]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/nvme-core.c
e09ad6cc6dec5f689f4ad5175b5ed91d3813e263
[karo-tx-linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/list_sort.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/poison.h>
38 #include <linux/ptrace.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/t10-pi.h>
42 #include <linux/types.h>
43 #include <scsi/sg.h>
44 #include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46 #define NVME_MINORS             (1U << MINORBITS)
47 #define NVME_Q_DEPTH            1024
48 #define NVME_AQ_DEPTH           256
49 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
51 #define ADMIN_TIMEOUT           (admin_timeout * HZ)
52 #define SHUTDOWN_TIMEOUT        (shutdown_timeout * HZ)
53
54 static unsigned char admin_timeout = 60;
55 module_param(admin_timeout, byte, 0644);
56 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
57
58 unsigned char nvme_io_timeout = 30;
59 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
60 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
61
62 static unsigned char shutdown_timeout = 5;
63 module_param(shutdown_timeout, byte, 0644);
64 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
66 static int nvme_major;
67 module_param(nvme_major, int, 0);
68
69 static int nvme_char_major;
70 module_param(nvme_char_major, int, 0);
71
72 static int use_threaded_interrupts;
73 module_param(use_threaded_interrupts, int, 0);
74
75 static DEFINE_SPINLOCK(dev_list_lock);
76 static LIST_HEAD(dev_list);
77 static struct task_struct *nvme_thread;
78 static struct workqueue_struct *nvme_workq;
79 static wait_queue_head_t nvme_kthread_wait;
80
81 static struct class *nvme_class;
82
83 static void nvme_reset_failed_dev(struct work_struct *ws);
84 static int nvme_reset(struct nvme_dev *dev);
85 static int nvme_process_cq(struct nvme_queue *nvmeq);
86
87 struct async_cmd_info {
88         struct kthread_work work;
89         struct kthread_worker *worker;
90         struct request *req;
91         u32 result;
92         int status;
93         void *ctx;
94 };
95
96 /*
97  * An NVM Express queue.  Each device has at least two (one for admin
98  * commands and one for I/O commands).
99  */
100 struct nvme_queue {
101         struct device *q_dmadev;
102         struct nvme_dev *dev;
103         char irqname[24];       /* nvme4294967295-65535\0 */
104         spinlock_t q_lock;
105         struct nvme_command *sq_cmds;
106         volatile struct nvme_completion *cqes;
107         struct blk_mq_tags **tags;
108         dma_addr_t sq_dma_addr;
109         dma_addr_t cq_dma_addr;
110         u32 __iomem *q_db;
111         u16 q_depth;
112         s16 cq_vector;
113         u16 sq_head;
114         u16 sq_tail;
115         u16 cq_head;
116         u16 qid;
117         u8 cq_phase;
118         u8 cqe_seen;
119         struct async_cmd_info cmdinfo;
120 };
121
122 /*
123  * Check we didin't inadvertently grow the command struct
124  */
125 static inline void _nvme_check_size(void)
126 {
127         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
133         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
134         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
139 }
140
141 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
142                                                 struct nvme_completion *);
143
144 struct nvme_cmd_info {
145         nvme_completion_fn fn;
146         void *ctx;
147         int aborted;
148         struct nvme_queue *nvmeq;
149         struct nvme_iod iod[0];
150 };
151
152 /*
153  * Max size of iod being embedded in the request payload
154  */
155 #define NVME_INT_PAGES          2
156 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->page_size)
157 #define NVME_INT_MASK           0x01
158
159 /*
160  * Will slightly overestimate the number of pages needed.  This is OK
161  * as it only leads to a small amount of wasted memory for the lifetime of
162  * the I/O.
163  */
164 static int nvme_npages(unsigned size, struct nvme_dev *dev)
165 {
166         unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
167         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
168 }
169
170 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
171 {
172         unsigned int ret = sizeof(struct nvme_cmd_info);
173
174         ret += sizeof(struct nvme_iod);
175         ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
176         ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
177
178         return ret;
179 }
180
181 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
182                                 unsigned int hctx_idx)
183 {
184         struct nvme_dev *dev = data;
185         struct nvme_queue *nvmeq = dev->queues[0];
186
187         WARN_ON(hctx_idx != 0);
188         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
189         WARN_ON(nvmeq->tags);
190
191         hctx->driver_data = nvmeq;
192         nvmeq->tags = &dev->admin_tagset.tags[0];
193         return 0;
194 }
195
196 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
197 {
198         struct nvme_queue *nvmeq = hctx->driver_data;
199
200         nvmeq->tags = NULL;
201 }
202
203 static int nvme_admin_init_request(void *data, struct request *req,
204                                 unsigned int hctx_idx, unsigned int rq_idx,
205                                 unsigned int numa_node)
206 {
207         struct nvme_dev *dev = data;
208         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
209         struct nvme_queue *nvmeq = dev->queues[0];
210
211         BUG_ON(!nvmeq);
212         cmd->nvmeq = nvmeq;
213         return 0;
214 }
215
216 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
217                           unsigned int hctx_idx)
218 {
219         struct nvme_dev *dev = data;
220         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
221
222         if (!nvmeq->tags)
223                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
224
225         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
226         hctx->driver_data = nvmeq;
227         return 0;
228 }
229
230 static int nvme_init_request(void *data, struct request *req,
231                                 unsigned int hctx_idx, unsigned int rq_idx,
232                                 unsigned int numa_node)
233 {
234         struct nvme_dev *dev = data;
235         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
236         struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
237
238         BUG_ON(!nvmeq);
239         cmd->nvmeq = nvmeq;
240         return 0;
241 }
242
243 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
244                                 nvme_completion_fn handler)
245 {
246         cmd->fn = handler;
247         cmd->ctx = ctx;
248         cmd->aborted = 0;
249         blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
250 }
251
252 static void *iod_get_private(struct nvme_iod *iod)
253 {
254         return (void *) (iod->private & ~0x1UL);
255 }
256
257 /*
258  * If bit 0 is set, the iod is embedded in the request payload.
259  */
260 static bool iod_should_kfree(struct nvme_iod *iod)
261 {
262         return (iod->private & NVME_INT_MASK) == 0;
263 }
264
265 /* Special values must be less than 0x1000 */
266 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
267 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
268 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
269 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
270
271 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
272                                                 struct nvme_completion *cqe)
273 {
274         if (ctx == CMD_CTX_CANCELLED)
275                 return;
276         if (ctx == CMD_CTX_COMPLETED) {
277                 dev_warn(nvmeq->q_dmadev,
278                                 "completed id %d twice on queue %d\n",
279                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
280                 return;
281         }
282         if (ctx == CMD_CTX_INVALID) {
283                 dev_warn(nvmeq->q_dmadev,
284                                 "invalid id %d completed on queue %d\n",
285                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
286                 return;
287         }
288         dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
289 }
290
291 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
292 {
293         void *ctx;
294
295         if (fn)
296                 *fn = cmd->fn;
297         ctx = cmd->ctx;
298         cmd->fn = special_completion;
299         cmd->ctx = CMD_CTX_CANCELLED;
300         return ctx;
301 }
302
303 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
304                                                 struct nvme_completion *cqe)
305 {
306         u32 result = le32_to_cpup(&cqe->result);
307         u16 status = le16_to_cpup(&cqe->status) >> 1;
308
309         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
310                 ++nvmeq->dev->event_limit;
311         if (status != NVME_SC_SUCCESS)
312                 return;
313
314         switch (result & 0xff07) {
315         case NVME_AER_NOTICE_NS_CHANGED:
316                 dev_info(nvmeq->q_dmadev, "rescanning\n");
317                 schedule_work(&nvmeq->dev->scan_work);
318         default:
319                 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
320         }
321 }
322
323 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
324                                                 struct nvme_completion *cqe)
325 {
326         struct request *req = ctx;
327
328         u16 status = le16_to_cpup(&cqe->status) >> 1;
329         u32 result = le32_to_cpup(&cqe->result);
330
331         blk_mq_free_request(req);
332
333         dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
334         ++nvmeq->dev->abort_limit;
335 }
336
337 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
338                                                 struct nvme_completion *cqe)
339 {
340         struct async_cmd_info *cmdinfo = ctx;
341         cmdinfo->result = le32_to_cpup(&cqe->result);
342         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
343         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
344         blk_mq_free_request(cmdinfo->req);
345 }
346
347 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
348                                   unsigned int tag)
349 {
350         struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
351
352         return blk_mq_rq_to_pdu(req);
353 }
354
355 /*
356  * Called with local interrupts disabled and the q_lock held.  May not sleep.
357  */
358 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
359                                                 nvme_completion_fn *fn)
360 {
361         struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
362         void *ctx;
363         if (tag >= nvmeq->q_depth) {
364                 *fn = special_completion;
365                 return CMD_CTX_INVALID;
366         }
367         if (fn)
368                 *fn = cmd->fn;
369         ctx = cmd->ctx;
370         cmd->fn = special_completion;
371         cmd->ctx = CMD_CTX_COMPLETED;
372         return ctx;
373 }
374
375 /**
376  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
377  * @nvmeq: The queue to use
378  * @cmd: The command to send
379  *
380  * Safe to use from interrupt context
381  */
382 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
383 {
384         u16 tail = nvmeq->sq_tail;
385
386         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
387         if (++tail == nvmeq->q_depth)
388                 tail = 0;
389         writel(tail, nvmeq->q_db);
390         nvmeq->sq_tail = tail;
391
392         return 0;
393 }
394
395 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
396 {
397         unsigned long flags;
398         int ret;
399         spin_lock_irqsave(&nvmeq->q_lock, flags);
400         ret = __nvme_submit_cmd(nvmeq, cmd);
401         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
402         return ret;
403 }
404
405 static __le64 **iod_list(struct nvme_iod *iod)
406 {
407         return ((void *)iod) + iod->offset;
408 }
409
410 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
411                             unsigned nseg, unsigned long private)
412 {
413         iod->private = private;
414         iod->offset = offsetof(struct nvme_iod, sg[nseg]);
415         iod->npages = -1;
416         iod->length = nbytes;
417         iod->nents = 0;
418 }
419
420 static struct nvme_iod *
421 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
422                  unsigned long priv, gfp_t gfp)
423 {
424         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
425                                 sizeof(__le64 *) * nvme_npages(bytes, dev) +
426                                 sizeof(struct scatterlist) * nseg, gfp);
427
428         if (iod)
429                 iod_init(iod, bytes, nseg, priv);
430
431         return iod;
432 }
433
434 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
435                                        gfp_t gfp)
436 {
437         unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
438                                                 sizeof(struct nvme_dsm_range);
439         struct nvme_iod *iod;
440
441         if (rq->nr_phys_segments <= NVME_INT_PAGES &&
442             size <= NVME_INT_BYTES(dev)) {
443                 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
444
445                 iod = cmd->iod;
446                 iod_init(iod, size, rq->nr_phys_segments,
447                                 (unsigned long) rq | NVME_INT_MASK);
448                 return iod;
449         }
450
451         return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
452                                 (unsigned long) rq, gfp);
453 }
454
455 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
456 {
457         const int last_prp = dev->page_size / 8 - 1;
458         int i;
459         __le64 **list = iod_list(iod);
460         dma_addr_t prp_dma = iod->first_dma;
461
462         if (iod->npages == 0)
463                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
464         for (i = 0; i < iod->npages; i++) {
465                 __le64 *prp_list = list[i];
466                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
467                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
468                 prp_dma = next_prp_dma;
469         }
470
471         if (iod_should_kfree(iod))
472                 kfree(iod);
473 }
474
475 static int nvme_error_status(u16 status)
476 {
477         switch (status & 0x7ff) {
478         case NVME_SC_SUCCESS:
479                 return 0;
480         case NVME_SC_CAP_EXCEEDED:
481                 return -ENOSPC;
482         default:
483                 return -EIO;
484         }
485 }
486
487 #ifdef CONFIG_BLK_DEV_INTEGRITY
488 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
489 {
490         if (be32_to_cpu(pi->ref_tag) == v)
491                 pi->ref_tag = cpu_to_be32(p);
492 }
493
494 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
495 {
496         if (be32_to_cpu(pi->ref_tag) == p)
497                 pi->ref_tag = cpu_to_be32(v);
498 }
499
500 /**
501  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
502  *
503  * The virtual start sector is the one that was originally submitted by the
504  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
505  * start sector may be different. Remap protection information to match the
506  * physical LBA on writes, and back to the original seed on reads.
507  *
508  * Type 0 and 3 do not have a ref tag, so no remapping required.
509  */
510 static void nvme_dif_remap(struct request *req,
511                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
512 {
513         struct nvme_ns *ns = req->rq_disk->private_data;
514         struct bio_integrity_payload *bip;
515         struct t10_pi_tuple *pi;
516         void *p, *pmap;
517         u32 i, nlb, ts, phys, virt;
518
519         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
520                 return;
521
522         bip = bio_integrity(req->bio);
523         if (!bip)
524                 return;
525
526         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
527
528         p = pmap;
529         virt = bip_get_seed(bip);
530         phys = nvme_block_nr(ns, blk_rq_pos(req));
531         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
532         ts = ns->disk->integrity->tuple_size;
533
534         for (i = 0; i < nlb; i++, virt++, phys++) {
535                 pi = (struct t10_pi_tuple *)p;
536                 dif_swap(phys, virt, pi);
537                 p += ts;
538         }
539         kunmap_atomic(pmap);
540 }
541
542 static int nvme_noop_verify(struct blk_integrity_iter *iter)
543 {
544         return 0;
545 }
546
547 static int nvme_noop_generate(struct blk_integrity_iter *iter)
548 {
549         return 0;
550 }
551
552 struct blk_integrity nvme_meta_noop = {
553         .name                   = "NVME_META_NOOP",
554         .generate_fn            = nvme_noop_generate,
555         .verify_fn              = nvme_noop_verify,
556 };
557
558 static void nvme_init_integrity(struct nvme_ns *ns)
559 {
560         struct blk_integrity integrity;
561
562         switch (ns->pi_type) {
563         case NVME_NS_DPS_PI_TYPE3:
564                 integrity = t10_pi_type3_crc;
565                 break;
566         case NVME_NS_DPS_PI_TYPE1:
567         case NVME_NS_DPS_PI_TYPE2:
568                 integrity = t10_pi_type1_crc;
569                 break;
570         default:
571                 integrity = nvme_meta_noop;
572                 break;
573         }
574         integrity.tuple_size = ns->ms;
575         blk_integrity_register(ns->disk, &integrity);
576         blk_queue_max_integrity_segments(ns->queue, 1);
577 }
578 #else /* CONFIG_BLK_DEV_INTEGRITY */
579 static void nvme_dif_remap(struct request *req,
580                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
581 {
582 }
583 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
584 {
585 }
586 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
587 {
588 }
589 static void nvme_init_integrity(struct nvme_ns *ns)
590 {
591 }
592 #endif
593
594 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
595                                                 struct nvme_completion *cqe)
596 {
597         struct nvme_iod *iod = ctx;
598         struct request *req = iod_get_private(iod);
599         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
600
601         u16 status = le16_to_cpup(&cqe->status) >> 1;
602
603         if (unlikely(status)) {
604                 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
605                     && (jiffies - req->start_time) < req->timeout) {
606                         unsigned long flags;
607
608                         blk_mq_requeue_request(req);
609                         spin_lock_irqsave(req->q->queue_lock, flags);
610                         if (!blk_queue_stopped(req->q))
611                                 blk_mq_kick_requeue_list(req->q);
612                         spin_unlock_irqrestore(req->q->queue_lock, flags);
613                         return;
614                 }
615                 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
616                         if (cmd_rq->ctx == CMD_CTX_CANCELLED)
617                                 req->errors = -EINTR;
618                         else
619                                 req->errors = status;
620                 } else {
621                         req->errors = nvme_error_status(status);
622                 }
623         } else
624                 req->errors = 0;
625         if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
626                 u32 result = le32_to_cpup(&cqe->result);
627                 req->special = (void *)(uintptr_t)result;
628         }
629
630         if (cmd_rq->aborted)
631                 dev_warn(nvmeq->dev->dev,
632                         "completing aborted command with status:%04x\n",
633                         status);
634
635         if (iod->nents) {
636                 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
637                         rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
638                 if (blk_integrity_rq(req)) {
639                         if (!rq_data_dir(req))
640                                 nvme_dif_remap(req, nvme_dif_complete);
641                         dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
642                                 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
643                 }
644         }
645         nvme_free_iod(nvmeq->dev, iod);
646
647         blk_mq_complete_request(req);
648 }
649
650 /* length is in bytes.  gfp flags indicates whether we may sleep. */
651 static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
652                 int total_len, gfp_t gfp)
653 {
654         struct dma_pool *pool;
655         int length = total_len;
656         struct scatterlist *sg = iod->sg;
657         int dma_len = sg_dma_len(sg);
658         u64 dma_addr = sg_dma_address(sg);
659         u32 page_size = dev->page_size;
660         int offset = dma_addr & (page_size - 1);
661         __le64 *prp_list;
662         __le64 **list = iod_list(iod);
663         dma_addr_t prp_dma;
664         int nprps, i;
665
666         length -= (page_size - offset);
667         if (length <= 0)
668                 return total_len;
669
670         dma_len -= (page_size - offset);
671         if (dma_len) {
672                 dma_addr += (page_size - offset);
673         } else {
674                 sg = sg_next(sg);
675                 dma_addr = sg_dma_address(sg);
676                 dma_len = sg_dma_len(sg);
677         }
678
679         if (length <= page_size) {
680                 iod->first_dma = dma_addr;
681                 return total_len;
682         }
683
684         nprps = DIV_ROUND_UP(length, page_size);
685         if (nprps <= (256 / 8)) {
686                 pool = dev->prp_small_pool;
687                 iod->npages = 0;
688         } else {
689                 pool = dev->prp_page_pool;
690                 iod->npages = 1;
691         }
692
693         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
694         if (!prp_list) {
695                 iod->first_dma = dma_addr;
696                 iod->npages = -1;
697                 return (total_len - length) + page_size;
698         }
699         list[0] = prp_list;
700         iod->first_dma = prp_dma;
701         i = 0;
702         for (;;) {
703                 if (i == page_size >> 3) {
704                         __le64 *old_prp_list = prp_list;
705                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
706                         if (!prp_list)
707                                 return total_len - length;
708                         list[iod->npages++] = prp_list;
709                         prp_list[0] = old_prp_list[i - 1];
710                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
711                         i = 1;
712                 }
713                 prp_list[i++] = cpu_to_le64(dma_addr);
714                 dma_len -= page_size;
715                 dma_addr += page_size;
716                 length -= page_size;
717                 if (length <= 0)
718                         break;
719                 if (dma_len > 0)
720                         continue;
721                 BUG_ON(dma_len < 0);
722                 sg = sg_next(sg);
723                 dma_addr = sg_dma_address(sg);
724                 dma_len = sg_dma_len(sg);
725         }
726
727         return total_len;
728 }
729
730 static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
731                 struct nvme_iod *iod)
732 {
733         struct nvme_command cmnd;
734
735         memcpy(&cmnd, req->cmd, sizeof(cmnd));
736         cmnd.rw.command_id = req->tag;
737         if (req->nr_phys_segments) {
738                 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
739                 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
740         }
741
742         __nvme_submit_cmd(nvmeq, &cmnd);
743 }
744
745 /*
746  * We reuse the small pool to allocate the 16-byte range here as it is not
747  * worth having a special pool for these or additional cases to handle freeing
748  * the iod.
749  */
750 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
751                 struct request *req, struct nvme_iod *iod)
752 {
753         struct nvme_dsm_range *range =
754                                 (struct nvme_dsm_range *)iod_list(iod)[0];
755         struct nvme_command cmnd;
756
757         range->cattr = cpu_to_le32(0);
758         range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
759         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
760
761         memset(&cmnd, 0, sizeof(cmnd));
762         cmnd.dsm.opcode = nvme_cmd_dsm;
763         cmnd.dsm.command_id = req->tag;
764         cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
765         cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
766         cmnd.dsm.nr = 0;
767         cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
768
769         __nvme_submit_cmd(nvmeq, &cmnd);
770 }
771
772 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
773                                                                 int cmdid)
774 {
775         struct nvme_command cmnd;
776
777         memset(&cmnd, 0, sizeof(cmnd));
778         cmnd.common.opcode = nvme_cmd_flush;
779         cmnd.common.command_id = cmdid;
780         cmnd.common.nsid = cpu_to_le32(ns->ns_id);
781
782         __nvme_submit_cmd(nvmeq, &cmnd);
783 }
784
785 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
786                                                         struct nvme_ns *ns)
787 {
788         struct request *req = iod_get_private(iod);
789         struct nvme_command cmnd;
790         u16 control = 0;
791         u32 dsmgmt = 0;
792
793         if (req->cmd_flags & REQ_FUA)
794                 control |= NVME_RW_FUA;
795         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
796                 control |= NVME_RW_LR;
797
798         if (req->cmd_flags & REQ_RAHEAD)
799                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
800
801         memset(&cmnd, 0, sizeof(cmnd));
802         cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
803         cmnd.rw.command_id = req->tag;
804         cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
805         cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
806         cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
807         cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
808         cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
809
810         if (blk_integrity_rq(req)) {
811                 cmnd.rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
812                 switch (ns->pi_type) {
813                 case NVME_NS_DPS_PI_TYPE3:
814                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
815                         break;
816                 case NVME_NS_DPS_PI_TYPE1:
817                 case NVME_NS_DPS_PI_TYPE2:
818                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
819                                         NVME_RW_PRINFO_PRCHK_REF;
820                         cmnd.rw.reftag = cpu_to_le32(
821                                         nvme_block_nr(ns, blk_rq_pos(req)));
822                         break;
823                 }
824         } else if (ns->ms)
825                 control |= NVME_RW_PRINFO_PRACT;
826
827         cmnd.rw.control = cpu_to_le16(control);
828         cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
829
830         __nvme_submit_cmd(nvmeq, &cmnd);
831
832         return 0;
833 }
834
835 /*
836  * NOTE: ns is NULL when called on the admin queue.
837  */
838 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
839                          const struct blk_mq_queue_data *bd)
840 {
841         struct nvme_ns *ns = hctx->queue->queuedata;
842         struct nvme_queue *nvmeq = hctx->driver_data;
843         struct nvme_dev *dev = nvmeq->dev;
844         struct request *req = bd->rq;
845         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
846         struct nvme_iod *iod;
847         enum dma_data_direction dma_dir;
848
849         /*
850          * If formated with metadata, require the block layer provide a buffer
851          * unless this namespace is formated such that the metadata can be
852          * stripped/generated by the controller with PRACT=1.
853          */
854         if (ns && ns->ms && !blk_integrity_rq(req)) {
855                 if (!(ns->pi_type && ns->ms == 8) &&
856                                         req->cmd_type != REQ_TYPE_DRV_PRIV) {
857                         req->errors = -EFAULT;
858                         blk_mq_complete_request(req);
859                         return BLK_MQ_RQ_QUEUE_OK;
860                 }
861         }
862
863         iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
864         if (!iod)
865                 return BLK_MQ_RQ_QUEUE_BUSY;
866
867         if (req->cmd_flags & REQ_DISCARD) {
868                 void *range;
869                 /*
870                  * We reuse the small pool to allocate the 16-byte range here
871                  * as it is not worth having a special pool for these or
872                  * additional cases to handle freeing the iod.
873                  */
874                 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
875                                                 &iod->first_dma);
876                 if (!range)
877                         goto retry_cmd;
878                 iod_list(iod)[0] = (__le64 *)range;
879                 iod->npages = 0;
880         } else if (req->nr_phys_segments) {
881                 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
882
883                 sg_init_table(iod->sg, req->nr_phys_segments);
884                 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
885                 if (!iod->nents)
886                         goto error_cmd;
887
888                 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
889                         goto retry_cmd;
890
891                 if (blk_rq_bytes(req) !=
892                     nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
893                         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
894                         goto retry_cmd;
895                 }
896                 if (blk_integrity_rq(req)) {
897                         if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
898                                 goto error_cmd;
899
900                         sg_init_table(iod->meta_sg, 1);
901                         if (blk_rq_map_integrity_sg(
902                                         req->q, req->bio, iod->meta_sg) != 1)
903                                 goto error_cmd;
904
905                         if (rq_data_dir(req))
906                                 nvme_dif_remap(req, nvme_dif_prep);
907
908                         if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
909                                 goto error_cmd;
910                 }
911         }
912
913         nvme_set_info(cmd, iod, req_completion);
914         spin_lock_irq(&nvmeq->q_lock);
915         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
916                 nvme_submit_priv(nvmeq, req, iod);
917         else if (req->cmd_flags & REQ_DISCARD)
918                 nvme_submit_discard(nvmeq, ns, req, iod);
919         else if (req->cmd_flags & REQ_FLUSH)
920                 nvme_submit_flush(nvmeq, ns, req->tag);
921         else
922                 nvme_submit_iod(nvmeq, iod, ns);
923
924         nvme_process_cq(nvmeq);
925         spin_unlock_irq(&nvmeq->q_lock);
926         return BLK_MQ_RQ_QUEUE_OK;
927
928  error_cmd:
929         nvme_free_iod(dev, iod);
930         return BLK_MQ_RQ_QUEUE_ERROR;
931  retry_cmd:
932         nvme_free_iod(dev, iod);
933         return BLK_MQ_RQ_QUEUE_BUSY;
934 }
935
936 static int nvme_process_cq(struct nvme_queue *nvmeq)
937 {
938         u16 head, phase;
939
940         head = nvmeq->cq_head;
941         phase = nvmeq->cq_phase;
942
943         for (;;) {
944                 void *ctx;
945                 nvme_completion_fn fn;
946                 struct nvme_completion cqe = nvmeq->cqes[head];
947                 if ((le16_to_cpu(cqe.status) & 1) != phase)
948                         break;
949                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
950                 if (++head == nvmeq->q_depth) {
951                         head = 0;
952                         phase = !phase;
953                 }
954                 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
955                 fn(nvmeq, ctx, &cqe);
956         }
957
958         /* If the controller ignores the cq head doorbell and continuously
959          * writes to the queue, it is theoretically possible to wrap around
960          * the queue twice and mistakenly return IRQ_NONE.  Linux only
961          * requires that 0.1% of your interrupts are handled, so this isn't
962          * a big problem.
963          */
964         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
965                 return 0;
966
967         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
968         nvmeq->cq_head = head;
969         nvmeq->cq_phase = phase;
970
971         nvmeq->cqe_seen = 1;
972         return 1;
973 }
974
975 static irqreturn_t nvme_irq(int irq, void *data)
976 {
977         irqreturn_t result;
978         struct nvme_queue *nvmeq = data;
979         spin_lock(&nvmeq->q_lock);
980         nvme_process_cq(nvmeq);
981         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
982         nvmeq->cqe_seen = 0;
983         spin_unlock(&nvmeq->q_lock);
984         return result;
985 }
986
987 static irqreturn_t nvme_irq_check(int irq, void *data)
988 {
989         struct nvme_queue *nvmeq = data;
990         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
991         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
992                 return IRQ_NONE;
993         return IRQ_WAKE_THREAD;
994 }
995
996 /*
997  * Returns 0 on success.  If the result is negative, it's a Linux error code;
998  * if the result is positive, it's an NVM Express status code
999  */
1000 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1001                 void *buffer, void __user *ubuffer, unsigned bufflen,
1002                 u32 *result, unsigned timeout)
1003 {
1004         bool write = cmd->common.opcode & 1;
1005         struct bio *bio = NULL;
1006         struct request *req;
1007         int ret;
1008
1009         req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
1010         if (IS_ERR(req))
1011                 return PTR_ERR(req);
1012
1013         req->cmd_type = REQ_TYPE_DRV_PRIV;
1014         req->cmd_flags |= REQ_FAILFAST_DRIVER;
1015         req->__data_len = 0;
1016         req->__sector = (sector_t) -1;
1017         req->bio = req->biotail = NULL;
1018
1019         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1020
1021         req->cmd = (unsigned char *)cmd;
1022         req->cmd_len = sizeof(struct nvme_command);
1023         req->special = (void *)0;
1024
1025         if (buffer && bufflen) {
1026                 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1027                 if (ret)
1028                         goto out;
1029         } else if (ubuffer && bufflen) {
1030                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1031                 if (ret)
1032                         goto out;
1033                 bio = req->bio;
1034         }
1035
1036         blk_execute_rq(req->q, NULL, req, 0);
1037         if (bio)
1038                 blk_rq_unmap_user(bio);
1039         if (result)
1040                 *result = (u32)(uintptr_t)req->special;
1041         ret = req->errors;
1042  out:
1043         blk_mq_free_request(req);
1044         return ret;
1045 }
1046
1047 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1048                 void *buffer, unsigned bufflen)
1049 {
1050         return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
1051 }
1052
1053 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1054 {
1055         struct nvme_queue *nvmeq = dev->queues[0];
1056         struct nvme_command c;
1057         struct nvme_cmd_info *cmd_info;
1058         struct request *req;
1059
1060         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
1061         if (IS_ERR(req))
1062                 return PTR_ERR(req);
1063
1064         req->cmd_flags |= REQ_NO_TIMEOUT;
1065         cmd_info = blk_mq_rq_to_pdu(req);
1066         nvme_set_info(cmd_info, NULL, async_req_completion);
1067
1068         memset(&c, 0, sizeof(c));
1069         c.common.opcode = nvme_admin_async_event;
1070         c.common.command_id = req->tag;
1071
1072         blk_mq_free_request(req);
1073         return __nvme_submit_cmd(nvmeq, &c);
1074 }
1075
1076 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
1077                         struct nvme_command *cmd,
1078                         struct async_cmd_info *cmdinfo, unsigned timeout)
1079 {
1080         struct nvme_queue *nvmeq = dev->queues[0];
1081         struct request *req;
1082         struct nvme_cmd_info *cmd_rq;
1083
1084         req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
1085         if (IS_ERR(req))
1086                 return PTR_ERR(req);
1087
1088         req->timeout = timeout;
1089         cmd_rq = blk_mq_rq_to_pdu(req);
1090         cmdinfo->req = req;
1091         nvme_set_info(cmd_rq, cmdinfo, async_completion);
1092         cmdinfo->status = -EINTR;
1093
1094         cmd->common.command_id = req->tag;
1095
1096         return nvme_submit_cmd(nvmeq, cmd);
1097 }
1098
1099 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1100 {
1101         struct nvme_command c;
1102
1103         memset(&c, 0, sizeof(c));
1104         c.delete_queue.opcode = opcode;
1105         c.delete_queue.qid = cpu_to_le16(id);
1106
1107         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1108 }
1109
1110 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1111                                                 struct nvme_queue *nvmeq)
1112 {
1113         struct nvme_command c;
1114         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1115
1116         /*
1117          * Note: we (ab)use the fact the the prp fields survive if no data
1118          * is attached to the request.
1119          */
1120         memset(&c, 0, sizeof(c));
1121         c.create_cq.opcode = nvme_admin_create_cq;
1122         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1123         c.create_cq.cqid = cpu_to_le16(qid);
1124         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1125         c.create_cq.cq_flags = cpu_to_le16(flags);
1126         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1127
1128         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1129 }
1130
1131 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1132                                                 struct nvme_queue *nvmeq)
1133 {
1134         struct nvme_command c;
1135         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1136
1137         /*
1138          * Note: we (ab)use the fact the the prp fields survive if no data
1139          * is attached to the request.
1140          */
1141         memset(&c, 0, sizeof(c));
1142         c.create_sq.opcode = nvme_admin_create_sq;
1143         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1144         c.create_sq.sqid = cpu_to_le16(qid);
1145         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1146         c.create_sq.sq_flags = cpu_to_le16(flags);
1147         c.create_sq.cqid = cpu_to_le16(qid);
1148
1149         return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
1150 }
1151
1152 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1153 {
1154         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1155 }
1156
1157 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1158 {
1159         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1160 }
1161
1162 int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
1163 {
1164         struct nvme_command c = { };
1165         int error;
1166
1167         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1168         c.identify.opcode = nvme_admin_identify;
1169         c.identify.cns = cpu_to_le32(1);
1170
1171         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1172         if (!*id)
1173                 return -ENOMEM;
1174
1175         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1176                         sizeof(struct nvme_id_ctrl));
1177         if (error)
1178                 kfree(*id);
1179         return error;
1180 }
1181
1182 int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1183                 struct nvme_id_ns **id)
1184 {
1185         struct nvme_command c = { };
1186         int error;
1187
1188         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1189         c.identify.opcode = nvme_admin_identify,
1190         c.identify.nsid = cpu_to_le32(nsid),
1191
1192         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1193         if (!*id)
1194                 return -ENOMEM;
1195
1196         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1197                         sizeof(struct nvme_id_ns));
1198         if (error)
1199                 kfree(*id);
1200         return error;
1201 }
1202
1203 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1204                                         dma_addr_t dma_addr, u32 *result)
1205 {
1206         struct nvme_command c;
1207
1208         memset(&c, 0, sizeof(c));
1209         c.features.opcode = nvme_admin_get_features;
1210         c.features.nsid = cpu_to_le32(nsid);
1211         c.features.prp1 = cpu_to_le64(dma_addr);
1212         c.features.fid = cpu_to_le32(fid);
1213
1214         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1215                         result, 0);
1216 }
1217
1218 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1219                                         dma_addr_t dma_addr, u32 *result)
1220 {
1221         struct nvme_command c;
1222
1223         memset(&c, 0, sizeof(c));
1224         c.features.opcode = nvme_admin_set_features;
1225         c.features.prp1 = cpu_to_le64(dma_addr);
1226         c.features.fid = cpu_to_le32(fid);
1227         c.features.dword11 = cpu_to_le32(dword11);
1228
1229         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1230                         result, 0);
1231 }
1232
1233 int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1234 {
1235         struct nvme_command c = { };
1236         int error;
1237
1238         c.common.opcode = nvme_admin_get_log_page,
1239         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1240         c.common.cdw10[0] = cpu_to_le32(
1241                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1242                          NVME_LOG_SMART),
1243
1244         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1245         if (!*log)
1246                 return -ENOMEM;
1247
1248         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1249                         sizeof(struct nvme_smart_log));
1250         if (error)
1251                 kfree(*log);
1252         return error;
1253 }
1254
1255 /**
1256  * nvme_abort_req - Attempt aborting a request
1257  *
1258  * Schedule controller reset if the command was already aborted once before and
1259  * still hasn't been returned to the driver, or if this is the admin queue.
1260  */
1261 static void nvme_abort_req(struct request *req)
1262 {
1263         struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1264         struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1265         struct nvme_dev *dev = nvmeq->dev;
1266         struct request *abort_req;
1267         struct nvme_cmd_info *abort_cmd;
1268         struct nvme_command cmd;
1269
1270         if (!nvmeq->qid || cmd_rq->aborted) {
1271                 unsigned long flags;
1272
1273                 spin_lock_irqsave(&dev_list_lock, flags);
1274                 if (work_busy(&dev->reset_work))
1275                         goto out;
1276                 list_del_init(&dev->node);
1277                 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
1278                                                         req->tag, nvmeq->qid);
1279                 dev->reset_workfn = nvme_reset_failed_dev;
1280                 queue_work(nvme_workq, &dev->reset_work);
1281  out:
1282                 spin_unlock_irqrestore(&dev_list_lock, flags);
1283                 return;
1284         }
1285
1286         if (!dev->abort_limit)
1287                 return;
1288
1289         abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1290                                                                         false);
1291         if (IS_ERR(abort_req))
1292                 return;
1293
1294         abort_cmd = blk_mq_rq_to_pdu(abort_req);
1295         nvme_set_info(abort_cmd, abort_req, abort_completion);
1296
1297         memset(&cmd, 0, sizeof(cmd));
1298         cmd.abort.opcode = nvme_admin_abort_cmd;
1299         cmd.abort.cid = req->tag;
1300         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1301         cmd.abort.command_id = abort_req->tag;
1302
1303         --dev->abort_limit;
1304         cmd_rq->aborted = 1;
1305
1306         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1307                                                         nvmeq->qid);
1308         if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1309                 dev_warn(nvmeq->q_dmadev,
1310                                 "Could not abort I/O %d QID %d",
1311                                 req->tag, nvmeq->qid);
1312                 blk_mq_free_request(abort_req);
1313         }
1314 }
1315
1316 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1317 {
1318         struct nvme_queue *nvmeq = data;
1319         void *ctx;
1320         nvme_completion_fn fn;
1321         struct nvme_cmd_info *cmd;
1322         struct nvme_completion cqe;
1323
1324         if (!blk_mq_request_started(req))
1325                 return;
1326
1327         cmd = blk_mq_rq_to_pdu(req);
1328
1329         if (cmd->ctx == CMD_CTX_CANCELLED)
1330                 return;
1331
1332         if (blk_queue_dying(req->q))
1333                 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1334         else
1335                 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1336
1337
1338         dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1339                                                 req->tag, nvmeq->qid);
1340         ctx = cancel_cmd_info(cmd, &fn);
1341         fn(nvmeq, ctx, &cqe);
1342 }
1343
1344 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1345 {
1346         struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1347         struct nvme_queue *nvmeq = cmd->nvmeq;
1348
1349         dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1350                                                         nvmeq->qid);
1351         spin_lock_irq(&nvmeq->q_lock);
1352         nvme_abort_req(req);
1353         spin_unlock_irq(&nvmeq->q_lock);
1354
1355         /*
1356          * The aborted req will be completed on receiving the abort req.
1357          * We enable the timer again. If hit twice, it'll cause a device reset,
1358          * as the device then is in a faulty state.
1359          */
1360         return BLK_EH_RESET_TIMER;
1361 }
1362
1363 static void nvme_free_queue(struct nvme_queue *nvmeq)
1364 {
1365         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1366                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1367         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1368                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1369         kfree(nvmeq);
1370 }
1371
1372 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1373 {
1374         int i;
1375
1376         for (i = dev->queue_count - 1; i >= lowest; i--) {
1377                 struct nvme_queue *nvmeq = dev->queues[i];
1378                 dev->queue_count--;
1379                 dev->queues[i] = NULL;
1380                 nvme_free_queue(nvmeq);
1381         }
1382 }
1383
1384 /**
1385  * nvme_suspend_queue - put queue into suspended state
1386  * @nvmeq - queue to suspend
1387  */
1388 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1389 {
1390         int vector;
1391
1392         spin_lock_irq(&nvmeq->q_lock);
1393         if (nvmeq->cq_vector == -1) {
1394                 spin_unlock_irq(&nvmeq->q_lock);
1395                 return 1;
1396         }
1397         vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1398         nvmeq->dev->online_queues--;
1399         nvmeq->cq_vector = -1;
1400         spin_unlock_irq(&nvmeq->q_lock);
1401
1402         if (!nvmeq->qid && nvmeq->dev->admin_q)
1403                 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1404
1405         irq_set_affinity_hint(vector, NULL);
1406         free_irq(vector, nvmeq);
1407
1408         return 0;
1409 }
1410
1411 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1412 {
1413         spin_lock_irq(&nvmeq->q_lock);
1414         if (nvmeq->tags && *nvmeq->tags)
1415                 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1416         spin_unlock_irq(&nvmeq->q_lock);
1417 }
1418
1419 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1420 {
1421         struct nvme_queue *nvmeq = dev->queues[qid];
1422
1423         if (!nvmeq)
1424                 return;
1425         if (nvme_suspend_queue(nvmeq))
1426                 return;
1427
1428         /* Don't tell the adapter to delete the admin queue.
1429          * Don't tell a removed adapter to delete IO queues. */
1430         if (qid && readl(&dev->bar->csts) != -1) {
1431                 adapter_delete_sq(dev, qid);
1432                 adapter_delete_cq(dev, qid);
1433         }
1434
1435         spin_lock_irq(&nvmeq->q_lock);
1436         nvme_process_cq(nvmeq);
1437         spin_unlock_irq(&nvmeq->q_lock);
1438 }
1439
1440 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1441                                                         int depth)
1442 {
1443         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1444         if (!nvmeq)
1445                 return NULL;
1446
1447         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1448                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1449         if (!nvmeq->cqes)
1450                 goto free_nvmeq;
1451
1452         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1453                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1454         if (!nvmeq->sq_cmds)
1455                 goto free_cqdma;
1456
1457         nvmeq->q_dmadev = dev->dev;
1458         nvmeq->dev = dev;
1459         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1460                         dev->instance, qid);
1461         spin_lock_init(&nvmeq->q_lock);
1462         nvmeq->cq_head = 0;
1463         nvmeq->cq_phase = 1;
1464         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1465         nvmeq->q_depth = depth;
1466         nvmeq->qid = qid;
1467         nvmeq->cq_vector = -1;
1468         dev->queues[qid] = nvmeq;
1469
1470         /* make sure queue descriptor is set before queue count, for kthread */
1471         mb();
1472         dev->queue_count++;
1473
1474         return nvmeq;
1475
1476  free_cqdma:
1477         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1478                                                         nvmeq->cq_dma_addr);
1479  free_nvmeq:
1480         kfree(nvmeq);
1481         return NULL;
1482 }
1483
1484 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1485                                                         const char *name)
1486 {
1487         if (use_threaded_interrupts)
1488                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1489                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1490                                         name, nvmeq);
1491         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1492                                 IRQF_SHARED, name, nvmeq);
1493 }
1494
1495 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1496 {
1497         struct nvme_dev *dev = nvmeq->dev;
1498
1499         spin_lock_irq(&nvmeq->q_lock);
1500         nvmeq->sq_tail = 0;
1501         nvmeq->cq_head = 0;
1502         nvmeq->cq_phase = 1;
1503         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1504         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1505         dev->online_queues++;
1506         spin_unlock_irq(&nvmeq->q_lock);
1507 }
1508
1509 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1510 {
1511         struct nvme_dev *dev = nvmeq->dev;
1512         int result;
1513
1514         nvmeq->cq_vector = qid - 1;
1515         result = adapter_alloc_cq(dev, qid, nvmeq);
1516         if (result < 0)
1517                 return result;
1518
1519         result = adapter_alloc_sq(dev, qid, nvmeq);
1520         if (result < 0)
1521                 goto release_cq;
1522
1523         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1524         if (result < 0)
1525                 goto release_sq;
1526
1527         nvme_init_queue(nvmeq, qid);
1528         return result;
1529
1530  release_sq:
1531         adapter_delete_sq(dev, qid);
1532  release_cq:
1533         adapter_delete_cq(dev, qid);
1534         return result;
1535 }
1536
1537 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1538 {
1539         unsigned long timeout;
1540         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1541
1542         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1543
1544         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1545                 msleep(100);
1546                 if (fatal_signal_pending(current))
1547                         return -EINTR;
1548                 if (time_after(jiffies, timeout)) {
1549                         dev_err(dev->dev,
1550                                 "Device not ready; aborting %s\n", enabled ?
1551                                                 "initialisation" : "reset");
1552                         return -ENODEV;
1553                 }
1554         }
1555
1556         return 0;
1557 }
1558
1559 /*
1560  * If the device has been passed off to us in an enabled state, just clear
1561  * the enabled bit.  The spec says we should set the 'shutdown notification
1562  * bits', but doing so may cause the device to complete commands to the
1563  * admin queue ... and we don't know what memory that might be pointing at!
1564  */
1565 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1566 {
1567         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1568         dev->ctrl_config &= ~NVME_CC_ENABLE;
1569         writel(dev->ctrl_config, &dev->bar->cc);
1570
1571         return nvme_wait_ready(dev, cap, false);
1572 }
1573
1574 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1575 {
1576         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1577         dev->ctrl_config |= NVME_CC_ENABLE;
1578         writel(dev->ctrl_config, &dev->bar->cc);
1579
1580         return nvme_wait_ready(dev, cap, true);
1581 }
1582
1583 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1584 {
1585         unsigned long timeout;
1586
1587         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1588         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1589
1590         writel(dev->ctrl_config, &dev->bar->cc);
1591
1592         timeout = SHUTDOWN_TIMEOUT + jiffies;
1593         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1594                                                         NVME_CSTS_SHST_CMPLT) {
1595                 msleep(100);
1596                 if (fatal_signal_pending(current))
1597                         return -EINTR;
1598                 if (time_after(jiffies, timeout)) {
1599                         dev_err(dev->dev,
1600                                 "Device shutdown incomplete; abort shutdown\n");
1601                         return -ENODEV;
1602                 }
1603         }
1604
1605         return 0;
1606 }
1607
1608 static struct blk_mq_ops nvme_mq_admin_ops = {
1609         .queue_rq       = nvme_queue_rq,
1610         .map_queue      = blk_mq_map_queue,
1611         .init_hctx      = nvme_admin_init_hctx,
1612         .exit_hctx      = nvme_admin_exit_hctx,
1613         .init_request   = nvme_admin_init_request,
1614         .timeout        = nvme_timeout,
1615 };
1616
1617 static struct blk_mq_ops nvme_mq_ops = {
1618         .queue_rq       = nvme_queue_rq,
1619         .map_queue      = blk_mq_map_queue,
1620         .init_hctx      = nvme_init_hctx,
1621         .init_request   = nvme_init_request,
1622         .timeout        = nvme_timeout,
1623 };
1624
1625 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1626 {
1627         if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1628                 blk_cleanup_queue(dev->admin_q);
1629                 blk_mq_free_tag_set(&dev->admin_tagset);
1630         }
1631 }
1632
1633 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1634 {
1635         if (!dev->admin_q) {
1636                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1637                 dev->admin_tagset.nr_hw_queues = 1;
1638                 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1639                 dev->admin_tagset.reserved_tags = 1;
1640                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1641                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1642                 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1643                 dev->admin_tagset.driver_data = dev;
1644
1645                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1646                         return -ENOMEM;
1647
1648                 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1649                 if (IS_ERR(dev->admin_q)) {
1650                         blk_mq_free_tag_set(&dev->admin_tagset);
1651                         return -ENOMEM;
1652                 }
1653                 if (!blk_get_queue(dev->admin_q)) {
1654                         nvme_dev_remove_admin(dev);
1655                         dev->admin_q = NULL;
1656                         return -ENODEV;
1657                 }
1658         } else
1659                 blk_mq_unfreeze_queue(dev->admin_q);
1660
1661         return 0;
1662 }
1663
1664 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1665 {
1666         int result;
1667         u32 aqa;
1668         u64 cap = readq(&dev->bar->cap);
1669         struct nvme_queue *nvmeq;
1670         unsigned page_shift = PAGE_SHIFT;
1671         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1672         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1673
1674         if (page_shift < dev_page_min) {
1675                 dev_err(dev->dev,
1676                                 "Minimum device page size (%u) too large for "
1677                                 "host (%u)\n", 1 << dev_page_min,
1678                                 1 << page_shift);
1679                 return -ENODEV;
1680         }
1681         if (page_shift > dev_page_max) {
1682                 dev_info(dev->dev,
1683                                 "Device maximum page size (%u) smaller than "
1684                                 "host (%u); enabling work-around\n",
1685                                 1 << dev_page_max, 1 << page_shift);
1686                 page_shift = dev_page_max;
1687         }
1688
1689         result = nvme_disable_ctrl(dev, cap);
1690         if (result < 0)
1691                 return result;
1692
1693         nvmeq = dev->queues[0];
1694         if (!nvmeq) {
1695                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1696                 if (!nvmeq)
1697                         return -ENOMEM;
1698         }
1699
1700         aqa = nvmeq->q_depth - 1;
1701         aqa |= aqa << 16;
1702
1703         dev->page_size = 1 << page_shift;
1704
1705         dev->ctrl_config = NVME_CC_CSS_NVM;
1706         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1707         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1708         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1709
1710         writel(aqa, &dev->bar->aqa);
1711         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1712         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1713
1714         result = nvme_enable_ctrl(dev, cap);
1715         if (result)
1716                 goto free_nvmeq;
1717
1718         nvmeq->cq_vector = 0;
1719         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1720         if (result) {
1721                 nvmeq->cq_vector = -1;
1722                 goto free_nvmeq;
1723         }
1724
1725         return result;
1726
1727  free_nvmeq:
1728         nvme_free_queues(dev, 0);
1729         return result;
1730 }
1731
1732 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1733 {
1734         struct nvme_dev *dev = ns->dev;
1735         struct nvme_user_io io;
1736         struct nvme_command c;
1737         unsigned length, meta_len;
1738         int status, write;
1739         dma_addr_t meta_dma = 0;
1740         void *meta = NULL;
1741         void __user *metadata;
1742
1743         if (copy_from_user(&io, uio, sizeof(io)))
1744                 return -EFAULT;
1745
1746         switch (io.opcode) {
1747         case nvme_cmd_write:
1748         case nvme_cmd_read:
1749         case nvme_cmd_compare:
1750                 break;
1751         default:
1752                 return -EINVAL;
1753         }
1754
1755         length = (io.nblocks + 1) << ns->lba_shift;
1756         meta_len = (io.nblocks + 1) * ns->ms;
1757         metadata = (void __user *)(unsigned long)io.metadata;
1758         write = io.opcode & 1;
1759
1760         if (ns->ext) {
1761                 length += meta_len;
1762                 meta_len = 0;
1763         }
1764         if (meta_len) {
1765                 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1766                         return -EINVAL;
1767
1768                 meta = dma_alloc_coherent(dev->dev, meta_len,
1769                                                 &meta_dma, GFP_KERNEL);
1770
1771                 if (!meta) {
1772                         status = -ENOMEM;
1773                         goto unmap;
1774                 }
1775                 if (write) {
1776                         if (copy_from_user(meta, metadata, meta_len)) {
1777                                 status = -EFAULT;
1778                                 goto unmap;
1779                         }
1780                 }
1781         }
1782
1783         memset(&c, 0, sizeof(c));
1784         c.rw.opcode = io.opcode;
1785         c.rw.flags = io.flags;
1786         c.rw.nsid = cpu_to_le32(ns->ns_id);
1787         c.rw.slba = cpu_to_le64(io.slba);
1788         c.rw.length = cpu_to_le16(io.nblocks);
1789         c.rw.control = cpu_to_le16(io.control);
1790         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1791         c.rw.reftag = cpu_to_le32(io.reftag);
1792         c.rw.apptag = cpu_to_le16(io.apptag);
1793         c.rw.appmask = cpu_to_le16(io.appmask);
1794         c.rw.metadata = cpu_to_le64(meta_dma);
1795
1796         status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1797                         (void __user *)io.addr, length, NULL, 0);
1798  unmap:
1799         if (meta) {
1800                 if (status == NVME_SC_SUCCESS && !write) {
1801                         if (copy_to_user(metadata, meta, meta_len))
1802                                 status = -EFAULT;
1803                 }
1804                 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
1805         }
1806         return status;
1807 }
1808
1809 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1810                         struct nvme_passthru_cmd __user *ucmd)
1811 {
1812         struct nvme_passthru_cmd cmd;
1813         struct nvme_command c;
1814         unsigned timeout = 0;
1815         int status;
1816
1817         if (!capable(CAP_SYS_ADMIN))
1818                 return -EACCES;
1819         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1820                 return -EFAULT;
1821
1822         memset(&c, 0, sizeof(c));
1823         c.common.opcode = cmd.opcode;
1824         c.common.flags = cmd.flags;
1825         c.common.nsid = cpu_to_le32(cmd.nsid);
1826         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1827         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1828         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1829         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1830         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1831         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1832         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1833         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1834
1835         if (cmd.timeout_ms)
1836                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1837
1838         status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
1839                         NULL, (void __user *)cmd.addr, cmd.data_len,
1840                         &cmd.result, timeout);
1841         if (status >= 0) {
1842                 if (put_user(cmd.result, &ucmd->result))
1843                         return -EFAULT;
1844         }
1845
1846         return status;
1847 }
1848
1849 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1850                                                         unsigned long arg)
1851 {
1852         struct nvme_ns *ns = bdev->bd_disk->private_data;
1853
1854         switch (cmd) {
1855         case NVME_IOCTL_ID:
1856                 force_successful_syscall_return();
1857                 return ns->ns_id;
1858         case NVME_IOCTL_ADMIN_CMD:
1859                 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1860         case NVME_IOCTL_IO_CMD:
1861                 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1862         case NVME_IOCTL_SUBMIT_IO:
1863                 return nvme_submit_io(ns, (void __user *)arg);
1864         case SG_GET_VERSION_NUM:
1865                 return nvme_sg_get_version_num((void __user *)arg);
1866         case SG_IO:
1867                 return nvme_sg_io(ns, (void __user *)arg);
1868         default:
1869                 return -ENOTTY;
1870         }
1871 }
1872
1873 #ifdef CONFIG_COMPAT
1874 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1875                                         unsigned int cmd, unsigned long arg)
1876 {
1877         switch (cmd) {
1878         case SG_IO:
1879                 return -ENOIOCTLCMD;
1880         }
1881         return nvme_ioctl(bdev, mode, cmd, arg);
1882 }
1883 #else
1884 #define nvme_compat_ioctl       NULL
1885 #endif
1886
1887 static int nvme_open(struct block_device *bdev, fmode_t mode)
1888 {
1889         int ret = 0;
1890         struct nvme_ns *ns;
1891
1892         spin_lock(&dev_list_lock);
1893         ns = bdev->bd_disk->private_data;
1894         if (!ns)
1895                 ret = -ENXIO;
1896         else if (!kref_get_unless_zero(&ns->dev->kref))
1897                 ret = -ENXIO;
1898         spin_unlock(&dev_list_lock);
1899
1900         return ret;
1901 }
1902
1903 static void nvme_free_dev(struct kref *kref);
1904
1905 static void nvme_release(struct gendisk *disk, fmode_t mode)
1906 {
1907         struct nvme_ns *ns = disk->private_data;
1908         struct nvme_dev *dev = ns->dev;
1909
1910         kref_put(&dev->kref, nvme_free_dev);
1911 }
1912
1913 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1914 {
1915         /* some standard values */
1916         geo->heads = 1 << 6;
1917         geo->sectors = 1 << 5;
1918         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1919         return 0;
1920 }
1921
1922 static void nvme_config_discard(struct nvme_ns *ns)
1923 {
1924         u32 logical_block_size = queue_logical_block_size(ns->queue);
1925         ns->queue->limits.discard_zeroes_data = 0;
1926         ns->queue->limits.discard_alignment = logical_block_size;
1927         ns->queue->limits.discard_granularity = logical_block_size;
1928         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
1929         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1930 }
1931
1932 static int nvme_revalidate_disk(struct gendisk *disk)
1933 {
1934         struct nvme_ns *ns = disk->private_data;
1935         struct nvme_dev *dev = ns->dev;
1936         struct nvme_id_ns *id;
1937         u8 lbaf, pi_type;
1938         u16 old_ms;
1939         unsigned short bs;
1940
1941         if (nvme_identify_ns(dev, ns->ns_id, &id)) {
1942                 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
1943                                                 dev->instance, ns->ns_id);
1944                 return -ENODEV;
1945         }
1946         if (id->ncap == 0) {
1947                 kfree(id);
1948                 return -ENODEV;
1949         }
1950
1951         old_ms = ns->ms;
1952         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1953         ns->lba_shift = id->lbaf[lbaf].ds;
1954         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1955         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1956
1957         /*
1958          * If identify namespace failed, use default 512 byte block size so
1959          * block layer can use before failing read/write for 0 capacity.
1960          */
1961         if (ns->lba_shift == 0)
1962                 ns->lba_shift = 9;
1963         bs = 1 << ns->lba_shift;
1964
1965         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1966         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1967                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
1968
1969         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1970                                 ns->ms != old_ms ||
1971                                 bs != queue_logical_block_size(disk->queue) ||
1972                                 (ns->ms && ns->ext)))
1973                 blk_integrity_unregister(disk);
1974
1975         ns->pi_type = pi_type;
1976         blk_queue_logical_block_size(ns->queue, bs);
1977
1978         if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
1979                                                                 !ns->ext)
1980                 nvme_init_integrity(ns);
1981
1982         if (ns->ms && !blk_get_integrity(disk))
1983                 set_capacity(disk, 0);
1984         else
1985                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1986
1987         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1988                 nvme_config_discard(ns);
1989
1990         kfree(id);
1991         return 0;
1992 }
1993
1994 static const struct block_device_operations nvme_fops = {
1995         .owner          = THIS_MODULE,
1996         .ioctl          = nvme_ioctl,
1997         .compat_ioctl   = nvme_compat_ioctl,
1998         .open           = nvme_open,
1999         .release        = nvme_release,
2000         .getgeo         = nvme_getgeo,
2001         .revalidate_disk= nvme_revalidate_disk,
2002 };
2003
2004 static int nvme_kthread(void *data)
2005 {
2006         struct nvme_dev *dev, *next;
2007
2008         while (!kthread_should_stop()) {
2009                 set_current_state(TASK_INTERRUPTIBLE);
2010                 spin_lock(&dev_list_lock);
2011                 list_for_each_entry_safe(dev, next, &dev_list, node) {
2012                         int i;
2013                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
2014                                 if (work_busy(&dev->reset_work))
2015                                         continue;
2016                                 list_del_init(&dev->node);
2017                                 dev_warn(dev->dev,
2018                                         "Failed status: %x, reset controller\n",
2019                                         readl(&dev->bar->csts));
2020                                 dev->reset_workfn = nvme_reset_failed_dev;
2021                                 queue_work(nvme_workq, &dev->reset_work);
2022                                 continue;
2023                         }
2024                         for (i = 0; i < dev->queue_count; i++) {
2025                                 struct nvme_queue *nvmeq = dev->queues[i];
2026                                 if (!nvmeq)
2027                                         continue;
2028                                 spin_lock_irq(&nvmeq->q_lock);
2029                                 nvme_process_cq(nvmeq);
2030
2031                                 while ((i == 0) && (dev->event_limit > 0)) {
2032                                         if (nvme_submit_async_admin_req(dev))
2033                                                 break;
2034                                         dev->event_limit--;
2035                                 }
2036                                 spin_unlock_irq(&nvmeq->q_lock);
2037                         }
2038                 }
2039                 spin_unlock(&dev_list_lock);
2040                 schedule_timeout(round_jiffies_relative(HZ));
2041         }
2042         return 0;
2043 }
2044
2045 static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
2046 {
2047         struct nvme_ns *ns;
2048         struct gendisk *disk;
2049         int node = dev_to_node(dev->dev);
2050
2051         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2052         if (!ns)
2053                 return;
2054
2055         ns->queue = blk_mq_init_queue(&dev->tagset);
2056         if (IS_ERR(ns->queue))
2057                 goto out_free_ns;
2058         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2059         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2060         queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
2061         ns->dev = dev;
2062         ns->queue->queuedata = ns;
2063
2064         disk = alloc_disk_node(0, node);
2065         if (!disk)
2066                 goto out_free_queue;
2067
2068         ns->ns_id = nsid;
2069         ns->disk = disk;
2070         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2071         list_add_tail(&ns->list, &dev->namespaces);
2072
2073         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2074         if (dev->max_hw_sectors)
2075                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
2076         if (dev->stripe_size)
2077                 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
2078         if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2079                 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
2080
2081         disk->major = nvme_major;
2082         disk->first_minor = 0;
2083         disk->fops = &nvme_fops;
2084         disk->private_data = ns;
2085         disk->queue = ns->queue;
2086         disk->driverfs_dev = dev->device;
2087         disk->flags = GENHD_FL_EXT_DEVT;
2088         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
2089
2090         /*
2091          * Initialize capacity to 0 until we establish the namespace format and
2092          * setup integrity extentions if necessary. The revalidate_disk after
2093          * add_disk allows the driver to register with integrity if the format
2094          * requires it.
2095          */
2096         set_capacity(disk, 0);
2097         if (nvme_revalidate_disk(ns->disk))
2098                 goto out_free_disk;
2099
2100         add_disk(ns->disk);
2101         if (ns->ms) {
2102                 struct block_device *bd = bdget_disk(ns->disk, 0);
2103                 if (!bd)
2104                         return;
2105                 if (blkdev_get(bd, FMODE_READ, NULL)) {
2106                         bdput(bd);
2107                         return;
2108                 }
2109                 blkdev_reread_part(bd);
2110                 blkdev_put(bd, FMODE_READ);
2111         }
2112         return;
2113  out_free_disk:
2114         kfree(disk);
2115         list_del(&ns->list);
2116  out_free_queue:
2117         blk_cleanup_queue(ns->queue);
2118  out_free_ns:
2119         kfree(ns);
2120 }
2121
2122 static void nvme_create_io_queues(struct nvme_dev *dev)
2123 {
2124         unsigned i;
2125
2126         for (i = dev->queue_count; i <= dev->max_qid; i++)
2127                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2128                         break;
2129
2130         for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2131                 if (nvme_create_queue(dev->queues[i], i))
2132                         break;
2133 }
2134
2135 static int set_queue_count(struct nvme_dev *dev, int count)
2136 {
2137         int status;
2138         u32 result;
2139         u32 q_count = (count - 1) | ((count - 1) << 16);
2140
2141         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2142                                                                 &result);
2143         if (status < 0)
2144                 return status;
2145         if (status > 0) {
2146                 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
2147                 return 0;
2148         }
2149         return min(result & 0xffff, result >> 16) + 1;
2150 }
2151
2152 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2153 {
2154         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2155 }
2156
2157 static int nvme_setup_io_queues(struct nvme_dev *dev)
2158 {
2159         struct nvme_queue *adminq = dev->queues[0];
2160         struct pci_dev *pdev = to_pci_dev(dev->dev);
2161         int result, i, vecs, nr_io_queues, size;
2162
2163         nr_io_queues = num_possible_cpus();
2164         result = set_queue_count(dev, nr_io_queues);
2165         if (result <= 0)
2166                 return result;
2167         if (result < nr_io_queues)
2168                 nr_io_queues = result;
2169
2170         size = db_bar_size(dev, nr_io_queues);
2171         if (size > 8192) {
2172                 iounmap(dev->bar);
2173                 do {
2174                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2175                         if (dev->bar)
2176                                 break;
2177                         if (!--nr_io_queues)
2178                                 return -ENOMEM;
2179                         size = db_bar_size(dev, nr_io_queues);
2180                 } while (1);
2181                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2182                 adminq->q_db = dev->dbs;
2183         }
2184
2185         /* Deregister the admin queue's interrupt */
2186         free_irq(dev->entry[0].vector, adminq);
2187
2188         /*
2189          * If we enable msix early due to not intx, disable it again before
2190          * setting up the full range we need.
2191          */
2192         if (!pdev->irq)
2193                 pci_disable_msix(pdev);
2194
2195         for (i = 0; i < nr_io_queues; i++)
2196                 dev->entry[i].entry = i;
2197         vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2198         if (vecs < 0) {
2199                 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2200                 if (vecs < 0) {
2201                         vecs = 1;
2202                 } else {
2203                         for (i = 0; i < vecs; i++)
2204                                 dev->entry[i].vector = i + pdev->irq;
2205                 }
2206         }
2207
2208         /*
2209          * Should investigate if there's a performance win from allocating
2210          * more queues than interrupt vectors; it might allow the submission
2211          * path to scale better, even if the receive path is limited by the
2212          * number of interrupts.
2213          */
2214         nr_io_queues = vecs;
2215         dev->max_qid = nr_io_queues;
2216
2217         result = queue_request_irq(dev, adminq, adminq->irqname);
2218         if (result) {
2219                 adminq->cq_vector = -1;
2220                 goto free_queues;
2221         }
2222
2223         /* Free previously allocated queues that are no longer usable */
2224         nvme_free_queues(dev, nr_io_queues + 1);
2225         nvme_create_io_queues(dev);
2226
2227         return 0;
2228
2229  free_queues:
2230         nvme_free_queues(dev, 1);
2231         return result;
2232 }
2233
2234 static void nvme_free_namespace(struct nvme_ns *ns)
2235 {
2236         list_del(&ns->list);
2237
2238         spin_lock(&dev_list_lock);
2239         ns->disk->private_data = NULL;
2240         spin_unlock(&dev_list_lock);
2241
2242         put_disk(ns->disk);
2243         kfree(ns);
2244 }
2245
2246 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2247 {
2248         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2249         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2250
2251         return nsa->ns_id - nsb->ns_id;
2252 }
2253
2254 static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2255 {
2256         struct nvme_ns *ns;
2257
2258         list_for_each_entry(ns, &dev->namespaces, list) {
2259                 if (ns->ns_id == nsid)
2260                         return ns;
2261                 if (ns->ns_id > nsid)
2262                         break;
2263         }
2264         return NULL;
2265 }
2266
2267 static inline bool nvme_io_incapable(struct nvme_dev *dev)
2268 {
2269         return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2270                                                         dev->online_queues < 2);
2271 }
2272
2273 static void nvme_ns_remove(struct nvme_ns *ns)
2274 {
2275         bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2276
2277         if (kill)
2278                 blk_set_queue_dying(ns->queue);
2279         if (ns->disk->flags & GENHD_FL_UP) {
2280                 if (blk_get_integrity(ns->disk))
2281                         blk_integrity_unregister(ns->disk);
2282                 del_gendisk(ns->disk);
2283         }
2284         if (kill || !blk_queue_dying(ns->queue)) {
2285                 blk_mq_abort_requeue_list(ns->queue);
2286                 blk_cleanup_queue(ns->queue);
2287         }
2288 }
2289
2290 static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2291 {
2292         struct nvme_ns *ns, *next;
2293         unsigned i;
2294
2295         for (i = 1; i <= nn; i++) {
2296                 ns = nvme_find_ns(dev, i);
2297                 if (ns) {
2298                         if (revalidate_disk(ns->disk)) {
2299                                 nvme_ns_remove(ns);
2300                                 nvme_free_namespace(ns);
2301                         }
2302                 } else
2303                         nvme_alloc_ns(dev, i);
2304         }
2305         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2306                 if (ns->ns_id > nn) {
2307                         nvme_ns_remove(ns);
2308                         nvme_free_namespace(ns);
2309                 }
2310         }
2311         list_sort(NULL, &dev->namespaces, ns_cmp);
2312 }
2313
2314 static void nvme_dev_scan(struct work_struct *work)
2315 {
2316         struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2317         struct nvme_id_ctrl *ctrl;
2318
2319         if (!dev->tagset.tags)
2320                 return;
2321         if (nvme_identify_ctrl(dev, &ctrl))
2322                 return;
2323         nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2324         kfree(ctrl);
2325 }
2326
2327 /*
2328  * Return: error value if an error occurred setting up the queues or calling
2329  * Identify Device.  0 if these succeeded, even if adding some of the
2330  * namespaces failed.  At the moment, these failures are silent.  TBD which
2331  * failures should be reported.
2332  */
2333 static int nvme_dev_add(struct nvme_dev *dev)
2334 {
2335         struct pci_dev *pdev = to_pci_dev(dev->dev);
2336         int res;
2337         unsigned nn;
2338         struct nvme_id_ctrl *ctrl;
2339         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2340
2341         res = nvme_identify_ctrl(dev, &ctrl);
2342         if (res) {
2343                 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
2344                 return -EIO;
2345         }
2346
2347         nn = le32_to_cpup(&ctrl->nn);
2348         dev->oncs = le16_to_cpup(&ctrl->oncs);
2349         dev->abort_limit = ctrl->acl + 1;
2350         dev->vwc = ctrl->vwc;
2351         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2352         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2353         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2354         if (ctrl->mdts)
2355                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2356         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2357                         (pdev->device == 0x0953) && ctrl->vs[3]) {
2358                 unsigned int max_hw_sectors;
2359
2360                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2361                 max_hw_sectors = dev->stripe_size >> (shift - 9);
2362                 if (dev->max_hw_sectors) {
2363                         dev->max_hw_sectors = min(max_hw_sectors,
2364                                                         dev->max_hw_sectors);
2365                 } else
2366                         dev->max_hw_sectors = max_hw_sectors;
2367         }
2368         kfree(ctrl);
2369
2370         if (!dev->tagset.tags) {
2371                 dev->tagset.ops = &nvme_mq_ops;
2372                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2373                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2374                 dev->tagset.numa_node = dev_to_node(dev->dev);
2375                 dev->tagset.queue_depth =
2376                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2377                 dev->tagset.cmd_size = nvme_cmd_size(dev);
2378                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2379                 dev->tagset.driver_data = dev;
2380
2381                 if (blk_mq_alloc_tag_set(&dev->tagset))
2382                         return 0;
2383         }
2384         schedule_work(&dev->scan_work);
2385         return 0;
2386 }
2387
2388 static int nvme_dev_map(struct nvme_dev *dev)
2389 {
2390         u64 cap;
2391         int bars, result = -ENOMEM;
2392         struct pci_dev *pdev = to_pci_dev(dev->dev);
2393
2394         if (pci_enable_device_mem(pdev))
2395                 return result;
2396
2397         dev->entry[0].vector = pdev->irq;
2398         pci_set_master(pdev);
2399         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2400         if (!bars)
2401                 goto disable_pci;
2402
2403         if (pci_request_selected_regions(pdev, bars, "nvme"))
2404                 goto disable_pci;
2405
2406         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2407             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2408                 goto disable;
2409
2410         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2411         if (!dev->bar)
2412                 goto disable;
2413
2414         if (readl(&dev->bar->csts) == -1) {
2415                 result = -ENODEV;
2416                 goto unmap;
2417         }
2418
2419         /*
2420          * Some devices don't advertse INTx interrupts, pre-enable a single
2421          * MSIX vec for setup. We'll adjust this later.
2422          */
2423         if (!pdev->irq) {
2424                 result = pci_enable_msix(pdev, dev->entry, 1);
2425                 if (result < 0)
2426                         goto unmap;
2427         }
2428
2429         cap = readq(&dev->bar->cap);
2430         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2431         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2432         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2433
2434         return 0;
2435
2436  unmap:
2437         iounmap(dev->bar);
2438         dev->bar = NULL;
2439  disable:
2440         pci_release_regions(pdev);
2441  disable_pci:
2442         pci_disable_device(pdev);
2443         return result;
2444 }
2445
2446 static void nvme_dev_unmap(struct nvme_dev *dev)
2447 {
2448         struct pci_dev *pdev = to_pci_dev(dev->dev);
2449
2450         if (pdev->msi_enabled)
2451                 pci_disable_msi(pdev);
2452         else if (pdev->msix_enabled)
2453                 pci_disable_msix(pdev);
2454
2455         if (dev->bar) {
2456                 iounmap(dev->bar);
2457                 dev->bar = NULL;
2458                 pci_release_regions(pdev);
2459         }
2460
2461         if (pci_is_enabled(pdev))
2462                 pci_disable_device(pdev);
2463 }
2464
2465 struct nvme_delq_ctx {
2466         struct task_struct *waiter;
2467         struct kthread_worker *worker;
2468         atomic_t refcount;
2469 };
2470
2471 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2472 {
2473         dq->waiter = current;
2474         mb();
2475
2476         for (;;) {
2477                 set_current_state(TASK_KILLABLE);
2478                 if (!atomic_read(&dq->refcount))
2479                         break;
2480                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2481                                         fatal_signal_pending(current)) {
2482                         /*
2483                          * Disable the controller first since we can't trust it
2484                          * at this point, but leave the admin queue enabled
2485                          * until all queue deletion requests are flushed.
2486                          * FIXME: This may take a while if there are more h/w
2487                          * queues than admin tags.
2488                          */
2489                         set_current_state(TASK_RUNNING);
2490                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2491                         nvme_clear_queue(dev->queues[0]);
2492                         flush_kthread_worker(dq->worker);
2493                         nvme_disable_queue(dev, 0);
2494                         return;
2495                 }
2496         }
2497         set_current_state(TASK_RUNNING);
2498 }
2499
2500 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2501 {
2502         atomic_dec(&dq->refcount);
2503         if (dq->waiter)
2504                 wake_up_process(dq->waiter);
2505 }
2506
2507 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2508 {
2509         atomic_inc(&dq->refcount);
2510         return dq;
2511 }
2512
2513 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2514 {
2515         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2516         nvme_put_dq(dq);
2517 }
2518
2519 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2520                                                 kthread_work_func_t fn)
2521 {
2522         struct nvme_command c;
2523
2524         memset(&c, 0, sizeof(c));
2525         c.delete_queue.opcode = opcode;
2526         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2527
2528         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2529         return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2530                                                                 ADMIN_TIMEOUT);
2531 }
2532
2533 static void nvme_del_cq_work_handler(struct kthread_work *work)
2534 {
2535         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2536                                                         cmdinfo.work);
2537         nvme_del_queue_end(nvmeq);
2538 }
2539
2540 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2541 {
2542         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2543                                                 nvme_del_cq_work_handler);
2544 }
2545
2546 static void nvme_del_sq_work_handler(struct kthread_work *work)
2547 {
2548         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2549                                                         cmdinfo.work);
2550         int status = nvmeq->cmdinfo.status;
2551
2552         if (!status)
2553                 status = nvme_delete_cq(nvmeq);
2554         if (status)
2555                 nvme_del_queue_end(nvmeq);
2556 }
2557
2558 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2559 {
2560         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2561                                                 nvme_del_sq_work_handler);
2562 }
2563
2564 static void nvme_del_queue_start(struct kthread_work *work)
2565 {
2566         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2567                                                         cmdinfo.work);
2568         if (nvme_delete_sq(nvmeq))
2569                 nvme_del_queue_end(nvmeq);
2570 }
2571
2572 static void nvme_disable_io_queues(struct nvme_dev *dev)
2573 {
2574         int i;
2575         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2576         struct nvme_delq_ctx dq;
2577         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2578                                         &worker, "nvme%d", dev->instance);
2579
2580         if (IS_ERR(kworker_task)) {
2581                 dev_err(dev->dev,
2582                         "Failed to create queue del task\n");
2583                 for (i = dev->queue_count - 1; i > 0; i--)
2584                         nvme_disable_queue(dev, i);
2585                 return;
2586         }
2587
2588         dq.waiter = NULL;
2589         atomic_set(&dq.refcount, 0);
2590         dq.worker = &worker;
2591         for (i = dev->queue_count - 1; i > 0; i--) {
2592                 struct nvme_queue *nvmeq = dev->queues[i];
2593
2594                 if (nvme_suspend_queue(nvmeq))
2595                         continue;
2596                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2597                 nvmeq->cmdinfo.worker = dq.worker;
2598                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2599                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2600         }
2601         nvme_wait_dq(&dq, dev);
2602         kthread_stop(kworker_task);
2603 }
2604
2605 /*
2606 * Remove the node from the device list and check
2607 * for whether or not we need to stop the nvme_thread.
2608 */
2609 static void nvme_dev_list_remove(struct nvme_dev *dev)
2610 {
2611         struct task_struct *tmp = NULL;
2612
2613         spin_lock(&dev_list_lock);
2614         list_del_init(&dev->node);
2615         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2616                 tmp = nvme_thread;
2617                 nvme_thread = NULL;
2618         }
2619         spin_unlock(&dev_list_lock);
2620
2621         if (tmp)
2622                 kthread_stop(tmp);
2623 }
2624
2625 static void nvme_freeze_queues(struct nvme_dev *dev)
2626 {
2627         struct nvme_ns *ns;
2628
2629         list_for_each_entry(ns, &dev->namespaces, list) {
2630                 blk_mq_freeze_queue_start(ns->queue);
2631
2632                 spin_lock_irq(ns->queue->queue_lock);
2633                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2634                 spin_unlock_irq(ns->queue->queue_lock);
2635
2636                 blk_mq_cancel_requeue_work(ns->queue);
2637                 blk_mq_stop_hw_queues(ns->queue);
2638         }
2639 }
2640
2641 static void nvme_unfreeze_queues(struct nvme_dev *dev)
2642 {
2643         struct nvme_ns *ns;
2644
2645         list_for_each_entry(ns, &dev->namespaces, list) {
2646                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2647                 blk_mq_unfreeze_queue(ns->queue);
2648                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2649                 blk_mq_kick_requeue_list(ns->queue);
2650         }
2651 }
2652
2653 static void nvme_dev_shutdown(struct nvme_dev *dev)
2654 {
2655         int i;
2656         u32 csts = -1;
2657
2658         nvme_dev_list_remove(dev);
2659
2660         if (dev->bar) {
2661                 nvme_freeze_queues(dev);
2662                 csts = readl(&dev->bar->csts);
2663         }
2664         if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2665                 for (i = dev->queue_count - 1; i >= 0; i--) {
2666                         struct nvme_queue *nvmeq = dev->queues[i];
2667                         nvme_suspend_queue(nvmeq);
2668                 }
2669         } else {
2670                 nvme_disable_io_queues(dev);
2671                 nvme_shutdown_ctrl(dev);
2672                 nvme_disable_queue(dev, 0);
2673         }
2674         nvme_dev_unmap(dev);
2675
2676         for (i = dev->queue_count - 1; i >= 0; i--)
2677                 nvme_clear_queue(dev->queues[i]);
2678 }
2679
2680 static void nvme_dev_remove(struct nvme_dev *dev)
2681 {
2682         struct nvme_ns *ns;
2683
2684         list_for_each_entry(ns, &dev->namespaces, list)
2685                 nvme_ns_remove(ns);
2686 }
2687
2688 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2689 {
2690         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2691                                                 PAGE_SIZE, PAGE_SIZE, 0);
2692         if (!dev->prp_page_pool)
2693                 return -ENOMEM;
2694
2695         /* Optimisation for I/Os between 4k and 128k */
2696         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2697                                                 256, 256, 0);
2698         if (!dev->prp_small_pool) {
2699                 dma_pool_destroy(dev->prp_page_pool);
2700                 return -ENOMEM;
2701         }
2702         return 0;
2703 }
2704
2705 static void nvme_release_prp_pools(struct nvme_dev *dev)
2706 {
2707         dma_pool_destroy(dev->prp_page_pool);
2708         dma_pool_destroy(dev->prp_small_pool);
2709 }
2710
2711 static DEFINE_IDA(nvme_instance_ida);
2712
2713 static int nvme_set_instance(struct nvme_dev *dev)
2714 {
2715         int instance, error;
2716
2717         do {
2718                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2719                         return -ENODEV;
2720
2721                 spin_lock(&dev_list_lock);
2722                 error = ida_get_new(&nvme_instance_ida, &instance);
2723                 spin_unlock(&dev_list_lock);
2724         } while (error == -EAGAIN);
2725
2726         if (error)
2727                 return -ENODEV;
2728
2729         dev->instance = instance;
2730         return 0;
2731 }
2732
2733 static void nvme_release_instance(struct nvme_dev *dev)
2734 {
2735         spin_lock(&dev_list_lock);
2736         ida_remove(&nvme_instance_ida, dev->instance);
2737         spin_unlock(&dev_list_lock);
2738 }
2739
2740 static void nvme_free_namespaces(struct nvme_dev *dev)
2741 {
2742         struct nvme_ns *ns, *next;
2743
2744         list_for_each_entry_safe(ns, next, &dev->namespaces, list)
2745                 nvme_free_namespace(ns);
2746 }
2747
2748 static void nvme_free_dev(struct kref *kref)
2749 {
2750         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2751
2752         put_device(dev->dev);
2753         put_device(dev->device);
2754         nvme_free_namespaces(dev);
2755         nvme_release_instance(dev);
2756         if (dev->tagset.tags)
2757                 blk_mq_free_tag_set(&dev->tagset);
2758         if (dev->admin_q)
2759                 blk_put_queue(dev->admin_q);
2760         kfree(dev->queues);
2761         kfree(dev->entry);
2762         kfree(dev);
2763 }
2764
2765 static int nvme_dev_open(struct inode *inode, struct file *f)
2766 {
2767         struct nvme_dev *dev;
2768         int instance = iminor(inode);
2769         int ret = -ENODEV;
2770
2771         spin_lock(&dev_list_lock);
2772         list_for_each_entry(dev, &dev_list, node) {
2773                 if (dev->instance == instance) {
2774                         if (!dev->admin_q) {
2775                                 ret = -EWOULDBLOCK;
2776                                 break;
2777                         }
2778                         if (!kref_get_unless_zero(&dev->kref))
2779                                 break;
2780                         f->private_data = dev;
2781                         ret = 0;
2782                         break;
2783                 }
2784         }
2785         spin_unlock(&dev_list_lock);
2786
2787         return ret;
2788 }
2789
2790 static int nvme_dev_release(struct inode *inode, struct file *f)
2791 {
2792         struct nvme_dev *dev = f->private_data;
2793         kref_put(&dev->kref, nvme_free_dev);
2794         return 0;
2795 }
2796
2797 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2798 {
2799         struct nvme_dev *dev = f->private_data;
2800         struct nvme_ns *ns;
2801
2802         switch (cmd) {
2803         case NVME_IOCTL_ADMIN_CMD:
2804                 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2805         case NVME_IOCTL_IO_CMD:
2806                 if (list_empty(&dev->namespaces))
2807                         return -ENOTTY;
2808                 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2809                 return nvme_user_cmd(dev, ns, (void __user *)arg);
2810         case NVME_IOCTL_RESET:
2811                 dev_warn(dev->dev, "resetting controller\n");
2812                 return nvme_reset(dev);
2813         default:
2814                 return -ENOTTY;
2815         }
2816 }
2817
2818 static const struct file_operations nvme_dev_fops = {
2819         .owner          = THIS_MODULE,
2820         .open           = nvme_dev_open,
2821         .release        = nvme_dev_release,
2822         .unlocked_ioctl = nvme_dev_ioctl,
2823         .compat_ioctl   = nvme_dev_ioctl,
2824 };
2825
2826 static void nvme_set_irq_hints(struct nvme_dev *dev)
2827 {
2828         struct nvme_queue *nvmeq;
2829         int i;
2830
2831         for (i = 0; i < dev->online_queues; i++) {
2832                 nvmeq = dev->queues[i];
2833
2834                 if (!nvmeq->tags || !(*nvmeq->tags))
2835                         continue;
2836
2837                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2838                                         blk_mq_tags_cpumask(*nvmeq->tags));
2839         }
2840 }
2841
2842 static int nvme_dev_start(struct nvme_dev *dev)
2843 {
2844         int result;
2845         bool start_thread = false;
2846
2847         result = nvme_dev_map(dev);
2848         if (result)
2849                 return result;
2850
2851         result = nvme_configure_admin_queue(dev);
2852         if (result)
2853                 goto unmap;
2854
2855         spin_lock(&dev_list_lock);
2856         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2857                 start_thread = true;
2858                 nvme_thread = NULL;
2859         }
2860         list_add(&dev->node, &dev_list);
2861         spin_unlock(&dev_list_lock);
2862
2863         if (start_thread) {
2864                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2865                 wake_up_all(&nvme_kthread_wait);
2866         } else
2867                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2868
2869         if (IS_ERR_OR_NULL(nvme_thread)) {
2870                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2871                 goto disable;
2872         }
2873
2874         nvme_init_queue(dev->queues[0], 0);
2875         result = nvme_alloc_admin_tags(dev);
2876         if (result)
2877                 goto disable;
2878
2879         result = nvme_setup_io_queues(dev);
2880         if (result)
2881                 goto free_tags;
2882
2883         nvme_set_irq_hints(dev);
2884
2885         dev->event_limit = 1;
2886         return result;
2887
2888  free_tags:
2889         nvme_dev_remove_admin(dev);
2890         blk_put_queue(dev->admin_q);
2891         dev->admin_q = NULL;
2892         dev->queues[0]->tags = NULL;
2893  disable:
2894         nvme_disable_queue(dev, 0);
2895         nvme_dev_list_remove(dev);
2896  unmap:
2897         nvme_dev_unmap(dev);
2898         return result;
2899 }
2900
2901 static int nvme_remove_dead_ctrl(void *arg)
2902 {
2903         struct nvme_dev *dev = (struct nvme_dev *)arg;
2904         struct pci_dev *pdev = to_pci_dev(dev->dev);
2905
2906         if (pci_get_drvdata(pdev))
2907                 pci_stop_and_remove_bus_device_locked(pdev);
2908         kref_put(&dev->kref, nvme_free_dev);
2909         return 0;
2910 }
2911
2912 static void nvme_remove_disks(struct work_struct *ws)
2913 {
2914         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2915
2916         nvme_free_queues(dev, 1);
2917         nvme_dev_remove(dev);
2918 }
2919
2920 static int nvme_dev_resume(struct nvme_dev *dev)
2921 {
2922         int ret;
2923
2924         ret = nvme_dev_start(dev);
2925         if (ret)
2926                 return ret;
2927         if (dev->online_queues < 2) {
2928                 spin_lock(&dev_list_lock);
2929                 dev->reset_workfn = nvme_remove_disks;
2930                 queue_work(nvme_workq, &dev->reset_work);
2931                 spin_unlock(&dev_list_lock);
2932         } else {
2933                 nvme_unfreeze_queues(dev);
2934                 nvme_dev_add(dev);
2935                 nvme_set_irq_hints(dev);
2936         }
2937         return 0;
2938 }
2939
2940 static void nvme_dead_ctrl(struct nvme_dev *dev)
2941 {
2942         dev_warn(dev->dev, "Device failed to resume\n");
2943         kref_get(&dev->kref);
2944         if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2945                                                 dev->instance))) {
2946                 dev_err(dev->dev,
2947                         "Failed to start controller remove task\n");
2948                 kref_put(&dev->kref, nvme_free_dev);
2949         }
2950 }
2951
2952 static void nvme_dev_reset(struct nvme_dev *dev)
2953 {
2954         bool in_probe = work_busy(&dev->probe_work);
2955
2956         nvme_dev_shutdown(dev);
2957
2958         /* Synchronize with device probe so that work will see failure status
2959          * and exit gracefully without trying to schedule another reset */
2960         flush_work(&dev->probe_work);
2961
2962         /* Fail this device if reset occured during probe to avoid
2963          * infinite initialization loops. */
2964         if (in_probe) {
2965                 nvme_dead_ctrl(dev);
2966                 return;
2967         }
2968         /* Schedule device resume asynchronously so the reset work is available
2969          * to cleanup errors that may occur during reinitialization */
2970         schedule_work(&dev->probe_work);
2971 }
2972
2973 static void nvme_reset_failed_dev(struct work_struct *ws)
2974 {
2975         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2976         nvme_dev_reset(dev);
2977 }
2978
2979 static void nvme_reset_workfn(struct work_struct *work)
2980 {
2981         struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2982         dev->reset_workfn(work);
2983 }
2984
2985 static int nvme_reset(struct nvme_dev *dev)
2986 {
2987         int ret = -EBUSY;
2988
2989         if (!dev->admin_q || blk_queue_dying(dev->admin_q))
2990                 return -ENODEV;
2991
2992         spin_lock(&dev_list_lock);
2993         if (!work_pending(&dev->reset_work)) {
2994                 dev->reset_workfn = nvme_reset_failed_dev;
2995                 queue_work(nvme_workq, &dev->reset_work);
2996                 ret = 0;
2997         }
2998         spin_unlock(&dev_list_lock);
2999
3000         if (!ret) {
3001                 flush_work(&dev->reset_work);
3002                 flush_work(&dev->probe_work);
3003                 return 0;
3004         }
3005
3006         return ret;
3007 }
3008
3009 static ssize_t nvme_sysfs_reset(struct device *dev,
3010                                 struct device_attribute *attr, const char *buf,
3011                                 size_t count)
3012 {
3013         struct nvme_dev *ndev = dev_get_drvdata(dev);
3014         int ret;
3015
3016         ret = nvme_reset(ndev);
3017         if (ret < 0)
3018                 return ret;
3019
3020         return count;
3021 }
3022 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3023
3024 static void nvme_async_probe(struct work_struct *work);
3025 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3026 {
3027         int node, result = -ENOMEM;
3028         struct nvme_dev *dev;
3029
3030         node = dev_to_node(&pdev->dev);
3031         if (node == NUMA_NO_NODE)
3032                 set_dev_node(&pdev->dev, 0);
3033
3034         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
3035         if (!dev)
3036                 return -ENOMEM;
3037         dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3038                                                         GFP_KERNEL, node);
3039         if (!dev->entry)
3040                 goto free;
3041         dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3042                                                         GFP_KERNEL, node);
3043         if (!dev->queues)
3044                 goto free;
3045
3046         INIT_LIST_HEAD(&dev->namespaces);
3047         dev->reset_workfn = nvme_reset_failed_dev;
3048         INIT_WORK(&dev->reset_work, nvme_reset_workfn);
3049         dev->dev = get_device(&pdev->dev);
3050         pci_set_drvdata(pdev, dev);
3051         result = nvme_set_instance(dev);
3052         if (result)
3053                 goto put_pci;
3054
3055         result = nvme_setup_prp_pools(dev);
3056         if (result)
3057                 goto release;
3058
3059         kref_init(&dev->kref);
3060         dev->device = device_create(nvme_class, &pdev->dev,
3061                                 MKDEV(nvme_char_major, dev->instance),
3062                                 dev, "nvme%d", dev->instance);
3063         if (IS_ERR(dev->device)) {
3064                 result = PTR_ERR(dev->device);
3065                 goto release_pools;
3066         }
3067         get_device(dev->device);
3068         dev_set_drvdata(dev->device, dev);
3069
3070         result = device_create_file(dev->device, &dev_attr_reset_controller);
3071         if (result)
3072                 goto put_dev;
3073
3074         INIT_LIST_HEAD(&dev->node);
3075         INIT_WORK(&dev->scan_work, nvme_dev_scan);
3076         INIT_WORK(&dev->probe_work, nvme_async_probe);
3077         schedule_work(&dev->probe_work);
3078         return 0;
3079
3080  put_dev:
3081         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3082         put_device(dev->device);
3083  release_pools:
3084         nvme_release_prp_pools(dev);
3085  release:
3086         nvme_release_instance(dev);
3087  put_pci:
3088         put_device(dev->dev);
3089  free:
3090         kfree(dev->queues);
3091         kfree(dev->entry);
3092         kfree(dev);
3093         return result;
3094 }
3095
3096 static void nvme_async_probe(struct work_struct *work)
3097 {
3098         struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3099
3100         if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3101                 nvme_dead_ctrl(dev);
3102 }
3103
3104 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3105 {
3106         struct nvme_dev *dev = pci_get_drvdata(pdev);
3107
3108         if (prepare)
3109                 nvme_dev_shutdown(dev);
3110         else
3111                 nvme_dev_resume(dev);
3112 }
3113
3114 static void nvme_shutdown(struct pci_dev *pdev)
3115 {
3116         struct nvme_dev *dev = pci_get_drvdata(pdev);
3117         nvme_dev_shutdown(dev);
3118 }
3119
3120 static void nvme_remove(struct pci_dev *pdev)
3121 {
3122         struct nvme_dev *dev = pci_get_drvdata(pdev);
3123
3124         spin_lock(&dev_list_lock);
3125         list_del_init(&dev->node);
3126         spin_unlock(&dev_list_lock);
3127
3128         pci_set_drvdata(pdev, NULL);
3129         flush_work(&dev->probe_work);
3130         flush_work(&dev->reset_work);
3131         flush_work(&dev->scan_work);
3132         device_remove_file(dev->device, &dev_attr_reset_controller);
3133         nvme_dev_remove(dev);
3134         nvme_dev_shutdown(dev);
3135         nvme_dev_remove_admin(dev);
3136         device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3137         nvme_free_queues(dev, 0);
3138         nvme_release_prp_pools(dev);
3139         kref_put(&dev->kref, nvme_free_dev);
3140 }
3141
3142 /* These functions are yet to be implemented */
3143 #define nvme_error_detected NULL
3144 #define nvme_dump_registers NULL
3145 #define nvme_link_reset NULL
3146 #define nvme_slot_reset NULL
3147 #define nvme_error_resume NULL
3148
3149 #ifdef CONFIG_PM_SLEEP
3150 static int nvme_suspend(struct device *dev)
3151 {
3152         struct pci_dev *pdev = to_pci_dev(dev);
3153         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3154
3155         nvme_dev_shutdown(ndev);
3156         return 0;
3157 }
3158
3159 static int nvme_resume(struct device *dev)
3160 {
3161         struct pci_dev *pdev = to_pci_dev(dev);
3162         struct nvme_dev *ndev = pci_get_drvdata(pdev);
3163
3164         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
3165                 ndev->reset_workfn = nvme_reset_failed_dev;
3166                 queue_work(nvme_workq, &ndev->reset_work);
3167         }
3168         return 0;
3169 }
3170 #endif
3171
3172 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
3173
3174 static const struct pci_error_handlers nvme_err_handler = {
3175         .error_detected = nvme_error_detected,
3176         .mmio_enabled   = nvme_dump_registers,
3177         .link_reset     = nvme_link_reset,
3178         .slot_reset     = nvme_slot_reset,
3179         .resume         = nvme_error_resume,
3180         .reset_notify   = nvme_reset_notify,
3181 };
3182
3183 /* Move to pci_ids.h later */
3184 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
3185
3186 static const struct pci_device_id nvme_id_table[] = {
3187         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3188         { 0, }
3189 };
3190 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3191
3192 static struct pci_driver nvme_driver = {
3193         .name           = "nvme",
3194         .id_table       = nvme_id_table,
3195         .probe          = nvme_probe,
3196         .remove         = nvme_remove,
3197         .shutdown       = nvme_shutdown,
3198         .driver         = {
3199                 .pm     = &nvme_dev_pm_ops,
3200         },
3201         .err_handler    = &nvme_err_handler,
3202 };
3203
3204 static int __init nvme_init(void)
3205 {
3206         int result;
3207
3208         init_waitqueue_head(&nvme_kthread_wait);
3209
3210         nvme_workq = create_singlethread_workqueue("nvme");
3211         if (!nvme_workq)
3212                 return -ENOMEM;
3213
3214         result = register_blkdev(nvme_major, "nvme");
3215         if (result < 0)
3216                 goto kill_workq;
3217         else if (result > 0)
3218                 nvme_major = result;
3219
3220         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3221                                                         &nvme_dev_fops);
3222         if (result < 0)
3223                 goto unregister_blkdev;
3224         else if (result > 0)
3225                 nvme_char_major = result;
3226
3227         nvme_class = class_create(THIS_MODULE, "nvme");
3228         if (IS_ERR(nvme_class)) {
3229                 result = PTR_ERR(nvme_class);
3230                 goto unregister_chrdev;
3231         }
3232
3233         result = pci_register_driver(&nvme_driver);
3234         if (result)
3235                 goto destroy_class;
3236         return 0;
3237
3238  destroy_class:
3239         class_destroy(nvme_class);
3240  unregister_chrdev:
3241         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3242  unregister_blkdev:
3243         unregister_blkdev(nvme_major, "nvme");
3244  kill_workq:
3245         destroy_workqueue(nvme_workq);
3246         return result;
3247 }
3248
3249 static void __exit nvme_exit(void)
3250 {
3251         pci_unregister_driver(&nvme_driver);
3252         unregister_blkdev(nvme_major, "nvme");
3253         destroy_workqueue(nvme_workq);
3254         class_destroy(nvme_class);
3255         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
3256         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
3257         _nvme_check_size();
3258 }
3259
3260 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3261 MODULE_LICENSE("GPL");
3262 MODULE_VERSION("1.0");
3263 module_init(nvme_init);
3264 module_exit(nvme_exit);