2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/cpu.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
27 #include <linux/genhd.h>
28 #include <linux/hdreg.h>
29 #include <linux/idr.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
33 #include <linux/kdev_t.h>
34 #include <linux/kthread.h>
35 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/pci.h>
40 #include <linux/percpu.h>
41 #include <linux/poison.h>
42 #include <linux/ptrace.h>
43 #include <linux/sched.h>
44 #include <linux/slab.h>
45 #include <linux/types.h>
47 #include <asm-generic/io-64-nonatomic-lo-hi.h>
49 #define NVME_Q_DEPTH 1024
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52 #define ADMIN_TIMEOUT (60 * HZ)
53 #define IOD_TIMEOUT (4 * NVME_IO_TIMEOUT)
55 unsigned char io_timeout = 30;
56 module_param(io_timeout, byte, 0644);
57 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59 static int nvme_major;
60 module_param(nvme_major, int, 0);
62 static int use_threaded_interrupts;
63 module_param(use_threaded_interrupts, int, 0);
65 static DEFINE_SPINLOCK(dev_list_lock);
66 static LIST_HEAD(dev_list);
67 static struct task_struct *nvme_thread;
68 static struct workqueue_struct *nvme_workq;
69 static wait_queue_head_t nvme_kthread_wait;
71 static void nvme_reset_failed_dev(struct work_struct *ws);
73 struct async_cmd_info {
74 struct kthread_work work;
75 struct kthread_worker *worker;
82 * An NVM Express queue. Each device has at least two (one for admin
83 * commands and one for I/O commands).
86 struct rcu_head r_head;
87 struct device *q_dmadev;
89 char irqname[24]; /* nvme4294967295-65535\0 */
91 struct nvme_command *sq_cmds;
92 volatile struct nvme_completion *cqes;
93 dma_addr_t sq_dma_addr;
94 dma_addr_t cq_dma_addr;
95 wait_queue_head_t sq_full;
96 wait_queue_t sq_cong_wait;
97 struct bio_list sq_cong;
98 struct list_head iod_bio;
109 cpumask_var_t cpu_mask;
110 struct async_cmd_info cmdinfo;
111 unsigned long cmdid_data[];
115 * Check we didin't inadvertently grow the command struct
117 static inline void _nvme_check_size(void)
119 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
120 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
121 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
122 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
123 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
124 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
125 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
128 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
129 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
133 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
134 struct nvme_completion *);
136 struct nvme_cmd_info {
137 nvme_completion_fn fn;
139 unsigned long timeout;
143 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
145 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
148 static unsigned nvme_queue_extra(int depth)
150 return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
154 * alloc_cmdid() - Allocate a Command ID
155 * @nvmeq: The queue that will be used for this command
156 * @ctx: A pointer that will be passed to the handler
157 * @handler: The function to call on completion
159 * Allocate a Command ID for a queue. The data passed in will
160 * be passed to the completion handler. This is implemented by using
161 * the bottom two bits of the ctx pointer to store the handler ID.
162 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
163 * We can change this if it becomes a problem.
165 * May be called with local interrupts disabled and the q_lock held,
166 * or with interrupts enabled and no locks held.
168 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
169 nvme_completion_fn handler, unsigned timeout)
171 int depth = nvmeq->q_depth - 1;
172 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
176 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
179 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
181 info[cmdid].fn = handler;
182 info[cmdid].ctx = ctx;
183 info[cmdid].timeout = jiffies + timeout;
184 info[cmdid].aborted = 0;
188 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
189 nvme_completion_fn handler, unsigned timeout)
192 wait_event_killable(nvmeq->sq_full,
193 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
194 return (cmdid < 0) ? -EINTR : cmdid;
197 /* Special values must be less than 0x1000 */
198 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
199 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
200 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
201 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
202 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
203 #define CMD_CTX_ABORT (0x31C + CMD_CTX_BASE)
205 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
206 struct nvme_completion *cqe)
208 if (ctx == CMD_CTX_CANCELLED)
210 if (ctx == CMD_CTX_FLUSH)
212 if (ctx == CMD_CTX_ABORT) {
213 ++nvmeq->dev->abort_limit;
216 if (ctx == CMD_CTX_COMPLETED) {
217 dev_warn(nvmeq->q_dmadev,
218 "completed id %d twice on queue %d\n",
219 cqe->command_id, le16_to_cpup(&cqe->sq_id));
222 if (ctx == CMD_CTX_INVALID) {
223 dev_warn(nvmeq->q_dmadev,
224 "invalid id %d completed on queue %d\n",
225 cqe->command_id, le16_to_cpup(&cqe->sq_id));
229 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
232 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
233 struct nvme_completion *cqe)
235 struct async_cmd_info *cmdinfo = ctx;
236 cmdinfo->result = le32_to_cpup(&cqe->result);
237 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
238 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
242 * Called with local interrupts disabled and the q_lock held. May not sleep.
244 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
245 nvme_completion_fn *fn)
248 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
250 if (cmdid >= nvmeq->q_depth) {
251 *fn = special_completion;
252 return CMD_CTX_INVALID;
255 *fn = info[cmdid].fn;
256 ctx = info[cmdid].ctx;
257 info[cmdid].fn = special_completion;
258 info[cmdid].ctx = CMD_CTX_COMPLETED;
259 clear_bit(cmdid, nvmeq->cmdid_data);
260 wake_up(&nvmeq->sq_full);
264 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
265 nvme_completion_fn *fn)
268 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
270 *fn = info[cmdid].fn;
271 ctx = info[cmdid].ctx;
272 info[cmdid].fn = special_completion;
273 info[cmdid].ctx = CMD_CTX_CANCELLED;
277 static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
279 return rcu_dereference_raw(dev->queues[qid]);
282 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
284 unsigned queue_id = get_cpu_var(*dev->io_queue);
286 return rcu_dereference(dev->queues[queue_id]);
289 static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
292 put_cpu_var(nvmeq->dev->io_queue);
295 static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
299 return rcu_dereference(dev->queues[q_idx]);
302 static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
308 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
309 * @nvmeq: The queue to use
310 * @cmd: The command to send
312 * Safe to use from interrupt context
314 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
318 spin_lock_irqsave(&nvmeq->q_lock, flags);
319 if (nvmeq->q_suspended) {
320 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
323 tail = nvmeq->sq_tail;
324 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
325 if (++tail == nvmeq->q_depth)
327 writel(tail, nvmeq->q_db);
328 nvmeq->sq_tail = tail;
329 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
334 static __le64 **iod_list(struct nvme_iod *iod)
336 return ((void *)iod) + iod->offset;
340 * Will slightly overestimate the number of pages needed. This is OK
341 * as it only leads to a small amount of wasted memory for the lifetime of
344 static int nvme_npages(unsigned size)
346 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
347 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
350 static struct nvme_iod *
351 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
353 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
354 sizeof(__le64 *) * nvme_npages(nbytes) +
355 sizeof(struct scatterlist) * nseg, gfp);
358 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
360 iod->length = nbytes;
362 iod->first_dma = 0ULL;
363 iod->start_time = jiffies;
369 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
371 const int last_prp = PAGE_SIZE / 8 - 1;
373 __le64 **list = iod_list(iod);
374 dma_addr_t prp_dma = iod->first_dma;
376 if (iod->npages == 0)
377 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
378 for (i = 0; i < iod->npages; i++) {
379 __le64 *prp_list = list[i];
380 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
381 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
382 prp_dma = next_prp_dma;
387 static void nvme_start_io_acct(struct bio *bio)
389 struct gendisk *disk = bio->bi_bdev->bd_disk;
390 const int rw = bio_data_dir(bio);
391 int cpu = part_stat_lock();
392 part_round_stats(cpu, &disk->part0);
393 part_stat_inc(cpu, &disk->part0, ios[rw]);
394 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
395 part_inc_in_flight(&disk->part0, rw);
399 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
401 struct gendisk *disk = bio->bi_bdev->bd_disk;
402 const int rw = bio_data_dir(bio);
403 unsigned long duration = jiffies - start_time;
404 int cpu = part_stat_lock();
405 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
406 part_round_stats(cpu, &disk->part0);
407 part_dec_in_flight(&disk->part0, rw);
411 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
412 struct nvme_completion *cqe)
414 struct nvme_iod *iod = ctx;
415 struct bio *bio = iod->private;
416 u16 status = le16_to_cpup(&cqe->status) >> 1;
418 if (unlikely(status)) {
419 if (!(status & NVME_SC_DNR ||
420 bio->bi_rw & REQ_FAILFAST_MASK) &&
421 (jiffies - iod->start_time) < IOD_TIMEOUT) {
422 if (!waitqueue_active(&nvmeq->sq_full))
423 add_wait_queue(&nvmeq->sq_full,
424 &nvmeq->sq_cong_wait);
425 list_add_tail(&iod->node, &nvmeq->iod_bio);
426 wake_up(&nvmeq->sq_full);
431 dma_unmap_sg(nvmeq->q_dmadev, iod->sg, iod->nents,
432 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
433 nvme_end_io_acct(bio, iod->start_time);
435 nvme_free_iod(nvmeq->dev, iod);
437 bio_endio(bio, -EIO);
442 /* length is in bytes. gfp flags indicates whether we may sleep. */
443 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
446 struct dma_pool *pool;
447 int length = total_len;
448 struct scatterlist *sg = iod->sg;
449 int dma_len = sg_dma_len(sg);
450 u64 dma_addr = sg_dma_address(sg);
451 int offset = offset_in_page(dma_addr);
453 __le64 **list = iod_list(iod);
457 length -= (PAGE_SIZE - offset);
461 dma_len -= (PAGE_SIZE - offset);
463 dma_addr += (PAGE_SIZE - offset);
466 dma_addr = sg_dma_address(sg);
467 dma_len = sg_dma_len(sg);
470 if (length <= PAGE_SIZE) {
471 iod->first_dma = dma_addr;
475 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
476 if (nprps <= (256 / 8)) {
477 pool = dev->prp_small_pool;
480 pool = dev->prp_page_pool;
484 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
486 iod->first_dma = dma_addr;
488 return (total_len - length) + PAGE_SIZE;
491 iod->first_dma = prp_dma;
494 if (i == PAGE_SIZE / 8) {
495 __le64 *old_prp_list = prp_list;
496 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
498 return total_len - length;
499 list[iod->npages++] = prp_list;
500 prp_list[0] = old_prp_list[i - 1];
501 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
504 prp_list[i++] = cpu_to_le64(dma_addr);
505 dma_len -= PAGE_SIZE;
506 dma_addr += PAGE_SIZE;
514 dma_addr = sg_dma_address(sg);
515 dma_len = sg_dma_len(sg);
521 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
524 struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
528 bio_chain(split, bio);
530 if (!waitqueue_active(&nvmeq->sq_full))
531 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
532 bio_list_add(&nvmeq->sq_cong, split);
533 bio_list_add(&nvmeq->sq_cong, bio);
534 wake_up(&nvmeq->sq_full);
539 /* NVMe scatterlists require no holes in the virtual address */
540 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
541 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
543 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
544 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
546 struct bio_vec bvec, bvprv;
547 struct bvec_iter iter;
548 struct scatterlist *sg = NULL;
549 int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
552 if (nvmeq->dev->stripe_size)
553 split_len = nvmeq->dev->stripe_size -
554 ((bio->bi_iter.bi_sector << 9) &
555 (nvmeq->dev->stripe_size - 1));
557 sg_init_table(iod->sg, psegs);
558 bio_for_each_segment(bvec, bio, iter) {
559 if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
560 sg->length += bvec.bv_len;
562 if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
563 return nvme_split_and_submit(bio, nvmeq,
566 sg = sg ? sg + 1 : iod->sg;
567 sg_set_page(sg, bvec.bv_page,
568 bvec.bv_len, bvec.bv_offset);
572 if (split_len - length < bvec.bv_len)
573 return nvme_split_and_submit(bio, nvmeq, split_len);
574 length += bvec.bv_len;
580 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
583 BUG_ON(length != bio->bi_iter.bi_size);
587 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
588 struct bio *bio, struct nvme_iod *iod, int cmdid)
590 struct nvme_dsm_range *range =
591 (struct nvme_dsm_range *)iod_list(iod)[0];
592 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
594 range->cattr = cpu_to_le32(0);
595 range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
596 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
598 memset(cmnd, 0, sizeof(*cmnd));
599 cmnd->dsm.opcode = nvme_cmd_dsm;
600 cmnd->dsm.command_id = cmdid;
601 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
602 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
604 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
606 if (++nvmeq->sq_tail == nvmeq->q_depth)
608 writel(nvmeq->sq_tail, nvmeq->q_db);
613 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
616 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
618 memset(cmnd, 0, sizeof(*cmnd));
619 cmnd->common.opcode = nvme_cmd_flush;
620 cmnd->common.command_id = cmdid;
621 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
623 if (++nvmeq->sq_tail == nvmeq->q_depth)
625 writel(nvmeq->sq_tail, nvmeq->q_db);
630 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
632 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
633 special_completion, NVME_IO_TIMEOUT);
634 if (unlikely(cmdid < 0))
637 return nvme_submit_flush(nvmeq, ns, cmdid);
640 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod)
642 struct bio *bio = iod->private;
643 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
644 struct nvme_command *cmnd;
649 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
650 if (unlikely(cmdid < 0))
653 if (bio->bi_rw & REQ_DISCARD)
654 return nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
655 if ((bio->bi_rw & REQ_FLUSH) && !iod->nents)
656 return nvme_submit_flush(nvmeq, ns, cmdid);
659 if (bio->bi_rw & REQ_FUA)
660 control |= NVME_RW_FUA;
661 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
662 control |= NVME_RW_LR;
665 if (bio->bi_rw & REQ_RAHEAD)
666 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
668 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
669 memset(cmnd, 0, sizeof(*cmnd));
671 cmnd->rw.opcode = bio_data_dir(bio) ? nvme_cmd_write : nvme_cmd_read;
672 cmnd->rw.command_id = cmdid;
673 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
674 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
675 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
676 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
678 cpu_to_le16((bio->bi_iter.bi_size >> ns->lba_shift) - 1);
679 cmnd->rw.control = cpu_to_le16(control);
680 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
682 if (++nvmeq->sq_tail == nvmeq->q_depth)
684 writel(nvmeq->sq_tail, nvmeq->q_db);
690 * Called with local interrupts disabled and the q_lock held. May not sleep.
692 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
695 struct nvme_iod *iod;
696 int psegs = bio_phys_segments(ns->queue, bio);
699 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
700 result = nvme_submit_flush_data(nvmeq, ns);
705 iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
710 if (bio->bi_rw & REQ_DISCARD) {
713 * We reuse the small pool to allocate the 16-byte range here
714 * as it is not worth having a special pool for these or
715 * additional cases to handle freeing the iod.
717 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
724 iod_list(iod)[0] = (__le64 *)range;
727 result = nvme_map_bio(nvmeq, iod, bio,
728 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
732 if (nvme_setup_prps(nvmeq->dev, iod, result, GFP_ATOMIC) !=
737 nvme_start_io_acct(bio);
739 if (unlikely(nvme_submit_iod(nvmeq, iod))) {
740 if (!waitqueue_active(&nvmeq->sq_full))
741 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
742 list_add_tail(&iod->node, &nvmeq->iod_bio);
747 nvme_free_iod(nvmeq->dev, iod);
751 static int nvme_process_cq(struct nvme_queue *nvmeq)
755 head = nvmeq->cq_head;
756 phase = nvmeq->cq_phase;
760 nvme_completion_fn fn;
761 struct nvme_completion cqe = nvmeq->cqes[head];
762 if ((le16_to_cpu(cqe.status) & 1) != phase)
764 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
765 if (++head == nvmeq->q_depth) {
770 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
771 fn(nvmeq, ctx, &cqe);
774 /* If the controller ignores the cq head doorbell and continuously
775 * writes to the queue, it is theoretically possible to wrap around
776 * the queue twice and mistakenly return IRQ_NONE. Linux only
777 * requires that 0.1% of your interrupts are handled, so this isn't
780 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
783 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
784 nvmeq->cq_head = head;
785 nvmeq->cq_phase = phase;
791 static void nvme_make_request(struct request_queue *q, struct bio *bio)
793 struct nvme_ns *ns = q->queuedata;
794 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
799 bio_endio(bio, -EIO);
803 spin_lock_irq(&nvmeq->q_lock);
804 if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
805 result = nvme_submit_bio_queue(nvmeq, ns, bio);
806 if (unlikely(result)) {
807 if (!waitqueue_active(&nvmeq->sq_full))
808 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
809 bio_list_add(&nvmeq->sq_cong, bio);
812 nvme_process_cq(nvmeq);
813 spin_unlock_irq(&nvmeq->q_lock);
817 static irqreturn_t nvme_irq(int irq, void *data)
820 struct nvme_queue *nvmeq = data;
821 spin_lock(&nvmeq->q_lock);
822 nvme_process_cq(nvmeq);
823 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
825 spin_unlock(&nvmeq->q_lock);
829 static irqreturn_t nvme_irq_check(int irq, void *data)
831 struct nvme_queue *nvmeq = data;
832 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
833 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
835 return IRQ_WAKE_THREAD;
838 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
840 spin_lock_irq(&nvmeq->q_lock);
841 cancel_cmdid(nvmeq, cmdid, NULL);
842 spin_unlock_irq(&nvmeq->q_lock);
845 struct sync_cmd_info {
846 struct task_struct *task;
851 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
852 struct nvme_completion *cqe)
854 struct sync_cmd_info *cmdinfo = ctx;
855 cmdinfo->result = le32_to_cpup(&cqe->result);
856 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
857 wake_up_process(cmdinfo->task);
861 * Returns 0 on success. If the result is negative, it's a Linux error code;
862 * if the result is positive, it's an NVM Express status code
864 static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
865 struct nvme_command *cmd,
866 u32 *result, unsigned timeout)
869 struct sync_cmd_info cmdinfo;
870 struct nvme_queue *nvmeq;
872 nvmeq = lock_nvmeq(dev, q_idx);
878 cmdinfo.task = current;
879 cmdinfo.status = -EINTR;
881 cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
886 cmd->common.command_id = cmdid;
888 set_current_state(TASK_KILLABLE);
889 ret = nvme_submit_cmd(nvmeq, cmd);
891 free_cmdid(nvmeq, cmdid, NULL);
893 set_current_state(TASK_RUNNING);
897 schedule_timeout(timeout);
899 if (cmdinfo.status == -EINTR) {
900 nvmeq = lock_nvmeq(dev, q_idx);
902 nvme_abort_command(nvmeq, cmdid);
908 *result = cmdinfo.result;
910 return cmdinfo.status;
913 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
914 struct nvme_command *cmd,
915 struct async_cmd_info *cmdinfo, unsigned timeout)
919 cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
922 cmdinfo->status = -EINTR;
923 cmd->common.command_id = cmdid;
924 return nvme_submit_cmd(nvmeq, cmd);
927 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
930 return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
933 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
936 return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result,
940 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
941 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
943 return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
947 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
950 struct nvme_command c;
952 memset(&c, 0, sizeof(c));
953 c.delete_queue.opcode = opcode;
954 c.delete_queue.qid = cpu_to_le16(id);
956 status = nvme_submit_admin_cmd(dev, &c, NULL);
962 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
963 struct nvme_queue *nvmeq)
966 struct nvme_command c;
967 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
969 memset(&c, 0, sizeof(c));
970 c.create_cq.opcode = nvme_admin_create_cq;
971 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
972 c.create_cq.cqid = cpu_to_le16(qid);
973 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
974 c.create_cq.cq_flags = cpu_to_le16(flags);
975 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
977 status = nvme_submit_admin_cmd(dev, &c, NULL);
983 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
984 struct nvme_queue *nvmeq)
987 struct nvme_command c;
988 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
990 memset(&c, 0, sizeof(c));
991 c.create_sq.opcode = nvme_admin_create_sq;
992 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
993 c.create_sq.sqid = cpu_to_le16(qid);
994 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
995 c.create_sq.sq_flags = cpu_to_le16(flags);
996 c.create_sq.cqid = cpu_to_le16(qid);
998 status = nvme_submit_admin_cmd(dev, &c, NULL);
1004 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1006 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1009 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1011 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1014 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1015 dma_addr_t dma_addr)
1017 struct nvme_command c;
1019 memset(&c, 0, sizeof(c));
1020 c.identify.opcode = nvme_admin_identify;
1021 c.identify.nsid = cpu_to_le32(nsid);
1022 c.identify.prp1 = cpu_to_le64(dma_addr);
1023 c.identify.cns = cpu_to_le32(cns);
1025 return nvme_submit_admin_cmd(dev, &c, NULL);
1028 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1029 dma_addr_t dma_addr, u32 *result)
1031 struct nvme_command c;
1033 memset(&c, 0, sizeof(c));
1034 c.features.opcode = nvme_admin_get_features;
1035 c.features.nsid = cpu_to_le32(nsid);
1036 c.features.prp1 = cpu_to_le64(dma_addr);
1037 c.features.fid = cpu_to_le32(fid);
1039 return nvme_submit_admin_cmd(dev, &c, result);
1042 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1043 dma_addr_t dma_addr, u32 *result)
1045 struct nvme_command c;
1047 memset(&c, 0, sizeof(c));
1048 c.features.opcode = nvme_admin_set_features;
1049 c.features.prp1 = cpu_to_le64(dma_addr);
1050 c.features.fid = cpu_to_le32(fid);
1051 c.features.dword11 = cpu_to_le32(dword11);
1053 return nvme_submit_admin_cmd(dev, &c, result);
1057 * nvme_abort_cmd - Attempt aborting a command
1058 * @cmdid: Command id of a timed out IO
1059 * @queue: The queue with timed out IO
1061 * Schedule controller reset if the command was already aborted once before and
1062 * still hasn't been returned to the driver, or if this is the admin queue.
1064 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1067 struct nvme_command cmd;
1068 struct nvme_dev *dev = nvmeq->dev;
1069 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1070 struct nvme_queue *adminq;
1072 if (!nvmeq->qid || info[cmdid].aborted) {
1073 if (work_busy(&dev->reset_work))
1075 list_del_init(&dev->node);
1076 dev_warn(&dev->pci_dev->dev,
1077 "I/O %d QID %d timeout, reset controller\n", cmdid,
1079 dev->reset_workfn = nvme_reset_failed_dev;
1080 queue_work(nvme_workq, &dev->reset_work);
1084 if (!dev->abort_limit)
1087 adminq = rcu_dereference(dev->queues[0]);
1088 a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1093 memset(&cmd, 0, sizeof(cmd));
1094 cmd.abort.opcode = nvme_admin_abort_cmd;
1095 cmd.abort.cid = cmdid;
1096 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1097 cmd.abort.command_id = a_cmdid;
1100 info[cmdid].aborted = 1;
1101 info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1103 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1105 nvme_submit_cmd(adminq, &cmd);
1109 * nvme_cancel_ios - Cancel outstanding I/Os
1110 * @queue: The queue to cancel I/Os on
1111 * @timeout: True to only cancel I/Os which have timed out
1113 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1115 int depth = nvmeq->q_depth - 1;
1116 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1117 unsigned long now = jiffies;
1120 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1122 nvme_completion_fn fn;
1123 static struct nvme_completion cqe = {
1124 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1127 if (timeout && !time_after(now, info[cmdid].timeout))
1129 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1131 if (timeout && nvmeq->dev->initialized) {
1132 nvme_abort_cmd(cmdid, nvmeq);
1135 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1137 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1138 fn(nvmeq, ctx, &cqe);
1142 static void nvme_free_queue(struct rcu_head *r)
1144 struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head);
1146 spin_lock_irq(&nvmeq->q_lock);
1147 while (bio_list_peek(&nvmeq->sq_cong)) {
1148 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1149 bio_endio(bio, -EIO);
1151 while (!list_empty(&nvmeq->iod_bio)) {
1152 static struct nvme_completion cqe = {
1153 .status = cpu_to_le16(
1154 (NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1),
1156 struct nvme_iod *iod = list_first_entry(&nvmeq->iod_bio,
1159 list_del(&iod->node);
1160 bio_completion(nvmeq, iod, &cqe);
1162 spin_unlock_irq(&nvmeq->q_lock);
1164 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1165 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1166 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1167 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1169 free_cpumask_var(nvmeq->cpu_mask);
1173 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1177 for (i = dev->queue_count - 1; i >= lowest; i--) {
1178 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
1179 rcu_assign_pointer(dev->queues[i], NULL);
1180 call_rcu(&nvmeq->r_head, nvme_free_queue);
1186 * nvme_suspend_queue - put queue into suspended state
1187 * @nvmeq - queue to suspend
1189 * Returns 1 if already suspended, 0 otherwise.
1191 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1193 int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1195 spin_lock_irq(&nvmeq->q_lock);
1196 if (nvmeq->q_suspended) {
1197 spin_unlock_irq(&nvmeq->q_lock);
1200 nvmeq->q_suspended = 1;
1201 nvmeq->dev->online_queues--;
1202 spin_unlock_irq(&nvmeq->q_lock);
1204 irq_set_affinity_hint(vector, NULL);
1205 free_irq(vector, nvmeq);
1210 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1212 spin_lock_irq(&nvmeq->q_lock);
1213 nvme_process_cq(nvmeq);
1214 nvme_cancel_ios(nvmeq, false);
1215 spin_unlock_irq(&nvmeq->q_lock);
1218 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1220 struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1224 if (nvme_suspend_queue(nvmeq))
1227 /* Don't tell the adapter to delete the admin queue.
1228 * Don't tell a removed adapter to delete IO queues. */
1229 if (qid && readl(&dev->bar->csts) != -1) {
1230 adapter_delete_sq(dev, qid);
1231 adapter_delete_cq(dev, qid);
1233 nvme_clear_queue(nvmeq);
1236 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1237 int depth, int vector)
1239 struct device *dmadev = &dev->pci_dev->dev;
1240 unsigned extra = nvme_queue_extra(depth);
1241 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1245 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1246 &nvmeq->cq_dma_addr, GFP_KERNEL);
1249 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1251 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1252 &nvmeq->sq_dma_addr, GFP_KERNEL);
1253 if (!nvmeq->sq_cmds)
1256 if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1259 nvmeq->q_dmadev = dmadev;
1261 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1262 dev->instance, qid);
1263 spin_lock_init(&nvmeq->q_lock);
1265 nvmeq->cq_phase = 1;
1266 init_waitqueue_head(&nvmeq->sq_full);
1267 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1268 bio_list_init(&nvmeq->sq_cong);
1269 INIT_LIST_HEAD(&nvmeq->iod_bio);
1270 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1271 nvmeq->q_depth = depth;
1272 nvmeq->cq_vector = vector;
1274 nvmeq->q_suspended = 1;
1276 rcu_assign_pointer(dev->queues[qid], nvmeq);
1281 dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1282 nvmeq->sq_dma_addr);
1284 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1285 nvmeq->cq_dma_addr);
1291 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1294 if (use_threaded_interrupts)
1295 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1296 nvme_irq_check, nvme_irq, IRQF_SHARED,
1298 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1299 IRQF_SHARED, name, nvmeq);
1302 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1304 struct nvme_dev *dev = nvmeq->dev;
1305 unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1309 nvmeq->cq_phase = 1;
1310 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1311 memset(nvmeq->cmdid_data, 0, extra);
1312 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1313 nvme_cancel_ios(nvmeq, false);
1314 nvmeq->q_suspended = 0;
1315 dev->online_queues++;
1318 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1320 struct nvme_dev *dev = nvmeq->dev;
1323 result = adapter_alloc_cq(dev, qid, nvmeq);
1327 result = adapter_alloc_sq(dev, qid, nvmeq);
1331 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1335 spin_lock_irq(&nvmeq->q_lock);
1336 nvme_init_queue(nvmeq, qid);
1337 spin_unlock_irq(&nvmeq->q_lock);
1342 adapter_delete_sq(dev, qid);
1344 adapter_delete_cq(dev, qid);
1348 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1350 unsigned long timeout;
1351 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1353 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1355 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1357 if (fatal_signal_pending(current))
1359 if (time_after(jiffies, timeout)) {
1360 dev_err(&dev->pci_dev->dev,
1361 "Device not ready; aborting initialisation\n");
1370 * If the device has been passed off to us in an enabled state, just clear
1371 * the enabled bit. The spec says we should set the 'shutdown notification
1372 * bits', but doing so may cause the device to complete commands to the
1373 * admin queue ... and we don't know what memory that might be pointing at!
1375 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1377 u32 cc = readl(&dev->bar->cc);
1379 if (cc & NVME_CC_ENABLE)
1380 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1381 return nvme_wait_ready(dev, cap, false);
1384 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1386 return nvme_wait_ready(dev, cap, true);
1389 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1391 unsigned long timeout;
1394 cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1395 writel(cc, &dev->bar->cc);
1397 timeout = 2 * HZ + jiffies;
1398 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1399 NVME_CSTS_SHST_CMPLT) {
1401 if (fatal_signal_pending(current))
1403 if (time_after(jiffies, timeout)) {
1404 dev_err(&dev->pci_dev->dev,
1405 "Device shutdown incomplete; abort shutdown\n");
1413 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1417 u64 cap = readq(&dev->bar->cap);
1418 struct nvme_queue *nvmeq;
1420 result = nvme_disable_ctrl(dev, cap);
1424 nvmeq = raw_nvmeq(dev, 0);
1426 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1431 aqa = nvmeq->q_depth - 1;
1434 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1435 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1436 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1437 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1439 writel(aqa, &dev->bar->aqa);
1440 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1441 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1442 writel(dev->ctrl_config, &dev->bar->cc);
1444 result = nvme_enable_ctrl(dev, cap);
1448 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1452 spin_lock_irq(&nvmeq->q_lock);
1453 nvme_init_queue(nvmeq, 0);
1454 spin_unlock_irq(&nvmeq->q_lock);
1458 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1459 unsigned long addr, unsigned length)
1461 int i, err, count, nents, offset;
1462 struct scatterlist *sg;
1463 struct page **pages;
1464 struct nvme_iod *iod;
1467 return ERR_PTR(-EINVAL);
1468 if (!length || length > INT_MAX - PAGE_SIZE)
1469 return ERR_PTR(-EINVAL);
1471 offset = offset_in_page(addr);
1472 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1473 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1475 return ERR_PTR(-ENOMEM);
1477 err = get_user_pages_fast(addr, count, 1, pages);
1484 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1486 sg_init_table(sg, count);
1487 for (i = 0; i < count; i++) {
1488 sg_set_page(&sg[i], pages[i],
1489 min_t(unsigned, length, PAGE_SIZE - offset),
1491 length -= (PAGE_SIZE - offset);
1494 sg_mark_end(&sg[i - 1]);
1498 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1499 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1509 for (i = 0; i < count; i++)
1512 return ERR_PTR(err);
1515 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1516 struct nvme_iod *iod)
1520 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1521 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1523 for (i = 0; i < iod->nents; i++)
1524 put_page(sg_page(&iod->sg[i]));
1527 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1529 struct nvme_dev *dev = ns->dev;
1530 struct nvme_user_io io;
1531 struct nvme_command c;
1532 unsigned length, meta_len;
1534 struct nvme_iod *iod, *meta_iod = NULL;
1535 dma_addr_t meta_dma_addr;
1536 void *meta, *uninitialized_var(meta_mem);
1538 if (copy_from_user(&io, uio, sizeof(io)))
1540 length = (io.nblocks + 1) << ns->lba_shift;
1541 meta_len = (io.nblocks + 1) * ns->ms;
1543 if (meta_len && ((io.metadata & 3) || !io.metadata))
1546 switch (io.opcode) {
1547 case nvme_cmd_write:
1549 case nvme_cmd_compare:
1550 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1557 return PTR_ERR(iod);
1559 memset(&c, 0, sizeof(c));
1560 c.rw.opcode = io.opcode;
1561 c.rw.flags = io.flags;
1562 c.rw.nsid = cpu_to_le32(ns->ns_id);
1563 c.rw.slba = cpu_to_le64(io.slba);
1564 c.rw.length = cpu_to_le16(io.nblocks);
1565 c.rw.control = cpu_to_le16(io.control);
1566 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1567 c.rw.reftag = cpu_to_le32(io.reftag);
1568 c.rw.apptag = cpu_to_le16(io.apptag);
1569 c.rw.appmask = cpu_to_le16(io.appmask);
1572 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1574 if (IS_ERR(meta_iod)) {
1575 status = PTR_ERR(meta_iod);
1580 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1581 &meta_dma_addr, GFP_KERNEL);
1587 if (io.opcode & 1) {
1588 int meta_offset = 0;
1590 for (i = 0; i < meta_iod->nents; i++) {
1591 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1592 meta_iod->sg[i].offset;
1593 memcpy(meta_mem + meta_offset, meta,
1594 meta_iod->sg[i].length);
1595 kunmap_atomic(meta);
1596 meta_offset += meta_iod->sg[i].length;
1600 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1603 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1604 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1605 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1607 if (length != (io.nblocks + 1) << ns->lba_shift)
1610 status = nvme_submit_io_cmd(dev, &c, NULL);
1613 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1614 int meta_offset = 0;
1616 for (i = 0; i < meta_iod->nents; i++) {
1617 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1618 meta_iod->sg[i].offset;
1619 memcpy(meta, meta_mem + meta_offset,
1620 meta_iod->sg[i].length);
1621 kunmap_atomic(meta);
1622 meta_offset += meta_iod->sg[i].length;
1626 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1631 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1632 nvme_free_iod(dev, iod);
1635 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1636 nvme_free_iod(dev, meta_iod);
1642 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1643 struct nvme_admin_cmd __user *ucmd)
1645 struct nvme_admin_cmd cmd;
1646 struct nvme_command c;
1648 struct nvme_iod *uninitialized_var(iod);
1651 if (!capable(CAP_SYS_ADMIN))
1653 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1656 memset(&c, 0, sizeof(c));
1657 c.common.opcode = cmd.opcode;
1658 c.common.flags = cmd.flags;
1659 c.common.nsid = cpu_to_le32(cmd.nsid);
1660 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1661 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1662 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1663 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1664 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1665 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1666 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1667 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1669 length = cmd.data_len;
1671 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1674 return PTR_ERR(iod);
1675 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1676 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1677 c.common.prp2 = cpu_to_le64(iod->first_dma);
1680 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1682 if (length != cmd.data_len)
1685 status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1688 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1689 nvme_free_iod(dev, iod);
1692 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1693 sizeof(cmd.result)))
1699 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1702 struct nvme_ns *ns = bdev->bd_disk->private_data;
1706 force_successful_syscall_return();
1708 case NVME_IOCTL_ADMIN_CMD:
1709 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1710 case NVME_IOCTL_SUBMIT_IO:
1711 return nvme_submit_io(ns, (void __user *)arg);
1712 case SG_GET_VERSION_NUM:
1713 return nvme_sg_get_version_num((void __user *)arg);
1715 return nvme_sg_io(ns, (void __user *)arg);
1721 #ifdef CONFIG_COMPAT
1722 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1723 unsigned int cmd, unsigned long arg)
1725 struct nvme_ns *ns = bdev->bd_disk->private_data;
1729 return nvme_sg_io32(ns, arg);
1731 return nvme_ioctl(bdev, mode, cmd, arg);
1734 #define nvme_compat_ioctl NULL
1737 static int nvme_open(struct block_device *bdev, fmode_t mode)
1739 struct nvme_ns *ns = bdev->bd_disk->private_data;
1740 struct nvme_dev *dev = ns->dev;
1742 kref_get(&dev->kref);
1746 static void nvme_free_dev(struct kref *kref);
1748 static void nvme_release(struct gendisk *disk, fmode_t mode)
1750 struct nvme_ns *ns = disk->private_data;
1751 struct nvme_dev *dev = ns->dev;
1753 kref_put(&dev->kref, nvme_free_dev);
1756 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1758 /* some standard values */
1759 geo->heads = 1 << 6;
1760 geo->sectors = 1 << 5;
1761 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1765 static const struct block_device_operations nvme_fops = {
1766 .owner = THIS_MODULE,
1767 .ioctl = nvme_ioctl,
1768 .compat_ioctl = nvme_compat_ioctl,
1770 .release = nvme_release,
1771 .getgeo = nvme_getgeo,
1774 static void nvme_resubmit_iods(struct nvme_queue *nvmeq)
1776 struct nvme_iod *iod, *next;
1778 list_for_each_entry_safe(iod, next, &nvmeq->iod_bio, node) {
1779 if (unlikely(nvme_submit_iod(nvmeq, iod)))
1781 list_del(&iod->node);
1782 if (bio_list_empty(&nvmeq->sq_cong) &&
1783 list_empty(&nvmeq->iod_bio))
1784 remove_wait_queue(&nvmeq->sq_full,
1785 &nvmeq->sq_cong_wait);
1789 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1791 while (bio_list_peek(&nvmeq->sq_cong)) {
1792 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1793 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1795 if (bio_list_empty(&nvmeq->sq_cong) &&
1796 list_empty(&nvmeq->iod_bio))
1797 remove_wait_queue(&nvmeq->sq_full,
1798 &nvmeq->sq_cong_wait);
1799 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1800 if (!waitqueue_active(&nvmeq->sq_full))
1801 add_wait_queue(&nvmeq->sq_full,
1802 &nvmeq->sq_cong_wait);
1803 bio_list_add_head(&nvmeq->sq_cong, bio);
1809 static int nvme_kthread(void *data)
1811 struct nvme_dev *dev, *next;
1813 while (!kthread_should_stop()) {
1814 set_current_state(TASK_INTERRUPTIBLE);
1815 spin_lock(&dev_list_lock);
1816 list_for_each_entry_safe(dev, next, &dev_list, node) {
1818 if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1820 if (work_busy(&dev->reset_work))
1822 list_del_init(&dev->node);
1823 dev_warn(&dev->pci_dev->dev,
1824 "Failed status, reset controller\n");
1825 dev->reset_workfn = nvme_reset_failed_dev;
1826 queue_work(nvme_workq, &dev->reset_work);
1830 for (i = 0; i < dev->queue_count; i++) {
1831 struct nvme_queue *nvmeq =
1832 rcu_dereference(dev->queues[i]);
1835 spin_lock_irq(&nvmeq->q_lock);
1836 if (nvmeq->q_suspended)
1838 nvme_process_cq(nvmeq);
1839 nvme_cancel_ios(nvmeq, true);
1840 nvme_resubmit_bios(nvmeq);
1841 nvme_resubmit_iods(nvmeq);
1843 spin_unlock_irq(&nvmeq->q_lock);
1847 spin_unlock(&dev_list_lock);
1848 schedule_timeout(round_jiffies_relative(HZ));
1853 static void nvme_config_discard(struct nvme_ns *ns)
1855 u32 logical_block_size = queue_logical_block_size(ns->queue);
1856 ns->queue->limits.discard_zeroes_data = 0;
1857 ns->queue->limits.discard_alignment = logical_block_size;
1858 ns->queue->limits.discard_granularity = logical_block_size;
1859 ns->queue->limits.max_discard_sectors = 0xffffffff;
1860 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1863 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1864 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1867 struct gendisk *disk;
1870 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1873 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1876 ns->queue = blk_alloc_queue(GFP_KERNEL);
1879 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1880 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1881 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1882 blk_queue_make_request(ns->queue, nvme_make_request);
1884 ns->queue->queuedata = ns;
1886 disk = alloc_disk(0);
1888 goto out_free_queue;
1891 lbaf = id->flbas & 0xf;
1892 ns->lba_shift = id->lbaf[lbaf].ds;
1893 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1894 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1895 if (dev->max_hw_sectors)
1896 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1898 disk->major = nvme_major;
1899 disk->first_minor = 0;
1900 disk->fops = &nvme_fops;
1901 disk->private_data = ns;
1902 disk->queue = ns->queue;
1903 disk->driverfs_dev = &dev->pci_dev->dev;
1904 disk->flags = GENHD_FL_EXT_DEVT;
1905 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1906 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1908 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1909 nvme_config_discard(ns);
1914 blk_cleanup_queue(ns->queue);
1920 static int nvme_find_closest_node(int node)
1922 int n, val, min_val = INT_MAX, best_node = node;
1924 for_each_online_node(n) {
1927 val = node_distance(node, n);
1928 if (val < min_val) {
1936 static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
1940 for_each_cpu(cpu, qmask) {
1941 if (cpumask_weight(nvmeq->cpu_mask) >= count)
1943 if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
1944 *per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
1948 static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
1949 const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
1952 for_each_cpu(next_cpu, new_mask) {
1953 cpumask_or(mask, mask, get_cpu_mask(next_cpu));
1954 cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
1955 cpumask_and(mask, mask, unassigned_cpus);
1956 nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
1960 static void nvme_create_io_queues(struct nvme_dev *dev)
1964 max = min(dev->max_qid, num_online_cpus());
1965 for (i = dev->queue_count; i <= max; i++)
1966 if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
1969 max = min(dev->queue_count - 1, num_online_cpus());
1970 for (i = dev->online_queues; i <= max; i++)
1971 if (nvme_create_queue(raw_nvmeq(dev, i), i))
1976 * If there are fewer queues than online cpus, this will try to optimally
1977 * assign a queue to multiple cpus by grouping cpus that are "close" together:
1978 * thread siblings, core, socket, closest node, then whatever else is
1981 static void nvme_assign_io_queues(struct nvme_dev *dev)
1983 unsigned cpu, cpus_per_queue, queues, remainder, i;
1984 cpumask_var_t unassigned_cpus;
1986 nvme_create_io_queues(dev);
1988 queues = min(dev->online_queues - 1, num_online_cpus());
1992 cpus_per_queue = num_online_cpus() / queues;
1993 remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
1995 if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
1998 cpumask_copy(unassigned_cpus, cpu_online_mask);
1999 cpu = cpumask_first(unassigned_cpus);
2000 for (i = 1; i <= queues; i++) {
2001 struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
2004 cpumask_clear(nvmeq->cpu_mask);
2005 if (!cpumask_weight(unassigned_cpus)) {
2006 unlock_nvmeq(nvmeq);
2010 mask = *get_cpu_mask(cpu);
2011 nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
2012 if (cpus_weight(mask) < cpus_per_queue)
2013 nvme_add_cpus(&mask, unassigned_cpus,
2014 topology_thread_cpumask(cpu),
2015 nvmeq, cpus_per_queue);
2016 if (cpus_weight(mask) < cpus_per_queue)
2017 nvme_add_cpus(&mask, unassigned_cpus,
2018 topology_core_cpumask(cpu),
2019 nvmeq, cpus_per_queue);
2020 if (cpus_weight(mask) < cpus_per_queue)
2021 nvme_add_cpus(&mask, unassigned_cpus,
2022 cpumask_of_node(cpu_to_node(cpu)),
2023 nvmeq, cpus_per_queue);
2024 if (cpus_weight(mask) < cpus_per_queue)
2025 nvme_add_cpus(&mask, unassigned_cpus,
2027 nvme_find_closest_node(
2029 nvmeq, cpus_per_queue);
2030 if (cpus_weight(mask) < cpus_per_queue)
2031 nvme_add_cpus(&mask, unassigned_cpus,
2033 nvmeq, cpus_per_queue);
2035 WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
2036 "nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
2039 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2041 cpumask_andnot(unassigned_cpus, unassigned_cpus,
2043 cpu = cpumask_next(cpu, unassigned_cpus);
2044 if (remainder && !--remainder)
2046 unlock_nvmeq(nvmeq);
2048 WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
2051 cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
2052 for_each_cpu(cpu, unassigned_cpus)
2053 *per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
2054 free_cpumask_var(unassigned_cpus);
2057 static int set_queue_count(struct nvme_dev *dev, int count)
2061 u32 q_count = (count - 1) | ((count - 1) << 16);
2063 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2066 return status < 0 ? -EIO : -EBUSY;
2067 return min(result & 0xffff, result >> 16) + 1;
2070 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2072 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2075 static int nvme_cpu_notify(struct notifier_block *self,
2076 unsigned long action, void *hcpu)
2078 struct nvme_dev *dev = container_of(self, struct nvme_dev, nb);
2082 nvme_assign_io_queues(dev);
2088 static int nvme_setup_io_queues(struct nvme_dev *dev)
2090 struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2091 struct pci_dev *pdev = dev->pci_dev;
2092 int result, i, vecs, nr_io_queues, size;
2094 nr_io_queues = num_possible_cpus();
2095 result = set_queue_count(dev, nr_io_queues);
2098 if (result < nr_io_queues)
2099 nr_io_queues = result;
2101 size = db_bar_size(dev, nr_io_queues);
2105 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2108 if (!--nr_io_queues)
2110 size = db_bar_size(dev, nr_io_queues);
2112 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2113 adminq->q_db = dev->dbs;
2116 /* Deregister the admin queue's interrupt */
2117 free_irq(dev->entry[0].vector, adminq);
2119 for (i = 0; i < nr_io_queues; i++)
2120 dev->entry[i].entry = i;
2121 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2123 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2127 for (i = 0; i < vecs; i++)
2128 dev->entry[i].vector = i + pdev->irq;
2133 * Should investigate if there's a performance win from allocating
2134 * more queues than interrupt vectors; it might allow the submission
2135 * path to scale better, even if the receive path is limited by the
2136 * number of interrupts.
2138 nr_io_queues = vecs;
2139 dev->max_qid = nr_io_queues;
2141 result = queue_request_irq(dev, adminq, adminq->irqname);
2143 adminq->q_suspended = 1;
2147 /* Free previously allocated queues that are no longer usable */
2148 nvme_free_queues(dev, nr_io_queues + 1);
2149 nvme_assign_io_queues(dev);
2151 dev->nb.notifier_call = &nvme_cpu_notify;
2152 result = register_hotcpu_notifier(&dev->nb);
2159 nvme_free_queues(dev, 1);
2164 * Return: error value if an error occurred setting up the queues or calling
2165 * Identify Device. 0 if these succeeded, even if adding some of the
2166 * namespaces failed. At the moment, these failures are silent. TBD which
2167 * failures should be reported.
2169 static int nvme_dev_add(struct nvme_dev *dev)
2171 struct pci_dev *pdev = dev->pci_dev;
2175 struct nvme_id_ctrl *ctrl;
2176 struct nvme_id_ns *id_ns;
2178 dma_addr_t dma_addr;
2179 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2181 mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2185 res = nvme_identify(dev, 0, 1, dma_addr);
2192 nn = le32_to_cpup(&ctrl->nn);
2193 dev->oncs = le16_to_cpup(&ctrl->oncs);
2194 dev->abort_limit = ctrl->acl + 1;
2195 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2196 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2197 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2199 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2200 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2201 (pdev->device == 0x0953) && ctrl->vs[3])
2202 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2205 for (i = 1; i <= nn; i++) {
2206 res = nvme_identify(dev, i, 0, dma_addr);
2210 if (id_ns->ncap == 0)
2213 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2214 dma_addr + 4096, NULL);
2216 memset(mem + 4096, 0, 4096);
2218 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2220 list_add_tail(&ns->list, &dev->namespaces);
2222 list_for_each_entry(ns, &dev->namespaces, list)
2227 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2231 static int nvme_dev_map(struct nvme_dev *dev)
2234 int bars, result = -ENOMEM;
2235 struct pci_dev *pdev = dev->pci_dev;
2237 if (pci_enable_device_mem(pdev))
2240 dev->entry[0].vector = pdev->irq;
2241 pci_set_master(pdev);
2242 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2243 if (pci_request_selected_regions(pdev, bars, "nvme"))
2246 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2247 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2250 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2253 if (readl(&dev->bar->csts) == -1) {
2257 cap = readq(&dev->bar->cap);
2258 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2259 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2260 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2268 pci_release_regions(pdev);
2270 pci_disable_device(pdev);
2274 static void nvme_dev_unmap(struct nvme_dev *dev)
2276 if (dev->pci_dev->msi_enabled)
2277 pci_disable_msi(dev->pci_dev);
2278 else if (dev->pci_dev->msix_enabled)
2279 pci_disable_msix(dev->pci_dev);
2284 pci_release_regions(dev->pci_dev);
2287 if (pci_is_enabled(dev->pci_dev))
2288 pci_disable_device(dev->pci_dev);
2291 struct nvme_delq_ctx {
2292 struct task_struct *waiter;
2293 struct kthread_worker *worker;
2297 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2299 dq->waiter = current;
2303 set_current_state(TASK_KILLABLE);
2304 if (!atomic_read(&dq->refcount))
2306 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2307 fatal_signal_pending(current)) {
2308 set_current_state(TASK_RUNNING);
2310 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2311 nvme_disable_queue(dev, 0);
2313 send_sig(SIGKILL, dq->worker->task, 1);
2314 flush_kthread_worker(dq->worker);
2318 set_current_state(TASK_RUNNING);
2321 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2323 atomic_dec(&dq->refcount);
2325 wake_up_process(dq->waiter);
2328 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2330 atomic_inc(&dq->refcount);
2334 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2336 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2338 nvme_clear_queue(nvmeq);
2342 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2343 kthread_work_func_t fn)
2345 struct nvme_command c;
2347 memset(&c, 0, sizeof(c));
2348 c.delete_queue.opcode = opcode;
2349 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2351 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2352 return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2355 static void nvme_del_cq_work_handler(struct kthread_work *work)
2357 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2359 nvme_del_queue_end(nvmeq);
2362 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2364 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2365 nvme_del_cq_work_handler);
2368 static void nvme_del_sq_work_handler(struct kthread_work *work)
2370 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2372 int status = nvmeq->cmdinfo.status;
2375 status = nvme_delete_cq(nvmeq);
2377 nvme_del_queue_end(nvmeq);
2380 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2382 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2383 nvme_del_sq_work_handler);
2386 static void nvme_del_queue_start(struct kthread_work *work)
2388 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2390 allow_signal(SIGKILL);
2391 if (nvme_delete_sq(nvmeq))
2392 nvme_del_queue_end(nvmeq);
2395 static void nvme_disable_io_queues(struct nvme_dev *dev)
2398 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2399 struct nvme_delq_ctx dq;
2400 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2401 &worker, "nvme%d", dev->instance);
2403 if (IS_ERR(kworker_task)) {
2404 dev_err(&dev->pci_dev->dev,
2405 "Failed to create queue del task\n");
2406 for (i = dev->queue_count - 1; i > 0; i--)
2407 nvme_disable_queue(dev, i);
2412 atomic_set(&dq.refcount, 0);
2413 dq.worker = &worker;
2414 for (i = dev->queue_count - 1; i > 0; i--) {
2415 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2417 if (nvme_suspend_queue(nvmeq))
2419 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2420 nvmeq->cmdinfo.worker = dq.worker;
2421 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2422 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2424 nvme_wait_dq(&dq, dev);
2425 kthread_stop(kworker_task);
2429 * Remove the node from the device list and check
2430 * for whether or not we need to stop the nvme_thread.
2432 static void nvme_dev_list_remove(struct nvme_dev *dev)
2434 struct task_struct *tmp = NULL;
2436 spin_lock(&dev_list_lock);
2437 list_del_init(&dev->node);
2438 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2442 spin_unlock(&dev_list_lock);
2448 static void nvme_dev_shutdown(struct nvme_dev *dev)
2452 dev->initialized = 0;
2453 unregister_hotcpu_notifier(&dev->nb);
2455 nvme_dev_list_remove(dev);
2457 if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2458 for (i = dev->queue_count - 1; i >= 0; i--) {
2459 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2460 nvme_suspend_queue(nvmeq);
2461 nvme_clear_queue(nvmeq);
2464 nvme_disable_io_queues(dev);
2465 nvme_shutdown_ctrl(dev);
2466 nvme_disable_queue(dev, 0);
2468 nvme_dev_unmap(dev);
2471 static void nvme_dev_remove(struct nvme_dev *dev)
2475 list_for_each_entry(ns, &dev->namespaces, list) {
2476 if (ns->disk->flags & GENHD_FL_UP)
2477 del_gendisk(ns->disk);
2478 if (!blk_queue_dying(ns->queue))
2479 blk_cleanup_queue(ns->queue);
2483 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2485 struct device *dmadev = &dev->pci_dev->dev;
2486 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2487 PAGE_SIZE, PAGE_SIZE, 0);
2488 if (!dev->prp_page_pool)
2491 /* Optimisation for I/Os between 4k and 128k */
2492 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2494 if (!dev->prp_small_pool) {
2495 dma_pool_destroy(dev->prp_page_pool);
2501 static void nvme_release_prp_pools(struct nvme_dev *dev)
2503 dma_pool_destroy(dev->prp_page_pool);
2504 dma_pool_destroy(dev->prp_small_pool);
2507 static DEFINE_IDA(nvme_instance_ida);
2509 static int nvme_set_instance(struct nvme_dev *dev)
2511 int instance, error;
2514 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2517 spin_lock(&dev_list_lock);
2518 error = ida_get_new(&nvme_instance_ida, &instance);
2519 spin_unlock(&dev_list_lock);
2520 } while (error == -EAGAIN);
2525 dev->instance = instance;
2529 static void nvme_release_instance(struct nvme_dev *dev)
2531 spin_lock(&dev_list_lock);
2532 ida_remove(&nvme_instance_ida, dev->instance);
2533 spin_unlock(&dev_list_lock);
2536 static void nvme_free_namespaces(struct nvme_dev *dev)
2538 struct nvme_ns *ns, *next;
2540 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2541 list_del(&ns->list);
2547 static void nvme_free_dev(struct kref *kref)
2549 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2551 nvme_free_namespaces(dev);
2552 free_percpu(dev->io_queue);
2558 static int nvme_dev_open(struct inode *inode, struct file *f)
2560 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2562 kref_get(&dev->kref);
2563 f->private_data = dev;
2567 static int nvme_dev_release(struct inode *inode, struct file *f)
2569 struct nvme_dev *dev = f->private_data;
2570 kref_put(&dev->kref, nvme_free_dev);
2574 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2576 struct nvme_dev *dev = f->private_data;
2578 case NVME_IOCTL_ADMIN_CMD:
2579 return nvme_user_admin_cmd(dev, (void __user *)arg);
2585 static const struct file_operations nvme_dev_fops = {
2586 .owner = THIS_MODULE,
2587 .open = nvme_dev_open,
2588 .release = nvme_dev_release,
2589 .unlocked_ioctl = nvme_dev_ioctl,
2590 .compat_ioctl = nvme_dev_ioctl,
2593 static int nvme_dev_start(struct nvme_dev *dev)
2596 bool start_thread = false;
2598 result = nvme_dev_map(dev);
2602 result = nvme_configure_admin_queue(dev);
2606 spin_lock(&dev_list_lock);
2607 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2608 start_thread = true;
2611 list_add(&dev->node, &dev_list);
2612 spin_unlock(&dev_list_lock);
2615 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2616 wake_up(&nvme_kthread_wait);
2618 wait_event_killable(nvme_kthread_wait, nvme_thread);
2620 if (IS_ERR_OR_NULL(nvme_thread)) {
2621 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2625 result = nvme_setup_io_queues(dev);
2626 if (result && result != -EBUSY)
2632 nvme_disable_queue(dev, 0);
2633 nvme_dev_list_remove(dev);
2635 nvme_dev_unmap(dev);
2639 static int nvme_remove_dead_ctrl(void *arg)
2641 struct nvme_dev *dev = (struct nvme_dev *)arg;
2642 struct pci_dev *pdev = dev->pci_dev;
2644 if (pci_get_drvdata(pdev))
2645 pci_stop_and_remove_bus_device(pdev);
2646 kref_put(&dev->kref, nvme_free_dev);
2650 static void nvme_remove_disks(struct work_struct *ws)
2652 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2654 nvme_dev_remove(dev);
2655 nvme_free_queues(dev, 1);
2658 static int nvme_dev_resume(struct nvme_dev *dev)
2662 ret = nvme_dev_start(dev);
2663 if (ret && ret != -EBUSY)
2665 if (ret == -EBUSY) {
2666 spin_lock(&dev_list_lock);
2667 dev->reset_workfn = nvme_remove_disks;
2668 queue_work(nvme_workq, &dev->reset_work);
2669 spin_unlock(&dev_list_lock);
2671 dev->initialized = 1;
2675 static void nvme_dev_reset(struct nvme_dev *dev)
2677 nvme_dev_shutdown(dev);
2678 if (nvme_dev_resume(dev)) {
2679 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2680 kref_get(&dev->kref);
2681 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2683 dev_err(&dev->pci_dev->dev,
2684 "Failed to start controller remove task\n");
2685 kref_put(&dev->kref, nvme_free_dev);
2690 static void nvme_reset_failed_dev(struct work_struct *ws)
2692 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2693 nvme_dev_reset(dev);
2696 static void nvme_reset_workfn(struct work_struct *work)
2698 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2699 dev->reset_workfn(work);
2702 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2704 int result = -ENOMEM;
2705 struct nvme_dev *dev;
2707 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2710 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2714 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2718 dev->io_queue = alloc_percpu(unsigned short);
2722 INIT_LIST_HEAD(&dev->namespaces);
2723 dev->reset_workfn = nvme_reset_failed_dev;
2724 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2725 dev->pci_dev = pdev;
2726 pci_set_drvdata(pdev, dev);
2727 result = nvme_set_instance(dev);
2731 result = nvme_setup_prp_pools(dev);
2735 kref_init(&dev->kref);
2736 result = nvme_dev_start(dev);
2738 if (result == -EBUSY)
2743 result = nvme_dev_add(dev);
2748 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2749 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2750 dev->miscdev.parent = &pdev->dev;
2751 dev->miscdev.name = dev->name;
2752 dev->miscdev.fops = &nvme_dev_fops;
2753 result = misc_register(&dev->miscdev);
2757 dev->initialized = 1;
2761 nvme_dev_remove(dev);
2762 nvme_free_namespaces(dev);
2764 nvme_dev_shutdown(dev);
2766 nvme_free_queues(dev, 0);
2767 nvme_release_prp_pools(dev);
2769 nvme_release_instance(dev);
2771 free_percpu(dev->io_queue);
2778 static void nvme_shutdown(struct pci_dev *pdev)
2780 struct nvme_dev *dev = pci_get_drvdata(pdev);
2781 nvme_dev_shutdown(dev);
2784 static void nvme_remove(struct pci_dev *pdev)
2786 struct nvme_dev *dev = pci_get_drvdata(pdev);
2788 spin_lock(&dev_list_lock);
2789 list_del_init(&dev->node);
2790 spin_unlock(&dev_list_lock);
2792 pci_set_drvdata(pdev, NULL);
2793 flush_work(&dev->reset_work);
2794 misc_deregister(&dev->miscdev);
2795 nvme_dev_remove(dev);
2796 nvme_dev_shutdown(dev);
2797 nvme_free_queues(dev, 0);
2799 nvme_release_instance(dev);
2800 nvme_release_prp_pools(dev);
2801 kref_put(&dev->kref, nvme_free_dev);
2804 /* These functions are yet to be implemented */
2805 #define nvme_error_detected NULL
2806 #define nvme_dump_registers NULL
2807 #define nvme_link_reset NULL
2808 #define nvme_slot_reset NULL
2809 #define nvme_error_resume NULL
2811 #ifdef CONFIG_PM_SLEEP
2812 static int nvme_suspend(struct device *dev)
2814 struct pci_dev *pdev = to_pci_dev(dev);
2815 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2817 nvme_dev_shutdown(ndev);
2821 static int nvme_resume(struct device *dev)
2823 struct pci_dev *pdev = to_pci_dev(dev);
2824 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2826 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2827 ndev->reset_workfn = nvme_reset_failed_dev;
2828 queue_work(nvme_workq, &ndev->reset_work);
2834 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2836 static const struct pci_error_handlers nvme_err_handler = {
2837 .error_detected = nvme_error_detected,
2838 .mmio_enabled = nvme_dump_registers,
2839 .link_reset = nvme_link_reset,
2840 .slot_reset = nvme_slot_reset,
2841 .resume = nvme_error_resume,
2844 /* Move to pci_ids.h later */
2845 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2847 static const struct pci_device_id nvme_id_table[] = {
2848 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2851 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2853 static struct pci_driver nvme_driver = {
2855 .id_table = nvme_id_table,
2856 .probe = nvme_probe,
2857 .remove = nvme_remove,
2858 .shutdown = nvme_shutdown,
2860 .pm = &nvme_dev_pm_ops,
2862 .err_handler = &nvme_err_handler,
2865 static int __init nvme_init(void)
2869 init_waitqueue_head(&nvme_kthread_wait);
2871 nvme_workq = create_singlethread_workqueue("nvme");
2875 result = register_blkdev(nvme_major, "nvme");
2878 else if (result > 0)
2879 nvme_major = result;
2881 result = pci_register_driver(&nvme_driver);
2883 goto unregister_blkdev;
2887 unregister_blkdev(nvme_major, "nvme");
2889 destroy_workqueue(nvme_workq);
2893 static void __exit nvme_exit(void)
2895 pci_unregister_driver(&nvme_driver);
2896 unregister_blkdev(nvme_major, "nvme");
2897 destroy_workqueue(nvme_workq);
2898 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2901 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2902 MODULE_LICENSE("GPL");
2903 MODULE_VERSION("0.9");
2904 module_init(nvme_init);
2905 module_exit(nvme_exit);