3642                 dev_warn(&h->pdev->dev, "LUN failure "
3643                         "detected, action required\n");
3644                 return 1;
3645         break;
3646         case REPORT_LUNS_CHANGED:
3647                 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3648         /*
3649          * Here, we could call add_to_scan_list and wake up the scan thread,
3650          * except that it's quite likely that we will get more than one
3651          * REPORT_LUNS_CHANGED condition in quick succession, which means
3652          * that those which occur after the first one will likely happen
3653          * *during* the scan_thread's rescan.  And the rescan code is not
3654          * robust enough to restart in the middle, undoing what it has already
3655          * done, and it's not clear that it's even possible to do this, since
3656          * part of what it does is notify the block layer, which starts
3657          * doing it's own i/o to read partition tables and so on, and the
3658          * driver doesn't have visibility to know what might need undoing.
3659          * In any event, if possible, it is horribly complicated to get right
3660          * so we just don't do it for now.
3661          *
3662          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3663          */
3664                 return 1;
3665         break;
3666         case POWER_OR_RESET:
3667                 dev_warn(&h->pdev->dev,
3668                         "a power on or device reset detected\n");
3669                 return 1;
3670         break;
3671         case UNIT_ATTENTION_CLEARED:
3672                 dev_warn(&h->pdev->dev,
3673                         "unit attention cleared by another initiator\n");
3674                 return 1;
3675         break;
3676         default:
3677                 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3678                 return 1;
3679         }
3680 }
3681
3682 /*
3683  *  We cannot read the structure directly, for portability we must use
3684  *   the io functions.
3685  *   This is for debug only.
3686  */
3687 static void print_cfg_table(ctlr_info_t *h)
3688 {
3689         int i;
3690         char temp_name[17];
3691         CfgTable_struct *tb = h->cfgtable;
3692
3693         dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3694         dev_dbg(&h->pdev->dev, "------------------------------------\n");
3695         for (i = 0; i < 4; i++)
3696                 temp_name[i] = readb(&(tb->Signature[i]));
3697         temp_name[4] = '\0';
3698         dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3699         dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3700                 readl(&(tb->SpecValence)));
3701         dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3702                readl(&(tb->TransportSupport)));
3703         dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3704                readl(&(tb->TransportActive)));
3705         dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3706                readl(&(tb->HostWrite.TransportRequest)));
3707         dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3708                readl(&(tb->HostWrite.CoalIntDelay)));
3709         dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3710                readl(&(tb->HostWrite.CoalIntCount)));
3711         dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3712                readl(&(tb->CmdsOutMax)));
3713         dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3714                 readl(&(tb->BusTypes)));
3715         for (i = 0; i < 16; i++)
3716                 temp_name[i] = readb(&(tb->ServerName[i]));
3717         temp_name[16] = '\0';
3718         dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3719         dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3720                 readl(&(tb->HeartBeat)));
3721 }
3722
3723 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3724 {
3725         int i, offset, mem_type, bar_type;
3726         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3727                 return 0;
3728         offset = 0;
3729         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3730                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3731                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3732                         offset += 4;
3733                 else {
3734                         mem_type = pci_resource_flags(pdev, i) &
3735                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3736                         switch (mem_type) {
3737                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3738                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3739                                 offset += 4;    /* 32 bit */
3740                                 break;
3741                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3742                                 offset += 8;
3743                                 break;
3744                         default:        /* reserved in PCI 2.2 */
3745                                 dev_warn(&pdev->dev,
3746                                        "Base address is invalid\n");
3747                                 return -1;
3748                                 break;
3749                         }
3750                 }
3751                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3752                         return i + 1;
3753         }
3754         return -1;
3755 }
3756
3757 /* Fill in bucket_map[], given nsgs (the max number of
3758  * scatter gather elements supported) and bucket[],
3759  * which is an array of 8 integers.  The bucket[] array
3760  * contains 8 different DMA transfer sizes (in 16
3761  * byte increments) which the controller uses to fetch
3762  * commands.  This function fills in bucket_map[], which
3763  * maps a given number of scatter gather elements to one of
3764  * the 8 DMA transfer sizes.  The point of it is to allow the
3765  * controller to only do as much DMA as needed to fetch the
3766  * command, with the DMA transfer size encoded in the lower
3767  * bits of the command address.
3768  */
3769 static void  calc_bucket_map(int bucket[], int num_buckets,
3770         int nsgs, int *bucket_map)
3771 {
3772         int i, j, b, size;
3773
3774         /* even a command with 0 SGs requires 4 blocks */
3775 #define MINIMUM_TRANSFER_BLOCKS 4
3776 #define NUM_BUCKETS 8
3777         /* Note, bucket_map must have nsgs+1 entries. */
3778         for (i = 0; i <= nsgs; i++) {
3779                 /* Compute size of a command with i SG entries */
3780                 size = i + MINIMUM_TRANSFER_BLOCKS;
3781                 b = num_buckets; /* Assume the biggest bucket */
3782                 /* Find the bucket that is just big enough */
3783                 for (j = 0; j < 8; j++) {
3784                         if (bucket[j] >= size) {
3785                                 b = j;
3786                                 break;
3787                         }
3788                 }
3789                 /* for a command with i SG entries, use bucket b. */
3790                 bucket_map[i] = b;
3791         }
3792 }
3793
3794 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3795 {
3796         int i;
3797
3798         /* under certain very rare conditions, this can take awhile.
3799          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3800          * as we enter this code.) */
3801         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3802                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3803                         break;
3804                 msleep(10);
3805         }
3806 }
3807
3808 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h)
3809 {
3810         /* This is a bit complicated.  There are 8 registers on
3811          * the controller which we write to to tell it 8 different
3812          * sizes of commands which there may be.  It's a way of
3813          * reducing the DMA done to fetch each command.  Encoded into
3814          * each command's tag are 3 bits which communicate to the controller
3815          * which of the eight sizes that command fits within.  The size of
3816          * each command depends on how many scatter gather entries there are.
3817          * Each SG entry requires 16 bytes.  The eight registers are programmed
3818          * with the number of 16-byte blocks a command of that size requires.
3819          * The smallest command possible requires 5 such 16 byte blocks.
3820          * the largest command possible requires MAXSGENTRIES + 4 16-byte
3821          * blocks.  Note, this only extends to the SG entries contained
3822          * within the command block, and does not extend to chained blocks
3823          * of SG elements.   bft[] contains the eight values we write to
3824          * the registers.  They are not evenly distributed, but have more
3825          * sizes for small commands, and fewer sizes for larger commands.
3826          */
3827         __u32 trans_offset;
3828         int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3829                         /*
3830                          *  5 = 1 s/g entry or 4k
3831                          *  6 = 2 s/g entry or 8k
3832                          *  8 = 4 s/g entry or 16k
3833                          * 10 = 6 s/g entry or 24k
3834                          */
3835         unsigned long register_value;
3836         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3837
3838         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3839
3840         /* Controller spec: zero out this buffer. */
3841         memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3842         h->reply_pool_head = h->reply_pool;
3843
3844         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3845         calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3846                                 h->blockFetchTable);
3847         writel(bft[0], &h->transtable->BlockFetch0);
3848         writel(bft[1], &h->transtable->BlockFetch1);
3849         writel(bft[2], &h->transtable->BlockFetch2);
3850         writel(bft[3], &h->transtable->BlockFetch3);
3851         writel(bft[4], &h->transtable->BlockFetch4);
3852         writel(bft[5], &h->transtable->BlockFetch5);
3853         writel(bft[6], &h->transtable->BlockFetch6);
3854         writel(bft[7], &h->transtable->BlockFetch7);
3855
3856         /* size of controller ring buffer */
3857         writel(h->max_commands, &h->transtable->RepQSize);
3858         writel(1, &h->transtable->RepQCount);
3859         writel(0, &h->transtable->RepQCtrAddrLow32);
3860         writel(0, &h->transtable->RepQCtrAddrHigh32);
3861         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3862         writel(0, &h->transtable->RepQAddr0High32);
3863         writel(CFGTBL_Trans_Performant,
3864                         &(h->cfgtable->HostWrite.TransportRequest));
3865
3866         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3867         cciss_wait_for_mode_change_ack(h);
3868         register_value = readl(&(h->cfgtable->TransportActive));
3869         if (!(register_value & CFGTBL_Trans_Performant))
3870                 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3871                                         " performant mode\n");
3872 }
3873
3874 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3875 {
3876         __u32 trans_support;
3877
3878         dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
3879         /* Attempt to put controller into performant mode if supported */
3880         /* Does board support performant mode? */
3881         trans_support = readl(&(h->cfgtable->TransportSupport));
3882         if (!(trans_support & PERFORMANT_MODE))
3883                 return;
3884
3885         dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
3886         /* Performant mode demands commands on a 32 byte boundary
3887          * pci_alloc_consistent aligns on page boundarys already.
3888          * Just need to check if divisible by 32
3889          */
3890         if ((sizeof(CommandList_struct) % 32) != 0) {
3891                 dev_warn(&h->pdev->dev, "%s %d %s\n",
3892                         "cciss info: command size[",
3893                         (int)sizeof(CommandList_struct),
3894                         "] not divisible by 32, no performant mode..\n");
3895                 return;
3896         }
3897
3898         /* Performant mode ring buffer and supporting data structures */
3899         h->reply_pool = (__u64 *)pci_alloc_consistent(
3900                 h->pdev, h->max_commands * sizeof(__u64),
3901                 &(h->reply_pool_dhandle));
3902
3903         /* Need a block fetch table for performant mode */
3904         h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3905                 sizeof(__u32)), GFP_KERNEL);
3906
3907         if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3908                 goto clean_up;
3909
3910         cciss_enter_performant_mode(h);
3911
3912         /* Change the access methods to the performant access methods */
3913         h->access = SA5_performant_access;
3914         h->transMethod = CFGTBL_Trans_Performant;
3915
3916         return;
3917 clean_up:
3918         kfree(h->blockFetchTable);
3919         if (h->reply_pool)
3920                 pci_free_consistent(h->pdev,
3921                                 h->max_commands * sizeof(__u64),
3922                                 h->reply_pool,
3923                                 h->reply_pool_dhandle);
3924         return;
3925
3926 } /* cciss_put_controller_into_performant_mode */
3927
3928 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3929  * controllers that are capable. If not, we use IO-APIC mode.
3930  */
3931
3932 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
3933 {
3934 #ifdef CONFIG_PCI_MSI
3935         int err;
3936         struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3937         {0, 2}, {0, 3}
3938         };
3939
3940         /* Some boards advertise MSI but don't really support it */
3941         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3942             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3943                 goto default_int_mode;
3944
3945         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3946                 err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
3947                 if (!err) {
3948                         h->intr[0] = cciss_msix_entries[0].vector;
3949                         h->intr[1] = cciss_msix_entries[1].vector;
3950                         h->intr[2] = cciss_msix_entries[2].vector;
3951                         h->intr[3] = cciss_msix_entries[3].vector;
3952                         h->msix_vector = 1;
3953                         return;
3954                 }
3955                 if (err > 0) {
3956                         dev_warn(&h->pdev->dev,
3957                                 "only %d MSI-X vectors available\n", err);
3958                         goto default_int_mode;
3959                 } else {
3960                         dev_warn(&h->pdev->dev,
3961                                 "MSI-X init failed %d\n", err);
3962                         goto default_int_mode;
3963                 }
3964         }
3965         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3966                 if (!pci_enable_msi(h->pdev))
3967                         h->msi_vector = 1;
3968                 else
3969                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3970         }
3971 default_int_mode:
3972 #endif                          /* CONFIG_PCI_MSI */
3973         /* if we get here we're going to use the default interrupt mode */
3974         h->intr[PERF_MODE_INT] = h->pdev->irq;
3975         return;
3976 }
3977
3978 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3979 {
3980         int i;
3981         u32 subsystem_vendor_id, subsystem_device_id;
3982
3983         subsystem_vendor_id = pdev->subsystem_vendor;
3984         subsystem_device_id = pdev->subsystem_device;
3985         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3986                         subsystem_vendor_id;
3987
3988         for (i = 0; i < ARRAY_SIZE(products); i++) {
3989                 /* Stand aside for hpsa driver on request */
3990                 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3991                         return -ENODEV;
3992                 if (*board_id == products[i].board_id)
3993                         return i;
3994         }
3995         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
3996                 *board_id);
3997         return -ENODEV;
3998 }
3999
4000 static inline bool cciss_board_disabled(ctlr_info_t *h)
4001 {
4002         u16 command;
4003
4004         (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4005         return ((command & PCI_COMMAND_MEMORY) == 0);
4006 }
4007
4008 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4009         unsigned long *memory_bar)
4010 {
4011         int i;
4012
4013         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4014                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4015                         /* addressing mode bits already removed */
4016                         *memory_bar = pci_resource_start(pdev, i);
4017                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4018                                 *memory_bar);
4019                         return 0;
4020                 }
4021         dev_warn(&pdev->dev, "no memory BAR found\n");
4022         return -ENODEV;
4023 }
4024
4025 static int __devinit cciss_wait_for_board_ready(ctlr_info_t *h)
4026 {
4027         int i;
4028         u32 scratchpad;
4029
4030         for (i = 0; i < CCISS_BOARD_READY_ITERATIONS; i++) {
4031                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4032                 if (scratchpad == CCISS_FIRMWARE_READY)
4033                         return 0;
4034                 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4035         }
4036         dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
4037         return -ENODEV;
4038 }
4039
4040 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4041         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4042         u64 *cfg_offset)
4043 {
4044         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4045         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4046         *cfg_base_addr &= (u32) 0x0000ffff;
4047         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4048         if (*cfg_base_addr_index == -1) {
4049                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4050                         "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4051                 return -ENODEV;
4052         }
4053         return 0;
4054 }
4055
4056 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4057 {
4058         u64 cfg_offset;
4059         u32 cfg_base_addr;
4060         u64 cfg_base_addr_index;
4061         u32 trans_offset;
4062         int rc;
4063
4064         rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4065                 &cfg_base_addr_index, &cfg_offset);
4066         if (rc)
4067                 return rc;
4068         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4069                 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4070         if (!h->cfgtable)
4071                 return -ENOMEM;
4072         /* Find performant mode table. */
4073         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4074         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4075                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4076                                 sizeof(*h->transtable));
4077         if (!h->transtable)
4078                 return -ENOMEM;
4079         return 0;
4080 }
4081
4082 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4083 {
4084         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4085         if (h->max_commands < 16) {
4086                 dev_warn(&h->pdev->dev, "Controller reports "
4087                         "max supported commands of %d, an obvious lie. "
4088                         "Using 16.  Ensure that firmware is up to date.\n",
4089                         h->max_commands);
4090                 h->max_commands = 16;
4091         }
4092 }
4093
4094 /* Interrogate the hardware for some limits:
4095  * max commands, max SG elements without chaining, and with chaining,
4096  * SG chain block size, etc.
4097  */
4098 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4099 {
4100         cciss_get_max_perf_mode_cmds(h);
4101         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4102         h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4103         /*
4104          * Limit in-command s/g elements to 32 save dma'able memory.
4105          * Howvever spec says if 0, use 31
4106          */
4107         h->max_cmd_sgentries = 31;
4108         if (h->maxsgentries > 512) {
4109                 h->max_cmd_sgentries = 32;
4110                 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4111                 h->maxsgentries--; /* save one for chain pointer */
4112         } else {
4113                 h->maxsgentries = 31; /* default to traditional values */
4114                 h->chainsize = 0;
4115         }
4116 }
4117
4118 static inline bool CISS_signature_present(ctlr_info_t *h)
4119 {
4120         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4121             (readb(&h->cfgtable->Signature[1]) != 'I') ||
4122             (readb(&h->cfgtable->Signature[2]) != 'S') ||
4123             (readb(&h->cfgtable->Signature[3]) != 'S')) {
4124                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4125                 return false;
4126         }
4127         return true;
4128 }
4129
4130 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4131 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4132 {
4133 #ifdef CONFIG_X86
4134         u32 prefetch;
4135
4136         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4137         prefetch |= 0x100;
4138         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4139 #endif
4140 }
4141
4142 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4143  * in a prefetch beyond physical memory.
4144  */
4145 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4146 {
4147         u32 dma_prefetch;
4148         __u32 dma_refetch;
4149
4150         if (h->board_id != 0x3225103C)
4151                 return;
4152         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4153         dma_prefetch |= 0x8000;
4154         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4155         pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4156         dma_refetch |= 0x1;
4157         pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4158 }
4159
4160 static int __devinit cciss_pci_init(ctlr_info_t *h)
4161 {
4162         int prod_index, err;
4163
4164         prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4165         if (prod_index < 0)
4166                 return -ENODEV;
4167         h->product_name = products[prod_index].product_name;
4168         h->access = *(products[prod_index].access);
4169
4170         if (cciss_board_disabled(h)) {
4171                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4172                 return -ENODEV;
4173         }
4174         err = pci_enable_device(h->pdev);
4175         if (err) {
4176                 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4177                 return err;
4178         }
4179
4180         err = pci_request_regions(h->pdev, "cciss");
4181         if (err) {
4182                 dev_warn(&h->pdev->dev,
4183                         "Cannot obtain PCI resources, aborting\n");
4184                 return err;
4185         }
4186
4187         dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4188         dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4189
4190 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4191  * else we use the IO-APIC interrupt assigned to us by system ROM.
4192  */
4193         cciss_interrupt_mode(h);
4194         err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4195         if (err)
4196                 goto err_out_free_res;
4197         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4198         if (!h->vaddr) {
4199                 err = -ENOMEM;
4200                 goto err_out_free_res;
4201         }
4202         err = cciss_wait_for_board_ready(h);
4203         if (err)
4204                 goto err_out_free_res;
4205         err = cciss_find_cfgtables(h);
4206         if (err)
4207                 goto err_out_free_res;
4208         print_cfg_table(h);
4209         cciss_find_board_params(h);
4210
4211         if (!CISS_signature_present(h)) {
4212                 err = -ENODEV;
4213                 goto err_out_free_res;
4214         }
4215         cciss_enable_scsi_prefetch(h);
4216         cciss_p600_dma_prefetch_quirk(h);
4217         cciss_put_controller_into_performant_mode(h);
4218         return 0;
4219
4220 err_out_free_res:
4221         /*
4222          * Deliberately omit pci_disable_device(): it does something nasty to
4223          * Smart Array controllers that pci_enable_device does not undo
4224          */
4225         if (h->transtable)
4226                 iounmap(h->transtable);
4227         if (h->cfgtable)
4228                 iounmap(h->cfgtable);
4229         if (h->vaddr)
4230                 iounmap(h->vaddr);
4231         pci_release_regions(h->pdev);
4232         return err;
4233 }
4234
4235 /* Function to find the first free pointer into our hba[] array
4236  * Returns -1 if no free entries are left.
4237  */
4238 static int alloc_cciss_hba(struct pci_dev *pdev)
4239 {
4240         int i;
4241
4242         for (i = 0; i < MAX_CTLR; i++) {
4243                 if (!hba[i]) {
4244                         ctlr_info_t *h;
4245
4246                         h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4247                         if (!h)
4248                                 goto Enomem;
4249                         hba[i] = h;
4250                         return i;
4251                 }
4252         }
4253         dev_warn(&pdev->dev, "This driver supports a maximum"
4254                " of %d controllers.\n", MAX_CTLR);
4255         return -1;
4256 Enomem:
4257         dev_warn(&pdev->dev, "out of memory.\n");
4258         return -1;
4259 }
4260
4261 static void free_hba(ctlr_info_t *h)
4262 {
4263         int i;
4264
4265         hba[h->ctlr] = NULL;
4266         for (i = 0; i < h->highest_lun + 1; i++)
4267                 if (h->gendisk[i] != NULL)
4268                         put_disk(h->gendisk[i]);
4269         kfree(h);
4270 }
4271
4272 /* Send a message CDB to the firmware. */
4273 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4274 {
4275         typedef struct {
4276                 CommandListHeader_struct CommandHeader;
4277                 RequestBlock_struct Request;
4278                 ErrDescriptor_struct ErrorDescriptor;
4279         } Command;
4280         static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4281         Command *cmd;
4282         dma_addr_t paddr64;
4283         uint32_t paddr32, tag;
4284         void __iomem *vaddr;
4285         int i, err;
4286
4287         vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4288         if (vaddr == NULL)
4289                 return -ENOMEM;
4290
4291         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4292            CCISS commands, so they must be allocated from the lower 4GiB of
4293            memory. */
4294         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4295         if (err) {
4296                 iounmap(vaddr);
4297                 return -ENOMEM;
4298         }
4299
4300         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4301         if (cmd == NULL) {
4302                 iounmap(vaddr);
4303                 return -ENOMEM;
4304         }
4305
4306         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
4307            although there's no guarantee, we assume that the address is at
4308            least 4-byte aligned (most likely, it's page-aligned). */
4309         paddr32 = paddr64;
4310
4311         cmd->CommandHeader.ReplyQueue = 0;
4312         cmd->CommandHeader.SGList = 0;
4313         cmd->CommandHeader.SGTotal = 0;
4314         cmd->CommandHeader.Tag.lower = paddr32;
4315         cmd->CommandHeader.Tag.upper = 0;
4316         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4317
4318         cmd->Request.CDBLen = 16;
4319         cmd->Request.Type.Type = TYPE_MSG;
4320         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4321         cmd->Request.Type.Direction = XFER_NONE;
4322         cmd->Request.Timeout = 0; /* Don't time out */
4323         cmd->Request.CDB[0] = opcode;
4324         cmd->Request.CDB[1] = type;
4325         memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4326
4327         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4328         cmd->ErrorDescriptor.Addr.upper = 0;
4329         cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4330
4331         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4332
4333         for (i = 0; i < 10; i++) {
4334                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4335                 if ((tag & ~3) == paddr32)
4336                         break;
4337                 schedule_timeout_uninterruptible(HZ);
4338         }
4339
4340         iounmap(vaddr);
4341
4342         /* we leak the DMA buffer here ... no choice since the controller could
4343            still complete the command. */
4344         if (i == 10) {
4345                 dev_err(&pdev->dev,
4346                         "controller message %02x:%02x timed out\n",
4347                         opcode, type);
4348                 return -ETIMEDOUT;
4349         }
4350
4351         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4352
4353         if (tag & 2) {
4354                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4355                         opcode, type);
4356                 return -EIO;
4357         }
4358
4359         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4360                 opcode, type);
4361         return 0;
4362 }
4363
4364 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4365 #define cciss_noop(p) cciss_message(p, 3, 0)
4366
4367 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
4368 {
4369 /* the #defines are stolen from drivers/pci/msi.h. */
4370 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
4371 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
4372
4373         int pos;
4374         u16 control = 0;
4375
4376         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
4377         if (pos) {
4378                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4379                 if (control & PCI_MSI_FLAGS_ENABLE) {
4380                         dev_info(&pdev->dev, "resetting MSI\n");
4381                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
4382                 }
4383         }
4384
4385         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4386         if (pos) {
4387                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
4388                 if (control & PCI_MSIX_FLAGS_ENABLE) {
4389                         dev_info(&pdev->dev, "resetting MSI-X\n");
4390                         pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
4391                 }
4392         }
4393
4394         return 0;
4395 }
4396
4397 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4398         void * __iomem vaddr, bool use_doorbell)
4399 {
4400         u16 pmcsr;
4401         int pos;
4402
4403         if (use_doorbell) {
4404                 /* For everything after the P600, the PCI power state method
4405                  * of resetting the controller doesn't work, so we have this
4406                  * other way using the doorbell register.
4407                  */
4408                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4409                 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
4410                 msleep(1000);
4411         } else { /* Try to do it the PCI power state way */
4412
4413                 /* Quoting from the Open CISS Specification: "The Power
4414                  * Management Control/Status Register (CSR) controls the power
4415                  * state of the device.  The normal operating state is D0,
4416                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4417                  * the controller, place the interface device in D3 then to D0,
4418                  * this causes a secondary PCI reset which will reset the
4419                  * controller." */
4420
4421                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4422                 if (pos == 0) {
4423                         dev_err(&pdev->dev,
4424                                 "cciss_controller_hard_reset: "
4425                                 "PCI PM not supported\n");
4426                         return -ENODEV;
4427                 }
4428                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4429                 /* enter the D3hot power management state */
4430                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4431                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4432                 pmcsr |= PCI_D3hot;
4433                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4434
4435                 msleep(500);
4436
4437                 /* enter the D0 power management state */
4438                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4439                 pmcsr |= PCI_D0;
4440                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4441
4442                 msleep(500);
4443         }
4444         return 0;
4445 }
4446
4447 /* This does a hard reset of the controller using PCI power management
4448  * states or using the doorbell register. */
4449 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4450 {
4451         u16 saved_config_space[32];
4452         u64 cfg_offset;
4453         u32 cfg_base_addr;
4454         u64 cfg_base_addr_index;
4455         void __iomem *vaddr;
4456         unsigned long paddr;
4457         u32 misc_fw_support, active_transport;
4458         int rc, i;
4459         CfgTable_struct __iomem *cfgtable;
4460         bool use_doorbell;
4461         u32 board_id;
4462
4463         /* For controllers as old a the p600, this is very nearly
4464          * the same thing as
4465          *
4466          * pci_save_state(pci_dev);
4467          * pci_set_power_state(pci_dev, PCI_D3hot);
4468          * pci_set_power_state(pci_dev, PCI_D0);
4469          * pci_restore_state(pci_dev);
4470          *
4471          * but we can't use these nice canned kernel routines on
4472          * kexec, because they also check the MSI/MSI-X state in PCI
4473          * configuration space and do the wrong thing when it is
4474          * set/cleared.  Also, the pci_save/restore_state functions
4475          * violate the ordering requirements for restoring the
4476          * configuration space from the CCISS document (see the
4477          * comment below).  So we roll our own ....
4478          *
4479          * For controllers newer than the P600, the pci power state
4480          * method of resetting doesn't work so we have another way
4481          * using the doorbell register.
4482          */
4483
4484         /* Exclude 640x boards.  These are two pci devices in one slot
4485          * which share a battery backed cache module.  One controls the
4486          * cache, the other accesses the cache through the one that controls
4487          * it.  If we reset the one controlling the cache, the other will
4488          * likely not be happy.  Just forbid resetting this conjoined mess.
4489          */
4490         cciss_lookup_board_id(pdev, &board_id);
4491         if (board_id == 0x409C0E11 || board_id == 0x409D0E11) {
4492                 dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4493                                 "due to shared cache module.");
4494                 return -ENODEV;
4495         }
4496
4497         for (i = 0; i < 32; i++)
4498                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
4499
4500         /* find the first memory BAR, so we can find the cfg table */
4501         rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4502         if (rc)
4503                 return rc;
4504         vaddr = remap_pci_mem(paddr, 0x250);
4505         if (!vaddr)
4506                 return -ENOMEM;
4507
4508         /* find cfgtable in order to check if reset via doorbell is supported */
4509         rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4510                                         &cfg_base_addr_index, &cfg_offset);
4511         if (rc)
4512                 goto unmap_vaddr;
4513         cfgtable = remap_pci_mem(pci_resource_start(pdev,
4514                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4515         if (!cfgtable) {
4516                 rc = -ENOMEM;
4517                 goto unmap_vaddr;
4518         }
4519
4520         /* If reset via doorbell register is supported, use that. */
4521         misc_fw_support = readl(&cfgtable->misc_fw_support);
4522         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4523
4524         rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4525         if (rc)
4526                 goto unmap_cfgtable;
4527
4528         /* Restore the PCI configuration space.  The Open CISS
4529          * Specification says, "Restore the PCI Configuration
4530          * Registers, offsets 00h through 60h. It is important to
4531          * restore the command register, 16-bits at offset 04h,
4532          * last. Do not restore the configuration status register,
4533          * 16-bits at offset 06h."  Note that the offset is 2*i.
4534          */
4535         for (i = 0; i < 32; i++) {
4536                 if (i == 2 || i == 3)
4537                         continue;
4538                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
4539         }
4540         wmb();
4541         pci_write_config_word(pdev, 4, saved_config_space[2]);
4542
4543         /* Some devices (notably the HP Smart Array 5i Controller)
4544            need a little pause here */
4545         msleep(CCISS_POST_RESET_PAUSE_MSECS);
4546
4547         /* Controller should be in simple mode at this point.  If it's not,
4548          * It means we're on one of those controllers which doesn't support
4549          * the doorbell reset method and on which the PCI power management reset
4550          * method doesn't work (P800, for example.)
4551          * In those cases, don't try to proceed, as it generally doesn't work.
4552          */
4553         active_transport = readl(&cfgtable->TransportActive);
4554         if (active_transport & PERFORMANT_MODE) {
4555                 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
4556                         " Ignoring controller.\n");
4557                 rc = -ENODEV;
4558         }
4559
4560 unmap_cfgtable:
4561         iounmap(cfgtable);
4562
4563 unmap_vaddr:
4564         iounmap(vaddr);
4565         return rc;
4566 }
4567
4568 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4569 {
4570         int rc, i;
4571
4572         if (!reset_devices)
4573                 return 0;
4574
4575         /* Reset the controller with a PCI power-cycle or via doorbell */
4576         rc = cciss_kdump_hard_reset_controller(pdev);
4577
4578         /* -ENOTSUPP here means we cannot reset the controller
4579          * but it's already (and still) up and running in
4580          * "performant mode".  Or, it might be 640x, which can't reset
4581          * due to concerns about shared bbwc between 6402/6404 pair.
4582          */
4583         if (rc == -ENOTSUPP)
4584                 return 0; /* just try to do the kdump anyhow. */
4585         if (rc)
4586                 return -ENODEV;
4587         if (cciss_reset_msi(pdev))
4588                 return -ENODEV;
4589
4590         /* Now try to get the controller to respond to a no-op */
4591         for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4592                 if (cciss_noop(pdev) == 0)
4593                         break;
4594                 else
4595                         dev_warn(&pdev->dev, "no-op failed%s\n",
4596                                 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4597                                         "; re-trying" : ""));
4598                 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4599         }
4600         return 0;
4601 }
4602
4603 /*
4604  *  This is it.  Find all the controllers and register them.  I really hate
4605  *  stealing all these major device numbers.
4606  *  returns the number of block devices registered.
4607  */
4608 static int __devinit cciss_init_one(struct pci_dev *pdev,
4609                                     const struct pci_device_id *ent)
4610 {
4611         int i;
4612         int j = 0;
4613         int k = 0;
4614         int rc;
4615         int dac, return_code;
4616         InquiryData_struct *inq_buff;
4617         ctlr_info_t *h;
4618
4619         rc = cciss_init_reset_devices(pdev);
4620         if (rc)
4621                 return rc;
4622         i = alloc_cciss_hba(pdev);
4623         if (i < 0)
4624                 return -1;
4625
4626         h = hba[i];
4627         h->pdev = pdev;
4628         h->busy_initializing = 1;
4629         INIT_HLIST_HEAD(&h->cmpQ);
4630         INIT_HLIST_HEAD(&h->reqQ);
4631         mutex_init(&h->busy_shutting_down);
4632
4633         if (cciss_pci_init(h) != 0)
4634                 goto clean_no_release_regions;
4635
4636         sprintf(h->devname, "cciss%d", i);
4637         h->ctlr = i;
4638
4639         init_completion(&h->scan_wait);
4640
4641         if (cciss_create_hba_sysfs_entry(h))
4642                 goto clean0;
4643
4644         /* configure PCI DMA stuff */
4645         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4646                 dac = 1;
4647         else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4648                 dac = 0;
4649         else {
4650                 dev_err(&h->pdev->dev, "no suitable DMA available\n");
4651                 goto clean1;
4652         }
4653
4654         /*
4655          * register with the major number, or get a dynamic major number
4656          * by passing 0 as argument.  This is done for greater than
4657          * 8 controller support.
4658          */
4659         if (i < MAX_CTLR_ORIG)
4660                 h->major = COMPAQ_CISS_MAJOR + i;
4661         rc = register_blkdev(h->major, h->devname);
4662         if (rc == -EBUSY || rc == -EINVAL) {
4663                 dev_err(&h->pdev->dev,
4664                        "Unable to get major number %d for %s "
4665                        "on hba %d\n", h->major, h->devname, i);
4666                 goto clean1;
4667         } else {
4668                 if (i >= MAX_CTLR_ORIG)
4669                         h->major = rc;
4670         }
4671
4672         /* make sure the board interrupts are off */
4673         h->access.set_intr_mask(h, CCISS_INTR_OFF);
4674         if (h->msi_vector || h->msix_vector) {
4675                 if (request_irq(h->intr[PERF_MODE_INT],
4676                                 do_cciss_msix_intr,
4677                                 IRQF_DISABLED, h->devname, h)) {
4678                         dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4679                                h->intr[PERF_MODE_INT], h->devname);
4680                         goto clean2;
4681                 }
4682         } else {
4683                 if (request_irq(h->intr[PERF_MODE_INT], do_cciss_intx,
4684                                 IRQF_DISABLED, h->devname, h)) {
4685                         dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4686                                h->intr[PERF_MODE_INT], h->devname);
4687                         goto clean2;
4688                 }
4689         }
4690
4691         dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4692                h->devname, pdev->device, pci_name(pdev),
4693                h->intr[PERF_MODE_INT], dac ? "" : " not");
4694
4695         h->cmd_pool_bits =
4696             kmalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
4697                         * sizeof(unsigned long), GFP_KERNEL);
4698         h->cmd_pool = (CommandList_struct *)
4699             pci_alloc_consistent(h->pdev,
4700                     h->nr_cmds * sizeof(CommandList_struct),
4701                     &(h->cmd_pool_dhandle));
4702         h->errinfo_pool = (ErrorInfo_struct *)
4703             pci_alloc_consistent(h->pdev,
4704                     h->nr_cmds * sizeof(ErrorInfo_struct),
4705                     &(h->errinfo_pool_dhandle));
4706         if ((h->cmd_pool_bits == NULL)
4707             || (h->cmd_pool == NULL)
4708             || (h->errinfo_pool == NULL)) {
4709                 dev_err(&h->pdev->dev, "out of memory");
4710                 goto clean4;
4711         }
4712
4713         /* Need space for temp scatter list */
4714         h->scatter_list = kmalloc(h->max_commands *
4715                                                 sizeof(struct scatterlist *),
4716                                                 GFP_KERNEL);
4717         for (k = 0; k < h->nr_cmds; k++) {
4718                 h->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4719                                                         h->maxsgentries,
4720                                                         GFP_KERNEL);
4721                 if (h->scatter_list[k] == NULL) {
4722                         dev_err(&h->pdev->dev,
4723                                 "could not allocate s/g lists\n");
4724                         goto clean4;
4725                 }
4726         }
4727         h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
4728                 h->chainsize, h->nr_cmds);
4729         if (!h->cmd_sg_list && h->chainsize > 0)
4730                 goto clean4;
4731
4732         spin_lock_init(&h->lock);
4733
4734         /* Initialize the pdev driver private data.
4735            have it point to h.  */
4736         pci_set_drvdata(pdev, h);
4737         /* command and error info recs zeroed out before
4738            they are used */
4739         memset(h->cmd_pool_bits, 0,
4740                DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
4741                         * sizeof(unsigned long));
4742
4743         h->num_luns = 0;
4744         h->highest_lun = -1;
4745         for (j = 0; j < CISS_MAX_LUN; j++) {
4746                 h->drv[j] = NULL;
4747                 h->gendisk[j] = NULL;
4748         }
4749
4750         cciss_scsi_setup(h);
4751
4752         /* Turn the interrupts on so we can service requests */
4753         h->access.set_intr_mask(h, CCISS_INTR_ON);
4754
4755         /* Get the firmware version */
4756         inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4757         if (inq_buff == NULL) {
4758                 dev_err(&h->pdev->dev, "out of memory\n");
4759                 goto clean4;
4760         }
4761
4762         return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
4763                 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4764         if (return_code == IO_OK) {
4765                 h->firm_ver[0] = inq_buff->data_byte[32];
4766                 h->firm_ver[1] = inq_buff->data_byte[33];
4767                 h->firm_ver[2] = inq_buff->data_byte[34];
4768                 h->firm_ver[3] = inq_buff->data_byte[35];
4769         } else {         /* send command failed */
4770                 dev_warn(&h->pdev->dev, "unable to determine firmware"
4771                         " version of controller\n");
4772         }
4773         kfree(inq_buff);
4774
4775         cciss_procinit(h);
4776
4777         h->cciss_max_sectors = 8192;
4778
4779         rebuild_lun_table(h, 1, 0);
4780         h->busy_initializing = 0;
4781         return 1;
4782
4783 clean4:
4784         kfree(h->cmd_pool_bits);
4785         /* Free up sg elements */
4786         for (k = 0; k < h->nr_cmds; k++)
4787                 kfree(h->scatter_list[k]);
4788         kfree(h->scatter_list);
4789         cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4790         if (h->cmd_pool)
4791                 pci_free_consistent(h->pdev,
4792                                     h->nr_cmds * sizeof(CommandList_struct),
4793                                     h->cmd_pool, h->cmd_pool_dhandle);
4794         if (h->errinfo_pool)
4795                 pci_free_consistent(h->pdev,
4796                                     h->nr_cmds * sizeof(ErrorInfo_struct),
4797                                     h->errinfo_pool,
4798                                     h->errinfo_pool_dhandle);
4799         free_irq(h->intr[PERF_MODE_INT], h);
4800 clean2:
4801         unregister_blkdev(h->major, h->devname);
4802 clean1:
4803         cciss_destroy_hba_sysfs_entry(h);
4804 clean0:
4805         pci_release_regions(pdev);
4806 clean_no_release_regions:
4807         h->busy_initializing = 0;
4808
4809         /*
4810          * Deliberately omit pci_disable_device(): it does something nasty to
4811          * Smart Array controllers that pci_enable_device does not undo
4812          */
4813         pci_set_drvdata(pdev, NULL);
4814         free_hba(h);
4815         return -1;
4816 }
4817
4818 static void cciss_shutdown(struct pci_dev *pdev)
4819 {
4820         ctlr_info_t *h;
4821         char *flush_buf;
4822         int return_code;
4823
4824         h = pci_get_drvdata(pdev);
4825         flush_buf = kzalloc(4, GFP_KERNEL);
4826         if (!flush_buf) {
4827                 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
4828                 return;
4829         }
4830         /* write all data in the battery backed cache to disk */
4831         memset(flush_buf, 0, 4);
4832         return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
4833                 4, 0, CTLR_LUNID, TYPE_CMD);
4834         kfree(flush_buf);
4835         if (return_code != IO_OK)
4836                 dev_warn(&h->pdev->dev, "Error flushing cache\n");
4837         h->access.set_intr_mask(h, CCISS_INTR_OFF);
4838         free_irq(h->intr[PERF_MODE_INT], h);
4839 }
4840
4841 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4842 {
4843         ctlr_info_t *h;
4844         int i, j;
4845
4846         if (pci_get_drvdata(pdev) == NULL) {
4847                 dev_err(&pdev->dev, "Unable to remove device\n");
4848                 return;
4849         }
4850
4851         h = pci_get_drvdata(pdev);
4852         i = h->ctlr;
4853         if (hba[i] == NULL) {
4854                 dev_err(&pdev->dev, "device appears to already be removed\n");
4855                 return;
4856         }
4857
4858         mutex_lock(&h->busy_shutting_down);
4859
4860         remove_from_scan_list(h);
4861         remove_proc_entry(h->devname, proc_cciss);
4862         unregister_blkdev(h->major, h->devname);
4863
4864         /* remove it from the disk list */
4865         for (j = 0; j < CISS_MAX_LUN; j++) {
4866                 struct gendisk *disk = h->gendisk[j];
4867                 if (disk) {
4868                         struct request_queue *q = disk->queue;
4869
4870                         if (disk->flags & GENHD_FL_UP) {
4871                                 cciss_destroy_ld_sysfs_entry(h, j, 1);
4872                                 del_gendisk(disk);
4873                         }
4874                         if (q)
4875                                 blk_cleanup_queue(q);
4876                 }
4877         }
4878
4879 #ifdef CONFIG_CISS_SCSI_TAPE
4880         cciss_unregister_scsi(h);       /* unhook from SCSI subsystem */
4881 #endif
4882
4883         cciss_shutdown(pdev);
4884
4885 #ifdef CONFIG_PCI_MSI
4886         if (h->msix_vector)
4887                 pci_disable_msix(h->pdev);
4888         else if (h->msi_vector)
4889                 pci_disable_msi(h->pdev);
4890 #endif                          /* CONFIG_PCI_MSI */
4891
4892         iounmap(h->transtable);
4893         iounmap(h->cfgtable);
4894         iounmap(h->vaddr);
4895
4896         pci_free_consistent(h->pdev, h->nr_cmds * sizeof(CommandList_struct),
4897                             h->cmd_pool, h->cmd_pool_dhandle);
4898         pci_free_consistent(h->pdev, h->nr_cmds * sizeof(ErrorInfo_struct),
4899                             h->errinfo_pool, h->errinfo_pool_dhandle);
4900         kfree(h->cmd_pool_bits);
4901         /* Free up sg elements */
4902         for (j = 0; j < h->nr_cmds; j++)
4903                 kfree(h->scatter_list[j]);
4904         kfree(h->scatter_list);
4905         cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4906         /*
4907          * Deliberately omit pci_disable_device(): it does something nasty to
4908          * Smart Array controllers that pci_enable_device does not undo
4909          */
4910         pci_release_regions(pdev);
4911         pci_set_drvdata(pdev, NULL);
4912         cciss_destroy_hba_sysfs_entry(h);
4913         mutex_unlock(&h->busy_shutting_down);
4914         free_hba(h);
4915 }
4916
4917 static struct pci_driver cciss_pci_driver = {
4918         .name = "cciss",
4919         .probe = cciss_init_one,
4920         .remove = __devexit_p(cciss_remove_one),
4921         .id_table = cciss_pci_device_id,        /* id_table */
4922         .shutdown = cciss_shutdown,
4923 };
4924
4925 /*
4926  *  This is it.  Register the PCI driver information for the cards we control
4927  *  the OS will call our registered routines when it finds one of our cards.
4928  */
4929 static int __init cciss_init(void)
4930 {
4931         int err;
4932
4933         /*
4934          * The hardware requires that commands are aligned on a 64-bit
4935          * boundary. Given that we use pci_alloc_consistent() to allocate an
4936          * array of them, the size must be a multiple of 8 bytes.
4937          */
4938         BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4939         printk(KERN_INFO DRIVER_NAME "\n");
4940
4941         err = bus_register(&cciss_bus_type);
4942         if (err)
4943                 return err;
4944
4945         /* Start the scan thread */
4946         cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4947         if (IS_ERR(cciss_scan_thread)) {
4948                 err = PTR_ERR(cciss_scan_thread);
4949                 goto err_bus_unregister;
4950         }
4951
4952         /* Register for our PCI devices */
4953         err = pci_register_driver(&cciss_pci_driver);
4954         if (err)
4955                 goto err_thread_stop;
4956
4957         return err;
4958
4959 err_thread_stop:
4960         kthread_stop(cciss_scan_thread);
4961 err_bus_unregister:
4962         bus_unregister(&cciss_bus_type);
4963
4964         return err;
4965 }
4966
4967 static void __exit cciss_cleanup(void)
4968 {
4969         int i;
4970
4971         pci_unregister_driver(&cciss_pci_driver);
4972         /* double check that all controller entrys have been removed */
4973         for (i = 0; i < MAX_CTLR; i++) {
4974                 if (hba[i] != NULL) {
4975                         dev_warn(&hba[i]->pdev->dev,
4976                                 "had to remove controller\n");
4977                         cciss_remove_one(hba[i]->pdev);
4978                 }
4979         }
4980         kthread_stop(cciss_scan_thread);
4981         remove_proc_entry("driver/cciss", NULL);
4982         bus_unregister(&cciss_bus_type);
4983 }
4984
4985 module_init(cciss_init);
4986 module_exit(cciss_cleanup);