]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/drbd/drbd_main.c
drbd: implement REQ_OP_WRITE_ZEROES
[karo-tx-linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2    drbd.c
3
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27  */
28
29 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <linux/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55 #include <linux/sched/signal.h>
56
57 #include <linux/drbd_limits.h>
58 #include "drbd_int.h"
59 #include "drbd_protocol.h"
60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
61 #include "drbd_vli.h"
62 #include "drbd_debugfs.h"
63
64 static DEFINE_MUTEX(drbd_main_mutex);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static void drbd_release(struct gendisk *gd, fmode_t mode);
67 static void md_sync_timer_fn(unsigned long data);
68 static int w_bitmap_io(struct drbd_work *w, int unused);
69
70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
71               "Lars Ellenberg <lars@linbit.com>");
72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
73 MODULE_VERSION(REL_VERSION);
74 MODULE_LICENSE("GPL");
75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
76                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
78
79 #include <linux/moduleparam.h>
80 /* allow_open_on_secondary */
81 MODULE_PARM_DESC(allow_oos, "DONT USE!");
82 /* thanks to these macros, if compiled into the kernel (not-module),
83  * this becomes the boot parameter drbd.minor_count */
84 module_param(minor_count, uint, 0444);
85 module_param(disable_sendpage, bool, 0644);
86 module_param(allow_oos, bool, 0);
87 module_param(proc_details, int, 0644);
88
89 #ifdef CONFIG_DRBD_FAULT_INJECTION
90 int enable_faults;
91 int fault_rate;
92 static int fault_count;
93 int fault_devs;
94 /* bitmap of enabled faults */
95 module_param(enable_faults, int, 0664);
96 /* fault rate % value - applies to all enabled faults */
97 module_param(fault_rate, int, 0664);
98 /* count of faults inserted */
99 module_param(fault_count, int, 0664);
100 /* bitmap of devices to insert faults on */
101 module_param(fault_devs, int, 0644);
102 #endif
103
104 /* module parameter, defined */
105 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
106 bool disable_sendpage;
107 bool allow_oos;
108 int proc_details;       /* Detail level in proc drbd*/
109
110 /* Module parameter for setting the user mode helper program
111  * to run. Default is /sbin/drbdadm */
112 char usermode_helper[80] = "/sbin/drbdadm";
113
114 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
115
116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
117  * as member "struct gendisk *vdisk;"
118  */
119 struct idr drbd_devices;
120 struct list_head drbd_resources;
121 struct mutex resources_mutex;
122
123 struct kmem_cache *drbd_request_cache;
124 struct kmem_cache *drbd_ee_cache;       /* peer requests */
125 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
126 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
127 mempool_t *drbd_request_mempool;
128 mempool_t *drbd_ee_mempool;
129 mempool_t *drbd_md_io_page_pool;
130 struct bio_set *drbd_md_io_bio_set;
131
132 /* I do not use a standard mempool, because:
133    1) I want to hand out the pre-allocated objects first.
134    2) I want to be able to interrupt sleeping allocation with a signal.
135    Note: This is a single linked list, the next pointer is the private
136          member of struct page.
137  */
138 struct page *drbd_pp_pool;
139 spinlock_t   drbd_pp_lock;
140 int          drbd_pp_vacant;
141 wait_queue_head_t drbd_pp_wait;
142
143 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
144
145 static const struct block_device_operations drbd_ops = {
146         .owner =   THIS_MODULE,
147         .open =    drbd_open,
148         .release = drbd_release,
149 };
150
151 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
152 {
153         struct bio *bio;
154
155         if (!drbd_md_io_bio_set)
156                 return bio_alloc(gfp_mask, 1);
157
158         bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
159         if (!bio)
160                 return NULL;
161         return bio;
162 }
163
164 #ifdef __CHECKER__
165 /* When checking with sparse, and this is an inline function, sparse will
166    give tons of false positives. When this is a real functions sparse works.
167  */
168 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
169 {
170         int io_allowed;
171
172         atomic_inc(&device->local_cnt);
173         io_allowed = (device->state.disk >= mins);
174         if (!io_allowed) {
175                 if (atomic_dec_and_test(&device->local_cnt))
176                         wake_up(&device->misc_wait);
177         }
178         return io_allowed;
179 }
180
181 #endif
182
183 /**
184  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
185  * @connection: DRBD connection.
186  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
187  * @set_size:   Expected number of requests before that barrier.
188  *
189  * In case the passed barrier_nr or set_size does not match the oldest
190  * epoch of not yet barrier-acked requests, this function will cause a
191  * termination of the connection.
192  */
193 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
194                 unsigned int set_size)
195 {
196         struct drbd_request *r;
197         struct drbd_request *req = NULL;
198         int expect_epoch = 0;
199         int expect_size = 0;
200
201         spin_lock_irq(&connection->resource->req_lock);
202
203         /* find oldest not yet barrier-acked write request,
204          * count writes in its epoch. */
205         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
206                 const unsigned s = r->rq_state;
207                 if (!req) {
208                         if (!(s & RQ_WRITE))
209                                 continue;
210                         if (!(s & RQ_NET_MASK))
211                                 continue;
212                         if (s & RQ_NET_DONE)
213                                 continue;
214                         req = r;
215                         expect_epoch = req->epoch;
216                         expect_size ++;
217                 } else {
218                         if (r->epoch != expect_epoch)
219                                 break;
220                         if (!(s & RQ_WRITE))
221                                 continue;
222                         /* if (s & RQ_DONE): not expected */
223                         /* if (!(s & RQ_NET_MASK)): not expected */
224                         expect_size++;
225                 }
226         }
227
228         /* first some paranoia code */
229         if (req == NULL) {
230                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
231                          barrier_nr);
232                 goto bail;
233         }
234         if (expect_epoch != barrier_nr) {
235                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
236                          barrier_nr, expect_epoch);
237                 goto bail;
238         }
239
240         if (expect_size != set_size) {
241                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
242                          barrier_nr, set_size, expect_size);
243                 goto bail;
244         }
245
246         /* Clean up list of requests processed during current epoch. */
247         /* this extra list walk restart is paranoia,
248          * to catch requests being barrier-acked "unexpectedly".
249          * It usually should find the same req again, or some READ preceding it. */
250         list_for_each_entry(req, &connection->transfer_log, tl_requests)
251                 if (req->epoch == expect_epoch)
252                         break;
253         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
254                 if (req->epoch != expect_epoch)
255                         break;
256                 _req_mod(req, BARRIER_ACKED);
257         }
258         spin_unlock_irq(&connection->resource->req_lock);
259
260         return;
261
262 bail:
263         spin_unlock_irq(&connection->resource->req_lock);
264         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
265 }
266
267
268 /**
269  * _tl_restart() - Walks the transfer log, and applies an action to all requests
270  * @connection: DRBD connection to operate on.
271  * @what:       The action/event to perform with all request objects
272  *
273  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
274  * RESTART_FROZEN_DISK_IO.
275  */
276 /* must hold resource->req_lock */
277 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
278 {
279         struct drbd_request *req, *r;
280
281         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
282                 _req_mod(req, what);
283 }
284
285 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
286 {
287         spin_lock_irq(&connection->resource->req_lock);
288         _tl_restart(connection, what);
289         spin_unlock_irq(&connection->resource->req_lock);
290 }
291
292 /**
293  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
294  * @device:     DRBD device.
295  *
296  * This is called after the connection to the peer was lost. The storage covered
297  * by the requests on the transfer gets marked as our of sync. Called from the
298  * receiver thread and the worker thread.
299  */
300 void tl_clear(struct drbd_connection *connection)
301 {
302         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
303 }
304
305 /**
306  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
307  * @device:     DRBD device.
308  */
309 void tl_abort_disk_io(struct drbd_device *device)
310 {
311         struct drbd_connection *connection = first_peer_device(device)->connection;
312         struct drbd_request *req, *r;
313
314         spin_lock_irq(&connection->resource->req_lock);
315         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
316                 if (!(req->rq_state & RQ_LOCAL_PENDING))
317                         continue;
318                 if (req->device != device)
319                         continue;
320                 _req_mod(req, ABORT_DISK_IO);
321         }
322         spin_unlock_irq(&connection->resource->req_lock);
323 }
324
325 static int drbd_thread_setup(void *arg)
326 {
327         struct drbd_thread *thi = (struct drbd_thread *) arg;
328         struct drbd_resource *resource = thi->resource;
329         unsigned long flags;
330         int retval;
331
332         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
333                  thi->name[0],
334                  resource->name);
335
336 restart:
337         retval = thi->function(thi);
338
339         spin_lock_irqsave(&thi->t_lock, flags);
340
341         /* if the receiver has been "EXITING", the last thing it did
342          * was set the conn state to "StandAlone",
343          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
344          * and receiver thread will be "started".
345          * drbd_thread_start needs to set "RESTARTING" in that case.
346          * t_state check and assignment needs to be within the same spinlock,
347          * so either thread_start sees EXITING, and can remap to RESTARTING,
348          * or thread_start see NONE, and can proceed as normal.
349          */
350
351         if (thi->t_state == RESTARTING) {
352                 drbd_info(resource, "Restarting %s thread\n", thi->name);
353                 thi->t_state = RUNNING;
354                 spin_unlock_irqrestore(&thi->t_lock, flags);
355                 goto restart;
356         }
357
358         thi->task = NULL;
359         thi->t_state = NONE;
360         smp_mb();
361         complete_all(&thi->stop);
362         spin_unlock_irqrestore(&thi->t_lock, flags);
363
364         drbd_info(resource, "Terminating %s\n", current->comm);
365
366         /* Release mod reference taken when thread was started */
367
368         if (thi->connection)
369                 kref_put(&thi->connection->kref, drbd_destroy_connection);
370         kref_put(&resource->kref, drbd_destroy_resource);
371         module_put(THIS_MODULE);
372         return retval;
373 }
374
375 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
376                              int (*func) (struct drbd_thread *), const char *name)
377 {
378         spin_lock_init(&thi->t_lock);
379         thi->task    = NULL;
380         thi->t_state = NONE;
381         thi->function = func;
382         thi->resource = resource;
383         thi->connection = NULL;
384         thi->name = name;
385 }
386
387 int drbd_thread_start(struct drbd_thread *thi)
388 {
389         struct drbd_resource *resource = thi->resource;
390         struct task_struct *nt;
391         unsigned long flags;
392
393         /* is used from state engine doing drbd_thread_stop_nowait,
394          * while holding the req lock irqsave */
395         spin_lock_irqsave(&thi->t_lock, flags);
396
397         switch (thi->t_state) {
398         case NONE:
399                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
400                          thi->name, current->comm, current->pid);
401
402                 /* Get ref on module for thread - this is released when thread exits */
403                 if (!try_module_get(THIS_MODULE)) {
404                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
405                         spin_unlock_irqrestore(&thi->t_lock, flags);
406                         return false;
407                 }
408
409                 kref_get(&resource->kref);
410                 if (thi->connection)
411                         kref_get(&thi->connection->kref);
412
413                 init_completion(&thi->stop);
414                 thi->reset_cpu_mask = 1;
415                 thi->t_state = RUNNING;
416                 spin_unlock_irqrestore(&thi->t_lock, flags);
417                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
418
419                 nt = kthread_create(drbd_thread_setup, (void *) thi,
420                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
421
422                 if (IS_ERR(nt)) {
423                         drbd_err(resource, "Couldn't start thread\n");
424
425                         if (thi->connection)
426                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
427                         kref_put(&resource->kref, drbd_destroy_resource);
428                         module_put(THIS_MODULE);
429                         return false;
430                 }
431                 spin_lock_irqsave(&thi->t_lock, flags);
432                 thi->task = nt;
433                 thi->t_state = RUNNING;
434                 spin_unlock_irqrestore(&thi->t_lock, flags);
435                 wake_up_process(nt);
436                 break;
437         case EXITING:
438                 thi->t_state = RESTARTING;
439                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
440                                 thi->name, current->comm, current->pid);
441                 /* fall through */
442         case RUNNING:
443         case RESTARTING:
444         default:
445                 spin_unlock_irqrestore(&thi->t_lock, flags);
446                 break;
447         }
448
449         return true;
450 }
451
452
453 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
454 {
455         unsigned long flags;
456
457         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
458
459         /* may be called from state engine, holding the req lock irqsave */
460         spin_lock_irqsave(&thi->t_lock, flags);
461
462         if (thi->t_state == NONE) {
463                 spin_unlock_irqrestore(&thi->t_lock, flags);
464                 if (restart)
465                         drbd_thread_start(thi);
466                 return;
467         }
468
469         if (thi->t_state != ns) {
470                 if (thi->task == NULL) {
471                         spin_unlock_irqrestore(&thi->t_lock, flags);
472                         return;
473                 }
474
475                 thi->t_state = ns;
476                 smp_mb();
477                 init_completion(&thi->stop);
478                 if (thi->task != current)
479                         force_sig(DRBD_SIGKILL, thi->task);
480         }
481
482         spin_unlock_irqrestore(&thi->t_lock, flags);
483
484         if (wait)
485                 wait_for_completion(&thi->stop);
486 }
487
488 int conn_lowest_minor(struct drbd_connection *connection)
489 {
490         struct drbd_peer_device *peer_device;
491         int vnr = 0, minor = -1;
492
493         rcu_read_lock();
494         peer_device = idr_get_next(&connection->peer_devices, &vnr);
495         if (peer_device)
496                 minor = device_to_minor(peer_device->device);
497         rcu_read_unlock();
498
499         return minor;
500 }
501
502 #ifdef CONFIG_SMP
503 /**
504  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
505  *
506  * Forces all threads of a resource onto the same CPU. This is beneficial for
507  * DRBD's performance. May be overwritten by user's configuration.
508  */
509 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
510 {
511         unsigned int *resources_per_cpu, min_index = ~0;
512
513         resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
514         if (resources_per_cpu) {
515                 struct drbd_resource *resource;
516                 unsigned int cpu, min = ~0;
517
518                 rcu_read_lock();
519                 for_each_resource_rcu(resource, &drbd_resources) {
520                         for_each_cpu(cpu, resource->cpu_mask)
521                                 resources_per_cpu[cpu]++;
522                 }
523                 rcu_read_unlock();
524                 for_each_online_cpu(cpu) {
525                         if (resources_per_cpu[cpu] < min) {
526                                 min = resources_per_cpu[cpu];
527                                 min_index = cpu;
528                         }
529                 }
530                 kfree(resources_per_cpu);
531         }
532         if (min_index == ~0) {
533                 cpumask_setall(*cpu_mask);
534                 return;
535         }
536         cpumask_set_cpu(min_index, *cpu_mask);
537 }
538
539 /**
540  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
541  * @device:     DRBD device.
542  * @thi:        drbd_thread object
543  *
544  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
545  * prematurely.
546  */
547 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
548 {
549         struct drbd_resource *resource = thi->resource;
550         struct task_struct *p = current;
551
552         if (!thi->reset_cpu_mask)
553                 return;
554         thi->reset_cpu_mask = 0;
555         set_cpus_allowed_ptr(p, resource->cpu_mask);
556 }
557 #else
558 #define drbd_calc_cpu_mask(A) ({})
559 #endif
560
561 /**
562  * drbd_header_size  -  size of a packet header
563  *
564  * The header size is a multiple of 8, so any payload following the header is
565  * word aligned on 64-bit architectures.  (The bitmap send and receive code
566  * relies on this.)
567  */
568 unsigned int drbd_header_size(struct drbd_connection *connection)
569 {
570         if (connection->agreed_pro_version >= 100) {
571                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
572                 return sizeof(struct p_header100);
573         } else {
574                 BUILD_BUG_ON(sizeof(struct p_header80) !=
575                              sizeof(struct p_header95));
576                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
577                 return sizeof(struct p_header80);
578         }
579 }
580
581 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
582 {
583         h->magic   = cpu_to_be32(DRBD_MAGIC);
584         h->command = cpu_to_be16(cmd);
585         h->length  = cpu_to_be16(size);
586         return sizeof(struct p_header80);
587 }
588
589 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
590 {
591         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
592         h->command = cpu_to_be16(cmd);
593         h->length = cpu_to_be32(size);
594         return sizeof(struct p_header95);
595 }
596
597 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
598                                       int size, int vnr)
599 {
600         h->magic = cpu_to_be32(DRBD_MAGIC_100);
601         h->volume = cpu_to_be16(vnr);
602         h->command = cpu_to_be16(cmd);
603         h->length = cpu_to_be32(size);
604         h->pad = 0;
605         return sizeof(struct p_header100);
606 }
607
608 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
609                                    void *buffer, enum drbd_packet cmd, int size)
610 {
611         if (connection->agreed_pro_version >= 100)
612                 return prepare_header100(buffer, cmd, size, vnr);
613         else if (connection->agreed_pro_version >= 95 &&
614                  size > DRBD_MAX_SIZE_H80_PACKET)
615                 return prepare_header95(buffer, cmd, size);
616         else
617                 return prepare_header80(buffer, cmd, size);
618 }
619
620 static void *__conn_prepare_command(struct drbd_connection *connection,
621                                     struct drbd_socket *sock)
622 {
623         if (!sock->socket)
624                 return NULL;
625         return sock->sbuf + drbd_header_size(connection);
626 }
627
628 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
629 {
630         void *p;
631
632         mutex_lock(&sock->mutex);
633         p = __conn_prepare_command(connection, sock);
634         if (!p)
635                 mutex_unlock(&sock->mutex);
636
637         return p;
638 }
639
640 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
641 {
642         return conn_prepare_command(peer_device->connection, sock);
643 }
644
645 static int __send_command(struct drbd_connection *connection, int vnr,
646                           struct drbd_socket *sock, enum drbd_packet cmd,
647                           unsigned int header_size, void *data,
648                           unsigned int size)
649 {
650         int msg_flags;
651         int err;
652
653         /*
654          * Called with @data == NULL and the size of the data blocks in @size
655          * for commands that send data blocks.  For those commands, omit the
656          * MSG_MORE flag: this will increase the likelihood that data blocks
657          * which are page aligned on the sender will end up page aligned on the
658          * receiver.
659          */
660         msg_flags = data ? MSG_MORE : 0;
661
662         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
663                                       header_size + size);
664         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
665                             msg_flags);
666         if (data && !err)
667                 err = drbd_send_all(connection, sock->socket, data, size, 0);
668         /* DRBD protocol "pings" are latency critical.
669          * This is supposed to trigger tcp_push_pending_frames() */
670         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
671                 drbd_tcp_nodelay(sock->socket);
672
673         return err;
674 }
675
676 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677                                enum drbd_packet cmd, unsigned int header_size,
678                                void *data, unsigned int size)
679 {
680         return __send_command(connection, 0, sock, cmd, header_size, data, size);
681 }
682
683 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
684                       enum drbd_packet cmd, unsigned int header_size,
685                       void *data, unsigned int size)
686 {
687         int err;
688
689         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
690         mutex_unlock(&sock->mutex);
691         return err;
692 }
693
694 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
695                       enum drbd_packet cmd, unsigned int header_size,
696                       void *data, unsigned int size)
697 {
698         int err;
699
700         err = __send_command(peer_device->connection, peer_device->device->vnr,
701                              sock, cmd, header_size, data, size);
702         mutex_unlock(&sock->mutex);
703         return err;
704 }
705
706 int drbd_send_ping(struct drbd_connection *connection)
707 {
708         struct drbd_socket *sock;
709
710         sock = &connection->meta;
711         if (!conn_prepare_command(connection, sock))
712                 return -EIO;
713         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
714 }
715
716 int drbd_send_ping_ack(struct drbd_connection *connection)
717 {
718         struct drbd_socket *sock;
719
720         sock = &connection->meta;
721         if (!conn_prepare_command(connection, sock))
722                 return -EIO;
723         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
724 }
725
726 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
727 {
728         struct drbd_socket *sock;
729         struct p_rs_param_95 *p;
730         int size;
731         const int apv = peer_device->connection->agreed_pro_version;
732         enum drbd_packet cmd;
733         struct net_conf *nc;
734         struct disk_conf *dc;
735
736         sock = &peer_device->connection->data;
737         p = drbd_prepare_command(peer_device, sock);
738         if (!p)
739                 return -EIO;
740
741         rcu_read_lock();
742         nc = rcu_dereference(peer_device->connection->net_conf);
743
744         size = apv <= 87 ? sizeof(struct p_rs_param)
745                 : apv == 88 ? sizeof(struct p_rs_param)
746                         + strlen(nc->verify_alg) + 1
747                 : apv <= 94 ? sizeof(struct p_rs_param_89)
748                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
749
750         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
751
752         /* initialize verify_alg and csums_alg */
753         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
754
755         if (get_ldev(peer_device->device)) {
756                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
757                 p->resync_rate = cpu_to_be32(dc->resync_rate);
758                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
759                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
760                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
761                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
762                 put_ldev(peer_device->device);
763         } else {
764                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
765                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
766                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
767                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
768                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
769         }
770
771         if (apv >= 88)
772                 strcpy(p->verify_alg, nc->verify_alg);
773         if (apv >= 89)
774                 strcpy(p->csums_alg, nc->csums_alg);
775         rcu_read_unlock();
776
777         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
778 }
779
780 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
781 {
782         struct drbd_socket *sock;
783         struct p_protocol *p;
784         struct net_conf *nc;
785         int size, cf;
786
787         sock = &connection->data;
788         p = __conn_prepare_command(connection, sock);
789         if (!p)
790                 return -EIO;
791
792         rcu_read_lock();
793         nc = rcu_dereference(connection->net_conf);
794
795         if (nc->tentative && connection->agreed_pro_version < 92) {
796                 rcu_read_unlock();
797                 mutex_unlock(&sock->mutex);
798                 drbd_err(connection, "--dry-run is not supported by peer");
799                 return -EOPNOTSUPP;
800         }
801
802         size = sizeof(*p);
803         if (connection->agreed_pro_version >= 87)
804                 size += strlen(nc->integrity_alg) + 1;
805
806         p->protocol      = cpu_to_be32(nc->wire_protocol);
807         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
808         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
809         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
810         p->two_primaries = cpu_to_be32(nc->two_primaries);
811         cf = 0;
812         if (nc->discard_my_data)
813                 cf |= CF_DISCARD_MY_DATA;
814         if (nc->tentative)
815                 cf |= CF_DRY_RUN;
816         p->conn_flags    = cpu_to_be32(cf);
817
818         if (connection->agreed_pro_version >= 87)
819                 strcpy(p->integrity_alg, nc->integrity_alg);
820         rcu_read_unlock();
821
822         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
823 }
824
825 int drbd_send_protocol(struct drbd_connection *connection)
826 {
827         int err;
828
829         mutex_lock(&connection->data.mutex);
830         err = __drbd_send_protocol(connection, P_PROTOCOL);
831         mutex_unlock(&connection->data.mutex);
832
833         return err;
834 }
835
836 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
837 {
838         struct drbd_device *device = peer_device->device;
839         struct drbd_socket *sock;
840         struct p_uuids *p;
841         int i;
842
843         if (!get_ldev_if_state(device, D_NEGOTIATING))
844                 return 0;
845
846         sock = &peer_device->connection->data;
847         p = drbd_prepare_command(peer_device, sock);
848         if (!p) {
849                 put_ldev(device);
850                 return -EIO;
851         }
852         spin_lock_irq(&device->ldev->md.uuid_lock);
853         for (i = UI_CURRENT; i < UI_SIZE; i++)
854                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
855         spin_unlock_irq(&device->ldev->md.uuid_lock);
856
857         device->comm_bm_set = drbd_bm_total_weight(device);
858         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
859         rcu_read_lock();
860         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
861         rcu_read_unlock();
862         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
863         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
864         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
865
866         put_ldev(device);
867         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
868 }
869
870 int drbd_send_uuids(struct drbd_peer_device *peer_device)
871 {
872         return _drbd_send_uuids(peer_device, 0);
873 }
874
875 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
876 {
877         return _drbd_send_uuids(peer_device, 8);
878 }
879
880 void drbd_print_uuids(struct drbd_device *device, const char *text)
881 {
882         if (get_ldev_if_state(device, D_NEGOTIATING)) {
883                 u64 *uuid = device->ldev->md.uuid;
884                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
885                      text,
886                      (unsigned long long)uuid[UI_CURRENT],
887                      (unsigned long long)uuid[UI_BITMAP],
888                      (unsigned long long)uuid[UI_HISTORY_START],
889                      (unsigned long long)uuid[UI_HISTORY_END]);
890                 put_ldev(device);
891         } else {
892                 drbd_info(device, "%s effective data uuid: %016llX\n",
893                                 text,
894                                 (unsigned long long)device->ed_uuid);
895         }
896 }
897
898 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
899 {
900         struct drbd_device *device = peer_device->device;
901         struct drbd_socket *sock;
902         struct p_rs_uuid *p;
903         u64 uuid;
904
905         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
906
907         uuid = device->ldev->md.uuid[UI_BITMAP];
908         if (uuid && uuid != UUID_JUST_CREATED)
909                 uuid = uuid + UUID_NEW_BM_OFFSET;
910         else
911                 get_random_bytes(&uuid, sizeof(u64));
912         drbd_uuid_set(device, UI_BITMAP, uuid);
913         drbd_print_uuids(device, "updated sync UUID");
914         drbd_md_sync(device);
915
916         sock = &peer_device->connection->data;
917         p = drbd_prepare_command(peer_device, sock);
918         if (p) {
919                 p->uuid = cpu_to_be64(uuid);
920                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
921         }
922 }
923
924 /* communicated if (agreed_features & DRBD_FF_WSAME) */
925 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q)
926 {
927         if (q) {
928                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
929                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
930                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
931                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
932                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
933                 p->qlim->discard_enabled = blk_queue_discard(q);
934                 p->qlim->discard_zeroes_data = queue_discard_zeroes_data(q);
935                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
936         } else {
937                 q = device->rq_queue;
938                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
939                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
940                 p->qlim->alignment_offset = 0;
941                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
942                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
943                 p->qlim->discard_enabled = 0;
944                 p->qlim->discard_zeroes_data = 0;
945                 p->qlim->write_same_capable = 0;
946         }
947 }
948
949 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
950 {
951         struct drbd_device *device = peer_device->device;
952         struct drbd_socket *sock;
953         struct p_sizes *p;
954         sector_t d_size, u_size;
955         int q_order_type;
956         unsigned int max_bio_size;
957         unsigned int packet_size;
958
959         sock = &peer_device->connection->data;
960         p = drbd_prepare_command(peer_device, sock);
961         if (!p)
962                 return -EIO;
963
964         packet_size = sizeof(*p);
965         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
966                 packet_size += sizeof(p->qlim[0]);
967
968         memset(p, 0, packet_size);
969         if (get_ldev_if_state(device, D_NEGOTIATING)) {
970                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
971                 d_size = drbd_get_max_capacity(device->ldev);
972                 rcu_read_lock();
973                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
974                 rcu_read_unlock();
975                 q_order_type = drbd_queue_order_type(device);
976                 max_bio_size = queue_max_hw_sectors(q) << 9;
977                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
978                 assign_p_sizes_qlim(device, p, q);
979                 put_ldev(device);
980         } else {
981                 d_size = 0;
982                 u_size = 0;
983                 q_order_type = QUEUE_ORDERED_NONE;
984                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
985                 assign_p_sizes_qlim(device, p, NULL);
986         }
987
988         if (peer_device->connection->agreed_pro_version <= 94)
989                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
990         else if (peer_device->connection->agreed_pro_version < 100)
991                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
992
993         p->d_size = cpu_to_be64(d_size);
994         p->u_size = cpu_to_be64(u_size);
995         p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
996         p->max_bio_size = cpu_to_be32(max_bio_size);
997         p->queue_order_type = cpu_to_be16(q_order_type);
998         p->dds_flags = cpu_to_be16(flags);
999
1000         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
1001 }
1002
1003 /**
1004  * drbd_send_current_state() - Sends the drbd state to the peer
1005  * @peer_device:        DRBD peer device.
1006  */
1007 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1008 {
1009         struct drbd_socket *sock;
1010         struct p_state *p;
1011
1012         sock = &peer_device->connection->data;
1013         p = drbd_prepare_command(peer_device, sock);
1014         if (!p)
1015                 return -EIO;
1016         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1017         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1018 }
1019
1020 /**
1021  * drbd_send_state() - After a state change, sends the new state to the peer
1022  * @peer_device:      DRBD peer device.
1023  * @state:     the state to send, not necessarily the current state.
1024  *
1025  * Each state change queues an "after_state_ch" work, which will eventually
1026  * send the resulting new state to the peer. If more state changes happen
1027  * between queuing and processing of the after_state_ch work, we still
1028  * want to send each intermediary state in the order it occurred.
1029  */
1030 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1031 {
1032         struct drbd_socket *sock;
1033         struct p_state *p;
1034
1035         sock = &peer_device->connection->data;
1036         p = drbd_prepare_command(peer_device, sock);
1037         if (!p)
1038                 return -EIO;
1039         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1040         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1041 }
1042
1043 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1044 {
1045         struct drbd_socket *sock;
1046         struct p_req_state *p;
1047
1048         sock = &peer_device->connection->data;
1049         p = drbd_prepare_command(peer_device, sock);
1050         if (!p)
1051                 return -EIO;
1052         p->mask = cpu_to_be32(mask.i);
1053         p->val = cpu_to_be32(val.i);
1054         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1055 }
1056
1057 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1058 {
1059         enum drbd_packet cmd;
1060         struct drbd_socket *sock;
1061         struct p_req_state *p;
1062
1063         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1064         sock = &connection->data;
1065         p = conn_prepare_command(connection, sock);
1066         if (!p)
1067                 return -EIO;
1068         p->mask = cpu_to_be32(mask.i);
1069         p->val = cpu_to_be32(val.i);
1070         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1071 }
1072
1073 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1074 {
1075         struct drbd_socket *sock;
1076         struct p_req_state_reply *p;
1077
1078         sock = &peer_device->connection->meta;
1079         p = drbd_prepare_command(peer_device, sock);
1080         if (p) {
1081                 p->retcode = cpu_to_be32(retcode);
1082                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1083         }
1084 }
1085
1086 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1087 {
1088         struct drbd_socket *sock;
1089         struct p_req_state_reply *p;
1090         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1091
1092         sock = &connection->meta;
1093         p = conn_prepare_command(connection, sock);
1094         if (p) {
1095                 p->retcode = cpu_to_be32(retcode);
1096                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1097         }
1098 }
1099
1100 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1101 {
1102         BUG_ON(code & ~0xf);
1103         p->encoding = (p->encoding & ~0xf) | code;
1104 }
1105
1106 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1107 {
1108         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1109 }
1110
1111 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1112 {
1113         BUG_ON(n & ~0x7);
1114         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1115 }
1116
1117 static int fill_bitmap_rle_bits(struct drbd_device *device,
1118                          struct p_compressed_bm *p,
1119                          unsigned int size,
1120                          struct bm_xfer_ctx *c)
1121 {
1122         struct bitstream bs;
1123         unsigned long plain_bits;
1124         unsigned long tmp;
1125         unsigned long rl;
1126         unsigned len;
1127         unsigned toggle;
1128         int bits, use_rle;
1129
1130         /* may we use this feature? */
1131         rcu_read_lock();
1132         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1133         rcu_read_unlock();
1134         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1135                 return 0;
1136
1137         if (c->bit_offset >= c->bm_bits)
1138                 return 0; /* nothing to do. */
1139
1140         /* use at most thus many bytes */
1141         bitstream_init(&bs, p->code, size, 0);
1142         memset(p->code, 0, size);
1143         /* plain bits covered in this code string */
1144         plain_bits = 0;
1145
1146         /* p->encoding & 0x80 stores whether the first run length is set.
1147          * bit offset is implicit.
1148          * start with toggle == 2 to be able to tell the first iteration */
1149         toggle = 2;
1150
1151         /* see how much plain bits we can stuff into one packet
1152          * using RLE and VLI. */
1153         do {
1154                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1155                                     : _drbd_bm_find_next(device, c->bit_offset);
1156                 if (tmp == -1UL)
1157                         tmp = c->bm_bits;
1158                 rl = tmp - c->bit_offset;
1159
1160                 if (toggle == 2) { /* first iteration */
1161                         if (rl == 0) {
1162                                 /* the first checked bit was set,
1163                                  * store start value, */
1164                                 dcbp_set_start(p, 1);
1165                                 /* but skip encoding of zero run length */
1166                                 toggle = !toggle;
1167                                 continue;
1168                         }
1169                         dcbp_set_start(p, 0);
1170                 }
1171
1172                 /* paranoia: catch zero runlength.
1173                  * can only happen if bitmap is modified while we scan it. */
1174                 if (rl == 0) {
1175                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1176                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1177                         return -1;
1178                 }
1179
1180                 bits = vli_encode_bits(&bs, rl);
1181                 if (bits == -ENOBUFS) /* buffer full */
1182                         break;
1183                 if (bits <= 0) {
1184                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1185                         return 0;
1186                 }
1187
1188                 toggle = !toggle;
1189                 plain_bits += rl;
1190                 c->bit_offset = tmp;
1191         } while (c->bit_offset < c->bm_bits);
1192
1193         len = bs.cur.b - p->code + !!bs.cur.bit;
1194
1195         if (plain_bits < (len << 3)) {
1196                 /* incompressible with this method.
1197                  * we need to rewind both word and bit position. */
1198                 c->bit_offset -= plain_bits;
1199                 bm_xfer_ctx_bit_to_word_offset(c);
1200                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1201                 return 0;
1202         }
1203
1204         /* RLE + VLI was able to compress it just fine.
1205          * update c->word_offset. */
1206         bm_xfer_ctx_bit_to_word_offset(c);
1207
1208         /* store pad_bits */
1209         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1210
1211         return len;
1212 }
1213
1214 /**
1215  * send_bitmap_rle_or_plain
1216  *
1217  * Return 0 when done, 1 when another iteration is needed, and a negative error
1218  * code upon failure.
1219  */
1220 static int
1221 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1222 {
1223         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1224         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1225         struct p_compressed_bm *p = sock->sbuf + header_size;
1226         int len, err;
1227
1228         len = fill_bitmap_rle_bits(device, p,
1229                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1230         if (len < 0)
1231                 return -EIO;
1232
1233         if (len) {
1234                 dcbp_set_code(p, RLE_VLI_Bits);
1235                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1236                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1237                                      NULL, 0);
1238                 c->packets[0]++;
1239                 c->bytes[0] += header_size + sizeof(*p) + len;
1240
1241                 if (c->bit_offset >= c->bm_bits)
1242                         len = 0; /* DONE */
1243         } else {
1244                 /* was not compressible.
1245                  * send a buffer full of plain text bits instead. */
1246                 unsigned int data_size;
1247                 unsigned long num_words;
1248                 unsigned long *p = sock->sbuf + header_size;
1249
1250                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1251                 num_words = min_t(size_t, data_size / sizeof(*p),
1252                                   c->bm_words - c->word_offset);
1253                 len = num_words * sizeof(*p);
1254                 if (len)
1255                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1256                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1257                 c->word_offset += num_words;
1258                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1259
1260                 c->packets[1]++;
1261                 c->bytes[1] += header_size + len;
1262
1263                 if (c->bit_offset > c->bm_bits)
1264                         c->bit_offset = c->bm_bits;
1265         }
1266         if (!err) {
1267                 if (len == 0) {
1268                         INFO_bm_xfer_stats(device, "send", c);
1269                         return 0;
1270                 } else
1271                         return 1;
1272         }
1273         return -EIO;
1274 }
1275
1276 /* See the comment at receive_bitmap() */
1277 static int _drbd_send_bitmap(struct drbd_device *device)
1278 {
1279         struct bm_xfer_ctx c;
1280         int err;
1281
1282         if (!expect(device->bitmap))
1283                 return false;
1284
1285         if (get_ldev(device)) {
1286                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1287                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1288                         drbd_bm_set_all(device);
1289                         if (drbd_bm_write(device)) {
1290                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1291                                  * but otherwise process as per normal - need to tell other
1292                                  * side that a full resync is required! */
1293                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1294                         } else {
1295                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1296                                 drbd_md_sync(device);
1297                         }
1298                 }
1299                 put_ldev(device);
1300         }
1301
1302         c = (struct bm_xfer_ctx) {
1303                 .bm_bits = drbd_bm_bits(device),
1304                 .bm_words = drbd_bm_words(device),
1305         };
1306
1307         do {
1308                 err = send_bitmap_rle_or_plain(device, &c);
1309         } while (err > 0);
1310
1311         return err == 0;
1312 }
1313
1314 int drbd_send_bitmap(struct drbd_device *device)
1315 {
1316         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1317         int err = -1;
1318
1319         mutex_lock(&sock->mutex);
1320         if (sock->socket)
1321                 err = !_drbd_send_bitmap(device);
1322         mutex_unlock(&sock->mutex);
1323         return err;
1324 }
1325
1326 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1327 {
1328         struct drbd_socket *sock;
1329         struct p_barrier_ack *p;
1330
1331         if (connection->cstate < C_WF_REPORT_PARAMS)
1332                 return;
1333
1334         sock = &connection->meta;
1335         p = conn_prepare_command(connection, sock);
1336         if (!p)
1337                 return;
1338         p->barrier = barrier_nr;
1339         p->set_size = cpu_to_be32(set_size);
1340         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1341 }
1342
1343 /**
1344  * _drbd_send_ack() - Sends an ack packet
1345  * @device:     DRBD device.
1346  * @cmd:        Packet command code.
1347  * @sector:     sector, needs to be in big endian byte order
1348  * @blksize:    size in byte, needs to be in big endian byte order
1349  * @block_id:   Id, big endian byte order
1350  */
1351 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1352                           u64 sector, u32 blksize, u64 block_id)
1353 {
1354         struct drbd_socket *sock;
1355         struct p_block_ack *p;
1356
1357         if (peer_device->device->state.conn < C_CONNECTED)
1358                 return -EIO;
1359
1360         sock = &peer_device->connection->meta;
1361         p = drbd_prepare_command(peer_device, sock);
1362         if (!p)
1363                 return -EIO;
1364         p->sector = sector;
1365         p->block_id = block_id;
1366         p->blksize = blksize;
1367         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1368         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1369 }
1370
1371 /* dp->sector and dp->block_id already/still in network byte order,
1372  * data_size is payload size according to dp->head,
1373  * and may need to be corrected for digest size. */
1374 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1375                       struct p_data *dp, int data_size)
1376 {
1377         if (peer_device->connection->peer_integrity_tfm)
1378                 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1379         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1380                        dp->block_id);
1381 }
1382
1383 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1384                       struct p_block_req *rp)
1385 {
1386         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1387 }
1388
1389 /**
1390  * drbd_send_ack() - Sends an ack packet
1391  * @device:     DRBD device
1392  * @cmd:        packet command code
1393  * @peer_req:   peer request
1394  */
1395 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1396                   struct drbd_peer_request *peer_req)
1397 {
1398         return _drbd_send_ack(peer_device, cmd,
1399                               cpu_to_be64(peer_req->i.sector),
1400                               cpu_to_be32(peer_req->i.size),
1401                               peer_req->block_id);
1402 }
1403
1404 /* This function misuses the block_id field to signal if the blocks
1405  * are is sync or not. */
1406 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1407                      sector_t sector, int blksize, u64 block_id)
1408 {
1409         return _drbd_send_ack(peer_device, cmd,
1410                               cpu_to_be64(sector),
1411                               cpu_to_be32(blksize),
1412                               cpu_to_be64(block_id));
1413 }
1414
1415 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1416                              struct drbd_peer_request *peer_req)
1417 {
1418         struct drbd_socket *sock;
1419         struct p_block_desc *p;
1420
1421         sock = &peer_device->connection->data;
1422         p = drbd_prepare_command(peer_device, sock);
1423         if (!p)
1424                 return -EIO;
1425         p->sector = cpu_to_be64(peer_req->i.sector);
1426         p->blksize = cpu_to_be32(peer_req->i.size);
1427         p->pad = 0;
1428         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1429 }
1430
1431 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1432                        sector_t sector, int size, u64 block_id)
1433 {
1434         struct drbd_socket *sock;
1435         struct p_block_req *p;
1436
1437         sock = &peer_device->connection->data;
1438         p = drbd_prepare_command(peer_device, sock);
1439         if (!p)
1440                 return -EIO;
1441         p->sector = cpu_to_be64(sector);
1442         p->block_id = block_id;
1443         p->blksize = cpu_to_be32(size);
1444         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1445 }
1446
1447 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1448                             void *digest, int digest_size, enum drbd_packet cmd)
1449 {
1450         struct drbd_socket *sock;
1451         struct p_block_req *p;
1452
1453         /* FIXME: Put the digest into the preallocated socket buffer.  */
1454
1455         sock = &peer_device->connection->data;
1456         p = drbd_prepare_command(peer_device, sock);
1457         if (!p)
1458                 return -EIO;
1459         p->sector = cpu_to_be64(sector);
1460         p->block_id = ID_SYNCER /* unused */;
1461         p->blksize = cpu_to_be32(size);
1462         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1463 }
1464
1465 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1466 {
1467         struct drbd_socket *sock;
1468         struct p_block_req *p;
1469
1470         sock = &peer_device->connection->data;
1471         p = drbd_prepare_command(peer_device, sock);
1472         if (!p)
1473                 return -EIO;
1474         p->sector = cpu_to_be64(sector);
1475         p->block_id = ID_SYNCER /* unused */;
1476         p->blksize = cpu_to_be32(size);
1477         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1478 }
1479
1480 /* called on sndtimeo
1481  * returns false if we should retry,
1482  * true if we think connection is dead
1483  */
1484 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1485 {
1486         int drop_it;
1487         /* long elapsed = (long)(jiffies - device->last_received); */
1488
1489         drop_it =   connection->meta.socket == sock
1490                 || !connection->ack_receiver.task
1491                 || get_t_state(&connection->ack_receiver) != RUNNING
1492                 || connection->cstate < C_WF_REPORT_PARAMS;
1493
1494         if (drop_it)
1495                 return true;
1496
1497         drop_it = !--connection->ko_count;
1498         if (!drop_it) {
1499                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1500                          current->comm, current->pid, connection->ko_count);
1501                 request_ping(connection);
1502         }
1503
1504         return drop_it; /* && (device->state == R_PRIMARY) */;
1505 }
1506
1507 static void drbd_update_congested(struct drbd_connection *connection)
1508 {
1509         struct sock *sk = connection->data.socket->sk;
1510         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1511                 set_bit(NET_CONGESTED, &connection->flags);
1512 }
1513
1514 /* The idea of sendpage seems to be to put some kind of reference
1515  * to the page into the skb, and to hand it over to the NIC. In
1516  * this process get_page() gets called.
1517  *
1518  * As soon as the page was really sent over the network put_page()
1519  * gets called by some part of the network layer. [ NIC driver? ]
1520  *
1521  * [ get_page() / put_page() increment/decrement the count. If count
1522  *   reaches 0 the page will be freed. ]
1523  *
1524  * This works nicely with pages from FSs.
1525  * But this means that in protocol A we might signal IO completion too early!
1526  *
1527  * In order not to corrupt data during a resync we must make sure
1528  * that we do not reuse our own buffer pages (EEs) to early, therefore
1529  * we have the net_ee list.
1530  *
1531  * XFS seems to have problems, still, it submits pages with page_count == 0!
1532  * As a workaround, we disable sendpage on pages
1533  * with page_count == 0 or PageSlab.
1534  */
1535 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1536                               int offset, size_t size, unsigned msg_flags)
1537 {
1538         struct socket *socket;
1539         void *addr;
1540         int err;
1541
1542         socket = peer_device->connection->data.socket;
1543         addr = kmap(page) + offset;
1544         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1545         kunmap(page);
1546         if (!err)
1547                 peer_device->device->send_cnt += size >> 9;
1548         return err;
1549 }
1550
1551 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1552                     int offset, size_t size, unsigned msg_flags)
1553 {
1554         struct socket *socket = peer_device->connection->data.socket;
1555         mm_segment_t oldfs = get_fs();
1556         int len = size;
1557         int err = -EIO;
1558
1559         /* e.g. XFS meta- & log-data is in slab pages, which have a
1560          * page_count of 0 and/or have PageSlab() set.
1561          * we cannot use send_page for those, as that does get_page();
1562          * put_page(); and would cause either a VM_BUG directly, or
1563          * __page_cache_release a page that would actually still be referenced
1564          * by someone, leading to some obscure delayed Oops somewhere else. */
1565         if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1566                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1567
1568         msg_flags |= MSG_NOSIGNAL;
1569         drbd_update_congested(peer_device->connection);
1570         set_fs(KERNEL_DS);
1571         do {
1572                 int sent;
1573
1574                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1575                 if (sent <= 0) {
1576                         if (sent == -EAGAIN) {
1577                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1578                                         break;
1579                                 continue;
1580                         }
1581                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1582                              __func__, (int)size, len, sent);
1583                         if (sent < 0)
1584                                 err = sent;
1585                         break;
1586                 }
1587                 len    -= sent;
1588                 offset += sent;
1589         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1590         set_fs(oldfs);
1591         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1592
1593         if (len == 0) {
1594                 err = 0;
1595                 peer_device->device->send_cnt += size >> 9;
1596         }
1597         return err;
1598 }
1599
1600 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1601 {
1602         struct bio_vec bvec;
1603         struct bvec_iter iter;
1604
1605         /* hint all but last page with MSG_MORE */
1606         bio_for_each_segment(bvec, bio, iter) {
1607                 int err;
1608
1609                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1610                                          bvec.bv_offset, bvec.bv_len,
1611                                          bio_iter_last(bvec, iter)
1612                                          ? 0 : MSG_MORE);
1613                 if (err)
1614                         return err;
1615                 /* REQ_OP_WRITE_SAME has only one segment */
1616                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1617                         break;
1618         }
1619         return 0;
1620 }
1621
1622 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1623 {
1624         struct bio_vec bvec;
1625         struct bvec_iter iter;
1626
1627         /* hint all but last page with MSG_MORE */
1628         bio_for_each_segment(bvec, bio, iter) {
1629                 int err;
1630
1631                 err = _drbd_send_page(peer_device, bvec.bv_page,
1632                                       bvec.bv_offset, bvec.bv_len,
1633                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1634                 if (err)
1635                         return err;
1636                 /* REQ_OP_WRITE_SAME has only one segment */
1637                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1638                         break;
1639         }
1640         return 0;
1641 }
1642
1643 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1644                             struct drbd_peer_request *peer_req)
1645 {
1646         struct page *page = peer_req->pages;
1647         unsigned len = peer_req->i.size;
1648         int err;
1649
1650         /* hint all but last page with MSG_MORE */
1651         page_chain_for_each(page) {
1652                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1653
1654                 err = _drbd_send_page(peer_device, page, 0, l,
1655                                       page_chain_next(page) ? MSG_MORE : 0);
1656                 if (err)
1657                         return err;
1658                 len -= l;
1659         }
1660         return 0;
1661 }
1662
1663 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1664                              struct bio *bio)
1665 {
1666         if (connection->agreed_pro_version >= 95)
1667                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1668                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1669                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1670                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1671                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1672                         (bio_op(bio) == REQ_OP_WRITE_ZEROES ? DP_DISCARD : 0);
1673         else
1674                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1675 }
1676
1677 /* Used to send write or TRIM aka REQ_DISCARD requests
1678  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1679  */
1680 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1681 {
1682         struct drbd_device *device = peer_device->device;
1683         struct drbd_socket *sock;
1684         struct p_data *p;
1685         struct p_wsame *wsame = NULL;
1686         void *digest_out;
1687         unsigned int dp_flags = 0;
1688         int digest_size;
1689         int err;
1690
1691         sock = &peer_device->connection->data;
1692         p = drbd_prepare_command(peer_device, sock);
1693         digest_size = peer_device->connection->integrity_tfm ?
1694                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1695
1696         if (!p)
1697                 return -EIO;
1698         p->sector = cpu_to_be64(req->i.sector);
1699         p->block_id = (unsigned long)req;
1700         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1701         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1702         if (device->state.conn >= C_SYNC_SOURCE &&
1703             device->state.conn <= C_PAUSED_SYNC_T)
1704                 dp_flags |= DP_MAY_SET_IN_SYNC;
1705         if (peer_device->connection->agreed_pro_version >= 100) {
1706                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1707                         dp_flags |= DP_SEND_RECEIVE_ACK;
1708                 /* During resync, request an explicit write ack,
1709                  * even in protocol != C */
1710                 if (req->rq_state & RQ_EXP_WRITE_ACK
1711                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1712                         dp_flags |= DP_SEND_WRITE_ACK;
1713         }
1714         p->dp_flags = cpu_to_be32(dp_flags);
1715
1716         if (dp_flags & DP_DISCARD) {
1717                 struct p_trim *t = (struct p_trim*)p;
1718                 t->size = cpu_to_be32(req->i.size);
1719                 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1720                 goto out;
1721         }
1722         if (dp_flags & DP_WSAME) {
1723                 /* this will only work if DRBD_FF_WSAME is set AND the
1724                  * handshake agreed that all nodes and backend devices are
1725                  * WRITE_SAME capable and agree on logical_block_size */
1726                 wsame = (struct p_wsame*)p;
1727                 digest_out = wsame + 1;
1728                 wsame->size = cpu_to_be32(req->i.size);
1729         } else
1730                 digest_out = p + 1;
1731
1732         /* our digest is still only over the payload.
1733          * TRIM does not carry any payload. */
1734         if (digest_size)
1735                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1736         if (wsame) {
1737                 err =
1738                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1739                                    sizeof(*wsame) + digest_size, NULL,
1740                                    bio_iovec(req->master_bio).bv_len);
1741         } else
1742                 err =
1743                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1744                                    sizeof(*p) + digest_size, NULL, req->i.size);
1745         if (!err) {
1746                 /* For protocol A, we have to memcpy the payload into
1747                  * socket buffers, as we may complete right away
1748                  * as soon as we handed it over to tcp, at which point the data
1749                  * pages may become invalid.
1750                  *
1751                  * For data-integrity enabled, we copy it as well, so we can be
1752                  * sure that even if the bio pages may still be modified, it
1753                  * won't change the data on the wire, thus if the digest checks
1754                  * out ok after sending on this side, but does not fit on the
1755                  * receiving side, we sure have detected corruption elsewhere.
1756                  */
1757                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1758                         err = _drbd_send_bio(peer_device, req->master_bio);
1759                 else
1760                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1761
1762                 /* double check digest, sometimes buffers have been modified in flight. */
1763                 if (digest_size > 0 && digest_size <= 64) {
1764                         /* 64 byte, 512 bit, is the largest digest size
1765                          * currently supported in kernel crypto. */
1766                         unsigned char digest[64];
1767                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1768                         if (memcmp(p + 1, digest, digest_size)) {
1769                                 drbd_warn(device,
1770                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1771                                         (unsigned long long)req->i.sector, req->i.size);
1772                         }
1773                 } /* else if (digest_size > 64) {
1774                      ... Be noisy about digest too large ...
1775                 } */
1776         }
1777 out:
1778         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1779
1780         return err;
1781 }
1782
1783 /* answer packet, used to send data back for read requests:
1784  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1785  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1786  */
1787 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1788                     struct drbd_peer_request *peer_req)
1789 {
1790         struct drbd_device *device = peer_device->device;
1791         struct drbd_socket *sock;
1792         struct p_data *p;
1793         int err;
1794         int digest_size;
1795
1796         sock = &peer_device->connection->data;
1797         p = drbd_prepare_command(peer_device, sock);
1798
1799         digest_size = peer_device->connection->integrity_tfm ?
1800                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1801
1802         if (!p)
1803                 return -EIO;
1804         p->sector = cpu_to_be64(peer_req->i.sector);
1805         p->block_id = peer_req->block_id;
1806         p->seq_num = 0;  /* unused */
1807         p->dp_flags = 0;
1808         if (digest_size)
1809                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1810         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1811         if (!err)
1812                 err = _drbd_send_zc_ee(peer_device, peer_req);
1813         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1814
1815         return err;
1816 }
1817
1818 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1819 {
1820         struct drbd_socket *sock;
1821         struct p_block_desc *p;
1822
1823         sock = &peer_device->connection->data;
1824         p = drbd_prepare_command(peer_device, sock);
1825         if (!p)
1826                 return -EIO;
1827         p->sector = cpu_to_be64(req->i.sector);
1828         p->blksize = cpu_to_be32(req->i.size);
1829         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1830 }
1831
1832 /*
1833   drbd_send distinguishes two cases:
1834
1835   Packets sent via the data socket "sock"
1836   and packets sent via the meta data socket "msock"
1837
1838                     sock                      msock
1839   -----------------+-------------------------+------------------------------
1840   timeout           conf.timeout / 2          conf.timeout / 2
1841   timeout action    send a ping via msock     Abort communication
1842                                               and close all sockets
1843 */
1844
1845 /*
1846  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1847  */
1848 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1849               void *buf, size_t size, unsigned msg_flags)
1850 {
1851         struct kvec iov = {.iov_base = buf, .iov_len = size};
1852         struct msghdr msg;
1853         int rv, sent = 0;
1854
1855         if (!sock)
1856                 return -EBADR;
1857
1858         /* THINK  if (signal_pending) return ... ? */
1859
1860         msg.msg_name       = NULL;
1861         msg.msg_namelen    = 0;
1862         msg.msg_control    = NULL;
1863         msg.msg_controllen = 0;
1864         msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1865
1866         iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
1867
1868         if (sock == connection->data.socket) {
1869                 rcu_read_lock();
1870                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1871                 rcu_read_unlock();
1872                 drbd_update_congested(connection);
1873         }
1874         do {
1875                 rv = sock_sendmsg(sock, &msg);
1876                 if (rv == -EAGAIN) {
1877                         if (we_should_drop_the_connection(connection, sock))
1878                                 break;
1879                         else
1880                                 continue;
1881                 }
1882                 if (rv == -EINTR) {
1883                         flush_signals(current);
1884                         rv = 0;
1885                 }
1886                 if (rv < 0)
1887                         break;
1888                 sent += rv;
1889         } while (sent < size);
1890
1891         if (sock == connection->data.socket)
1892                 clear_bit(NET_CONGESTED, &connection->flags);
1893
1894         if (rv <= 0) {
1895                 if (rv != -EAGAIN) {
1896                         drbd_err(connection, "%s_sendmsg returned %d\n",
1897                                  sock == connection->meta.socket ? "msock" : "sock",
1898                                  rv);
1899                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1900                 } else
1901                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1902         }
1903
1904         return sent;
1905 }
1906
1907 /**
1908  * drbd_send_all  -  Send an entire buffer
1909  *
1910  * Returns 0 upon success and a negative error value otherwise.
1911  */
1912 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1913                   size_t size, unsigned msg_flags)
1914 {
1915         int err;
1916
1917         err = drbd_send(connection, sock, buffer, size, msg_flags);
1918         if (err < 0)
1919                 return err;
1920         if (err != size)
1921                 return -EIO;
1922         return 0;
1923 }
1924
1925 static int drbd_open(struct block_device *bdev, fmode_t mode)
1926 {
1927         struct drbd_device *device = bdev->bd_disk->private_data;
1928         unsigned long flags;
1929         int rv = 0;
1930
1931         mutex_lock(&drbd_main_mutex);
1932         spin_lock_irqsave(&device->resource->req_lock, flags);
1933         /* to have a stable device->state.role
1934          * and no race with updating open_cnt */
1935
1936         if (device->state.role != R_PRIMARY) {
1937                 if (mode & FMODE_WRITE)
1938                         rv = -EROFS;
1939                 else if (!allow_oos)
1940                         rv = -EMEDIUMTYPE;
1941         }
1942
1943         if (!rv)
1944                 device->open_cnt++;
1945         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1946         mutex_unlock(&drbd_main_mutex);
1947
1948         return rv;
1949 }
1950
1951 static void drbd_release(struct gendisk *gd, fmode_t mode)
1952 {
1953         struct drbd_device *device = gd->private_data;
1954         mutex_lock(&drbd_main_mutex);
1955         device->open_cnt--;
1956         mutex_unlock(&drbd_main_mutex);
1957 }
1958
1959 static void drbd_set_defaults(struct drbd_device *device)
1960 {
1961         /* Beware! The actual layout differs
1962          * between big endian and little endian */
1963         device->state = (union drbd_dev_state) {
1964                 { .role = R_SECONDARY,
1965                   .peer = R_UNKNOWN,
1966                   .conn = C_STANDALONE,
1967                   .disk = D_DISKLESS,
1968                   .pdsk = D_UNKNOWN,
1969                 } };
1970 }
1971
1972 void drbd_init_set_defaults(struct drbd_device *device)
1973 {
1974         /* the memset(,0,) did most of this.
1975          * note: only assignments, no allocation in here */
1976
1977         drbd_set_defaults(device);
1978
1979         atomic_set(&device->ap_bio_cnt, 0);
1980         atomic_set(&device->ap_actlog_cnt, 0);
1981         atomic_set(&device->ap_pending_cnt, 0);
1982         atomic_set(&device->rs_pending_cnt, 0);
1983         atomic_set(&device->unacked_cnt, 0);
1984         atomic_set(&device->local_cnt, 0);
1985         atomic_set(&device->pp_in_use_by_net, 0);
1986         atomic_set(&device->rs_sect_in, 0);
1987         atomic_set(&device->rs_sect_ev, 0);
1988         atomic_set(&device->ap_in_flight, 0);
1989         atomic_set(&device->md_io.in_use, 0);
1990
1991         mutex_init(&device->own_state_mutex);
1992         device->state_mutex = &device->own_state_mutex;
1993
1994         spin_lock_init(&device->al_lock);
1995         spin_lock_init(&device->peer_seq_lock);
1996
1997         INIT_LIST_HEAD(&device->active_ee);
1998         INIT_LIST_HEAD(&device->sync_ee);
1999         INIT_LIST_HEAD(&device->done_ee);
2000         INIT_LIST_HEAD(&device->read_ee);
2001         INIT_LIST_HEAD(&device->net_ee);
2002         INIT_LIST_HEAD(&device->resync_reads);
2003         INIT_LIST_HEAD(&device->resync_work.list);
2004         INIT_LIST_HEAD(&device->unplug_work.list);
2005         INIT_LIST_HEAD(&device->bm_io_work.w.list);
2006         INIT_LIST_HEAD(&device->pending_master_completion[0]);
2007         INIT_LIST_HEAD(&device->pending_master_completion[1]);
2008         INIT_LIST_HEAD(&device->pending_completion[0]);
2009         INIT_LIST_HEAD(&device->pending_completion[1]);
2010
2011         device->resync_work.cb  = w_resync_timer;
2012         device->unplug_work.cb  = w_send_write_hint;
2013         device->bm_io_work.w.cb = w_bitmap_io;
2014
2015         init_timer(&device->resync_timer);
2016         init_timer(&device->md_sync_timer);
2017         init_timer(&device->start_resync_timer);
2018         init_timer(&device->request_timer);
2019         device->resync_timer.function = resync_timer_fn;
2020         device->resync_timer.data = (unsigned long) device;
2021         device->md_sync_timer.function = md_sync_timer_fn;
2022         device->md_sync_timer.data = (unsigned long) device;
2023         device->start_resync_timer.function = start_resync_timer_fn;
2024         device->start_resync_timer.data = (unsigned long) device;
2025         device->request_timer.function = request_timer_fn;
2026         device->request_timer.data = (unsigned long) device;
2027
2028         init_waitqueue_head(&device->misc_wait);
2029         init_waitqueue_head(&device->state_wait);
2030         init_waitqueue_head(&device->ee_wait);
2031         init_waitqueue_head(&device->al_wait);
2032         init_waitqueue_head(&device->seq_wait);
2033
2034         device->resync_wenr = LC_FREE;
2035         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2036         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2037 }
2038
2039 void drbd_device_cleanup(struct drbd_device *device)
2040 {
2041         int i;
2042         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2043                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2044                                 first_peer_device(device)->connection->receiver.t_state);
2045
2046         device->al_writ_cnt  =
2047         device->bm_writ_cnt  =
2048         device->read_cnt     =
2049         device->recv_cnt     =
2050         device->send_cnt     =
2051         device->writ_cnt     =
2052         device->p_size       =
2053         device->rs_start     =
2054         device->rs_total     =
2055         device->rs_failed    = 0;
2056         device->rs_last_events = 0;
2057         device->rs_last_sect_ev = 0;
2058         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2059                 device->rs_mark_left[i] = 0;
2060                 device->rs_mark_time[i] = 0;
2061         }
2062         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2063
2064         drbd_set_my_capacity(device, 0);
2065         if (device->bitmap) {
2066                 /* maybe never allocated. */
2067                 drbd_bm_resize(device, 0, 1);
2068                 drbd_bm_cleanup(device);
2069         }
2070
2071         drbd_backing_dev_free(device, device->ldev);
2072         device->ldev = NULL;
2073
2074         clear_bit(AL_SUSPENDED, &device->flags);
2075
2076         D_ASSERT(device, list_empty(&device->active_ee));
2077         D_ASSERT(device, list_empty(&device->sync_ee));
2078         D_ASSERT(device, list_empty(&device->done_ee));
2079         D_ASSERT(device, list_empty(&device->read_ee));
2080         D_ASSERT(device, list_empty(&device->net_ee));
2081         D_ASSERT(device, list_empty(&device->resync_reads));
2082         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2083         D_ASSERT(device, list_empty(&device->resync_work.list));
2084         D_ASSERT(device, list_empty(&device->unplug_work.list));
2085
2086         drbd_set_defaults(device);
2087 }
2088
2089
2090 static void drbd_destroy_mempools(void)
2091 {
2092         struct page *page;
2093
2094         while (drbd_pp_pool) {
2095                 page = drbd_pp_pool;
2096                 drbd_pp_pool = (struct page *)page_private(page);
2097                 __free_page(page);
2098                 drbd_pp_vacant--;
2099         }
2100
2101         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2102
2103         if (drbd_md_io_bio_set)
2104                 bioset_free(drbd_md_io_bio_set);
2105         if (drbd_md_io_page_pool)
2106                 mempool_destroy(drbd_md_io_page_pool);
2107         if (drbd_ee_mempool)
2108                 mempool_destroy(drbd_ee_mempool);
2109         if (drbd_request_mempool)
2110                 mempool_destroy(drbd_request_mempool);
2111         if (drbd_ee_cache)
2112                 kmem_cache_destroy(drbd_ee_cache);
2113         if (drbd_request_cache)
2114                 kmem_cache_destroy(drbd_request_cache);
2115         if (drbd_bm_ext_cache)
2116                 kmem_cache_destroy(drbd_bm_ext_cache);
2117         if (drbd_al_ext_cache)
2118                 kmem_cache_destroy(drbd_al_ext_cache);
2119
2120         drbd_md_io_bio_set   = NULL;
2121         drbd_md_io_page_pool = NULL;
2122         drbd_ee_mempool      = NULL;
2123         drbd_request_mempool = NULL;
2124         drbd_ee_cache        = NULL;
2125         drbd_request_cache   = NULL;
2126         drbd_bm_ext_cache    = NULL;
2127         drbd_al_ext_cache    = NULL;
2128
2129         return;
2130 }
2131
2132 static int drbd_create_mempools(void)
2133 {
2134         struct page *page;
2135         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2136         int i;
2137
2138         /* prepare our caches and mempools */
2139         drbd_request_mempool = NULL;
2140         drbd_ee_cache        = NULL;
2141         drbd_request_cache   = NULL;
2142         drbd_bm_ext_cache    = NULL;
2143         drbd_al_ext_cache    = NULL;
2144         drbd_pp_pool         = NULL;
2145         drbd_md_io_page_pool = NULL;
2146         drbd_md_io_bio_set   = NULL;
2147
2148         /* caches */
2149         drbd_request_cache = kmem_cache_create(
2150                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2151         if (drbd_request_cache == NULL)
2152                 goto Enomem;
2153
2154         drbd_ee_cache = kmem_cache_create(
2155                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2156         if (drbd_ee_cache == NULL)
2157                 goto Enomem;
2158
2159         drbd_bm_ext_cache = kmem_cache_create(
2160                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2161         if (drbd_bm_ext_cache == NULL)
2162                 goto Enomem;
2163
2164         drbd_al_ext_cache = kmem_cache_create(
2165                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2166         if (drbd_al_ext_cache == NULL)
2167                 goto Enomem;
2168
2169         /* mempools */
2170         drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2171         if (drbd_md_io_bio_set == NULL)
2172                 goto Enomem;
2173
2174         drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2175         if (drbd_md_io_page_pool == NULL)
2176                 goto Enomem;
2177
2178         drbd_request_mempool = mempool_create_slab_pool(number,
2179                 drbd_request_cache);
2180         if (drbd_request_mempool == NULL)
2181                 goto Enomem;
2182
2183         drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2184         if (drbd_ee_mempool == NULL)
2185                 goto Enomem;
2186
2187         /* drbd's page pool */
2188         spin_lock_init(&drbd_pp_lock);
2189
2190         for (i = 0; i < number; i++) {
2191                 page = alloc_page(GFP_HIGHUSER);
2192                 if (!page)
2193                         goto Enomem;
2194                 set_page_private(page, (unsigned long)drbd_pp_pool);
2195                 drbd_pp_pool = page;
2196         }
2197         drbd_pp_vacant = number;
2198
2199         return 0;
2200
2201 Enomem:
2202         drbd_destroy_mempools(); /* in case we allocated some */
2203         return -ENOMEM;
2204 }
2205
2206 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2207 {
2208         int rr;
2209
2210         rr = drbd_free_peer_reqs(device, &device->active_ee);
2211         if (rr)
2212                 drbd_err(device, "%d EEs in active list found!\n", rr);
2213
2214         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2215         if (rr)
2216                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2217
2218         rr = drbd_free_peer_reqs(device, &device->read_ee);
2219         if (rr)
2220                 drbd_err(device, "%d EEs in read list found!\n", rr);
2221
2222         rr = drbd_free_peer_reqs(device, &device->done_ee);
2223         if (rr)
2224                 drbd_err(device, "%d EEs in done list found!\n", rr);
2225
2226         rr = drbd_free_peer_reqs(device, &device->net_ee);
2227         if (rr)
2228                 drbd_err(device, "%d EEs in net list found!\n", rr);
2229 }
2230
2231 /* caution. no locking. */
2232 void drbd_destroy_device(struct kref *kref)
2233 {
2234         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2235         struct drbd_resource *resource = device->resource;
2236         struct drbd_peer_device *peer_device, *tmp_peer_device;
2237
2238         del_timer_sync(&device->request_timer);
2239
2240         /* paranoia asserts */
2241         D_ASSERT(device, device->open_cnt == 0);
2242         /* end paranoia asserts */
2243
2244         /* cleanup stuff that may have been allocated during
2245          * device (re-)configuration or state changes */
2246
2247         if (device->this_bdev)
2248                 bdput(device->this_bdev);
2249
2250         drbd_backing_dev_free(device, device->ldev);
2251         device->ldev = NULL;
2252
2253         drbd_release_all_peer_reqs(device);
2254
2255         lc_destroy(device->act_log);
2256         lc_destroy(device->resync);
2257
2258         kfree(device->p_uuid);
2259         /* device->p_uuid = NULL; */
2260
2261         if (device->bitmap) /* should no longer be there. */
2262                 drbd_bm_cleanup(device);
2263         __free_page(device->md_io.page);
2264         put_disk(device->vdisk);
2265         blk_cleanup_queue(device->rq_queue);
2266         kfree(device->rs_plan_s);
2267
2268         /* not for_each_connection(connection, resource):
2269          * those may have been cleaned up and disassociated already.
2270          */
2271         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2272                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2273                 kfree(peer_device);
2274         }
2275         memset(device, 0xfd, sizeof(*device));
2276         kfree(device);
2277         kref_put(&resource->kref, drbd_destroy_resource);
2278 }
2279
2280 /* One global retry thread, if we need to push back some bio and have it
2281  * reinserted through our make request function.
2282  */
2283 static struct retry_worker {
2284         struct workqueue_struct *wq;
2285         struct work_struct worker;
2286
2287         spinlock_t lock;
2288         struct list_head writes;
2289 } retry;
2290
2291 static void do_retry(struct work_struct *ws)
2292 {
2293         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2294         LIST_HEAD(writes);
2295         struct drbd_request *req, *tmp;
2296
2297         spin_lock_irq(&retry->lock);
2298         list_splice_init(&retry->writes, &writes);
2299         spin_unlock_irq(&retry->lock);
2300
2301         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2302                 struct drbd_device *device = req->device;
2303                 struct bio *bio = req->master_bio;
2304                 unsigned long start_jif = req->start_jif;
2305                 bool expected;
2306
2307                 expected =
2308                         expect(atomic_read(&req->completion_ref) == 0) &&
2309                         expect(req->rq_state & RQ_POSTPONED) &&
2310                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2311                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2312
2313                 if (!expected)
2314                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2315                                 req, atomic_read(&req->completion_ref),
2316                                 req->rq_state);
2317
2318                 /* We still need to put one kref associated with the
2319                  * "completion_ref" going zero in the code path that queued it
2320                  * here.  The request object may still be referenced by a
2321                  * frozen local req->private_bio, in case we force-detached.
2322                  */
2323                 kref_put(&req->kref, drbd_req_destroy);
2324
2325                 /* A single suspended or otherwise blocking device may stall
2326                  * all others as well.  Fortunately, this code path is to
2327                  * recover from a situation that "should not happen":
2328                  * concurrent writes in multi-primary setup.
2329                  * In a "normal" lifecycle, this workqueue is supposed to be
2330                  * destroyed without ever doing anything.
2331                  * If it turns out to be an issue anyways, we can do per
2332                  * resource (replication group) or per device (minor) retry
2333                  * workqueues instead.
2334                  */
2335
2336                 /* We are not just doing generic_make_request(),
2337                  * as we want to keep the start_time information. */
2338                 inc_ap_bio(device);
2339                 __drbd_make_request(device, bio, start_jif);
2340         }
2341 }
2342
2343 /* called via drbd_req_put_completion_ref(),
2344  * holds resource->req_lock */
2345 void drbd_restart_request(struct drbd_request *req)
2346 {
2347         unsigned long flags;
2348         spin_lock_irqsave(&retry.lock, flags);
2349         list_move_tail(&req->tl_requests, &retry.writes);
2350         spin_unlock_irqrestore(&retry.lock, flags);
2351
2352         /* Drop the extra reference that would otherwise
2353          * have been dropped by complete_master_bio.
2354          * do_retry() needs to grab a new one. */
2355         dec_ap_bio(req->device);
2356
2357         queue_work(retry.wq, &retry.worker);
2358 }
2359
2360 void drbd_destroy_resource(struct kref *kref)
2361 {
2362         struct drbd_resource *resource =
2363                 container_of(kref, struct drbd_resource, kref);
2364
2365         idr_destroy(&resource->devices);
2366         free_cpumask_var(resource->cpu_mask);
2367         kfree(resource->name);
2368         memset(resource, 0xf2, sizeof(*resource));
2369         kfree(resource);
2370 }
2371
2372 void drbd_free_resource(struct drbd_resource *resource)
2373 {
2374         struct drbd_connection *connection, *tmp;
2375
2376         for_each_connection_safe(connection, tmp, resource) {
2377                 list_del(&connection->connections);
2378                 drbd_debugfs_connection_cleanup(connection);
2379                 kref_put(&connection->kref, drbd_destroy_connection);
2380         }
2381         drbd_debugfs_resource_cleanup(resource);
2382         kref_put(&resource->kref, drbd_destroy_resource);
2383 }
2384
2385 static void drbd_cleanup(void)
2386 {
2387         unsigned int i;
2388         struct drbd_device *device;
2389         struct drbd_resource *resource, *tmp;
2390
2391         /* first remove proc,
2392          * drbdsetup uses it's presence to detect
2393          * whether DRBD is loaded.
2394          * If we would get stuck in proc removal,
2395          * but have netlink already deregistered,
2396          * some drbdsetup commands may wait forever
2397          * for an answer.
2398          */
2399         if (drbd_proc)
2400                 remove_proc_entry("drbd", NULL);
2401
2402         if (retry.wq)
2403                 destroy_workqueue(retry.wq);
2404
2405         drbd_genl_unregister();
2406         drbd_debugfs_cleanup();
2407
2408         idr_for_each_entry(&drbd_devices, device, i)
2409                 drbd_delete_device(device);
2410
2411         /* not _rcu since, no other updater anymore. Genl already unregistered */
2412         for_each_resource_safe(resource, tmp, &drbd_resources) {
2413                 list_del(&resource->resources);
2414                 drbd_free_resource(resource);
2415         }
2416
2417         drbd_destroy_mempools();
2418         unregister_blkdev(DRBD_MAJOR, "drbd");
2419
2420         idr_destroy(&drbd_devices);
2421
2422         pr_info("module cleanup done.\n");
2423 }
2424
2425 /**
2426  * drbd_congested() - Callback for the flusher thread
2427  * @congested_data:     User data
2428  * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2429  *
2430  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2431  */
2432 static int drbd_congested(void *congested_data, int bdi_bits)
2433 {
2434         struct drbd_device *device = congested_data;
2435         struct request_queue *q;
2436         char reason = '-';
2437         int r = 0;
2438
2439         if (!may_inc_ap_bio(device)) {
2440                 /* DRBD has frozen IO */
2441                 r = bdi_bits;
2442                 reason = 'd';
2443                 goto out;
2444         }
2445
2446         if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2447                 r |= (1 << WB_async_congested);
2448                 /* Without good local data, we would need to read from remote,
2449                  * and that would need the worker thread as well, which is
2450                  * currently blocked waiting for that usermode helper to
2451                  * finish.
2452                  */
2453                 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2454                         r |= (1 << WB_sync_congested);
2455                 else
2456                         put_ldev(device);
2457                 r &= bdi_bits;
2458                 reason = 'c';
2459                 goto out;
2460         }
2461
2462         if (get_ldev(device)) {
2463                 q = bdev_get_queue(device->ldev->backing_bdev);
2464                 r = bdi_congested(q->backing_dev_info, bdi_bits);
2465                 put_ldev(device);
2466                 if (r)
2467                         reason = 'b';
2468         }
2469
2470         if (bdi_bits & (1 << WB_async_congested) &&
2471             test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2472                 r |= (1 << WB_async_congested);
2473                 reason = reason == 'b' ? 'a' : 'n';
2474         }
2475
2476 out:
2477         device->congestion_reason = reason;
2478         return r;
2479 }
2480
2481 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2482 {
2483         spin_lock_init(&wq->q_lock);
2484         INIT_LIST_HEAD(&wq->q);
2485         init_waitqueue_head(&wq->q_wait);
2486 }
2487
2488 struct completion_work {
2489         struct drbd_work w;
2490         struct completion done;
2491 };
2492
2493 static int w_complete(struct drbd_work *w, int cancel)
2494 {
2495         struct completion_work *completion_work =
2496                 container_of(w, struct completion_work, w);
2497
2498         complete(&completion_work->done);
2499         return 0;
2500 }
2501
2502 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2503 {
2504         struct completion_work completion_work;
2505
2506         completion_work.w.cb = w_complete;
2507         init_completion(&completion_work.done);
2508         drbd_queue_work(work_queue, &completion_work.w);
2509         wait_for_completion(&completion_work.done);
2510 }
2511
2512 struct drbd_resource *drbd_find_resource(const char *name)
2513 {
2514         struct drbd_resource *resource;
2515
2516         if (!name || !name[0])
2517                 return NULL;
2518
2519         rcu_read_lock();
2520         for_each_resource_rcu(resource, &drbd_resources) {
2521                 if (!strcmp(resource->name, name)) {
2522                         kref_get(&resource->kref);
2523                         goto found;
2524                 }
2525         }
2526         resource = NULL;
2527 found:
2528         rcu_read_unlock();
2529         return resource;
2530 }
2531
2532 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2533                                      void *peer_addr, int peer_addr_len)
2534 {
2535         struct drbd_resource *resource;
2536         struct drbd_connection *connection;
2537
2538         rcu_read_lock();
2539         for_each_resource_rcu(resource, &drbd_resources) {
2540                 for_each_connection_rcu(connection, resource) {
2541                         if (connection->my_addr_len == my_addr_len &&
2542                             connection->peer_addr_len == peer_addr_len &&
2543                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2544                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2545                                 kref_get(&connection->kref);
2546                                 goto found;
2547                         }
2548                 }
2549         }
2550         connection = NULL;
2551 found:
2552         rcu_read_unlock();
2553         return connection;
2554 }
2555
2556 static int drbd_alloc_socket(struct drbd_socket *socket)
2557 {
2558         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2559         if (!socket->rbuf)
2560                 return -ENOMEM;
2561         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2562         if (!socket->sbuf)
2563                 return -ENOMEM;
2564         return 0;
2565 }
2566
2567 static void drbd_free_socket(struct drbd_socket *socket)
2568 {
2569         free_page((unsigned long) socket->sbuf);
2570         free_page((unsigned long) socket->rbuf);
2571 }
2572
2573 void conn_free_crypto(struct drbd_connection *connection)
2574 {
2575         drbd_free_sock(connection);
2576
2577         crypto_free_ahash(connection->csums_tfm);
2578         crypto_free_ahash(connection->verify_tfm);
2579         crypto_free_shash(connection->cram_hmac_tfm);
2580         crypto_free_ahash(connection->integrity_tfm);
2581         crypto_free_ahash(connection->peer_integrity_tfm);
2582         kfree(connection->int_dig_in);
2583         kfree(connection->int_dig_vv);
2584
2585         connection->csums_tfm = NULL;
2586         connection->verify_tfm = NULL;
2587         connection->cram_hmac_tfm = NULL;
2588         connection->integrity_tfm = NULL;
2589         connection->peer_integrity_tfm = NULL;
2590         connection->int_dig_in = NULL;
2591         connection->int_dig_vv = NULL;
2592 }
2593
2594 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2595 {
2596         struct drbd_connection *connection;
2597         cpumask_var_t new_cpu_mask;
2598         int err;
2599
2600         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2601                 return -ENOMEM;
2602
2603         /* silently ignore cpu mask on UP kernel */
2604         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2605                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2606                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2607                 if (err == -EOVERFLOW) {
2608                         /* So what. mask it out. */
2609                         cpumask_var_t tmp_cpu_mask;
2610                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2611                                 cpumask_setall(tmp_cpu_mask);
2612                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2613                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2614                                         res_opts->cpu_mask,
2615                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2616                                         nr_cpu_ids);
2617                                 free_cpumask_var(tmp_cpu_mask);
2618                                 err = 0;
2619                         }
2620                 }
2621                 if (err) {
2622                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2623                         /* retcode = ERR_CPU_MASK_PARSE; */
2624                         goto fail;
2625                 }
2626         }
2627         resource->res_opts = *res_opts;
2628         if (cpumask_empty(new_cpu_mask))
2629                 drbd_calc_cpu_mask(&new_cpu_mask);
2630         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2631                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2632                 for_each_connection_rcu(connection, resource) {
2633                         connection->receiver.reset_cpu_mask = 1;
2634                         connection->ack_receiver.reset_cpu_mask = 1;
2635                         connection->worker.reset_cpu_mask = 1;
2636                 }
2637         }
2638         err = 0;
2639
2640 fail:
2641         free_cpumask_var(new_cpu_mask);
2642         return err;
2643
2644 }
2645
2646 struct drbd_resource *drbd_create_resource(const char *name)
2647 {
2648         struct drbd_resource *resource;
2649
2650         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2651         if (!resource)
2652                 goto fail;
2653         resource->name = kstrdup(name, GFP_KERNEL);
2654         if (!resource->name)
2655                 goto fail_free_resource;
2656         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2657                 goto fail_free_name;
2658         kref_init(&resource->kref);
2659         idr_init(&resource->devices);
2660         INIT_LIST_HEAD(&resource->connections);
2661         resource->write_ordering = WO_BDEV_FLUSH;
2662         list_add_tail_rcu(&resource->resources, &drbd_resources);
2663         mutex_init(&resource->conf_update);
2664         mutex_init(&resource->adm_mutex);
2665         spin_lock_init(&resource->req_lock);
2666         drbd_debugfs_resource_add(resource);
2667         return resource;
2668
2669 fail_free_name:
2670         kfree(resource->name);
2671 fail_free_resource:
2672         kfree(resource);
2673 fail:
2674         return NULL;
2675 }
2676
2677 /* caller must be under adm_mutex */
2678 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2679 {
2680         struct drbd_resource *resource;
2681         struct drbd_connection *connection;
2682
2683         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2684         if (!connection)
2685                 return NULL;
2686
2687         if (drbd_alloc_socket(&connection->data))
2688                 goto fail;
2689         if (drbd_alloc_socket(&connection->meta))
2690                 goto fail;
2691
2692         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2693         if (!connection->current_epoch)
2694                 goto fail;
2695
2696         INIT_LIST_HEAD(&connection->transfer_log);
2697
2698         INIT_LIST_HEAD(&connection->current_epoch->list);
2699         connection->epochs = 1;
2700         spin_lock_init(&connection->epoch_lock);
2701
2702         connection->send.seen_any_write_yet = false;
2703         connection->send.current_epoch_nr = 0;
2704         connection->send.current_epoch_writes = 0;
2705
2706         resource = drbd_create_resource(name);
2707         if (!resource)
2708                 goto fail;
2709
2710         connection->cstate = C_STANDALONE;
2711         mutex_init(&connection->cstate_mutex);
2712         init_waitqueue_head(&connection->ping_wait);
2713         idr_init(&connection->peer_devices);
2714
2715         drbd_init_workqueue(&connection->sender_work);
2716         mutex_init(&connection->data.mutex);
2717         mutex_init(&connection->meta.mutex);
2718
2719         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2720         connection->receiver.connection = connection;
2721         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2722         connection->worker.connection = connection;
2723         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2724         connection->ack_receiver.connection = connection;
2725
2726         kref_init(&connection->kref);
2727
2728         connection->resource = resource;
2729
2730         if (set_resource_options(resource, res_opts))
2731                 goto fail_resource;
2732
2733         kref_get(&resource->kref);
2734         list_add_tail_rcu(&connection->connections, &resource->connections);
2735         drbd_debugfs_connection_add(connection);
2736         return connection;
2737
2738 fail_resource:
2739         list_del(&resource->resources);
2740         drbd_free_resource(resource);
2741 fail:
2742         kfree(connection->current_epoch);
2743         drbd_free_socket(&connection->meta);
2744         drbd_free_socket(&connection->data);
2745         kfree(connection);
2746         return NULL;
2747 }
2748
2749 void drbd_destroy_connection(struct kref *kref)
2750 {
2751         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2752         struct drbd_resource *resource = connection->resource;
2753
2754         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2755                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2756         kfree(connection->current_epoch);
2757
2758         idr_destroy(&connection->peer_devices);
2759
2760         drbd_free_socket(&connection->meta);
2761         drbd_free_socket(&connection->data);
2762         kfree(connection->int_dig_in);
2763         kfree(connection->int_dig_vv);
2764         memset(connection, 0xfc, sizeof(*connection));
2765         kfree(connection);
2766         kref_put(&resource->kref, drbd_destroy_resource);
2767 }
2768
2769 static int init_submitter(struct drbd_device *device)
2770 {
2771         /* opencoded create_singlethread_workqueue(),
2772          * to be able to say "drbd%d", ..., minor */
2773         device->submit.wq =
2774                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2775         if (!device->submit.wq)
2776                 return -ENOMEM;
2777
2778         INIT_WORK(&device->submit.worker, do_submit);
2779         INIT_LIST_HEAD(&device->submit.writes);
2780         return 0;
2781 }
2782
2783 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2784 {
2785         struct drbd_resource *resource = adm_ctx->resource;
2786         struct drbd_connection *connection;
2787         struct drbd_device *device;
2788         struct drbd_peer_device *peer_device, *tmp_peer_device;
2789         struct gendisk *disk;
2790         struct request_queue *q;
2791         int id;
2792         int vnr = adm_ctx->volume;
2793         enum drbd_ret_code err = ERR_NOMEM;
2794
2795         device = minor_to_device(minor);
2796         if (device)
2797                 return ERR_MINOR_OR_VOLUME_EXISTS;
2798
2799         /* GFP_KERNEL, we are outside of all write-out paths */
2800         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2801         if (!device)
2802                 return ERR_NOMEM;
2803         kref_init(&device->kref);
2804
2805         kref_get(&resource->kref);
2806         device->resource = resource;
2807         device->minor = minor;
2808         device->vnr = vnr;
2809
2810         drbd_init_set_defaults(device);
2811
2812         q = blk_alloc_queue(GFP_KERNEL);
2813         if (!q)
2814                 goto out_no_q;
2815         device->rq_queue = q;
2816         q->queuedata   = device;
2817
2818         disk = alloc_disk(1);
2819         if (!disk)
2820                 goto out_no_disk;
2821         device->vdisk = disk;
2822
2823         set_disk_ro(disk, true);
2824
2825         disk->queue = q;
2826         disk->major = DRBD_MAJOR;
2827         disk->first_minor = minor;
2828         disk->fops = &drbd_ops;
2829         sprintf(disk->disk_name, "drbd%d", minor);
2830         disk->private_data = device;
2831
2832         device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2833         /* we have no partitions. we contain only ourselves. */
2834         device->this_bdev->bd_contains = device->this_bdev;
2835
2836         q->backing_dev_info->congested_fn = drbd_congested;
2837         q->backing_dev_info->congested_data = device;
2838
2839         blk_queue_make_request(q, drbd_make_request);
2840         blk_queue_write_cache(q, true, true);
2841         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2842            This triggers a max_bio_size message upon first attach or connect */
2843         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2844         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2845         q->queue_lock = &resource->req_lock;
2846
2847         device->md_io.page = alloc_page(GFP_KERNEL);
2848         if (!device->md_io.page)
2849                 goto out_no_io_page;
2850
2851         if (drbd_bm_init(device))
2852                 goto out_no_bitmap;
2853         device->read_requests = RB_ROOT;
2854         device->write_requests = RB_ROOT;
2855
2856         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2857         if (id < 0) {
2858                 if (id == -ENOSPC)
2859                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2860                 goto out_no_minor_idr;
2861         }
2862         kref_get(&device->kref);
2863
2864         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2865         if (id < 0) {
2866                 if (id == -ENOSPC)
2867                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2868                 goto out_idr_remove_minor;
2869         }
2870         kref_get(&device->kref);
2871
2872         INIT_LIST_HEAD(&device->peer_devices);
2873         INIT_LIST_HEAD(&device->pending_bitmap_io);
2874         for_each_connection(connection, resource) {
2875                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2876                 if (!peer_device)
2877                         goto out_idr_remove_from_resource;
2878                 peer_device->connection = connection;
2879                 peer_device->device = device;
2880
2881                 list_add(&peer_device->peer_devices, &device->peer_devices);
2882                 kref_get(&device->kref);
2883
2884                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2885                 if (id < 0) {
2886                         if (id == -ENOSPC)
2887                                 err = ERR_INVALID_REQUEST;
2888                         goto out_idr_remove_from_resource;
2889                 }
2890                 kref_get(&connection->kref);
2891                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2892         }
2893
2894         if (init_submitter(device)) {
2895                 err = ERR_NOMEM;
2896                 goto out_idr_remove_vol;
2897         }
2898
2899         add_disk(disk);
2900
2901         /* inherit the connection state */
2902         device->state.conn = first_connection(resource)->cstate;
2903         if (device->state.conn == C_WF_REPORT_PARAMS) {
2904                 for_each_peer_device(peer_device, device)
2905                         drbd_connected(peer_device);
2906         }
2907         /* move to create_peer_device() */
2908         for_each_peer_device(peer_device, device)
2909                 drbd_debugfs_peer_device_add(peer_device);
2910         drbd_debugfs_device_add(device);
2911         return NO_ERROR;
2912
2913 out_idr_remove_vol:
2914         idr_remove(&connection->peer_devices, vnr);
2915 out_idr_remove_from_resource:
2916         for_each_connection(connection, resource) {
2917                 peer_device = idr_remove(&connection->peer_devices, vnr);
2918                 if (peer_device)
2919                         kref_put(&connection->kref, drbd_destroy_connection);
2920         }
2921         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2922                 list_del(&peer_device->peer_devices);
2923                 kfree(peer_device);
2924         }
2925         idr_remove(&resource->devices, vnr);
2926 out_idr_remove_minor:
2927         idr_remove(&drbd_devices, minor);
2928         synchronize_rcu();
2929 out_no_minor_idr:
2930         drbd_bm_cleanup(device);
2931 out_no_bitmap:
2932         __free_page(device->md_io.page);
2933 out_no_io_page:
2934         put_disk(disk);
2935 out_no_disk:
2936         blk_cleanup_queue(q);
2937 out_no_q:
2938         kref_put(&resource->kref, drbd_destroy_resource);
2939         kfree(device);
2940         return err;
2941 }
2942
2943 void drbd_delete_device(struct drbd_device *device)
2944 {
2945         struct drbd_resource *resource = device->resource;
2946         struct drbd_connection *connection;
2947         struct drbd_peer_device *peer_device;
2948
2949         /* move to free_peer_device() */
2950         for_each_peer_device(peer_device, device)
2951                 drbd_debugfs_peer_device_cleanup(peer_device);
2952         drbd_debugfs_device_cleanup(device);
2953         for_each_connection(connection, resource) {
2954                 idr_remove(&connection->peer_devices, device->vnr);
2955                 kref_put(&device->kref, drbd_destroy_device);
2956         }
2957         idr_remove(&resource->devices, device->vnr);
2958         kref_put(&device->kref, drbd_destroy_device);
2959         idr_remove(&drbd_devices, device_to_minor(device));
2960         kref_put(&device->kref, drbd_destroy_device);
2961         del_gendisk(device->vdisk);
2962         synchronize_rcu();
2963         kref_put(&device->kref, drbd_destroy_device);
2964 }
2965
2966 static int __init drbd_init(void)
2967 {
2968         int err;
2969
2970         if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2971                 pr_err("invalid minor_count (%d)\n", minor_count);
2972 #ifdef MODULE
2973                 return -EINVAL;
2974 #else
2975                 minor_count = DRBD_MINOR_COUNT_DEF;
2976 #endif
2977         }
2978
2979         err = register_blkdev(DRBD_MAJOR, "drbd");
2980         if (err) {
2981                 pr_err("unable to register block device major %d\n",
2982                        DRBD_MAJOR);
2983                 return err;
2984         }
2985
2986         /*
2987          * allocate all necessary structs
2988          */
2989         init_waitqueue_head(&drbd_pp_wait);
2990
2991         drbd_proc = NULL; /* play safe for drbd_cleanup */
2992         idr_init(&drbd_devices);
2993
2994         mutex_init(&resources_mutex);
2995         INIT_LIST_HEAD(&drbd_resources);
2996
2997         err = drbd_genl_register();
2998         if (err) {
2999                 pr_err("unable to register generic netlink family\n");
3000                 goto fail;
3001         }
3002
3003         err = drbd_create_mempools();
3004         if (err)
3005                 goto fail;
3006
3007         err = -ENOMEM;
3008         drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
3009         if (!drbd_proc) {
3010                 pr_err("unable to register proc file\n");
3011                 goto fail;
3012         }
3013
3014         retry.wq = create_singlethread_workqueue("drbd-reissue");
3015         if (!retry.wq) {
3016                 pr_err("unable to create retry workqueue\n");
3017                 goto fail;
3018         }
3019         INIT_WORK(&retry.worker, do_retry);
3020         spin_lock_init(&retry.lock);
3021         INIT_LIST_HEAD(&retry.writes);
3022
3023         if (drbd_debugfs_init())
3024                 pr_notice("failed to initialize debugfs -- will not be available\n");
3025
3026         pr_info("initialized. "
3027                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3028                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3029         pr_info("%s\n", drbd_buildtag());
3030         pr_info("registered as block device major %d\n", DRBD_MAJOR);
3031         return 0; /* Success! */
3032
3033 fail:
3034         drbd_cleanup();
3035         if (err == -ENOMEM)
3036                 pr_err("ran out of memory\n");
3037         else
3038                 pr_err("initialization failure\n");
3039         return err;
3040 }
3041
3042 static void drbd_free_one_sock(struct drbd_socket *ds)
3043 {
3044         struct socket *s;
3045         mutex_lock(&ds->mutex);
3046         s = ds->socket;
3047         ds->socket = NULL;
3048         mutex_unlock(&ds->mutex);
3049         if (s) {
3050                 /* so debugfs does not need to mutex_lock() */
3051                 synchronize_rcu();
3052                 kernel_sock_shutdown(s, SHUT_RDWR);
3053                 sock_release(s);
3054         }
3055 }
3056
3057 void drbd_free_sock(struct drbd_connection *connection)
3058 {
3059         if (connection->data.socket)
3060                 drbd_free_one_sock(&connection->data);
3061         if (connection->meta.socket)
3062                 drbd_free_one_sock(&connection->meta);
3063 }
3064
3065 /* meta data management */
3066
3067 void conn_md_sync(struct drbd_connection *connection)
3068 {
3069         struct drbd_peer_device *peer_device;
3070         int vnr;
3071
3072         rcu_read_lock();
3073         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3074                 struct drbd_device *device = peer_device->device;
3075
3076                 kref_get(&device->kref);
3077                 rcu_read_unlock();
3078                 drbd_md_sync(device);
3079                 kref_put(&device->kref, drbd_destroy_device);
3080                 rcu_read_lock();
3081         }
3082         rcu_read_unlock();
3083 }
3084
3085 /* aligned 4kByte */
3086 struct meta_data_on_disk {
3087         u64 la_size_sect;      /* last agreed size. */
3088         u64 uuid[UI_SIZE];   /* UUIDs. */
3089         u64 device_uuid;
3090         u64 reserved_u64_1;
3091         u32 flags;             /* MDF */
3092         u32 magic;
3093         u32 md_size_sect;
3094         u32 al_offset;         /* offset to this block */
3095         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3096               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3097         u32 bm_offset;         /* offset to the bitmap, from here */
3098         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3099         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3100
3101         /* see al_tr_number_to_on_disk_sector() */
3102         u32 al_stripes;
3103         u32 al_stripe_size_4k;
3104
3105         u8 reserved_u8[4096 - (7*8 + 10*4)];
3106 } __packed;
3107
3108
3109
3110 void drbd_md_write(struct drbd_device *device, void *b)
3111 {
3112         struct meta_data_on_disk *buffer = b;
3113         sector_t sector;
3114         int i;
3115
3116         memset(buffer, 0, sizeof(*buffer));
3117
3118         buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3119         for (i = UI_CURRENT; i < UI_SIZE; i++)
3120                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3121         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3122         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3123
3124         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3125         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3126         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3127         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3128         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3129
3130         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3131         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3132
3133         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3134         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3135
3136         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3137         sector = device->ldev->md.md_offset;
3138
3139         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3140                 /* this was a try anyways ... */
3141                 drbd_err(device, "meta data update failed!\n");
3142                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3143         }
3144 }
3145
3146 /**
3147  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3148  * @device:     DRBD device.
3149  */
3150 void drbd_md_sync(struct drbd_device *device)
3151 {
3152         struct meta_data_on_disk *buffer;
3153
3154         /* Don't accidentally change the DRBD meta data layout. */
3155         BUILD_BUG_ON(UI_SIZE != 4);
3156         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3157
3158         del_timer(&device->md_sync_timer);
3159         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3160         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3161                 return;
3162
3163         /* We use here D_FAILED and not D_ATTACHING because we try to write
3164          * metadata even if we detach due to a disk failure! */
3165         if (!get_ldev_if_state(device, D_FAILED))
3166                 return;
3167
3168         buffer = drbd_md_get_buffer(device, __func__);
3169         if (!buffer)
3170                 goto out;
3171
3172         drbd_md_write(device, buffer);
3173
3174         /* Update device->ldev->md.la_size_sect,
3175          * since we updated it on metadata. */
3176         device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3177
3178         drbd_md_put_buffer(device);
3179 out:
3180         put_ldev(device);
3181 }
3182
3183 static int check_activity_log_stripe_size(struct drbd_device *device,
3184                 struct meta_data_on_disk *on_disk,
3185                 struct drbd_md *in_core)
3186 {
3187         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3188         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3189         u64 al_size_4k;
3190
3191         /* both not set: default to old fixed size activity log */
3192         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3193                 al_stripes = 1;
3194                 al_stripe_size_4k = MD_32kB_SECT/8;
3195         }
3196
3197         /* some paranoia plausibility checks */
3198
3199         /* we need both values to be set */
3200         if (al_stripes == 0 || al_stripe_size_4k == 0)
3201                 goto err;
3202
3203         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3204
3205         /* Upper limit of activity log area, to avoid potential overflow
3206          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3207          * than 72 * 4k blocks total only increases the amount of history,
3208          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3209         if (al_size_4k > (16 * 1024 * 1024/4))
3210                 goto err;
3211
3212         /* Lower limit: we need at least 8 transaction slots (32kB)
3213          * to not break existing setups */
3214         if (al_size_4k < MD_32kB_SECT/8)
3215                 goto err;
3216
3217         in_core->al_stripe_size_4k = al_stripe_size_4k;
3218         in_core->al_stripes = al_stripes;
3219         in_core->al_size_4k = al_size_4k;
3220
3221         return 0;
3222 err:
3223         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3224                         al_stripes, al_stripe_size_4k);
3225         return -EINVAL;
3226 }
3227
3228 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3229 {
3230         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3231         struct drbd_md *in_core = &bdev->md;
3232         s32 on_disk_al_sect;
3233         s32 on_disk_bm_sect;
3234
3235         /* The on-disk size of the activity log, calculated from offsets, and
3236          * the size of the activity log calculated from the stripe settings,
3237          * should match.
3238          * Though we could relax this a bit: it is ok, if the striped activity log
3239          * fits in the available on-disk activity log size.
3240          * Right now, that would break how resize is implemented.
3241          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3242          * of possible unused padding space in the on disk layout. */
3243         if (in_core->al_offset < 0) {
3244                 if (in_core->bm_offset > in_core->al_offset)
3245                         goto err;
3246                 on_disk_al_sect = -in_core->al_offset;
3247                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3248         } else {
3249                 if (in_core->al_offset != MD_4kB_SECT)
3250                         goto err;
3251                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3252                         goto err;
3253
3254                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3255                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3256         }
3257
3258         /* old fixed size meta data is exactly that: fixed. */
3259         if (in_core->meta_dev_idx >= 0) {
3260                 if (in_core->md_size_sect != MD_128MB_SECT
3261                 ||  in_core->al_offset != MD_4kB_SECT
3262                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3263                 ||  in_core->al_stripes != 1
3264                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3265                         goto err;
3266         }
3267
3268         if (capacity < in_core->md_size_sect)
3269                 goto err;
3270         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3271                 goto err;
3272
3273         /* should be aligned, and at least 32k */
3274         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3275                 goto err;
3276
3277         /* should fit (for now: exactly) into the available on-disk space;
3278          * overflow prevention is in check_activity_log_stripe_size() above. */
3279         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3280                 goto err;
3281
3282         /* again, should be aligned */
3283         if (in_core->bm_offset & 7)
3284                 goto err;
3285
3286         /* FIXME check for device grow with flex external meta data? */
3287
3288         /* can the available bitmap space cover the last agreed device size? */
3289         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3290                 goto err;
3291
3292         return 0;
3293
3294 err:
3295         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3296                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3297                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3298                         in_core->meta_dev_idx,
3299                         in_core->al_stripes, in_core->al_stripe_size_4k,
3300                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3301                         (unsigned long long)in_core->la_size_sect,
3302                         (unsigned long long)capacity);
3303
3304         return -EINVAL;
3305 }
3306
3307
3308 /**
3309  * drbd_md_read() - Reads in the meta data super block
3310  * @device:     DRBD device.
3311  * @bdev:       Device from which the meta data should be read in.
3312  *
3313  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3314  * something goes wrong.
3315  *
3316  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3317  * even before @bdev is assigned to @device->ldev.
3318  */
3319 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3320 {
3321         struct meta_data_on_disk *buffer;
3322         u32 magic, flags;
3323         int i, rv = NO_ERROR;
3324
3325         if (device->state.disk != D_DISKLESS)
3326                 return ERR_DISK_CONFIGURED;
3327
3328         buffer = drbd_md_get_buffer(device, __func__);
3329         if (!buffer)
3330                 return ERR_NOMEM;
3331
3332         /* First, figure out where our meta data superblock is located,
3333          * and read it. */
3334         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3335         bdev->md.md_offset = drbd_md_ss(bdev);
3336         /* Even for (flexible or indexed) external meta data,
3337          * initially restrict us to the 4k superblock for now.
3338          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3339         bdev->md.md_size_sect = 8;
3340
3341         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3342                                  REQ_OP_READ)) {
3343                 /* NOTE: can't do normal error processing here as this is
3344                    called BEFORE disk is attached */
3345                 drbd_err(device, "Error while reading metadata.\n");
3346                 rv = ERR_IO_MD_DISK;
3347                 goto err;
3348         }
3349
3350         magic = be32_to_cpu(buffer->magic);
3351         flags = be32_to_cpu(buffer->flags);
3352         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3353             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3354                         /* btw: that's Activity Log clean, not "all" clean. */
3355                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3356                 rv = ERR_MD_UNCLEAN;
3357                 goto err;
3358         }
3359
3360         rv = ERR_MD_INVALID;
3361         if (magic != DRBD_MD_MAGIC_08) {
3362                 if (magic == DRBD_MD_MAGIC_07)
3363                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3364                 else
3365                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3366                 goto err;
3367         }
3368
3369         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3370                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3371                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3372                 goto err;
3373         }
3374
3375
3376         /* convert to in_core endian */
3377         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3378         for (i = UI_CURRENT; i < UI_SIZE; i++)
3379                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3380         bdev->md.flags = be32_to_cpu(buffer->flags);
3381         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3382
3383         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3384         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3385         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3386
3387         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3388                 goto err;
3389         if (check_offsets_and_sizes(device, bdev))
3390                 goto err;
3391
3392         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3393                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3394                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3395                 goto err;
3396         }
3397         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3398                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3399                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3400                 goto err;
3401         }
3402
3403         rv = NO_ERROR;
3404
3405         spin_lock_irq(&device->resource->req_lock);
3406         if (device->state.conn < C_CONNECTED) {
3407                 unsigned int peer;
3408                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3409                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3410                 device->peer_max_bio_size = peer;
3411         }
3412         spin_unlock_irq(&device->resource->req_lock);
3413
3414  err:
3415         drbd_md_put_buffer(device);
3416
3417         return rv;
3418 }
3419
3420 /**
3421  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3422  * @device:     DRBD device.
3423  *
3424  * Call this function if you change anything that should be written to
3425  * the meta-data super block. This function sets MD_DIRTY, and starts a
3426  * timer that ensures that within five seconds you have to call drbd_md_sync().
3427  */
3428 #ifdef DEBUG
3429 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3430 {
3431         if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3432                 mod_timer(&device->md_sync_timer, jiffies + HZ);
3433                 device->last_md_mark_dirty.line = line;
3434                 device->last_md_mark_dirty.func = func;
3435         }
3436 }
3437 #else
3438 void drbd_md_mark_dirty(struct drbd_device *device)
3439 {
3440         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3441                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3442 }
3443 #endif
3444
3445 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3446 {
3447         int i;
3448
3449         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3450                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3451 }
3452
3453 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3454 {
3455         if (idx == UI_CURRENT) {
3456                 if (device->state.role == R_PRIMARY)
3457                         val |= 1;
3458                 else
3459                         val &= ~((u64)1);
3460
3461                 drbd_set_ed_uuid(device, val);
3462         }
3463
3464         device->ldev->md.uuid[idx] = val;
3465         drbd_md_mark_dirty(device);
3466 }
3467
3468 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3469 {
3470         unsigned long flags;
3471         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3472         __drbd_uuid_set(device, idx, val);
3473         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3474 }
3475
3476 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3477 {
3478         unsigned long flags;
3479         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3480         if (device->ldev->md.uuid[idx]) {
3481                 drbd_uuid_move_history(device);
3482                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3483         }
3484         __drbd_uuid_set(device, idx, val);
3485         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3486 }
3487
3488 /**
3489  * drbd_uuid_new_current() - Creates a new current UUID
3490  * @device:     DRBD device.
3491  *
3492  * Creates a new current UUID, and rotates the old current UUID into
3493  * the bitmap slot. Causes an incremental resync upon next connect.
3494  */
3495 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3496 {
3497         u64 val;
3498         unsigned long long bm_uuid;
3499
3500         get_random_bytes(&val, sizeof(u64));
3501
3502         spin_lock_irq(&device->ldev->md.uuid_lock);
3503         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3504
3505         if (bm_uuid)
3506                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3507
3508         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3509         __drbd_uuid_set(device, UI_CURRENT, val);
3510         spin_unlock_irq(&device->ldev->md.uuid_lock);
3511
3512         drbd_print_uuids(device, "new current UUID");
3513         /* get it to stable storage _now_ */
3514         drbd_md_sync(device);
3515 }
3516
3517 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3518 {
3519         unsigned long flags;
3520         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3521                 return;
3522
3523         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3524         if (val == 0) {
3525                 drbd_uuid_move_history(device);
3526                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3527                 device->ldev->md.uuid[UI_BITMAP] = 0;
3528         } else {
3529                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3530                 if (bm_uuid)
3531                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3532
3533                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3534         }
3535         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3536
3537         drbd_md_mark_dirty(device);
3538 }
3539
3540 /**
3541  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3542  * @device:     DRBD device.
3543  *
3544  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3545  */
3546 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3547 {
3548         int rv = -EIO;
3549
3550         drbd_md_set_flag(device, MDF_FULL_SYNC);
3551         drbd_md_sync(device);
3552         drbd_bm_set_all(device);
3553
3554         rv = drbd_bm_write(device);
3555
3556         if (!rv) {
3557                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3558                 drbd_md_sync(device);
3559         }
3560
3561         return rv;
3562 }
3563
3564 /**
3565  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3566  * @device:     DRBD device.
3567  *
3568  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3569  */
3570 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3571 {
3572         drbd_resume_al(device);
3573         drbd_bm_clear_all(device);
3574         return drbd_bm_write(device);
3575 }
3576
3577 static int w_bitmap_io(struct drbd_work *w, int unused)
3578 {
3579         struct drbd_device *device =
3580                 container_of(w, struct drbd_device, bm_io_work.w);
3581         struct bm_io_work *work = &device->bm_io_work;
3582         int rv = -EIO;
3583
3584         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3585                 int cnt = atomic_read(&device->ap_bio_cnt);
3586                 if (cnt)
3587                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3588                                         cnt, work->why);
3589         }
3590
3591         if (get_ldev(device)) {
3592                 drbd_bm_lock(device, work->why, work->flags);
3593                 rv = work->io_fn(device);
3594                 drbd_bm_unlock(device);
3595                 put_ldev(device);
3596         }
3597
3598         clear_bit_unlock(BITMAP_IO, &device->flags);
3599         wake_up(&device->misc_wait);
3600
3601         if (work->done)
3602                 work->done(device, rv);
3603
3604         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3605         work->why = NULL;
3606         work->flags = 0;
3607
3608         return 0;
3609 }
3610
3611 /**
3612  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3613  * @device:     DRBD device.
3614  * @io_fn:      IO callback to be called when bitmap IO is possible
3615  * @done:       callback to be called after the bitmap IO was performed
3616  * @why:        Descriptive text of the reason for doing the IO
3617  *
3618  * While IO on the bitmap happens we freeze application IO thus we ensure
3619  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3620  * called from worker context. It MUST NOT be used while a previous such
3621  * work is still pending!
3622  *
3623  * Its worker function encloses the call of io_fn() by get_ldev() and
3624  * put_ldev().
3625  */
3626 void drbd_queue_bitmap_io(struct drbd_device *device,
3627                           int (*io_fn)(struct drbd_device *),
3628                           void (*done)(struct drbd_device *, int),
3629                           char *why, enum bm_flag flags)
3630 {
3631         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3632
3633         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3634         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3635         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3636         if (device->bm_io_work.why)
3637                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3638                         why, device->bm_io_work.why);
3639
3640         device->bm_io_work.io_fn = io_fn;
3641         device->bm_io_work.done = done;
3642         device->bm_io_work.why = why;
3643         device->bm_io_work.flags = flags;
3644
3645         spin_lock_irq(&device->resource->req_lock);
3646         set_bit(BITMAP_IO, &device->flags);
3647         /* don't wait for pending application IO if the caller indicates that
3648          * application IO does not conflict anyways. */
3649         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3650                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3651                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3652                                         &device->bm_io_work.w);
3653         }
3654         spin_unlock_irq(&device->resource->req_lock);
3655 }
3656
3657 /**
3658  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3659  * @device:     DRBD device.
3660  * @io_fn:      IO callback to be called when bitmap IO is possible
3661  * @why:        Descriptive text of the reason for doing the IO
3662  *
3663  * freezes application IO while that the actual IO operations runs. This
3664  * functions MAY NOT be called from worker context.
3665  */
3666 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3667                 char *why, enum bm_flag flags)
3668 {
3669         /* Only suspend io, if some operation is supposed to be locked out */
3670         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3671         int rv;
3672
3673         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3674
3675         if (do_suspend_io)
3676                 drbd_suspend_io(device);
3677
3678         drbd_bm_lock(device, why, flags);
3679         rv = io_fn(device);
3680         drbd_bm_unlock(device);
3681
3682         if (do_suspend_io)
3683                 drbd_resume_io(device);
3684
3685         return rv;
3686 }
3687
3688 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3689 {
3690         if ((device->ldev->md.flags & flag) != flag) {
3691                 drbd_md_mark_dirty(device);
3692                 device->ldev->md.flags |= flag;
3693         }
3694 }
3695
3696 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3697 {
3698         if ((device->ldev->md.flags & flag) != 0) {
3699                 drbd_md_mark_dirty(device);
3700                 device->ldev->md.flags &= ~flag;
3701         }
3702 }
3703 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3704 {
3705         return (bdev->md.flags & flag) != 0;
3706 }
3707
3708 static void md_sync_timer_fn(unsigned long data)
3709 {
3710         struct drbd_device *device = (struct drbd_device *) data;
3711         drbd_device_post_work(device, MD_SYNC);
3712 }
3713
3714 const char *cmdname(enum drbd_packet cmd)
3715 {
3716         /* THINK may need to become several global tables
3717          * when we want to support more than
3718          * one PRO_VERSION */
3719         static const char *cmdnames[] = {
3720                 [P_DATA]                = "Data",
3721                 [P_WSAME]               = "WriteSame",
3722                 [P_TRIM]                = "Trim",
3723                 [P_DATA_REPLY]          = "DataReply",
3724                 [P_RS_DATA_REPLY]       = "RSDataReply",
3725                 [P_BARRIER]             = "Barrier",
3726                 [P_BITMAP]              = "ReportBitMap",
3727                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3728                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3729                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3730                 [P_DATA_REQUEST]        = "DataRequest",
3731                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3732                 [P_SYNC_PARAM]          = "SyncParam",
3733                 [P_SYNC_PARAM89]        = "SyncParam89",
3734                 [P_PROTOCOL]            = "ReportProtocol",
3735                 [P_UUIDS]               = "ReportUUIDs",
3736                 [P_SIZES]               = "ReportSizes",
3737                 [P_STATE]               = "ReportState",
3738                 [P_SYNC_UUID]           = "ReportSyncUUID",
3739                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3740                 [P_AUTH_RESPONSE]       = "AuthResponse",
3741                 [P_PING]                = "Ping",
3742                 [P_PING_ACK]            = "PingAck",
3743                 [P_RECV_ACK]            = "RecvAck",
3744                 [P_WRITE_ACK]           = "WriteAck",
3745                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3746                 [P_SUPERSEDED]          = "Superseded",
3747                 [P_NEG_ACK]             = "NegAck",
3748                 [P_NEG_DREPLY]          = "NegDReply",
3749                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3750                 [P_BARRIER_ACK]         = "BarrierAck",
3751                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3752                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3753                 [P_OV_REQUEST]          = "OVRequest",
3754                 [P_OV_REPLY]            = "OVReply",
3755                 [P_OV_RESULT]           = "OVResult",
3756                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3757                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3758                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3759                 [P_DELAY_PROBE]         = "DelayProbe",
3760                 [P_OUT_OF_SYNC]         = "OutOfSync",
3761                 [P_RETRY_WRITE]         = "RetryWrite",
3762                 [P_RS_CANCEL]           = "RSCancel",
3763                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3764                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3765                 [P_RETRY_WRITE]         = "retry_write",
3766                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3767                 [P_RS_THIN_REQ]         = "rs_thin_req",
3768                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3769
3770                 /* enum drbd_packet, but not commands - obsoleted flags:
3771                  *      P_MAY_IGNORE
3772                  *      P_MAX_OPT_CMD
3773                  */
3774         };
3775
3776         /* too big for the array: 0xfffX */
3777         if (cmd == P_INITIAL_META)
3778                 return "InitialMeta";
3779         if (cmd == P_INITIAL_DATA)
3780                 return "InitialData";
3781         if (cmd == P_CONNECTION_FEATURES)
3782                 return "ConnectionFeatures";
3783         if (cmd >= ARRAY_SIZE(cmdnames))
3784                 return "Unknown";
3785         return cmdnames[cmd];
3786 }
3787
3788 /**
3789  * drbd_wait_misc  -  wait for a request to make progress
3790  * @device:     device associated with the request
3791  * @i:          the struct drbd_interval embedded in struct drbd_request or
3792  *              struct drbd_peer_request
3793  */
3794 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3795 {
3796         struct net_conf *nc;
3797         DEFINE_WAIT(wait);
3798         long timeout;
3799
3800         rcu_read_lock();
3801         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3802         if (!nc) {
3803                 rcu_read_unlock();
3804                 return -ETIMEDOUT;
3805         }
3806         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3807         rcu_read_unlock();
3808
3809         /* Indicate to wake up device->misc_wait on progress.  */
3810         i->waiting = true;
3811         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3812         spin_unlock_irq(&device->resource->req_lock);
3813         timeout = schedule_timeout(timeout);
3814         finish_wait(&device->misc_wait, &wait);
3815         spin_lock_irq(&device->resource->req_lock);
3816         if (!timeout || device->state.conn < C_CONNECTED)
3817                 return -ETIMEDOUT;
3818         if (signal_pending(current))
3819                 return -ERESTARTSYS;
3820         return 0;
3821 }
3822
3823 void lock_all_resources(void)
3824 {
3825         struct drbd_resource *resource;
3826         int __maybe_unused i = 0;
3827
3828         mutex_lock(&resources_mutex);
3829         local_irq_disable();
3830         for_each_resource(resource, &drbd_resources)
3831                 spin_lock_nested(&resource->req_lock, i++);
3832 }
3833
3834 void unlock_all_resources(void)
3835 {
3836         struct drbd_resource *resource;
3837
3838         for_each_resource(resource, &drbd_resources)
3839                 spin_unlock(&resource->req_lock);
3840         local_irq_enable();
3841         mutex_unlock(&resources_mutex);
3842 }
3843
3844 #ifdef CONFIG_DRBD_FAULT_INJECTION
3845 /* Fault insertion support including random number generator shamelessly
3846  * stolen from kernel/rcutorture.c */
3847 struct fault_random_state {
3848         unsigned long state;
3849         unsigned long count;
3850 };
3851
3852 #define FAULT_RANDOM_MULT 39916801  /* prime */
3853 #define FAULT_RANDOM_ADD        479001701 /* prime */
3854 #define FAULT_RANDOM_REFRESH 10000
3855
3856 /*
3857  * Crude but fast random-number generator.  Uses a linear congruential
3858  * generator, with occasional help from get_random_bytes().
3859  */
3860 static unsigned long
3861 _drbd_fault_random(struct fault_random_state *rsp)
3862 {
3863         long refresh;
3864
3865         if (!rsp->count--) {
3866                 get_random_bytes(&refresh, sizeof(refresh));
3867                 rsp->state += refresh;
3868                 rsp->count = FAULT_RANDOM_REFRESH;
3869         }
3870         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3871         return swahw32(rsp->state);
3872 }
3873
3874 static char *
3875 _drbd_fault_str(unsigned int type) {
3876         static char *_faults[] = {
3877                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3878                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3879                 [DRBD_FAULT_RS_WR] = "Resync write",
3880                 [DRBD_FAULT_RS_RD] = "Resync read",
3881                 [DRBD_FAULT_DT_WR] = "Data write",
3882                 [DRBD_FAULT_DT_RD] = "Data read",
3883                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3884                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3885                 [DRBD_FAULT_AL_EE] = "EE allocation",
3886                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3887         };
3888
3889         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3890 }
3891
3892 unsigned int
3893 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3894 {
3895         static struct fault_random_state rrs = {0, 0};
3896
3897         unsigned int ret = (
3898                 (fault_devs == 0 ||
3899                         ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3900                 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3901
3902         if (ret) {
3903                 fault_count++;
3904
3905                 if (__ratelimit(&drbd_ratelimit_state))
3906                         drbd_warn(device, "***Simulating %s failure\n",
3907                                 _drbd_fault_str(type));
3908         }
3909
3910         return ret;
3911 }
3912 #endif
3913
3914 const char *drbd_buildtag(void)
3915 {
3916         /* DRBD built from external sources has here a reference to the
3917            git hash of the source code. */
3918
3919         static char buildtag[38] = "\0uilt-in";
3920
3921         if (buildtag[0] == 0) {
3922 #ifdef MODULE
3923                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3924 #else
3925                 buildtag[0] = 'b';
3926 #endif
3927         }
3928
3929         return buildtag;
3930 }
3931
3932 module_init(drbd_init)
3933 module_exit(drbd_cleanup)
3934
3935 EXPORT_SYMBOL(drbd_conn_str);
3936 EXPORT_SYMBOL(drbd_role_str);
3937 EXPORT_SYMBOL(drbd_disk_str);
3938 EXPORT_SYMBOL(drbd_set_st_err_str);