]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/drbd/drbd_main.c
ACPI / power: Delay turning off unused power resources after suspend
[karo-tx-linux.git] / drivers / block / drbd / drbd_main.c
1 /*
2    drbd.c
3
4    This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6    Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7    Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8    Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10    Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11    from Logicworks, Inc. for making SDP replication support possible.
12
13    drbd is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2, or (at your option)
16    any later version.
17
18    drbd is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with drbd; see the file COPYING.  If not, write to
25    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27  */
28
29 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/jiffies.h>
33 #include <linux/drbd.h>
34 #include <linux/uaccess.h>
35 #include <asm/types.h>
36 #include <net/sock.h>
37 #include <linux/ctype.h>
38 #include <linux/mutex.h>
39 #include <linux/fs.h>
40 #include <linux/file.h>
41 #include <linux/proc_fs.h>
42 #include <linux/init.h>
43 #include <linux/mm.h>
44 #include <linux/memcontrol.h>
45 #include <linux/mm_inline.h>
46 #include <linux/slab.h>
47 #include <linux/random.h>
48 #include <linux/reboot.h>
49 #include <linux/notifier.h>
50 #include <linux/kthread.h>
51 #include <linux/workqueue.h>
52 #define __KERNEL_SYSCALLS__
53 #include <linux/unistd.h>
54 #include <linux/vmalloc.h>
55 #include <linux/sched/signal.h>
56
57 #include <linux/drbd_limits.h>
58 #include "drbd_int.h"
59 #include "drbd_protocol.h"
60 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
61 #include "drbd_vli.h"
62 #include "drbd_debugfs.h"
63
64 static DEFINE_MUTEX(drbd_main_mutex);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static void drbd_release(struct gendisk *gd, fmode_t mode);
67 static void md_sync_timer_fn(unsigned long data);
68 static int w_bitmap_io(struct drbd_work *w, int unused);
69
70 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
71               "Lars Ellenberg <lars@linbit.com>");
72 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
73 MODULE_VERSION(REL_VERSION);
74 MODULE_LICENSE("GPL");
75 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
76                  __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
77 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
78
79 #include <linux/moduleparam.h>
80 /* allow_open_on_secondary */
81 MODULE_PARM_DESC(allow_oos, "DONT USE!");
82 /* thanks to these macros, if compiled into the kernel (not-module),
83  * this becomes the boot parameter drbd.minor_count */
84 module_param(minor_count, uint, 0444);
85 module_param(disable_sendpage, bool, 0644);
86 module_param(allow_oos, bool, 0);
87 module_param(proc_details, int, 0644);
88
89 #ifdef CONFIG_DRBD_FAULT_INJECTION
90 int enable_faults;
91 int fault_rate;
92 static int fault_count;
93 int fault_devs;
94 /* bitmap of enabled faults */
95 module_param(enable_faults, int, 0664);
96 /* fault rate % value - applies to all enabled faults */
97 module_param(fault_rate, int, 0664);
98 /* count of faults inserted */
99 module_param(fault_count, int, 0664);
100 /* bitmap of devices to insert faults on */
101 module_param(fault_devs, int, 0644);
102 #endif
103
104 /* module parameter, defined */
105 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
106 bool disable_sendpage;
107 bool allow_oos;
108 int proc_details;       /* Detail level in proc drbd*/
109
110 /* Module parameter for setting the user mode helper program
111  * to run. Default is /sbin/drbdadm */
112 char usermode_helper[80] = "/sbin/drbdadm";
113
114 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
115
116 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
117  * as member "struct gendisk *vdisk;"
118  */
119 struct idr drbd_devices;
120 struct list_head drbd_resources;
121 struct mutex resources_mutex;
122
123 struct kmem_cache *drbd_request_cache;
124 struct kmem_cache *drbd_ee_cache;       /* peer requests */
125 struct kmem_cache *drbd_bm_ext_cache;   /* bitmap extents */
126 struct kmem_cache *drbd_al_ext_cache;   /* activity log extents */
127 mempool_t *drbd_request_mempool;
128 mempool_t *drbd_ee_mempool;
129 mempool_t *drbd_md_io_page_pool;
130 struct bio_set *drbd_md_io_bio_set;
131
132 /* I do not use a standard mempool, because:
133    1) I want to hand out the pre-allocated objects first.
134    2) I want to be able to interrupt sleeping allocation with a signal.
135    Note: This is a single linked list, the next pointer is the private
136          member of struct page.
137  */
138 struct page *drbd_pp_pool;
139 spinlock_t   drbd_pp_lock;
140 int          drbd_pp_vacant;
141 wait_queue_head_t drbd_pp_wait;
142
143 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
144
145 static const struct block_device_operations drbd_ops = {
146         .owner =   THIS_MODULE,
147         .open =    drbd_open,
148         .release = drbd_release,
149 };
150
151 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
152 {
153         struct bio *bio;
154
155         if (!drbd_md_io_bio_set)
156                 return bio_alloc(gfp_mask, 1);
157
158         bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
159         if (!bio)
160                 return NULL;
161         return bio;
162 }
163
164 #ifdef __CHECKER__
165 /* When checking with sparse, and this is an inline function, sparse will
166    give tons of false positives. When this is a real functions sparse works.
167  */
168 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
169 {
170         int io_allowed;
171
172         atomic_inc(&device->local_cnt);
173         io_allowed = (device->state.disk >= mins);
174         if (!io_allowed) {
175                 if (atomic_dec_and_test(&device->local_cnt))
176                         wake_up(&device->misc_wait);
177         }
178         return io_allowed;
179 }
180
181 #endif
182
183 /**
184  * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
185  * @connection: DRBD connection.
186  * @barrier_nr: Expected identifier of the DRBD write barrier packet.
187  * @set_size:   Expected number of requests before that barrier.
188  *
189  * In case the passed barrier_nr or set_size does not match the oldest
190  * epoch of not yet barrier-acked requests, this function will cause a
191  * termination of the connection.
192  */
193 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
194                 unsigned int set_size)
195 {
196         struct drbd_request *r;
197         struct drbd_request *req = NULL;
198         int expect_epoch = 0;
199         int expect_size = 0;
200
201         spin_lock_irq(&connection->resource->req_lock);
202
203         /* find oldest not yet barrier-acked write request,
204          * count writes in its epoch. */
205         list_for_each_entry(r, &connection->transfer_log, tl_requests) {
206                 const unsigned s = r->rq_state;
207                 if (!req) {
208                         if (!(s & RQ_WRITE))
209                                 continue;
210                         if (!(s & RQ_NET_MASK))
211                                 continue;
212                         if (s & RQ_NET_DONE)
213                                 continue;
214                         req = r;
215                         expect_epoch = req->epoch;
216                         expect_size ++;
217                 } else {
218                         if (r->epoch != expect_epoch)
219                                 break;
220                         if (!(s & RQ_WRITE))
221                                 continue;
222                         /* if (s & RQ_DONE): not expected */
223                         /* if (!(s & RQ_NET_MASK)): not expected */
224                         expect_size++;
225                 }
226         }
227
228         /* first some paranoia code */
229         if (req == NULL) {
230                 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
231                          barrier_nr);
232                 goto bail;
233         }
234         if (expect_epoch != barrier_nr) {
235                 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
236                          barrier_nr, expect_epoch);
237                 goto bail;
238         }
239
240         if (expect_size != set_size) {
241                 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
242                          barrier_nr, set_size, expect_size);
243                 goto bail;
244         }
245
246         /* Clean up list of requests processed during current epoch. */
247         /* this extra list walk restart is paranoia,
248          * to catch requests being barrier-acked "unexpectedly".
249          * It usually should find the same req again, or some READ preceding it. */
250         list_for_each_entry(req, &connection->transfer_log, tl_requests)
251                 if (req->epoch == expect_epoch)
252                         break;
253         list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
254                 if (req->epoch != expect_epoch)
255                         break;
256                 _req_mod(req, BARRIER_ACKED);
257         }
258         spin_unlock_irq(&connection->resource->req_lock);
259
260         return;
261
262 bail:
263         spin_unlock_irq(&connection->resource->req_lock);
264         conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
265 }
266
267
268 /**
269  * _tl_restart() - Walks the transfer log, and applies an action to all requests
270  * @connection: DRBD connection to operate on.
271  * @what:       The action/event to perform with all request objects
272  *
273  * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
274  * RESTART_FROZEN_DISK_IO.
275  */
276 /* must hold resource->req_lock */
277 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
278 {
279         struct drbd_request *req, *r;
280
281         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
282                 _req_mod(req, what);
283 }
284
285 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
286 {
287         spin_lock_irq(&connection->resource->req_lock);
288         _tl_restart(connection, what);
289         spin_unlock_irq(&connection->resource->req_lock);
290 }
291
292 /**
293  * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
294  * @device:     DRBD device.
295  *
296  * This is called after the connection to the peer was lost. The storage covered
297  * by the requests on the transfer gets marked as our of sync. Called from the
298  * receiver thread and the worker thread.
299  */
300 void tl_clear(struct drbd_connection *connection)
301 {
302         tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
303 }
304
305 /**
306  * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
307  * @device:     DRBD device.
308  */
309 void tl_abort_disk_io(struct drbd_device *device)
310 {
311         struct drbd_connection *connection = first_peer_device(device)->connection;
312         struct drbd_request *req, *r;
313
314         spin_lock_irq(&connection->resource->req_lock);
315         list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
316                 if (!(req->rq_state & RQ_LOCAL_PENDING))
317                         continue;
318                 if (req->device != device)
319                         continue;
320                 _req_mod(req, ABORT_DISK_IO);
321         }
322         spin_unlock_irq(&connection->resource->req_lock);
323 }
324
325 static int drbd_thread_setup(void *arg)
326 {
327         struct drbd_thread *thi = (struct drbd_thread *) arg;
328         struct drbd_resource *resource = thi->resource;
329         unsigned long flags;
330         int retval;
331
332         snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
333                  thi->name[0],
334                  resource->name);
335
336 restart:
337         retval = thi->function(thi);
338
339         spin_lock_irqsave(&thi->t_lock, flags);
340
341         /* if the receiver has been "EXITING", the last thing it did
342          * was set the conn state to "StandAlone",
343          * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
344          * and receiver thread will be "started".
345          * drbd_thread_start needs to set "RESTARTING" in that case.
346          * t_state check and assignment needs to be within the same spinlock,
347          * so either thread_start sees EXITING, and can remap to RESTARTING,
348          * or thread_start see NONE, and can proceed as normal.
349          */
350
351         if (thi->t_state == RESTARTING) {
352                 drbd_info(resource, "Restarting %s thread\n", thi->name);
353                 thi->t_state = RUNNING;
354                 spin_unlock_irqrestore(&thi->t_lock, flags);
355                 goto restart;
356         }
357
358         thi->task = NULL;
359         thi->t_state = NONE;
360         smp_mb();
361         complete_all(&thi->stop);
362         spin_unlock_irqrestore(&thi->t_lock, flags);
363
364         drbd_info(resource, "Terminating %s\n", current->comm);
365
366         /* Release mod reference taken when thread was started */
367
368         if (thi->connection)
369                 kref_put(&thi->connection->kref, drbd_destroy_connection);
370         kref_put(&resource->kref, drbd_destroy_resource);
371         module_put(THIS_MODULE);
372         return retval;
373 }
374
375 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
376                              int (*func) (struct drbd_thread *), const char *name)
377 {
378         spin_lock_init(&thi->t_lock);
379         thi->task    = NULL;
380         thi->t_state = NONE;
381         thi->function = func;
382         thi->resource = resource;
383         thi->connection = NULL;
384         thi->name = name;
385 }
386
387 int drbd_thread_start(struct drbd_thread *thi)
388 {
389         struct drbd_resource *resource = thi->resource;
390         struct task_struct *nt;
391         unsigned long flags;
392
393         /* is used from state engine doing drbd_thread_stop_nowait,
394          * while holding the req lock irqsave */
395         spin_lock_irqsave(&thi->t_lock, flags);
396
397         switch (thi->t_state) {
398         case NONE:
399                 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
400                          thi->name, current->comm, current->pid);
401
402                 /* Get ref on module for thread - this is released when thread exits */
403                 if (!try_module_get(THIS_MODULE)) {
404                         drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
405                         spin_unlock_irqrestore(&thi->t_lock, flags);
406                         return false;
407                 }
408
409                 kref_get(&resource->kref);
410                 if (thi->connection)
411                         kref_get(&thi->connection->kref);
412
413                 init_completion(&thi->stop);
414                 thi->reset_cpu_mask = 1;
415                 thi->t_state = RUNNING;
416                 spin_unlock_irqrestore(&thi->t_lock, flags);
417                 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
418
419                 nt = kthread_create(drbd_thread_setup, (void *) thi,
420                                     "drbd_%c_%s", thi->name[0], thi->resource->name);
421
422                 if (IS_ERR(nt)) {
423                         drbd_err(resource, "Couldn't start thread\n");
424
425                         if (thi->connection)
426                                 kref_put(&thi->connection->kref, drbd_destroy_connection);
427                         kref_put(&resource->kref, drbd_destroy_resource);
428                         module_put(THIS_MODULE);
429                         return false;
430                 }
431                 spin_lock_irqsave(&thi->t_lock, flags);
432                 thi->task = nt;
433                 thi->t_state = RUNNING;
434                 spin_unlock_irqrestore(&thi->t_lock, flags);
435                 wake_up_process(nt);
436                 break;
437         case EXITING:
438                 thi->t_state = RESTARTING;
439                 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
440                                 thi->name, current->comm, current->pid);
441                 /* fall through */
442         case RUNNING:
443         case RESTARTING:
444         default:
445                 spin_unlock_irqrestore(&thi->t_lock, flags);
446                 break;
447         }
448
449         return true;
450 }
451
452
453 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
454 {
455         unsigned long flags;
456
457         enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
458
459         /* may be called from state engine, holding the req lock irqsave */
460         spin_lock_irqsave(&thi->t_lock, flags);
461
462         if (thi->t_state == NONE) {
463                 spin_unlock_irqrestore(&thi->t_lock, flags);
464                 if (restart)
465                         drbd_thread_start(thi);
466                 return;
467         }
468
469         if (thi->t_state != ns) {
470                 if (thi->task == NULL) {
471                         spin_unlock_irqrestore(&thi->t_lock, flags);
472                         return;
473                 }
474
475                 thi->t_state = ns;
476                 smp_mb();
477                 init_completion(&thi->stop);
478                 if (thi->task != current)
479                         force_sig(DRBD_SIGKILL, thi->task);
480         }
481
482         spin_unlock_irqrestore(&thi->t_lock, flags);
483
484         if (wait)
485                 wait_for_completion(&thi->stop);
486 }
487
488 int conn_lowest_minor(struct drbd_connection *connection)
489 {
490         struct drbd_peer_device *peer_device;
491         int vnr = 0, minor = -1;
492
493         rcu_read_lock();
494         peer_device = idr_get_next(&connection->peer_devices, &vnr);
495         if (peer_device)
496                 minor = device_to_minor(peer_device->device);
497         rcu_read_unlock();
498
499         return minor;
500 }
501
502 #ifdef CONFIG_SMP
503 /**
504  * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
505  *
506  * Forces all threads of a resource onto the same CPU. This is beneficial for
507  * DRBD's performance. May be overwritten by user's configuration.
508  */
509 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
510 {
511         unsigned int *resources_per_cpu, min_index = ~0;
512
513         resources_per_cpu = kzalloc(nr_cpu_ids * sizeof(*resources_per_cpu), GFP_KERNEL);
514         if (resources_per_cpu) {
515                 struct drbd_resource *resource;
516                 unsigned int cpu, min = ~0;
517
518                 rcu_read_lock();
519                 for_each_resource_rcu(resource, &drbd_resources) {
520                         for_each_cpu(cpu, resource->cpu_mask)
521                                 resources_per_cpu[cpu]++;
522                 }
523                 rcu_read_unlock();
524                 for_each_online_cpu(cpu) {
525                         if (resources_per_cpu[cpu] < min) {
526                                 min = resources_per_cpu[cpu];
527                                 min_index = cpu;
528                         }
529                 }
530                 kfree(resources_per_cpu);
531         }
532         if (min_index == ~0) {
533                 cpumask_setall(*cpu_mask);
534                 return;
535         }
536         cpumask_set_cpu(min_index, *cpu_mask);
537 }
538
539 /**
540  * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
541  * @device:     DRBD device.
542  * @thi:        drbd_thread object
543  *
544  * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
545  * prematurely.
546  */
547 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
548 {
549         struct drbd_resource *resource = thi->resource;
550         struct task_struct *p = current;
551
552         if (!thi->reset_cpu_mask)
553                 return;
554         thi->reset_cpu_mask = 0;
555         set_cpus_allowed_ptr(p, resource->cpu_mask);
556 }
557 #else
558 #define drbd_calc_cpu_mask(A) ({})
559 #endif
560
561 /**
562  * drbd_header_size  -  size of a packet header
563  *
564  * The header size is a multiple of 8, so any payload following the header is
565  * word aligned on 64-bit architectures.  (The bitmap send and receive code
566  * relies on this.)
567  */
568 unsigned int drbd_header_size(struct drbd_connection *connection)
569 {
570         if (connection->agreed_pro_version >= 100) {
571                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
572                 return sizeof(struct p_header100);
573         } else {
574                 BUILD_BUG_ON(sizeof(struct p_header80) !=
575                              sizeof(struct p_header95));
576                 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
577                 return sizeof(struct p_header80);
578         }
579 }
580
581 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
582 {
583         h->magic   = cpu_to_be32(DRBD_MAGIC);
584         h->command = cpu_to_be16(cmd);
585         h->length  = cpu_to_be16(size);
586         return sizeof(struct p_header80);
587 }
588
589 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
590 {
591         h->magic   = cpu_to_be16(DRBD_MAGIC_BIG);
592         h->command = cpu_to_be16(cmd);
593         h->length = cpu_to_be32(size);
594         return sizeof(struct p_header95);
595 }
596
597 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
598                                       int size, int vnr)
599 {
600         h->magic = cpu_to_be32(DRBD_MAGIC_100);
601         h->volume = cpu_to_be16(vnr);
602         h->command = cpu_to_be16(cmd);
603         h->length = cpu_to_be32(size);
604         h->pad = 0;
605         return sizeof(struct p_header100);
606 }
607
608 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
609                                    void *buffer, enum drbd_packet cmd, int size)
610 {
611         if (connection->agreed_pro_version >= 100)
612                 return prepare_header100(buffer, cmd, size, vnr);
613         else if (connection->agreed_pro_version >= 95 &&
614                  size > DRBD_MAX_SIZE_H80_PACKET)
615                 return prepare_header95(buffer, cmd, size);
616         else
617                 return prepare_header80(buffer, cmd, size);
618 }
619
620 static void *__conn_prepare_command(struct drbd_connection *connection,
621                                     struct drbd_socket *sock)
622 {
623         if (!sock->socket)
624                 return NULL;
625         return sock->sbuf + drbd_header_size(connection);
626 }
627
628 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
629 {
630         void *p;
631
632         mutex_lock(&sock->mutex);
633         p = __conn_prepare_command(connection, sock);
634         if (!p)
635                 mutex_unlock(&sock->mutex);
636
637         return p;
638 }
639
640 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
641 {
642         return conn_prepare_command(peer_device->connection, sock);
643 }
644
645 static int __send_command(struct drbd_connection *connection, int vnr,
646                           struct drbd_socket *sock, enum drbd_packet cmd,
647                           unsigned int header_size, void *data,
648                           unsigned int size)
649 {
650         int msg_flags;
651         int err;
652
653         /*
654          * Called with @data == NULL and the size of the data blocks in @size
655          * for commands that send data blocks.  For those commands, omit the
656          * MSG_MORE flag: this will increase the likelihood that data blocks
657          * which are page aligned on the sender will end up page aligned on the
658          * receiver.
659          */
660         msg_flags = data ? MSG_MORE : 0;
661
662         header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
663                                       header_size + size);
664         err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
665                             msg_flags);
666         if (data && !err)
667                 err = drbd_send_all(connection, sock->socket, data, size, 0);
668         /* DRBD protocol "pings" are latency critical.
669          * This is supposed to trigger tcp_push_pending_frames() */
670         if (!err && (cmd == P_PING || cmd == P_PING_ACK))
671                 drbd_tcp_nodelay(sock->socket);
672
673         return err;
674 }
675
676 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677                                enum drbd_packet cmd, unsigned int header_size,
678                                void *data, unsigned int size)
679 {
680         return __send_command(connection, 0, sock, cmd, header_size, data, size);
681 }
682
683 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
684                       enum drbd_packet cmd, unsigned int header_size,
685                       void *data, unsigned int size)
686 {
687         int err;
688
689         err = __conn_send_command(connection, sock, cmd, header_size, data, size);
690         mutex_unlock(&sock->mutex);
691         return err;
692 }
693
694 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
695                       enum drbd_packet cmd, unsigned int header_size,
696                       void *data, unsigned int size)
697 {
698         int err;
699
700         err = __send_command(peer_device->connection, peer_device->device->vnr,
701                              sock, cmd, header_size, data, size);
702         mutex_unlock(&sock->mutex);
703         return err;
704 }
705
706 int drbd_send_ping(struct drbd_connection *connection)
707 {
708         struct drbd_socket *sock;
709
710         sock = &connection->meta;
711         if (!conn_prepare_command(connection, sock))
712                 return -EIO;
713         return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
714 }
715
716 int drbd_send_ping_ack(struct drbd_connection *connection)
717 {
718         struct drbd_socket *sock;
719
720         sock = &connection->meta;
721         if (!conn_prepare_command(connection, sock))
722                 return -EIO;
723         return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
724 }
725
726 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
727 {
728         struct drbd_socket *sock;
729         struct p_rs_param_95 *p;
730         int size;
731         const int apv = peer_device->connection->agreed_pro_version;
732         enum drbd_packet cmd;
733         struct net_conf *nc;
734         struct disk_conf *dc;
735
736         sock = &peer_device->connection->data;
737         p = drbd_prepare_command(peer_device, sock);
738         if (!p)
739                 return -EIO;
740
741         rcu_read_lock();
742         nc = rcu_dereference(peer_device->connection->net_conf);
743
744         size = apv <= 87 ? sizeof(struct p_rs_param)
745                 : apv == 88 ? sizeof(struct p_rs_param)
746                         + strlen(nc->verify_alg) + 1
747                 : apv <= 94 ? sizeof(struct p_rs_param_89)
748                 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
749
750         cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
751
752         /* initialize verify_alg and csums_alg */
753         memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
754
755         if (get_ldev(peer_device->device)) {
756                 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
757                 p->resync_rate = cpu_to_be32(dc->resync_rate);
758                 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
759                 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
760                 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
761                 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
762                 put_ldev(peer_device->device);
763         } else {
764                 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
765                 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
766                 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
767                 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
768                 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
769         }
770
771         if (apv >= 88)
772                 strcpy(p->verify_alg, nc->verify_alg);
773         if (apv >= 89)
774                 strcpy(p->csums_alg, nc->csums_alg);
775         rcu_read_unlock();
776
777         return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
778 }
779
780 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
781 {
782         struct drbd_socket *sock;
783         struct p_protocol *p;
784         struct net_conf *nc;
785         int size, cf;
786
787         sock = &connection->data;
788         p = __conn_prepare_command(connection, sock);
789         if (!p)
790                 return -EIO;
791
792         rcu_read_lock();
793         nc = rcu_dereference(connection->net_conf);
794
795         if (nc->tentative && connection->agreed_pro_version < 92) {
796                 rcu_read_unlock();
797                 mutex_unlock(&sock->mutex);
798                 drbd_err(connection, "--dry-run is not supported by peer");
799                 return -EOPNOTSUPP;
800         }
801
802         size = sizeof(*p);
803         if (connection->agreed_pro_version >= 87)
804                 size += strlen(nc->integrity_alg) + 1;
805
806         p->protocol      = cpu_to_be32(nc->wire_protocol);
807         p->after_sb_0p   = cpu_to_be32(nc->after_sb_0p);
808         p->after_sb_1p   = cpu_to_be32(nc->after_sb_1p);
809         p->after_sb_2p   = cpu_to_be32(nc->after_sb_2p);
810         p->two_primaries = cpu_to_be32(nc->two_primaries);
811         cf = 0;
812         if (nc->discard_my_data)
813                 cf |= CF_DISCARD_MY_DATA;
814         if (nc->tentative)
815                 cf |= CF_DRY_RUN;
816         p->conn_flags    = cpu_to_be32(cf);
817
818         if (connection->agreed_pro_version >= 87)
819                 strcpy(p->integrity_alg, nc->integrity_alg);
820         rcu_read_unlock();
821
822         return __conn_send_command(connection, sock, cmd, size, NULL, 0);
823 }
824
825 int drbd_send_protocol(struct drbd_connection *connection)
826 {
827         int err;
828
829         mutex_lock(&connection->data.mutex);
830         err = __drbd_send_protocol(connection, P_PROTOCOL);
831         mutex_unlock(&connection->data.mutex);
832
833         return err;
834 }
835
836 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
837 {
838         struct drbd_device *device = peer_device->device;
839         struct drbd_socket *sock;
840         struct p_uuids *p;
841         int i;
842
843         if (!get_ldev_if_state(device, D_NEGOTIATING))
844                 return 0;
845
846         sock = &peer_device->connection->data;
847         p = drbd_prepare_command(peer_device, sock);
848         if (!p) {
849                 put_ldev(device);
850                 return -EIO;
851         }
852         spin_lock_irq(&device->ldev->md.uuid_lock);
853         for (i = UI_CURRENT; i < UI_SIZE; i++)
854                 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
855         spin_unlock_irq(&device->ldev->md.uuid_lock);
856
857         device->comm_bm_set = drbd_bm_total_weight(device);
858         p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
859         rcu_read_lock();
860         uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
861         rcu_read_unlock();
862         uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
863         uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
864         p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
865
866         put_ldev(device);
867         return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
868 }
869
870 int drbd_send_uuids(struct drbd_peer_device *peer_device)
871 {
872         return _drbd_send_uuids(peer_device, 0);
873 }
874
875 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
876 {
877         return _drbd_send_uuids(peer_device, 8);
878 }
879
880 void drbd_print_uuids(struct drbd_device *device, const char *text)
881 {
882         if (get_ldev_if_state(device, D_NEGOTIATING)) {
883                 u64 *uuid = device->ldev->md.uuid;
884                 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
885                      text,
886                      (unsigned long long)uuid[UI_CURRENT],
887                      (unsigned long long)uuid[UI_BITMAP],
888                      (unsigned long long)uuid[UI_HISTORY_START],
889                      (unsigned long long)uuid[UI_HISTORY_END]);
890                 put_ldev(device);
891         } else {
892                 drbd_info(device, "%s effective data uuid: %016llX\n",
893                                 text,
894                                 (unsigned long long)device->ed_uuid);
895         }
896 }
897
898 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
899 {
900         struct drbd_device *device = peer_device->device;
901         struct drbd_socket *sock;
902         struct p_rs_uuid *p;
903         u64 uuid;
904
905         D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
906
907         uuid = device->ldev->md.uuid[UI_BITMAP];
908         if (uuid && uuid != UUID_JUST_CREATED)
909                 uuid = uuid + UUID_NEW_BM_OFFSET;
910         else
911                 get_random_bytes(&uuid, sizeof(u64));
912         drbd_uuid_set(device, UI_BITMAP, uuid);
913         drbd_print_uuids(device, "updated sync UUID");
914         drbd_md_sync(device);
915
916         sock = &peer_device->connection->data;
917         p = drbd_prepare_command(peer_device, sock);
918         if (p) {
919                 p->uuid = cpu_to_be64(uuid);
920                 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
921         }
922 }
923
924 /* communicated if (agreed_features & DRBD_FF_WSAME) */
925 void assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p, struct request_queue *q)
926 {
927         if (q) {
928                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
929                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
930                 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
931                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
932                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
933                 p->qlim->discard_enabled = blk_queue_discard(q);
934                 p->qlim->discard_zeroes_data = queue_discard_zeroes_data(q);
935                 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
936         } else {
937                 q = device->rq_queue;
938                 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
939                 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
940                 p->qlim->alignment_offset = 0;
941                 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
942                 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
943                 p->qlim->discard_enabled = 0;
944                 p->qlim->discard_zeroes_data = 0;
945                 p->qlim->write_same_capable = 0;
946         }
947 }
948
949 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
950 {
951         struct drbd_device *device = peer_device->device;
952         struct drbd_socket *sock;
953         struct p_sizes *p;
954         sector_t d_size, u_size;
955         int q_order_type;
956         unsigned int max_bio_size;
957         unsigned int packet_size;
958
959         sock = &peer_device->connection->data;
960         p = drbd_prepare_command(peer_device, sock);
961         if (!p)
962                 return -EIO;
963
964         packet_size = sizeof(*p);
965         if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
966                 packet_size += sizeof(p->qlim[0]);
967
968         memset(p, 0, packet_size);
969         if (get_ldev_if_state(device, D_NEGOTIATING)) {
970                 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
971                 d_size = drbd_get_max_capacity(device->ldev);
972                 rcu_read_lock();
973                 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
974                 rcu_read_unlock();
975                 q_order_type = drbd_queue_order_type(device);
976                 max_bio_size = queue_max_hw_sectors(q) << 9;
977                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
978                 assign_p_sizes_qlim(device, p, q);
979                 put_ldev(device);
980         } else {
981                 d_size = 0;
982                 u_size = 0;
983                 q_order_type = QUEUE_ORDERED_NONE;
984                 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
985                 assign_p_sizes_qlim(device, p, NULL);
986         }
987
988         if (peer_device->connection->agreed_pro_version <= 94)
989                 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
990         else if (peer_device->connection->agreed_pro_version < 100)
991                 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
992
993         p->d_size = cpu_to_be64(d_size);
994         p->u_size = cpu_to_be64(u_size);
995         p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
996         p->max_bio_size = cpu_to_be32(max_bio_size);
997         p->queue_order_type = cpu_to_be16(q_order_type);
998         p->dds_flags = cpu_to_be16(flags);
999
1000         return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
1001 }
1002
1003 /**
1004  * drbd_send_current_state() - Sends the drbd state to the peer
1005  * @peer_device:        DRBD peer device.
1006  */
1007 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1008 {
1009         struct drbd_socket *sock;
1010         struct p_state *p;
1011
1012         sock = &peer_device->connection->data;
1013         p = drbd_prepare_command(peer_device, sock);
1014         if (!p)
1015                 return -EIO;
1016         p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1017         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1018 }
1019
1020 /**
1021  * drbd_send_state() - After a state change, sends the new state to the peer
1022  * @peer_device:      DRBD peer device.
1023  * @state:     the state to send, not necessarily the current state.
1024  *
1025  * Each state change queues an "after_state_ch" work, which will eventually
1026  * send the resulting new state to the peer. If more state changes happen
1027  * between queuing and processing of the after_state_ch work, we still
1028  * want to send each intermediary state in the order it occurred.
1029  */
1030 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1031 {
1032         struct drbd_socket *sock;
1033         struct p_state *p;
1034
1035         sock = &peer_device->connection->data;
1036         p = drbd_prepare_command(peer_device, sock);
1037         if (!p)
1038                 return -EIO;
1039         p->state = cpu_to_be32(state.i); /* Within the send mutex */
1040         return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1041 }
1042
1043 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1044 {
1045         struct drbd_socket *sock;
1046         struct p_req_state *p;
1047
1048         sock = &peer_device->connection->data;
1049         p = drbd_prepare_command(peer_device, sock);
1050         if (!p)
1051                 return -EIO;
1052         p->mask = cpu_to_be32(mask.i);
1053         p->val = cpu_to_be32(val.i);
1054         return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1055 }
1056
1057 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1058 {
1059         enum drbd_packet cmd;
1060         struct drbd_socket *sock;
1061         struct p_req_state *p;
1062
1063         cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1064         sock = &connection->data;
1065         p = conn_prepare_command(connection, sock);
1066         if (!p)
1067                 return -EIO;
1068         p->mask = cpu_to_be32(mask.i);
1069         p->val = cpu_to_be32(val.i);
1070         return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1071 }
1072
1073 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1074 {
1075         struct drbd_socket *sock;
1076         struct p_req_state_reply *p;
1077
1078         sock = &peer_device->connection->meta;
1079         p = drbd_prepare_command(peer_device, sock);
1080         if (p) {
1081                 p->retcode = cpu_to_be32(retcode);
1082                 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1083         }
1084 }
1085
1086 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1087 {
1088         struct drbd_socket *sock;
1089         struct p_req_state_reply *p;
1090         enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1091
1092         sock = &connection->meta;
1093         p = conn_prepare_command(connection, sock);
1094         if (p) {
1095                 p->retcode = cpu_to_be32(retcode);
1096                 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1097         }
1098 }
1099
1100 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1101 {
1102         BUG_ON(code & ~0xf);
1103         p->encoding = (p->encoding & ~0xf) | code;
1104 }
1105
1106 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1107 {
1108         p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1109 }
1110
1111 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1112 {
1113         BUG_ON(n & ~0x7);
1114         p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1115 }
1116
1117 static int fill_bitmap_rle_bits(struct drbd_device *device,
1118                          struct p_compressed_bm *p,
1119                          unsigned int size,
1120                          struct bm_xfer_ctx *c)
1121 {
1122         struct bitstream bs;
1123         unsigned long plain_bits;
1124         unsigned long tmp;
1125         unsigned long rl;
1126         unsigned len;
1127         unsigned toggle;
1128         int bits, use_rle;
1129
1130         /* may we use this feature? */
1131         rcu_read_lock();
1132         use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1133         rcu_read_unlock();
1134         if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1135                 return 0;
1136
1137         if (c->bit_offset >= c->bm_bits)
1138                 return 0; /* nothing to do. */
1139
1140         /* use at most thus many bytes */
1141         bitstream_init(&bs, p->code, size, 0);
1142         memset(p->code, 0, size);
1143         /* plain bits covered in this code string */
1144         plain_bits = 0;
1145
1146         /* p->encoding & 0x80 stores whether the first run length is set.
1147          * bit offset is implicit.
1148          * start with toggle == 2 to be able to tell the first iteration */
1149         toggle = 2;
1150
1151         /* see how much plain bits we can stuff into one packet
1152          * using RLE and VLI. */
1153         do {
1154                 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1155                                     : _drbd_bm_find_next(device, c->bit_offset);
1156                 if (tmp == -1UL)
1157                         tmp = c->bm_bits;
1158                 rl = tmp - c->bit_offset;
1159
1160                 if (toggle == 2) { /* first iteration */
1161                         if (rl == 0) {
1162                                 /* the first checked bit was set,
1163                                  * store start value, */
1164                                 dcbp_set_start(p, 1);
1165                                 /* but skip encoding of zero run length */
1166                                 toggle = !toggle;
1167                                 continue;
1168                         }
1169                         dcbp_set_start(p, 0);
1170                 }
1171
1172                 /* paranoia: catch zero runlength.
1173                  * can only happen if bitmap is modified while we scan it. */
1174                 if (rl == 0) {
1175                         drbd_err(device, "unexpected zero runlength while encoding bitmap "
1176                             "t:%u bo:%lu\n", toggle, c->bit_offset);
1177                         return -1;
1178                 }
1179
1180                 bits = vli_encode_bits(&bs, rl);
1181                 if (bits == -ENOBUFS) /* buffer full */
1182                         break;
1183                 if (bits <= 0) {
1184                         drbd_err(device, "error while encoding bitmap: %d\n", bits);
1185                         return 0;
1186                 }
1187
1188                 toggle = !toggle;
1189                 plain_bits += rl;
1190                 c->bit_offset = tmp;
1191         } while (c->bit_offset < c->bm_bits);
1192
1193         len = bs.cur.b - p->code + !!bs.cur.bit;
1194
1195         if (plain_bits < (len << 3)) {
1196                 /* incompressible with this method.
1197                  * we need to rewind both word and bit position. */
1198                 c->bit_offset -= plain_bits;
1199                 bm_xfer_ctx_bit_to_word_offset(c);
1200                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1201                 return 0;
1202         }
1203
1204         /* RLE + VLI was able to compress it just fine.
1205          * update c->word_offset. */
1206         bm_xfer_ctx_bit_to_word_offset(c);
1207
1208         /* store pad_bits */
1209         dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1210
1211         return len;
1212 }
1213
1214 /**
1215  * send_bitmap_rle_or_plain
1216  *
1217  * Return 0 when done, 1 when another iteration is needed, and a negative error
1218  * code upon failure.
1219  */
1220 static int
1221 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1222 {
1223         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1224         unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1225         struct p_compressed_bm *p = sock->sbuf + header_size;
1226         int len, err;
1227
1228         len = fill_bitmap_rle_bits(device, p,
1229                         DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1230         if (len < 0)
1231                 return -EIO;
1232
1233         if (len) {
1234                 dcbp_set_code(p, RLE_VLI_Bits);
1235                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1236                                      P_COMPRESSED_BITMAP, sizeof(*p) + len,
1237                                      NULL, 0);
1238                 c->packets[0]++;
1239                 c->bytes[0] += header_size + sizeof(*p) + len;
1240
1241                 if (c->bit_offset >= c->bm_bits)
1242                         len = 0; /* DONE */
1243         } else {
1244                 /* was not compressible.
1245                  * send a buffer full of plain text bits instead. */
1246                 unsigned int data_size;
1247                 unsigned long num_words;
1248                 unsigned long *p = sock->sbuf + header_size;
1249
1250                 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1251                 num_words = min_t(size_t, data_size / sizeof(*p),
1252                                   c->bm_words - c->word_offset);
1253                 len = num_words * sizeof(*p);
1254                 if (len)
1255                         drbd_bm_get_lel(device, c->word_offset, num_words, p);
1256                 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1257                 c->word_offset += num_words;
1258                 c->bit_offset = c->word_offset * BITS_PER_LONG;
1259
1260                 c->packets[1]++;
1261                 c->bytes[1] += header_size + len;
1262
1263                 if (c->bit_offset > c->bm_bits)
1264                         c->bit_offset = c->bm_bits;
1265         }
1266         if (!err) {
1267                 if (len == 0) {
1268                         INFO_bm_xfer_stats(device, "send", c);
1269                         return 0;
1270                 } else
1271                         return 1;
1272         }
1273         return -EIO;
1274 }
1275
1276 /* See the comment at receive_bitmap() */
1277 static int _drbd_send_bitmap(struct drbd_device *device)
1278 {
1279         struct bm_xfer_ctx c;
1280         int err;
1281
1282         if (!expect(device->bitmap))
1283                 return false;
1284
1285         if (get_ldev(device)) {
1286                 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1287                         drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1288                         drbd_bm_set_all(device);
1289                         if (drbd_bm_write(device)) {
1290                                 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1291                                  * but otherwise process as per normal - need to tell other
1292                                  * side that a full resync is required! */
1293                                 drbd_err(device, "Failed to write bitmap to disk!\n");
1294                         } else {
1295                                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1296                                 drbd_md_sync(device);
1297                         }
1298                 }
1299                 put_ldev(device);
1300         }
1301
1302         c = (struct bm_xfer_ctx) {
1303                 .bm_bits = drbd_bm_bits(device),
1304                 .bm_words = drbd_bm_words(device),
1305         };
1306
1307         do {
1308                 err = send_bitmap_rle_or_plain(device, &c);
1309         } while (err > 0);
1310
1311         return err == 0;
1312 }
1313
1314 int drbd_send_bitmap(struct drbd_device *device)
1315 {
1316         struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1317         int err = -1;
1318
1319         mutex_lock(&sock->mutex);
1320         if (sock->socket)
1321                 err = !_drbd_send_bitmap(device);
1322         mutex_unlock(&sock->mutex);
1323         return err;
1324 }
1325
1326 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1327 {
1328         struct drbd_socket *sock;
1329         struct p_barrier_ack *p;
1330
1331         if (connection->cstate < C_WF_REPORT_PARAMS)
1332                 return;
1333
1334         sock = &connection->meta;
1335         p = conn_prepare_command(connection, sock);
1336         if (!p)
1337                 return;
1338         p->barrier = barrier_nr;
1339         p->set_size = cpu_to_be32(set_size);
1340         conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1341 }
1342
1343 /**
1344  * _drbd_send_ack() - Sends an ack packet
1345  * @device:     DRBD device.
1346  * @cmd:        Packet command code.
1347  * @sector:     sector, needs to be in big endian byte order
1348  * @blksize:    size in byte, needs to be in big endian byte order
1349  * @block_id:   Id, big endian byte order
1350  */
1351 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1352                           u64 sector, u32 blksize, u64 block_id)
1353 {
1354         struct drbd_socket *sock;
1355         struct p_block_ack *p;
1356
1357         if (peer_device->device->state.conn < C_CONNECTED)
1358                 return -EIO;
1359
1360         sock = &peer_device->connection->meta;
1361         p = drbd_prepare_command(peer_device, sock);
1362         if (!p)
1363                 return -EIO;
1364         p->sector = sector;
1365         p->block_id = block_id;
1366         p->blksize = blksize;
1367         p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1368         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1369 }
1370
1371 /* dp->sector and dp->block_id already/still in network byte order,
1372  * data_size is payload size according to dp->head,
1373  * and may need to be corrected for digest size. */
1374 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1375                       struct p_data *dp, int data_size)
1376 {
1377         if (peer_device->connection->peer_integrity_tfm)
1378                 data_size -= crypto_ahash_digestsize(peer_device->connection->peer_integrity_tfm);
1379         _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1380                        dp->block_id);
1381 }
1382
1383 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1384                       struct p_block_req *rp)
1385 {
1386         _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1387 }
1388
1389 /**
1390  * drbd_send_ack() - Sends an ack packet
1391  * @device:     DRBD device
1392  * @cmd:        packet command code
1393  * @peer_req:   peer request
1394  */
1395 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1396                   struct drbd_peer_request *peer_req)
1397 {
1398         return _drbd_send_ack(peer_device, cmd,
1399                               cpu_to_be64(peer_req->i.sector),
1400                               cpu_to_be32(peer_req->i.size),
1401                               peer_req->block_id);
1402 }
1403
1404 /* This function misuses the block_id field to signal if the blocks
1405  * are is sync or not. */
1406 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1407                      sector_t sector, int blksize, u64 block_id)
1408 {
1409         return _drbd_send_ack(peer_device, cmd,
1410                               cpu_to_be64(sector),
1411                               cpu_to_be32(blksize),
1412                               cpu_to_be64(block_id));
1413 }
1414
1415 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1416                              struct drbd_peer_request *peer_req)
1417 {
1418         struct drbd_socket *sock;
1419         struct p_block_desc *p;
1420
1421         sock = &peer_device->connection->data;
1422         p = drbd_prepare_command(peer_device, sock);
1423         if (!p)
1424                 return -EIO;
1425         p->sector = cpu_to_be64(peer_req->i.sector);
1426         p->blksize = cpu_to_be32(peer_req->i.size);
1427         p->pad = 0;
1428         return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1429 }
1430
1431 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1432                        sector_t sector, int size, u64 block_id)
1433 {
1434         struct drbd_socket *sock;
1435         struct p_block_req *p;
1436
1437         sock = &peer_device->connection->data;
1438         p = drbd_prepare_command(peer_device, sock);
1439         if (!p)
1440                 return -EIO;
1441         p->sector = cpu_to_be64(sector);
1442         p->block_id = block_id;
1443         p->blksize = cpu_to_be32(size);
1444         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1445 }
1446
1447 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1448                             void *digest, int digest_size, enum drbd_packet cmd)
1449 {
1450         struct drbd_socket *sock;
1451         struct p_block_req *p;
1452
1453         /* FIXME: Put the digest into the preallocated socket buffer.  */
1454
1455         sock = &peer_device->connection->data;
1456         p = drbd_prepare_command(peer_device, sock);
1457         if (!p)
1458                 return -EIO;
1459         p->sector = cpu_to_be64(sector);
1460         p->block_id = ID_SYNCER /* unused */;
1461         p->blksize = cpu_to_be32(size);
1462         return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1463 }
1464
1465 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1466 {
1467         struct drbd_socket *sock;
1468         struct p_block_req *p;
1469
1470         sock = &peer_device->connection->data;
1471         p = drbd_prepare_command(peer_device, sock);
1472         if (!p)
1473                 return -EIO;
1474         p->sector = cpu_to_be64(sector);
1475         p->block_id = ID_SYNCER /* unused */;
1476         p->blksize = cpu_to_be32(size);
1477         return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1478 }
1479
1480 /* called on sndtimeo
1481  * returns false if we should retry,
1482  * true if we think connection is dead
1483  */
1484 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1485 {
1486         int drop_it;
1487         /* long elapsed = (long)(jiffies - device->last_received); */
1488
1489         drop_it =   connection->meta.socket == sock
1490                 || !connection->ack_receiver.task
1491                 || get_t_state(&connection->ack_receiver) != RUNNING
1492                 || connection->cstate < C_WF_REPORT_PARAMS;
1493
1494         if (drop_it)
1495                 return true;
1496
1497         drop_it = !--connection->ko_count;
1498         if (!drop_it) {
1499                 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1500                          current->comm, current->pid, connection->ko_count);
1501                 request_ping(connection);
1502         }
1503
1504         return drop_it; /* && (device->state == R_PRIMARY) */;
1505 }
1506
1507 static void drbd_update_congested(struct drbd_connection *connection)
1508 {
1509         struct sock *sk = connection->data.socket->sk;
1510         if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1511                 set_bit(NET_CONGESTED, &connection->flags);
1512 }
1513
1514 /* The idea of sendpage seems to be to put some kind of reference
1515  * to the page into the skb, and to hand it over to the NIC. In
1516  * this process get_page() gets called.
1517  *
1518  * As soon as the page was really sent over the network put_page()
1519  * gets called by some part of the network layer. [ NIC driver? ]
1520  *
1521  * [ get_page() / put_page() increment/decrement the count. If count
1522  *   reaches 0 the page will be freed. ]
1523  *
1524  * This works nicely with pages from FSs.
1525  * But this means that in protocol A we might signal IO completion too early!
1526  *
1527  * In order not to corrupt data during a resync we must make sure
1528  * that we do not reuse our own buffer pages (EEs) to early, therefore
1529  * we have the net_ee list.
1530  *
1531  * XFS seems to have problems, still, it submits pages with page_count == 0!
1532  * As a workaround, we disable sendpage on pages
1533  * with page_count == 0 or PageSlab.
1534  */
1535 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1536                               int offset, size_t size, unsigned msg_flags)
1537 {
1538         struct socket *socket;
1539         void *addr;
1540         int err;
1541
1542         socket = peer_device->connection->data.socket;
1543         addr = kmap(page) + offset;
1544         err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1545         kunmap(page);
1546         if (!err)
1547                 peer_device->device->send_cnt += size >> 9;
1548         return err;
1549 }
1550
1551 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1552                     int offset, size_t size, unsigned msg_flags)
1553 {
1554         struct socket *socket = peer_device->connection->data.socket;
1555         mm_segment_t oldfs = get_fs();
1556         int len = size;
1557         int err = -EIO;
1558
1559         /* e.g. XFS meta- & log-data is in slab pages, which have a
1560          * page_count of 0 and/or have PageSlab() set.
1561          * we cannot use send_page for those, as that does get_page();
1562          * put_page(); and would cause either a VM_BUG directly, or
1563          * __page_cache_release a page that would actually still be referenced
1564          * by someone, leading to some obscure delayed Oops somewhere else. */
1565         if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1566                 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1567
1568         msg_flags |= MSG_NOSIGNAL;
1569         drbd_update_congested(peer_device->connection);
1570         set_fs(KERNEL_DS);
1571         do {
1572                 int sent;
1573
1574                 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1575                 if (sent <= 0) {
1576                         if (sent == -EAGAIN) {
1577                                 if (we_should_drop_the_connection(peer_device->connection, socket))
1578                                         break;
1579                                 continue;
1580                         }
1581                         drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1582                              __func__, (int)size, len, sent);
1583                         if (sent < 0)
1584                                 err = sent;
1585                         break;
1586                 }
1587                 len    -= sent;
1588                 offset += sent;
1589         } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1590         set_fs(oldfs);
1591         clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1592
1593         if (len == 0) {
1594                 err = 0;
1595                 peer_device->device->send_cnt += size >> 9;
1596         }
1597         return err;
1598 }
1599
1600 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1601 {
1602         struct bio_vec bvec;
1603         struct bvec_iter iter;
1604
1605         /* hint all but last page with MSG_MORE */
1606         bio_for_each_segment(bvec, bio, iter) {
1607                 int err;
1608
1609                 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1610                                          bvec.bv_offset, bvec.bv_len,
1611                                          bio_iter_last(bvec, iter)
1612                                          ? 0 : MSG_MORE);
1613                 if (err)
1614                         return err;
1615                 /* REQ_OP_WRITE_SAME has only one segment */
1616                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1617                         break;
1618         }
1619         return 0;
1620 }
1621
1622 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1623 {
1624         struct bio_vec bvec;
1625         struct bvec_iter iter;
1626
1627         /* hint all but last page with MSG_MORE */
1628         bio_for_each_segment(bvec, bio, iter) {
1629                 int err;
1630
1631                 err = _drbd_send_page(peer_device, bvec.bv_page,
1632                                       bvec.bv_offset, bvec.bv_len,
1633                                       bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1634                 if (err)
1635                         return err;
1636                 /* REQ_OP_WRITE_SAME has only one segment */
1637                 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1638                         break;
1639         }
1640         return 0;
1641 }
1642
1643 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1644                             struct drbd_peer_request *peer_req)
1645 {
1646         struct page *page = peer_req->pages;
1647         unsigned len = peer_req->i.size;
1648         int err;
1649
1650         /* hint all but last page with MSG_MORE */
1651         page_chain_for_each(page) {
1652                 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1653
1654                 err = _drbd_send_page(peer_device, page, 0, l,
1655                                       page_chain_next(page) ? MSG_MORE : 0);
1656                 if (err)
1657                         return err;
1658                 len -= l;
1659         }
1660         return 0;
1661 }
1662
1663 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1664                              struct bio *bio)
1665 {
1666         if (connection->agreed_pro_version >= 95)
1667                 return  (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1668                         (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1669                         (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1670                         (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1671                         (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0);
1672         else
1673                 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1674 }
1675
1676 /* Used to send write or TRIM aka REQ_DISCARD requests
1677  * R_PRIMARY -> Peer    (P_DATA, P_TRIM)
1678  */
1679 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1680 {
1681         struct drbd_device *device = peer_device->device;
1682         struct drbd_socket *sock;
1683         struct p_data *p;
1684         struct p_wsame *wsame = NULL;
1685         void *digest_out;
1686         unsigned int dp_flags = 0;
1687         int digest_size;
1688         int err;
1689
1690         sock = &peer_device->connection->data;
1691         p = drbd_prepare_command(peer_device, sock);
1692         digest_size = peer_device->connection->integrity_tfm ?
1693                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1694
1695         if (!p)
1696                 return -EIO;
1697         p->sector = cpu_to_be64(req->i.sector);
1698         p->block_id = (unsigned long)req;
1699         p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1700         dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1701         if (device->state.conn >= C_SYNC_SOURCE &&
1702             device->state.conn <= C_PAUSED_SYNC_T)
1703                 dp_flags |= DP_MAY_SET_IN_SYNC;
1704         if (peer_device->connection->agreed_pro_version >= 100) {
1705                 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1706                         dp_flags |= DP_SEND_RECEIVE_ACK;
1707                 /* During resync, request an explicit write ack,
1708                  * even in protocol != C */
1709                 if (req->rq_state & RQ_EXP_WRITE_ACK
1710                 || (dp_flags & DP_MAY_SET_IN_SYNC))
1711                         dp_flags |= DP_SEND_WRITE_ACK;
1712         }
1713         p->dp_flags = cpu_to_be32(dp_flags);
1714
1715         if (dp_flags & DP_DISCARD) {
1716                 struct p_trim *t = (struct p_trim*)p;
1717                 t->size = cpu_to_be32(req->i.size);
1718                 err = __send_command(peer_device->connection, device->vnr, sock, P_TRIM, sizeof(*t), NULL, 0);
1719                 goto out;
1720         }
1721         if (dp_flags & DP_WSAME) {
1722                 /* this will only work if DRBD_FF_WSAME is set AND the
1723                  * handshake agreed that all nodes and backend devices are
1724                  * WRITE_SAME capable and agree on logical_block_size */
1725                 wsame = (struct p_wsame*)p;
1726                 digest_out = wsame + 1;
1727                 wsame->size = cpu_to_be32(req->i.size);
1728         } else
1729                 digest_out = p + 1;
1730
1731         /* our digest is still only over the payload.
1732          * TRIM does not carry any payload. */
1733         if (digest_size)
1734                 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1735         if (wsame) {
1736                 err =
1737                     __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1738                                    sizeof(*wsame) + digest_size, NULL,
1739                                    bio_iovec(req->master_bio).bv_len);
1740         } else
1741                 err =
1742                     __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1743                                    sizeof(*p) + digest_size, NULL, req->i.size);
1744         if (!err) {
1745                 /* For protocol A, we have to memcpy the payload into
1746                  * socket buffers, as we may complete right away
1747                  * as soon as we handed it over to tcp, at which point the data
1748                  * pages may become invalid.
1749                  *
1750                  * For data-integrity enabled, we copy it as well, so we can be
1751                  * sure that even if the bio pages may still be modified, it
1752                  * won't change the data on the wire, thus if the digest checks
1753                  * out ok after sending on this side, but does not fit on the
1754                  * receiving side, we sure have detected corruption elsewhere.
1755                  */
1756                 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1757                         err = _drbd_send_bio(peer_device, req->master_bio);
1758                 else
1759                         err = _drbd_send_zc_bio(peer_device, req->master_bio);
1760
1761                 /* double check digest, sometimes buffers have been modified in flight. */
1762                 if (digest_size > 0 && digest_size <= 64) {
1763                         /* 64 byte, 512 bit, is the largest digest size
1764                          * currently supported in kernel crypto. */
1765                         unsigned char digest[64];
1766                         drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1767                         if (memcmp(p + 1, digest, digest_size)) {
1768                                 drbd_warn(device,
1769                                         "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1770                                         (unsigned long long)req->i.sector, req->i.size);
1771                         }
1772                 } /* else if (digest_size > 64) {
1773                      ... Be noisy about digest too large ...
1774                 } */
1775         }
1776 out:
1777         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1778
1779         return err;
1780 }
1781
1782 /* answer packet, used to send data back for read requests:
1783  *  Peer       -> (diskless) R_PRIMARY   (P_DATA_REPLY)
1784  *  C_SYNC_SOURCE -> C_SYNC_TARGET         (P_RS_DATA_REPLY)
1785  */
1786 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1787                     struct drbd_peer_request *peer_req)
1788 {
1789         struct drbd_device *device = peer_device->device;
1790         struct drbd_socket *sock;
1791         struct p_data *p;
1792         int err;
1793         int digest_size;
1794
1795         sock = &peer_device->connection->data;
1796         p = drbd_prepare_command(peer_device, sock);
1797
1798         digest_size = peer_device->connection->integrity_tfm ?
1799                       crypto_ahash_digestsize(peer_device->connection->integrity_tfm) : 0;
1800
1801         if (!p)
1802                 return -EIO;
1803         p->sector = cpu_to_be64(peer_req->i.sector);
1804         p->block_id = peer_req->block_id;
1805         p->seq_num = 0;  /* unused */
1806         p->dp_flags = 0;
1807         if (digest_size)
1808                 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1809         err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1810         if (!err)
1811                 err = _drbd_send_zc_ee(peer_device, peer_req);
1812         mutex_unlock(&sock->mutex);  /* locked by drbd_prepare_command() */
1813
1814         return err;
1815 }
1816
1817 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1818 {
1819         struct drbd_socket *sock;
1820         struct p_block_desc *p;
1821
1822         sock = &peer_device->connection->data;
1823         p = drbd_prepare_command(peer_device, sock);
1824         if (!p)
1825                 return -EIO;
1826         p->sector = cpu_to_be64(req->i.sector);
1827         p->blksize = cpu_to_be32(req->i.size);
1828         return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1829 }
1830
1831 /*
1832   drbd_send distinguishes two cases:
1833
1834   Packets sent via the data socket "sock"
1835   and packets sent via the meta data socket "msock"
1836
1837                     sock                      msock
1838   -----------------+-------------------------+------------------------------
1839   timeout           conf.timeout / 2          conf.timeout / 2
1840   timeout action    send a ping via msock     Abort communication
1841                                               and close all sockets
1842 */
1843
1844 /*
1845  * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1846  */
1847 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1848               void *buf, size_t size, unsigned msg_flags)
1849 {
1850         struct kvec iov = {.iov_base = buf, .iov_len = size};
1851         struct msghdr msg;
1852         int rv, sent = 0;
1853
1854         if (!sock)
1855                 return -EBADR;
1856
1857         /* THINK  if (signal_pending) return ... ? */
1858
1859         msg.msg_name       = NULL;
1860         msg.msg_namelen    = 0;
1861         msg.msg_control    = NULL;
1862         msg.msg_controllen = 0;
1863         msg.msg_flags      = msg_flags | MSG_NOSIGNAL;
1864
1865         iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
1866
1867         if (sock == connection->data.socket) {
1868                 rcu_read_lock();
1869                 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1870                 rcu_read_unlock();
1871                 drbd_update_congested(connection);
1872         }
1873         do {
1874                 rv = sock_sendmsg(sock, &msg);
1875                 if (rv == -EAGAIN) {
1876                         if (we_should_drop_the_connection(connection, sock))
1877                                 break;
1878                         else
1879                                 continue;
1880                 }
1881                 if (rv == -EINTR) {
1882                         flush_signals(current);
1883                         rv = 0;
1884                 }
1885                 if (rv < 0)
1886                         break;
1887                 sent += rv;
1888         } while (sent < size);
1889
1890         if (sock == connection->data.socket)
1891                 clear_bit(NET_CONGESTED, &connection->flags);
1892
1893         if (rv <= 0) {
1894                 if (rv != -EAGAIN) {
1895                         drbd_err(connection, "%s_sendmsg returned %d\n",
1896                                  sock == connection->meta.socket ? "msock" : "sock",
1897                                  rv);
1898                         conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1899                 } else
1900                         conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1901         }
1902
1903         return sent;
1904 }
1905
1906 /**
1907  * drbd_send_all  -  Send an entire buffer
1908  *
1909  * Returns 0 upon success and a negative error value otherwise.
1910  */
1911 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1912                   size_t size, unsigned msg_flags)
1913 {
1914         int err;
1915
1916         err = drbd_send(connection, sock, buffer, size, msg_flags);
1917         if (err < 0)
1918                 return err;
1919         if (err != size)
1920                 return -EIO;
1921         return 0;
1922 }
1923
1924 static int drbd_open(struct block_device *bdev, fmode_t mode)
1925 {
1926         struct drbd_device *device = bdev->bd_disk->private_data;
1927         unsigned long flags;
1928         int rv = 0;
1929
1930         mutex_lock(&drbd_main_mutex);
1931         spin_lock_irqsave(&device->resource->req_lock, flags);
1932         /* to have a stable device->state.role
1933          * and no race with updating open_cnt */
1934
1935         if (device->state.role != R_PRIMARY) {
1936                 if (mode & FMODE_WRITE)
1937                         rv = -EROFS;
1938                 else if (!allow_oos)
1939                         rv = -EMEDIUMTYPE;
1940         }
1941
1942         if (!rv)
1943                 device->open_cnt++;
1944         spin_unlock_irqrestore(&device->resource->req_lock, flags);
1945         mutex_unlock(&drbd_main_mutex);
1946
1947         return rv;
1948 }
1949
1950 static void drbd_release(struct gendisk *gd, fmode_t mode)
1951 {
1952         struct drbd_device *device = gd->private_data;
1953         mutex_lock(&drbd_main_mutex);
1954         device->open_cnt--;
1955         mutex_unlock(&drbd_main_mutex);
1956 }
1957
1958 static void drbd_set_defaults(struct drbd_device *device)
1959 {
1960         /* Beware! The actual layout differs
1961          * between big endian and little endian */
1962         device->state = (union drbd_dev_state) {
1963                 { .role = R_SECONDARY,
1964                   .peer = R_UNKNOWN,
1965                   .conn = C_STANDALONE,
1966                   .disk = D_DISKLESS,
1967                   .pdsk = D_UNKNOWN,
1968                 } };
1969 }
1970
1971 void drbd_init_set_defaults(struct drbd_device *device)
1972 {
1973         /* the memset(,0,) did most of this.
1974          * note: only assignments, no allocation in here */
1975
1976         drbd_set_defaults(device);
1977
1978         atomic_set(&device->ap_bio_cnt, 0);
1979         atomic_set(&device->ap_actlog_cnt, 0);
1980         atomic_set(&device->ap_pending_cnt, 0);
1981         atomic_set(&device->rs_pending_cnt, 0);
1982         atomic_set(&device->unacked_cnt, 0);
1983         atomic_set(&device->local_cnt, 0);
1984         atomic_set(&device->pp_in_use_by_net, 0);
1985         atomic_set(&device->rs_sect_in, 0);
1986         atomic_set(&device->rs_sect_ev, 0);
1987         atomic_set(&device->ap_in_flight, 0);
1988         atomic_set(&device->md_io.in_use, 0);
1989
1990         mutex_init(&device->own_state_mutex);
1991         device->state_mutex = &device->own_state_mutex;
1992
1993         spin_lock_init(&device->al_lock);
1994         spin_lock_init(&device->peer_seq_lock);
1995
1996         INIT_LIST_HEAD(&device->active_ee);
1997         INIT_LIST_HEAD(&device->sync_ee);
1998         INIT_LIST_HEAD(&device->done_ee);
1999         INIT_LIST_HEAD(&device->read_ee);
2000         INIT_LIST_HEAD(&device->net_ee);
2001         INIT_LIST_HEAD(&device->resync_reads);
2002         INIT_LIST_HEAD(&device->resync_work.list);
2003         INIT_LIST_HEAD(&device->unplug_work.list);
2004         INIT_LIST_HEAD(&device->bm_io_work.w.list);
2005         INIT_LIST_HEAD(&device->pending_master_completion[0]);
2006         INIT_LIST_HEAD(&device->pending_master_completion[1]);
2007         INIT_LIST_HEAD(&device->pending_completion[0]);
2008         INIT_LIST_HEAD(&device->pending_completion[1]);
2009
2010         device->resync_work.cb  = w_resync_timer;
2011         device->unplug_work.cb  = w_send_write_hint;
2012         device->bm_io_work.w.cb = w_bitmap_io;
2013
2014         init_timer(&device->resync_timer);
2015         init_timer(&device->md_sync_timer);
2016         init_timer(&device->start_resync_timer);
2017         init_timer(&device->request_timer);
2018         device->resync_timer.function = resync_timer_fn;
2019         device->resync_timer.data = (unsigned long) device;
2020         device->md_sync_timer.function = md_sync_timer_fn;
2021         device->md_sync_timer.data = (unsigned long) device;
2022         device->start_resync_timer.function = start_resync_timer_fn;
2023         device->start_resync_timer.data = (unsigned long) device;
2024         device->request_timer.function = request_timer_fn;
2025         device->request_timer.data = (unsigned long) device;
2026
2027         init_waitqueue_head(&device->misc_wait);
2028         init_waitqueue_head(&device->state_wait);
2029         init_waitqueue_head(&device->ee_wait);
2030         init_waitqueue_head(&device->al_wait);
2031         init_waitqueue_head(&device->seq_wait);
2032
2033         device->resync_wenr = LC_FREE;
2034         device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2035         device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2036 }
2037
2038 void drbd_device_cleanup(struct drbd_device *device)
2039 {
2040         int i;
2041         if (first_peer_device(device)->connection->receiver.t_state != NONE)
2042                 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2043                                 first_peer_device(device)->connection->receiver.t_state);
2044
2045         device->al_writ_cnt  =
2046         device->bm_writ_cnt  =
2047         device->read_cnt     =
2048         device->recv_cnt     =
2049         device->send_cnt     =
2050         device->writ_cnt     =
2051         device->p_size       =
2052         device->rs_start     =
2053         device->rs_total     =
2054         device->rs_failed    = 0;
2055         device->rs_last_events = 0;
2056         device->rs_last_sect_ev = 0;
2057         for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2058                 device->rs_mark_left[i] = 0;
2059                 device->rs_mark_time[i] = 0;
2060         }
2061         D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2062
2063         drbd_set_my_capacity(device, 0);
2064         if (device->bitmap) {
2065                 /* maybe never allocated. */
2066                 drbd_bm_resize(device, 0, 1);
2067                 drbd_bm_cleanup(device);
2068         }
2069
2070         drbd_backing_dev_free(device, device->ldev);
2071         device->ldev = NULL;
2072
2073         clear_bit(AL_SUSPENDED, &device->flags);
2074
2075         D_ASSERT(device, list_empty(&device->active_ee));
2076         D_ASSERT(device, list_empty(&device->sync_ee));
2077         D_ASSERT(device, list_empty(&device->done_ee));
2078         D_ASSERT(device, list_empty(&device->read_ee));
2079         D_ASSERT(device, list_empty(&device->net_ee));
2080         D_ASSERT(device, list_empty(&device->resync_reads));
2081         D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2082         D_ASSERT(device, list_empty(&device->resync_work.list));
2083         D_ASSERT(device, list_empty(&device->unplug_work.list));
2084
2085         drbd_set_defaults(device);
2086 }
2087
2088
2089 static void drbd_destroy_mempools(void)
2090 {
2091         struct page *page;
2092
2093         while (drbd_pp_pool) {
2094                 page = drbd_pp_pool;
2095                 drbd_pp_pool = (struct page *)page_private(page);
2096                 __free_page(page);
2097                 drbd_pp_vacant--;
2098         }
2099
2100         /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2101
2102         if (drbd_md_io_bio_set)
2103                 bioset_free(drbd_md_io_bio_set);
2104         if (drbd_md_io_page_pool)
2105                 mempool_destroy(drbd_md_io_page_pool);
2106         if (drbd_ee_mempool)
2107                 mempool_destroy(drbd_ee_mempool);
2108         if (drbd_request_mempool)
2109                 mempool_destroy(drbd_request_mempool);
2110         if (drbd_ee_cache)
2111                 kmem_cache_destroy(drbd_ee_cache);
2112         if (drbd_request_cache)
2113                 kmem_cache_destroy(drbd_request_cache);
2114         if (drbd_bm_ext_cache)
2115                 kmem_cache_destroy(drbd_bm_ext_cache);
2116         if (drbd_al_ext_cache)
2117                 kmem_cache_destroy(drbd_al_ext_cache);
2118
2119         drbd_md_io_bio_set   = NULL;
2120         drbd_md_io_page_pool = NULL;
2121         drbd_ee_mempool      = NULL;
2122         drbd_request_mempool = NULL;
2123         drbd_ee_cache        = NULL;
2124         drbd_request_cache   = NULL;
2125         drbd_bm_ext_cache    = NULL;
2126         drbd_al_ext_cache    = NULL;
2127
2128         return;
2129 }
2130
2131 static int drbd_create_mempools(void)
2132 {
2133         struct page *page;
2134         const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2135         int i;
2136
2137         /* prepare our caches and mempools */
2138         drbd_request_mempool = NULL;
2139         drbd_ee_cache        = NULL;
2140         drbd_request_cache   = NULL;
2141         drbd_bm_ext_cache    = NULL;
2142         drbd_al_ext_cache    = NULL;
2143         drbd_pp_pool         = NULL;
2144         drbd_md_io_page_pool = NULL;
2145         drbd_md_io_bio_set   = NULL;
2146
2147         /* caches */
2148         drbd_request_cache = kmem_cache_create(
2149                 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2150         if (drbd_request_cache == NULL)
2151                 goto Enomem;
2152
2153         drbd_ee_cache = kmem_cache_create(
2154                 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2155         if (drbd_ee_cache == NULL)
2156                 goto Enomem;
2157
2158         drbd_bm_ext_cache = kmem_cache_create(
2159                 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2160         if (drbd_bm_ext_cache == NULL)
2161                 goto Enomem;
2162
2163         drbd_al_ext_cache = kmem_cache_create(
2164                 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2165         if (drbd_al_ext_cache == NULL)
2166                 goto Enomem;
2167
2168         /* mempools */
2169         drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2170         if (drbd_md_io_bio_set == NULL)
2171                 goto Enomem;
2172
2173         drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2174         if (drbd_md_io_page_pool == NULL)
2175                 goto Enomem;
2176
2177         drbd_request_mempool = mempool_create_slab_pool(number,
2178                 drbd_request_cache);
2179         if (drbd_request_mempool == NULL)
2180                 goto Enomem;
2181
2182         drbd_ee_mempool = mempool_create_slab_pool(number, drbd_ee_cache);
2183         if (drbd_ee_mempool == NULL)
2184                 goto Enomem;
2185
2186         /* drbd's page pool */
2187         spin_lock_init(&drbd_pp_lock);
2188
2189         for (i = 0; i < number; i++) {
2190                 page = alloc_page(GFP_HIGHUSER);
2191                 if (!page)
2192                         goto Enomem;
2193                 set_page_private(page, (unsigned long)drbd_pp_pool);
2194                 drbd_pp_pool = page;
2195         }
2196         drbd_pp_vacant = number;
2197
2198         return 0;
2199
2200 Enomem:
2201         drbd_destroy_mempools(); /* in case we allocated some */
2202         return -ENOMEM;
2203 }
2204
2205 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2206 {
2207         int rr;
2208
2209         rr = drbd_free_peer_reqs(device, &device->active_ee);
2210         if (rr)
2211                 drbd_err(device, "%d EEs in active list found!\n", rr);
2212
2213         rr = drbd_free_peer_reqs(device, &device->sync_ee);
2214         if (rr)
2215                 drbd_err(device, "%d EEs in sync list found!\n", rr);
2216
2217         rr = drbd_free_peer_reqs(device, &device->read_ee);
2218         if (rr)
2219                 drbd_err(device, "%d EEs in read list found!\n", rr);
2220
2221         rr = drbd_free_peer_reqs(device, &device->done_ee);
2222         if (rr)
2223                 drbd_err(device, "%d EEs in done list found!\n", rr);
2224
2225         rr = drbd_free_peer_reqs(device, &device->net_ee);
2226         if (rr)
2227                 drbd_err(device, "%d EEs in net list found!\n", rr);
2228 }
2229
2230 /* caution. no locking. */
2231 void drbd_destroy_device(struct kref *kref)
2232 {
2233         struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2234         struct drbd_resource *resource = device->resource;
2235         struct drbd_peer_device *peer_device, *tmp_peer_device;
2236
2237         del_timer_sync(&device->request_timer);
2238
2239         /* paranoia asserts */
2240         D_ASSERT(device, device->open_cnt == 0);
2241         /* end paranoia asserts */
2242
2243         /* cleanup stuff that may have been allocated during
2244          * device (re-)configuration or state changes */
2245
2246         if (device->this_bdev)
2247                 bdput(device->this_bdev);
2248
2249         drbd_backing_dev_free(device, device->ldev);
2250         device->ldev = NULL;
2251
2252         drbd_release_all_peer_reqs(device);
2253
2254         lc_destroy(device->act_log);
2255         lc_destroy(device->resync);
2256
2257         kfree(device->p_uuid);
2258         /* device->p_uuid = NULL; */
2259
2260         if (device->bitmap) /* should no longer be there. */
2261                 drbd_bm_cleanup(device);
2262         __free_page(device->md_io.page);
2263         put_disk(device->vdisk);
2264         blk_cleanup_queue(device->rq_queue);
2265         kfree(device->rs_plan_s);
2266
2267         /* not for_each_connection(connection, resource):
2268          * those may have been cleaned up and disassociated already.
2269          */
2270         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2271                 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2272                 kfree(peer_device);
2273         }
2274         memset(device, 0xfd, sizeof(*device));
2275         kfree(device);
2276         kref_put(&resource->kref, drbd_destroy_resource);
2277 }
2278
2279 /* One global retry thread, if we need to push back some bio and have it
2280  * reinserted through our make request function.
2281  */
2282 static struct retry_worker {
2283         struct workqueue_struct *wq;
2284         struct work_struct worker;
2285
2286         spinlock_t lock;
2287         struct list_head writes;
2288 } retry;
2289
2290 static void do_retry(struct work_struct *ws)
2291 {
2292         struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2293         LIST_HEAD(writes);
2294         struct drbd_request *req, *tmp;
2295
2296         spin_lock_irq(&retry->lock);
2297         list_splice_init(&retry->writes, &writes);
2298         spin_unlock_irq(&retry->lock);
2299
2300         list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2301                 struct drbd_device *device = req->device;
2302                 struct bio *bio = req->master_bio;
2303                 unsigned long start_jif = req->start_jif;
2304                 bool expected;
2305
2306                 expected =
2307                         expect(atomic_read(&req->completion_ref) == 0) &&
2308                         expect(req->rq_state & RQ_POSTPONED) &&
2309                         expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2310                                 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2311
2312                 if (!expected)
2313                         drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2314                                 req, atomic_read(&req->completion_ref),
2315                                 req->rq_state);
2316
2317                 /* We still need to put one kref associated with the
2318                  * "completion_ref" going zero in the code path that queued it
2319                  * here.  The request object may still be referenced by a
2320                  * frozen local req->private_bio, in case we force-detached.
2321                  */
2322                 kref_put(&req->kref, drbd_req_destroy);
2323
2324                 /* A single suspended or otherwise blocking device may stall
2325                  * all others as well.  Fortunately, this code path is to
2326                  * recover from a situation that "should not happen":
2327                  * concurrent writes in multi-primary setup.
2328                  * In a "normal" lifecycle, this workqueue is supposed to be
2329                  * destroyed without ever doing anything.
2330                  * If it turns out to be an issue anyways, we can do per
2331                  * resource (replication group) or per device (minor) retry
2332                  * workqueues instead.
2333                  */
2334
2335                 /* We are not just doing generic_make_request(),
2336                  * as we want to keep the start_time information. */
2337                 inc_ap_bio(device);
2338                 __drbd_make_request(device, bio, start_jif);
2339         }
2340 }
2341
2342 /* called via drbd_req_put_completion_ref(),
2343  * holds resource->req_lock */
2344 void drbd_restart_request(struct drbd_request *req)
2345 {
2346         unsigned long flags;
2347         spin_lock_irqsave(&retry.lock, flags);
2348         list_move_tail(&req->tl_requests, &retry.writes);
2349         spin_unlock_irqrestore(&retry.lock, flags);
2350
2351         /* Drop the extra reference that would otherwise
2352          * have been dropped by complete_master_bio.
2353          * do_retry() needs to grab a new one. */
2354         dec_ap_bio(req->device);
2355
2356         queue_work(retry.wq, &retry.worker);
2357 }
2358
2359 void drbd_destroy_resource(struct kref *kref)
2360 {
2361         struct drbd_resource *resource =
2362                 container_of(kref, struct drbd_resource, kref);
2363
2364         idr_destroy(&resource->devices);
2365         free_cpumask_var(resource->cpu_mask);
2366         kfree(resource->name);
2367         memset(resource, 0xf2, sizeof(*resource));
2368         kfree(resource);
2369 }
2370
2371 void drbd_free_resource(struct drbd_resource *resource)
2372 {
2373         struct drbd_connection *connection, *tmp;
2374
2375         for_each_connection_safe(connection, tmp, resource) {
2376                 list_del(&connection->connections);
2377                 drbd_debugfs_connection_cleanup(connection);
2378                 kref_put(&connection->kref, drbd_destroy_connection);
2379         }
2380         drbd_debugfs_resource_cleanup(resource);
2381         kref_put(&resource->kref, drbd_destroy_resource);
2382 }
2383
2384 static void drbd_cleanup(void)
2385 {
2386         unsigned int i;
2387         struct drbd_device *device;
2388         struct drbd_resource *resource, *tmp;
2389
2390         /* first remove proc,
2391          * drbdsetup uses it's presence to detect
2392          * whether DRBD is loaded.
2393          * If we would get stuck in proc removal,
2394          * but have netlink already deregistered,
2395          * some drbdsetup commands may wait forever
2396          * for an answer.
2397          */
2398         if (drbd_proc)
2399                 remove_proc_entry("drbd", NULL);
2400
2401         if (retry.wq)
2402                 destroy_workqueue(retry.wq);
2403
2404         drbd_genl_unregister();
2405         drbd_debugfs_cleanup();
2406
2407         idr_for_each_entry(&drbd_devices, device, i)
2408                 drbd_delete_device(device);
2409
2410         /* not _rcu since, no other updater anymore. Genl already unregistered */
2411         for_each_resource_safe(resource, tmp, &drbd_resources) {
2412                 list_del(&resource->resources);
2413                 drbd_free_resource(resource);
2414         }
2415
2416         drbd_destroy_mempools();
2417         unregister_blkdev(DRBD_MAJOR, "drbd");
2418
2419         idr_destroy(&drbd_devices);
2420
2421         pr_info("module cleanup done.\n");
2422 }
2423
2424 /**
2425  * drbd_congested() - Callback for the flusher thread
2426  * @congested_data:     User data
2427  * @bdi_bits:           Bits the BDI flusher thread is currently interested in
2428  *
2429  * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2430  */
2431 static int drbd_congested(void *congested_data, int bdi_bits)
2432 {
2433         struct drbd_device *device = congested_data;
2434         struct request_queue *q;
2435         char reason = '-';
2436         int r = 0;
2437
2438         if (!may_inc_ap_bio(device)) {
2439                 /* DRBD has frozen IO */
2440                 r = bdi_bits;
2441                 reason = 'd';
2442                 goto out;
2443         }
2444
2445         if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2446                 r |= (1 << WB_async_congested);
2447                 /* Without good local data, we would need to read from remote,
2448                  * and that would need the worker thread as well, which is
2449                  * currently blocked waiting for that usermode helper to
2450                  * finish.
2451                  */
2452                 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2453                         r |= (1 << WB_sync_congested);
2454                 else
2455                         put_ldev(device);
2456                 r &= bdi_bits;
2457                 reason = 'c';
2458                 goto out;
2459         }
2460
2461         if (get_ldev(device)) {
2462                 q = bdev_get_queue(device->ldev->backing_bdev);
2463                 r = bdi_congested(q->backing_dev_info, bdi_bits);
2464                 put_ldev(device);
2465                 if (r)
2466                         reason = 'b';
2467         }
2468
2469         if (bdi_bits & (1 << WB_async_congested) &&
2470             test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2471                 r |= (1 << WB_async_congested);
2472                 reason = reason == 'b' ? 'a' : 'n';
2473         }
2474
2475 out:
2476         device->congestion_reason = reason;
2477         return r;
2478 }
2479
2480 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2481 {
2482         spin_lock_init(&wq->q_lock);
2483         INIT_LIST_HEAD(&wq->q);
2484         init_waitqueue_head(&wq->q_wait);
2485 }
2486
2487 struct completion_work {
2488         struct drbd_work w;
2489         struct completion done;
2490 };
2491
2492 static int w_complete(struct drbd_work *w, int cancel)
2493 {
2494         struct completion_work *completion_work =
2495                 container_of(w, struct completion_work, w);
2496
2497         complete(&completion_work->done);
2498         return 0;
2499 }
2500
2501 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2502 {
2503         struct completion_work completion_work;
2504
2505         completion_work.w.cb = w_complete;
2506         init_completion(&completion_work.done);
2507         drbd_queue_work(work_queue, &completion_work.w);
2508         wait_for_completion(&completion_work.done);
2509 }
2510
2511 struct drbd_resource *drbd_find_resource(const char *name)
2512 {
2513         struct drbd_resource *resource;
2514
2515         if (!name || !name[0])
2516                 return NULL;
2517
2518         rcu_read_lock();
2519         for_each_resource_rcu(resource, &drbd_resources) {
2520                 if (!strcmp(resource->name, name)) {
2521                         kref_get(&resource->kref);
2522                         goto found;
2523                 }
2524         }
2525         resource = NULL;
2526 found:
2527         rcu_read_unlock();
2528         return resource;
2529 }
2530
2531 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2532                                      void *peer_addr, int peer_addr_len)
2533 {
2534         struct drbd_resource *resource;
2535         struct drbd_connection *connection;
2536
2537         rcu_read_lock();
2538         for_each_resource_rcu(resource, &drbd_resources) {
2539                 for_each_connection_rcu(connection, resource) {
2540                         if (connection->my_addr_len == my_addr_len &&
2541                             connection->peer_addr_len == peer_addr_len &&
2542                             !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2543                             !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2544                                 kref_get(&connection->kref);
2545                                 goto found;
2546                         }
2547                 }
2548         }
2549         connection = NULL;
2550 found:
2551         rcu_read_unlock();
2552         return connection;
2553 }
2554
2555 static int drbd_alloc_socket(struct drbd_socket *socket)
2556 {
2557         socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2558         if (!socket->rbuf)
2559                 return -ENOMEM;
2560         socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2561         if (!socket->sbuf)
2562                 return -ENOMEM;
2563         return 0;
2564 }
2565
2566 static void drbd_free_socket(struct drbd_socket *socket)
2567 {
2568         free_page((unsigned long) socket->sbuf);
2569         free_page((unsigned long) socket->rbuf);
2570 }
2571
2572 void conn_free_crypto(struct drbd_connection *connection)
2573 {
2574         drbd_free_sock(connection);
2575
2576         crypto_free_ahash(connection->csums_tfm);
2577         crypto_free_ahash(connection->verify_tfm);
2578         crypto_free_shash(connection->cram_hmac_tfm);
2579         crypto_free_ahash(connection->integrity_tfm);
2580         crypto_free_ahash(connection->peer_integrity_tfm);
2581         kfree(connection->int_dig_in);
2582         kfree(connection->int_dig_vv);
2583
2584         connection->csums_tfm = NULL;
2585         connection->verify_tfm = NULL;
2586         connection->cram_hmac_tfm = NULL;
2587         connection->integrity_tfm = NULL;
2588         connection->peer_integrity_tfm = NULL;
2589         connection->int_dig_in = NULL;
2590         connection->int_dig_vv = NULL;
2591 }
2592
2593 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2594 {
2595         struct drbd_connection *connection;
2596         cpumask_var_t new_cpu_mask;
2597         int err;
2598
2599         if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2600                 return -ENOMEM;
2601
2602         /* silently ignore cpu mask on UP kernel */
2603         if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2604                 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2605                                    cpumask_bits(new_cpu_mask), nr_cpu_ids);
2606                 if (err == -EOVERFLOW) {
2607                         /* So what. mask it out. */
2608                         cpumask_var_t tmp_cpu_mask;
2609                         if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2610                                 cpumask_setall(tmp_cpu_mask);
2611                                 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2612                                 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2613                                         res_opts->cpu_mask,
2614                                         strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2615                                         nr_cpu_ids);
2616                                 free_cpumask_var(tmp_cpu_mask);
2617                                 err = 0;
2618                         }
2619                 }
2620                 if (err) {
2621                         drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2622                         /* retcode = ERR_CPU_MASK_PARSE; */
2623                         goto fail;
2624                 }
2625         }
2626         resource->res_opts = *res_opts;
2627         if (cpumask_empty(new_cpu_mask))
2628                 drbd_calc_cpu_mask(&new_cpu_mask);
2629         if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2630                 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2631                 for_each_connection_rcu(connection, resource) {
2632                         connection->receiver.reset_cpu_mask = 1;
2633                         connection->ack_receiver.reset_cpu_mask = 1;
2634                         connection->worker.reset_cpu_mask = 1;
2635                 }
2636         }
2637         err = 0;
2638
2639 fail:
2640         free_cpumask_var(new_cpu_mask);
2641         return err;
2642
2643 }
2644
2645 struct drbd_resource *drbd_create_resource(const char *name)
2646 {
2647         struct drbd_resource *resource;
2648
2649         resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2650         if (!resource)
2651                 goto fail;
2652         resource->name = kstrdup(name, GFP_KERNEL);
2653         if (!resource->name)
2654                 goto fail_free_resource;
2655         if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2656                 goto fail_free_name;
2657         kref_init(&resource->kref);
2658         idr_init(&resource->devices);
2659         INIT_LIST_HEAD(&resource->connections);
2660         resource->write_ordering = WO_BDEV_FLUSH;
2661         list_add_tail_rcu(&resource->resources, &drbd_resources);
2662         mutex_init(&resource->conf_update);
2663         mutex_init(&resource->adm_mutex);
2664         spin_lock_init(&resource->req_lock);
2665         drbd_debugfs_resource_add(resource);
2666         return resource;
2667
2668 fail_free_name:
2669         kfree(resource->name);
2670 fail_free_resource:
2671         kfree(resource);
2672 fail:
2673         return NULL;
2674 }
2675
2676 /* caller must be under adm_mutex */
2677 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2678 {
2679         struct drbd_resource *resource;
2680         struct drbd_connection *connection;
2681
2682         connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2683         if (!connection)
2684                 return NULL;
2685
2686         if (drbd_alloc_socket(&connection->data))
2687                 goto fail;
2688         if (drbd_alloc_socket(&connection->meta))
2689                 goto fail;
2690
2691         connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2692         if (!connection->current_epoch)
2693                 goto fail;
2694
2695         INIT_LIST_HEAD(&connection->transfer_log);
2696
2697         INIT_LIST_HEAD(&connection->current_epoch->list);
2698         connection->epochs = 1;
2699         spin_lock_init(&connection->epoch_lock);
2700
2701         connection->send.seen_any_write_yet = false;
2702         connection->send.current_epoch_nr = 0;
2703         connection->send.current_epoch_writes = 0;
2704
2705         resource = drbd_create_resource(name);
2706         if (!resource)
2707                 goto fail;
2708
2709         connection->cstate = C_STANDALONE;
2710         mutex_init(&connection->cstate_mutex);
2711         init_waitqueue_head(&connection->ping_wait);
2712         idr_init(&connection->peer_devices);
2713
2714         drbd_init_workqueue(&connection->sender_work);
2715         mutex_init(&connection->data.mutex);
2716         mutex_init(&connection->meta.mutex);
2717
2718         drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2719         connection->receiver.connection = connection;
2720         drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2721         connection->worker.connection = connection;
2722         drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2723         connection->ack_receiver.connection = connection;
2724
2725         kref_init(&connection->kref);
2726
2727         connection->resource = resource;
2728
2729         if (set_resource_options(resource, res_opts))
2730                 goto fail_resource;
2731
2732         kref_get(&resource->kref);
2733         list_add_tail_rcu(&connection->connections, &resource->connections);
2734         drbd_debugfs_connection_add(connection);
2735         return connection;
2736
2737 fail_resource:
2738         list_del(&resource->resources);
2739         drbd_free_resource(resource);
2740 fail:
2741         kfree(connection->current_epoch);
2742         drbd_free_socket(&connection->meta);
2743         drbd_free_socket(&connection->data);
2744         kfree(connection);
2745         return NULL;
2746 }
2747
2748 void drbd_destroy_connection(struct kref *kref)
2749 {
2750         struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2751         struct drbd_resource *resource = connection->resource;
2752
2753         if (atomic_read(&connection->current_epoch->epoch_size) !=  0)
2754                 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2755         kfree(connection->current_epoch);
2756
2757         idr_destroy(&connection->peer_devices);
2758
2759         drbd_free_socket(&connection->meta);
2760         drbd_free_socket(&connection->data);
2761         kfree(connection->int_dig_in);
2762         kfree(connection->int_dig_vv);
2763         memset(connection, 0xfc, sizeof(*connection));
2764         kfree(connection);
2765         kref_put(&resource->kref, drbd_destroy_resource);
2766 }
2767
2768 static int init_submitter(struct drbd_device *device)
2769 {
2770         /* opencoded create_singlethread_workqueue(),
2771          * to be able to say "drbd%d", ..., minor */
2772         device->submit.wq =
2773                 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2774         if (!device->submit.wq)
2775                 return -ENOMEM;
2776
2777         INIT_WORK(&device->submit.worker, do_submit);
2778         INIT_LIST_HEAD(&device->submit.writes);
2779         return 0;
2780 }
2781
2782 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2783 {
2784         struct drbd_resource *resource = adm_ctx->resource;
2785         struct drbd_connection *connection;
2786         struct drbd_device *device;
2787         struct drbd_peer_device *peer_device, *tmp_peer_device;
2788         struct gendisk *disk;
2789         struct request_queue *q;
2790         int id;
2791         int vnr = adm_ctx->volume;
2792         enum drbd_ret_code err = ERR_NOMEM;
2793
2794         device = minor_to_device(minor);
2795         if (device)
2796                 return ERR_MINOR_OR_VOLUME_EXISTS;
2797
2798         /* GFP_KERNEL, we are outside of all write-out paths */
2799         device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2800         if (!device)
2801                 return ERR_NOMEM;
2802         kref_init(&device->kref);
2803
2804         kref_get(&resource->kref);
2805         device->resource = resource;
2806         device->minor = minor;
2807         device->vnr = vnr;
2808
2809         drbd_init_set_defaults(device);
2810
2811         q = blk_alloc_queue(GFP_KERNEL);
2812         if (!q)
2813                 goto out_no_q;
2814         device->rq_queue = q;
2815         q->queuedata   = device;
2816
2817         disk = alloc_disk(1);
2818         if (!disk)
2819                 goto out_no_disk;
2820         device->vdisk = disk;
2821
2822         set_disk_ro(disk, true);
2823
2824         disk->queue = q;
2825         disk->major = DRBD_MAJOR;
2826         disk->first_minor = minor;
2827         disk->fops = &drbd_ops;
2828         sprintf(disk->disk_name, "drbd%d", minor);
2829         disk->private_data = device;
2830
2831         device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2832         /* we have no partitions. we contain only ourselves. */
2833         device->this_bdev->bd_contains = device->this_bdev;
2834
2835         q->backing_dev_info->congested_fn = drbd_congested;
2836         q->backing_dev_info->congested_data = device;
2837
2838         blk_queue_make_request(q, drbd_make_request);
2839         blk_queue_write_cache(q, true, true);
2840         /* Setting the max_hw_sectors to an odd value of 8kibyte here
2841            This triggers a max_bio_size message upon first attach or connect */
2842         blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2843         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2844         q->queue_lock = &resource->req_lock;
2845
2846         device->md_io.page = alloc_page(GFP_KERNEL);
2847         if (!device->md_io.page)
2848                 goto out_no_io_page;
2849
2850         if (drbd_bm_init(device))
2851                 goto out_no_bitmap;
2852         device->read_requests = RB_ROOT;
2853         device->write_requests = RB_ROOT;
2854
2855         id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2856         if (id < 0) {
2857                 if (id == -ENOSPC)
2858                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2859                 goto out_no_minor_idr;
2860         }
2861         kref_get(&device->kref);
2862
2863         id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2864         if (id < 0) {
2865                 if (id == -ENOSPC)
2866                         err = ERR_MINOR_OR_VOLUME_EXISTS;
2867                 goto out_idr_remove_minor;
2868         }
2869         kref_get(&device->kref);
2870
2871         INIT_LIST_HEAD(&device->peer_devices);
2872         INIT_LIST_HEAD(&device->pending_bitmap_io);
2873         for_each_connection(connection, resource) {
2874                 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2875                 if (!peer_device)
2876                         goto out_idr_remove_from_resource;
2877                 peer_device->connection = connection;
2878                 peer_device->device = device;
2879
2880                 list_add(&peer_device->peer_devices, &device->peer_devices);
2881                 kref_get(&device->kref);
2882
2883                 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2884                 if (id < 0) {
2885                         if (id == -ENOSPC)
2886                                 err = ERR_INVALID_REQUEST;
2887                         goto out_idr_remove_from_resource;
2888                 }
2889                 kref_get(&connection->kref);
2890                 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2891         }
2892
2893         if (init_submitter(device)) {
2894                 err = ERR_NOMEM;
2895                 goto out_idr_remove_vol;
2896         }
2897
2898         add_disk(disk);
2899
2900         /* inherit the connection state */
2901         device->state.conn = first_connection(resource)->cstate;
2902         if (device->state.conn == C_WF_REPORT_PARAMS) {
2903                 for_each_peer_device(peer_device, device)
2904                         drbd_connected(peer_device);
2905         }
2906         /* move to create_peer_device() */
2907         for_each_peer_device(peer_device, device)
2908                 drbd_debugfs_peer_device_add(peer_device);
2909         drbd_debugfs_device_add(device);
2910         return NO_ERROR;
2911
2912 out_idr_remove_vol:
2913         idr_remove(&connection->peer_devices, vnr);
2914 out_idr_remove_from_resource:
2915         for_each_connection(connection, resource) {
2916                 peer_device = idr_remove(&connection->peer_devices, vnr);
2917                 if (peer_device)
2918                         kref_put(&connection->kref, drbd_destroy_connection);
2919         }
2920         for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2921                 list_del(&peer_device->peer_devices);
2922                 kfree(peer_device);
2923         }
2924         idr_remove(&resource->devices, vnr);
2925 out_idr_remove_minor:
2926         idr_remove(&drbd_devices, minor);
2927         synchronize_rcu();
2928 out_no_minor_idr:
2929         drbd_bm_cleanup(device);
2930 out_no_bitmap:
2931         __free_page(device->md_io.page);
2932 out_no_io_page:
2933         put_disk(disk);
2934 out_no_disk:
2935         blk_cleanup_queue(q);
2936 out_no_q:
2937         kref_put(&resource->kref, drbd_destroy_resource);
2938         kfree(device);
2939         return err;
2940 }
2941
2942 void drbd_delete_device(struct drbd_device *device)
2943 {
2944         struct drbd_resource *resource = device->resource;
2945         struct drbd_connection *connection;
2946         struct drbd_peer_device *peer_device;
2947
2948         /* move to free_peer_device() */
2949         for_each_peer_device(peer_device, device)
2950                 drbd_debugfs_peer_device_cleanup(peer_device);
2951         drbd_debugfs_device_cleanup(device);
2952         for_each_connection(connection, resource) {
2953                 idr_remove(&connection->peer_devices, device->vnr);
2954                 kref_put(&device->kref, drbd_destroy_device);
2955         }
2956         idr_remove(&resource->devices, device->vnr);
2957         kref_put(&device->kref, drbd_destroy_device);
2958         idr_remove(&drbd_devices, device_to_minor(device));
2959         kref_put(&device->kref, drbd_destroy_device);
2960         del_gendisk(device->vdisk);
2961         synchronize_rcu();
2962         kref_put(&device->kref, drbd_destroy_device);
2963 }
2964
2965 static int __init drbd_init(void)
2966 {
2967         int err;
2968
2969         if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2970                 pr_err("invalid minor_count (%d)\n", minor_count);
2971 #ifdef MODULE
2972                 return -EINVAL;
2973 #else
2974                 minor_count = DRBD_MINOR_COUNT_DEF;
2975 #endif
2976         }
2977
2978         err = register_blkdev(DRBD_MAJOR, "drbd");
2979         if (err) {
2980                 pr_err("unable to register block device major %d\n",
2981                        DRBD_MAJOR);
2982                 return err;
2983         }
2984
2985         /*
2986          * allocate all necessary structs
2987          */
2988         init_waitqueue_head(&drbd_pp_wait);
2989
2990         drbd_proc = NULL; /* play safe for drbd_cleanup */
2991         idr_init(&drbd_devices);
2992
2993         mutex_init(&resources_mutex);
2994         INIT_LIST_HEAD(&drbd_resources);
2995
2996         err = drbd_genl_register();
2997         if (err) {
2998                 pr_err("unable to register generic netlink family\n");
2999                 goto fail;
3000         }
3001
3002         err = drbd_create_mempools();
3003         if (err)
3004                 goto fail;
3005
3006         err = -ENOMEM;
3007         drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
3008         if (!drbd_proc) {
3009                 pr_err("unable to register proc file\n");
3010                 goto fail;
3011         }
3012
3013         retry.wq = create_singlethread_workqueue("drbd-reissue");
3014         if (!retry.wq) {
3015                 pr_err("unable to create retry workqueue\n");
3016                 goto fail;
3017         }
3018         INIT_WORK(&retry.worker, do_retry);
3019         spin_lock_init(&retry.lock);
3020         INIT_LIST_HEAD(&retry.writes);
3021
3022         if (drbd_debugfs_init())
3023                 pr_notice("failed to initialize debugfs -- will not be available\n");
3024
3025         pr_info("initialized. "
3026                "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3027                API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3028         pr_info("%s\n", drbd_buildtag());
3029         pr_info("registered as block device major %d\n", DRBD_MAJOR);
3030         return 0; /* Success! */
3031
3032 fail:
3033         drbd_cleanup();
3034         if (err == -ENOMEM)
3035                 pr_err("ran out of memory\n");
3036         else
3037                 pr_err("initialization failure\n");
3038         return err;
3039 }
3040
3041 static void drbd_free_one_sock(struct drbd_socket *ds)
3042 {
3043         struct socket *s;
3044         mutex_lock(&ds->mutex);
3045         s = ds->socket;
3046         ds->socket = NULL;
3047         mutex_unlock(&ds->mutex);
3048         if (s) {
3049                 /* so debugfs does not need to mutex_lock() */
3050                 synchronize_rcu();
3051                 kernel_sock_shutdown(s, SHUT_RDWR);
3052                 sock_release(s);
3053         }
3054 }
3055
3056 void drbd_free_sock(struct drbd_connection *connection)
3057 {
3058         if (connection->data.socket)
3059                 drbd_free_one_sock(&connection->data);
3060         if (connection->meta.socket)
3061                 drbd_free_one_sock(&connection->meta);
3062 }
3063
3064 /* meta data management */
3065
3066 void conn_md_sync(struct drbd_connection *connection)
3067 {
3068         struct drbd_peer_device *peer_device;
3069         int vnr;
3070
3071         rcu_read_lock();
3072         idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3073                 struct drbd_device *device = peer_device->device;
3074
3075                 kref_get(&device->kref);
3076                 rcu_read_unlock();
3077                 drbd_md_sync(device);
3078                 kref_put(&device->kref, drbd_destroy_device);
3079                 rcu_read_lock();
3080         }
3081         rcu_read_unlock();
3082 }
3083
3084 /* aligned 4kByte */
3085 struct meta_data_on_disk {
3086         u64 la_size_sect;      /* last agreed size. */
3087         u64 uuid[UI_SIZE];   /* UUIDs. */
3088         u64 device_uuid;
3089         u64 reserved_u64_1;
3090         u32 flags;             /* MDF */
3091         u32 magic;
3092         u32 md_size_sect;
3093         u32 al_offset;         /* offset to this block */
3094         u32 al_nr_extents;     /* important for restoring the AL (userspace) */
3095               /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3096         u32 bm_offset;         /* offset to the bitmap, from here */
3097         u32 bm_bytes_per_bit;  /* BM_BLOCK_SIZE */
3098         u32 la_peer_max_bio_size;   /* last peer max_bio_size */
3099
3100         /* see al_tr_number_to_on_disk_sector() */
3101         u32 al_stripes;
3102         u32 al_stripe_size_4k;
3103
3104         u8 reserved_u8[4096 - (7*8 + 10*4)];
3105 } __packed;
3106
3107
3108
3109 void drbd_md_write(struct drbd_device *device, void *b)
3110 {
3111         struct meta_data_on_disk *buffer = b;
3112         sector_t sector;
3113         int i;
3114
3115         memset(buffer, 0, sizeof(*buffer));
3116
3117         buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3118         for (i = UI_CURRENT; i < UI_SIZE; i++)
3119                 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3120         buffer->flags = cpu_to_be32(device->ldev->md.flags);
3121         buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3122
3123         buffer->md_size_sect  = cpu_to_be32(device->ldev->md.md_size_sect);
3124         buffer->al_offset     = cpu_to_be32(device->ldev->md.al_offset);
3125         buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3126         buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3127         buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3128
3129         buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3130         buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3131
3132         buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3133         buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3134
3135         D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3136         sector = device->ldev->md.md_offset;
3137
3138         if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3139                 /* this was a try anyways ... */
3140                 drbd_err(device, "meta data update failed!\n");
3141                 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3142         }
3143 }
3144
3145 /**
3146  * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3147  * @device:     DRBD device.
3148  */
3149 void drbd_md_sync(struct drbd_device *device)
3150 {
3151         struct meta_data_on_disk *buffer;
3152
3153         /* Don't accidentally change the DRBD meta data layout. */
3154         BUILD_BUG_ON(UI_SIZE != 4);
3155         BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3156
3157         del_timer(&device->md_sync_timer);
3158         /* timer may be rearmed by drbd_md_mark_dirty() now. */
3159         if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3160                 return;
3161
3162         /* We use here D_FAILED and not D_ATTACHING because we try to write
3163          * metadata even if we detach due to a disk failure! */
3164         if (!get_ldev_if_state(device, D_FAILED))
3165                 return;
3166
3167         buffer = drbd_md_get_buffer(device, __func__);
3168         if (!buffer)
3169                 goto out;
3170
3171         drbd_md_write(device, buffer);
3172
3173         /* Update device->ldev->md.la_size_sect,
3174          * since we updated it on metadata. */
3175         device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3176
3177         drbd_md_put_buffer(device);
3178 out:
3179         put_ldev(device);
3180 }
3181
3182 static int check_activity_log_stripe_size(struct drbd_device *device,
3183                 struct meta_data_on_disk *on_disk,
3184                 struct drbd_md *in_core)
3185 {
3186         u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3187         u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3188         u64 al_size_4k;
3189
3190         /* both not set: default to old fixed size activity log */
3191         if (al_stripes == 0 && al_stripe_size_4k == 0) {
3192                 al_stripes = 1;
3193                 al_stripe_size_4k = MD_32kB_SECT/8;
3194         }
3195
3196         /* some paranoia plausibility checks */
3197
3198         /* we need both values to be set */
3199         if (al_stripes == 0 || al_stripe_size_4k == 0)
3200                 goto err;
3201
3202         al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3203
3204         /* Upper limit of activity log area, to avoid potential overflow
3205          * problems in al_tr_number_to_on_disk_sector(). As right now, more
3206          * than 72 * 4k blocks total only increases the amount of history,
3207          * limiting this arbitrarily to 16 GB is not a real limitation ;-)  */
3208         if (al_size_4k > (16 * 1024 * 1024/4))
3209                 goto err;
3210
3211         /* Lower limit: we need at least 8 transaction slots (32kB)
3212          * to not break existing setups */
3213         if (al_size_4k < MD_32kB_SECT/8)
3214                 goto err;
3215
3216         in_core->al_stripe_size_4k = al_stripe_size_4k;
3217         in_core->al_stripes = al_stripes;
3218         in_core->al_size_4k = al_size_4k;
3219
3220         return 0;
3221 err:
3222         drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3223                         al_stripes, al_stripe_size_4k);
3224         return -EINVAL;
3225 }
3226
3227 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3228 {
3229         sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3230         struct drbd_md *in_core = &bdev->md;
3231         s32 on_disk_al_sect;
3232         s32 on_disk_bm_sect;
3233
3234         /* The on-disk size of the activity log, calculated from offsets, and
3235          * the size of the activity log calculated from the stripe settings,
3236          * should match.
3237          * Though we could relax this a bit: it is ok, if the striped activity log
3238          * fits in the available on-disk activity log size.
3239          * Right now, that would break how resize is implemented.
3240          * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3241          * of possible unused padding space in the on disk layout. */
3242         if (in_core->al_offset < 0) {
3243                 if (in_core->bm_offset > in_core->al_offset)
3244                         goto err;
3245                 on_disk_al_sect = -in_core->al_offset;
3246                 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3247         } else {
3248                 if (in_core->al_offset != MD_4kB_SECT)
3249                         goto err;
3250                 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3251                         goto err;
3252
3253                 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3254                 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3255         }
3256
3257         /* old fixed size meta data is exactly that: fixed. */
3258         if (in_core->meta_dev_idx >= 0) {
3259                 if (in_core->md_size_sect != MD_128MB_SECT
3260                 ||  in_core->al_offset != MD_4kB_SECT
3261                 ||  in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3262                 ||  in_core->al_stripes != 1
3263                 ||  in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3264                         goto err;
3265         }
3266
3267         if (capacity < in_core->md_size_sect)
3268                 goto err;
3269         if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3270                 goto err;
3271
3272         /* should be aligned, and at least 32k */
3273         if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3274                 goto err;
3275
3276         /* should fit (for now: exactly) into the available on-disk space;
3277          * overflow prevention is in check_activity_log_stripe_size() above. */
3278         if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3279                 goto err;
3280
3281         /* again, should be aligned */
3282         if (in_core->bm_offset & 7)
3283                 goto err;
3284
3285         /* FIXME check for device grow with flex external meta data? */
3286
3287         /* can the available bitmap space cover the last agreed device size? */
3288         if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3289                 goto err;
3290
3291         return 0;
3292
3293 err:
3294         drbd_err(device, "meta data offsets don't make sense: idx=%d "
3295                         "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3296                         "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3297                         in_core->meta_dev_idx,
3298                         in_core->al_stripes, in_core->al_stripe_size_4k,
3299                         in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3300                         (unsigned long long)in_core->la_size_sect,
3301                         (unsigned long long)capacity);
3302
3303         return -EINVAL;
3304 }
3305
3306
3307 /**
3308  * drbd_md_read() - Reads in the meta data super block
3309  * @device:     DRBD device.
3310  * @bdev:       Device from which the meta data should be read in.
3311  *
3312  * Return NO_ERROR on success, and an enum drbd_ret_code in case
3313  * something goes wrong.
3314  *
3315  * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3316  * even before @bdev is assigned to @device->ldev.
3317  */
3318 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3319 {
3320         struct meta_data_on_disk *buffer;
3321         u32 magic, flags;
3322         int i, rv = NO_ERROR;
3323
3324         if (device->state.disk != D_DISKLESS)
3325                 return ERR_DISK_CONFIGURED;
3326
3327         buffer = drbd_md_get_buffer(device, __func__);
3328         if (!buffer)
3329                 return ERR_NOMEM;
3330
3331         /* First, figure out where our meta data superblock is located,
3332          * and read it. */
3333         bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3334         bdev->md.md_offset = drbd_md_ss(bdev);
3335         /* Even for (flexible or indexed) external meta data,
3336          * initially restrict us to the 4k superblock for now.
3337          * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3338         bdev->md.md_size_sect = 8;
3339
3340         if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3341                                  REQ_OP_READ)) {
3342                 /* NOTE: can't do normal error processing here as this is
3343                    called BEFORE disk is attached */
3344                 drbd_err(device, "Error while reading metadata.\n");
3345                 rv = ERR_IO_MD_DISK;
3346                 goto err;
3347         }
3348
3349         magic = be32_to_cpu(buffer->magic);
3350         flags = be32_to_cpu(buffer->flags);
3351         if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3352             (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3353                         /* btw: that's Activity Log clean, not "all" clean. */
3354                 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3355                 rv = ERR_MD_UNCLEAN;
3356                 goto err;
3357         }
3358
3359         rv = ERR_MD_INVALID;
3360         if (magic != DRBD_MD_MAGIC_08) {
3361                 if (magic == DRBD_MD_MAGIC_07)
3362                         drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3363                 else
3364                         drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3365                 goto err;
3366         }
3367
3368         if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3369                 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3370                     be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3371                 goto err;
3372         }
3373
3374
3375         /* convert to in_core endian */
3376         bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3377         for (i = UI_CURRENT; i < UI_SIZE; i++)
3378                 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3379         bdev->md.flags = be32_to_cpu(buffer->flags);
3380         bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3381
3382         bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3383         bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3384         bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3385
3386         if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3387                 goto err;
3388         if (check_offsets_and_sizes(device, bdev))
3389                 goto err;
3390
3391         if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3392                 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3393                     be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3394                 goto err;
3395         }
3396         if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3397                 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3398                     be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3399                 goto err;
3400         }
3401
3402         rv = NO_ERROR;
3403
3404         spin_lock_irq(&device->resource->req_lock);
3405         if (device->state.conn < C_CONNECTED) {
3406                 unsigned int peer;
3407                 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3408                 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3409                 device->peer_max_bio_size = peer;
3410         }
3411         spin_unlock_irq(&device->resource->req_lock);
3412
3413  err:
3414         drbd_md_put_buffer(device);
3415
3416         return rv;
3417 }
3418
3419 /**
3420  * drbd_md_mark_dirty() - Mark meta data super block as dirty
3421  * @device:     DRBD device.
3422  *
3423  * Call this function if you change anything that should be written to
3424  * the meta-data super block. This function sets MD_DIRTY, and starts a
3425  * timer that ensures that within five seconds you have to call drbd_md_sync().
3426  */
3427 #ifdef DEBUG
3428 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3429 {
3430         if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3431                 mod_timer(&device->md_sync_timer, jiffies + HZ);
3432                 device->last_md_mark_dirty.line = line;
3433                 device->last_md_mark_dirty.func = func;
3434         }
3435 }
3436 #else
3437 void drbd_md_mark_dirty(struct drbd_device *device)
3438 {
3439         if (!test_and_set_bit(MD_DIRTY, &device->flags))
3440                 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3441 }
3442 #endif
3443
3444 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3445 {
3446         int i;
3447
3448         for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3449                 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3450 }
3451
3452 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3453 {
3454         if (idx == UI_CURRENT) {
3455                 if (device->state.role == R_PRIMARY)
3456                         val |= 1;
3457                 else
3458                         val &= ~((u64)1);
3459
3460                 drbd_set_ed_uuid(device, val);
3461         }
3462
3463         device->ldev->md.uuid[idx] = val;
3464         drbd_md_mark_dirty(device);
3465 }
3466
3467 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3468 {
3469         unsigned long flags;
3470         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3471         __drbd_uuid_set(device, idx, val);
3472         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3473 }
3474
3475 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3476 {
3477         unsigned long flags;
3478         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3479         if (device->ldev->md.uuid[idx]) {
3480                 drbd_uuid_move_history(device);
3481                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3482         }
3483         __drbd_uuid_set(device, idx, val);
3484         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3485 }
3486
3487 /**
3488  * drbd_uuid_new_current() - Creates a new current UUID
3489  * @device:     DRBD device.
3490  *
3491  * Creates a new current UUID, and rotates the old current UUID into
3492  * the bitmap slot. Causes an incremental resync upon next connect.
3493  */
3494 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3495 {
3496         u64 val;
3497         unsigned long long bm_uuid;
3498
3499         get_random_bytes(&val, sizeof(u64));
3500
3501         spin_lock_irq(&device->ldev->md.uuid_lock);
3502         bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3503
3504         if (bm_uuid)
3505                 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3506
3507         device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3508         __drbd_uuid_set(device, UI_CURRENT, val);
3509         spin_unlock_irq(&device->ldev->md.uuid_lock);
3510
3511         drbd_print_uuids(device, "new current UUID");
3512         /* get it to stable storage _now_ */
3513         drbd_md_sync(device);
3514 }
3515
3516 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3517 {
3518         unsigned long flags;
3519         if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3520                 return;
3521
3522         spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3523         if (val == 0) {
3524                 drbd_uuid_move_history(device);
3525                 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3526                 device->ldev->md.uuid[UI_BITMAP] = 0;
3527         } else {
3528                 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3529                 if (bm_uuid)
3530                         drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3531
3532                 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3533         }
3534         spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3535
3536         drbd_md_mark_dirty(device);
3537 }
3538
3539 /**
3540  * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3541  * @device:     DRBD device.
3542  *
3543  * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3544  */
3545 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3546 {
3547         int rv = -EIO;
3548
3549         drbd_md_set_flag(device, MDF_FULL_SYNC);
3550         drbd_md_sync(device);
3551         drbd_bm_set_all(device);
3552
3553         rv = drbd_bm_write(device);
3554
3555         if (!rv) {
3556                 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3557                 drbd_md_sync(device);
3558         }
3559
3560         return rv;
3561 }
3562
3563 /**
3564  * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3565  * @device:     DRBD device.
3566  *
3567  * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3568  */
3569 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3570 {
3571         drbd_resume_al(device);
3572         drbd_bm_clear_all(device);
3573         return drbd_bm_write(device);
3574 }
3575
3576 static int w_bitmap_io(struct drbd_work *w, int unused)
3577 {
3578         struct drbd_device *device =
3579                 container_of(w, struct drbd_device, bm_io_work.w);
3580         struct bm_io_work *work = &device->bm_io_work;
3581         int rv = -EIO;
3582
3583         if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3584                 int cnt = atomic_read(&device->ap_bio_cnt);
3585                 if (cnt)
3586                         drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3587                                         cnt, work->why);
3588         }
3589
3590         if (get_ldev(device)) {
3591                 drbd_bm_lock(device, work->why, work->flags);
3592                 rv = work->io_fn(device);
3593                 drbd_bm_unlock(device);
3594                 put_ldev(device);
3595         }
3596
3597         clear_bit_unlock(BITMAP_IO, &device->flags);
3598         wake_up(&device->misc_wait);
3599
3600         if (work->done)
3601                 work->done(device, rv);
3602
3603         clear_bit(BITMAP_IO_QUEUED, &device->flags);
3604         work->why = NULL;
3605         work->flags = 0;
3606
3607         return 0;
3608 }
3609
3610 /**
3611  * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3612  * @device:     DRBD device.
3613  * @io_fn:      IO callback to be called when bitmap IO is possible
3614  * @done:       callback to be called after the bitmap IO was performed
3615  * @why:        Descriptive text of the reason for doing the IO
3616  *
3617  * While IO on the bitmap happens we freeze application IO thus we ensure
3618  * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3619  * called from worker context. It MUST NOT be used while a previous such
3620  * work is still pending!
3621  *
3622  * Its worker function encloses the call of io_fn() by get_ldev() and
3623  * put_ldev().
3624  */
3625 void drbd_queue_bitmap_io(struct drbd_device *device,
3626                           int (*io_fn)(struct drbd_device *),
3627                           void (*done)(struct drbd_device *, int),
3628                           char *why, enum bm_flag flags)
3629 {
3630         D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3631
3632         D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3633         D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3634         D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3635         if (device->bm_io_work.why)
3636                 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3637                         why, device->bm_io_work.why);
3638
3639         device->bm_io_work.io_fn = io_fn;
3640         device->bm_io_work.done = done;
3641         device->bm_io_work.why = why;
3642         device->bm_io_work.flags = flags;
3643
3644         spin_lock_irq(&device->resource->req_lock);
3645         set_bit(BITMAP_IO, &device->flags);
3646         /* don't wait for pending application IO if the caller indicates that
3647          * application IO does not conflict anyways. */
3648         if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3649                 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3650                         drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3651                                         &device->bm_io_work.w);
3652         }
3653         spin_unlock_irq(&device->resource->req_lock);
3654 }
3655
3656 /**
3657  * drbd_bitmap_io() -  Does an IO operation on the whole bitmap
3658  * @device:     DRBD device.
3659  * @io_fn:      IO callback to be called when bitmap IO is possible
3660  * @why:        Descriptive text of the reason for doing the IO
3661  *
3662  * freezes application IO while that the actual IO operations runs. This
3663  * functions MAY NOT be called from worker context.
3664  */
3665 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3666                 char *why, enum bm_flag flags)
3667 {
3668         /* Only suspend io, if some operation is supposed to be locked out */
3669         const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3670         int rv;
3671
3672         D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3673
3674         if (do_suspend_io)
3675                 drbd_suspend_io(device);
3676
3677         drbd_bm_lock(device, why, flags);
3678         rv = io_fn(device);
3679         drbd_bm_unlock(device);
3680
3681         if (do_suspend_io)
3682                 drbd_resume_io(device);
3683
3684         return rv;
3685 }
3686
3687 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3688 {
3689         if ((device->ldev->md.flags & flag) != flag) {
3690                 drbd_md_mark_dirty(device);
3691                 device->ldev->md.flags |= flag;
3692         }
3693 }
3694
3695 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3696 {
3697         if ((device->ldev->md.flags & flag) != 0) {
3698                 drbd_md_mark_dirty(device);
3699                 device->ldev->md.flags &= ~flag;
3700         }
3701 }
3702 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3703 {
3704         return (bdev->md.flags & flag) != 0;
3705 }
3706
3707 static void md_sync_timer_fn(unsigned long data)
3708 {
3709         struct drbd_device *device = (struct drbd_device *) data;
3710         drbd_device_post_work(device, MD_SYNC);
3711 }
3712
3713 const char *cmdname(enum drbd_packet cmd)
3714 {
3715         /* THINK may need to become several global tables
3716          * when we want to support more than
3717          * one PRO_VERSION */
3718         static const char *cmdnames[] = {
3719                 [P_DATA]                = "Data",
3720                 [P_WSAME]               = "WriteSame",
3721                 [P_TRIM]                = "Trim",
3722                 [P_DATA_REPLY]          = "DataReply",
3723                 [P_RS_DATA_REPLY]       = "RSDataReply",
3724                 [P_BARRIER]             = "Barrier",
3725                 [P_BITMAP]              = "ReportBitMap",
3726                 [P_BECOME_SYNC_TARGET]  = "BecomeSyncTarget",
3727                 [P_BECOME_SYNC_SOURCE]  = "BecomeSyncSource",
3728                 [P_UNPLUG_REMOTE]       = "UnplugRemote",
3729                 [P_DATA_REQUEST]        = "DataRequest",
3730                 [P_RS_DATA_REQUEST]     = "RSDataRequest",
3731                 [P_SYNC_PARAM]          = "SyncParam",
3732                 [P_SYNC_PARAM89]        = "SyncParam89",
3733                 [P_PROTOCOL]            = "ReportProtocol",
3734                 [P_UUIDS]               = "ReportUUIDs",
3735                 [P_SIZES]               = "ReportSizes",
3736                 [P_STATE]               = "ReportState",
3737                 [P_SYNC_UUID]           = "ReportSyncUUID",
3738                 [P_AUTH_CHALLENGE]      = "AuthChallenge",
3739                 [P_AUTH_RESPONSE]       = "AuthResponse",
3740                 [P_PING]                = "Ping",
3741                 [P_PING_ACK]            = "PingAck",
3742                 [P_RECV_ACK]            = "RecvAck",
3743                 [P_WRITE_ACK]           = "WriteAck",
3744                 [P_RS_WRITE_ACK]        = "RSWriteAck",
3745                 [P_SUPERSEDED]          = "Superseded",
3746                 [P_NEG_ACK]             = "NegAck",
3747                 [P_NEG_DREPLY]          = "NegDReply",
3748                 [P_NEG_RS_DREPLY]       = "NegRSDReply",
3749                 [P_BARRIER_ACK]         = "BarrierAck",
3750                 [P_STATE_CHG_REQ]       = "StateChgRequest",
3751                 [P_STATE_CHG_REPLY]     = "StateChgReply",
3752                 [P_OV_REQUEST]          = "OVRequest",
3753                 [P_OV_REPLY]            = "OVReply",
3754                 [P_OV_RESULT]           = "OVResult",
3755                 [P_CSUM_RS_REQUEST]     = "CsumRSRequest",
3756                 [P_RS_IS_IN_SYNC]       = "CsumRSIsInSync",
3757                 [P_COMPRESSED_BITMAP]   = "CBitmap",
3758                 [P_DELAY_PROBE]         = "DelayProbe",
3759                 [P_OUT_OF_SYNC]         = "OutOfSync",
3760                 [P_RETRY_WRITE]         = "RetryWrite",
3761                 [P_RS_CANCEL]           = "RSCancel",
3762                 [P_CONN_ST_CHG_REQ]     = "conn_st_chg_req",
3763                 [P_CONN_ST_CHG_REPLY]   = "conn_st_chg_reply",
3764                 [P_RETRY_WRITE]         = "retry_write",
3765                 [P_PROTOCOL_UPDATE]     = "protocol_update",
3766                 [P_RS_THIN_REQ]         = "rs_thin_req",
3767                 [P_RS_DEALLOCATED]      = "rs_deallocated",
3768
3769                 /* enum drbd_packet, but not commands - obsoleted flags:
3770                  *      P_MAY_IGNORE
3771                  *      P_MAX_OPT_CMD
3772                  */
3773         };
3774
3775         /* too big for the array: 0xfffX */
3776         if (cmd == P_INITIAL_META)
3777                 return "InitialMeta";
3778         if (cmd == P_INITIAL_DATA)
3779                 return "InitialData";
3780         if (cmd == P_CONNECTION_FEATURES)
3781                 return "ConnectionFeatures";
3782         if (cmd >= ARRAY_SIZE(cmdnames))
3783                 return "Unknown";
3784         return cmdnames[cmd];
3785 }
3786
3787 /**
3788  * drbd_wait_misc  -  wait for a request to make progress
3789  * @device:     device associated with the request
3790  * @i:          the struct drbd_interval embedded in struct drbd_request or
3791  *              struct drbd_peer_request
3792  */
3793 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3794 {
3795         struct net_conf *nc;
3796         DEFINE_WAIT(wait);
3797         long timeout;
3798
3799         rcu_read_lock();
3800         nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3801         if (!nc) {
3802                 rcu_read_unlock();
3803                 return -ETIMEDOUT;
3804         }
3805         timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3806         rcu_read_unlock();
3807
3808         /* Indicate to wake up device->misc_wait on progress.  */
3809         i->waiting = true;
3810         prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3811         spin_unlock_irq(&device->resource->req_lock);
3812         timeout = schedule_timeout(timeout);
3813         finish_wait(&device->misc_wait, &wait);
3814         spin_lock_irq(&device->resource->req_lock);
3815         if (!timeout || device->state.conn < C_CONNECTED)
3816                 return -ETIMEDOUT;
3817         if (signal_pending(current))
3818                 return -ERESTARTSYS;
3819         return 0;
3820 }
3821
3822 void lock_all_resources(void)
3823 {
3824         struct drbd_resource *resource;
3825         int __maybe_unused i = 0;
3826
3827         mutex_lock(&resources_mutex);
3828         local_irq_disable();
3829         for_each_resource(resource, &drbd_resources)
3830                 spin_lock_nested(&resource->req_lock, i++);
3831 }
3832
3833 void unlock_all_resources(void)
3834 {
3835         struct drbd_resource *resource;
3836
3837         for_each_resource(resource, &drbd_resources)
3838                 spin_unlock(&resource->req_lock);
3839         local_irq_enable();
3840         mutex_unlock(&resources_mutex);
3841 }
3842
3843 #ifdef CONFIG_DRBD_FAULT_INJECTION
3844 /* Fault insertion support including random number generator shamelessly
3845  * stolen from kernel/rcutorture.c */
3846 struct fault_random_state {
3847         unsigned long state;
3848         unsigned long count;
3849 };
3850
3851 #define FAULT_RANDOM_MULT 39916801  /* prime */
3852 #define FAULT_RANDOM_ADD        479001701 /* prime */
3853 #define FAULT_RANDOM_REFRESH 10000
3854
3855 /*
3856  * Crude but fast random-number generator.  Uses a linear congruential
3857  * generator, with occasional help from get_random_bytes().
3858  */
3859 static unsigned long
3860 _drbd_fault_random(struct fault_random_state *rsp)
3861 {
3862         long refresh;
3863
3864         if (!rsp->count--) {
3865                 get_random_bytes(&refresh, sizeof(refresh));
3866                 rsp->state += refresh;
3867                 rsp->count = FAULT_RANDOM_REFRESH;
3868         }
3869         rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3870         return swahw32(rsp->state);
3871 }
3872
3873 static char *
3874 _drbd_fault_str(unsigned int type) {
3875         static char *_faults[] = {
3876                 [DRBD_FAULT_MD_WR] = "Meta-data write",
3877                 [DRBD_FAULT_MD_RD] = "Meta-data read",
3878                 [DRBD_FAULT_RS_WR] = "Resync write",
3879                 [DRBD_FAULT_RS_RD] = "Resync read",
3880                 [DRBD_FAULT_DT_WR] = "Data write",
3881                 [DRBD_FAULT_DT_RD] = "Data read",
3882                 [DRBD_FAULT_DT_RA] = "Data read ahead",
3883                 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3884                 [DRBD_FAULT_AL_EE] = "EE allocation",
3885                 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3886         };
3887
3888         return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3889 }
3890
3891 unsigned int
3892 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3893 {
3894         static struct fault_random_state rrs = {0, 0};
3895
3896         unsigned int ret = (
3897                 (fault_devs == 0 ||
3898                         ((1 << device_to_minor(device)) & fault_devs) != 0) &&
3899                 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3900
3901         if (ret) {
3902                 fault_count++;
3903
3904                 if (__ratelimit(&drbd_ratelimit_state))
3905                         drbd_warn(device, "***Simulating %s failure\n",
3906                                 _drbd_fault_str(type));
3907         }
3908
3909         return ret;
3910 }
3911 #endif
3912
3913 const char *drbd_buildtag(void)
3914 {
3915         /* DRBD built from external sources has here a reference to the
3916            git hash of the source code. */
3917
3918         static char buildtag[38] = "\0uilt-in";
3919
3920         if (buildtag[0] == 0) {
3921 #ifdef MODULE
3922                 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3923 #else
3924                 buildtag[0] = 'b';
3925 #endif
3926         }
3927
3928         return buildtag;
3929 }
3930
3931 module_init(drbd_init)
3932 module_exit(drbd_cleanup)
3933
3934 EXPORT_SYMBOL(drbd_conn_str);
3935 EXPORT_SYMBOL(drbd_role_str);
3936 EXPORT_SYMBOL(drbd_disk_str);
3937 EXPORT_SYMBOL(drbd_set_st_err_str);