]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/nvme-core.c
NVMe: Add getgeo to block ops
[karo-tx-linux.git] / drivers / block / nvme-core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/cpu.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/fs.h>
27 #include <linux/genhd.h>
28 #include <linux/hdreg.h>
29 #include <linux/idr.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/kdev_t.h>
34 #include <linux/kthread.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/pci.h>
40 #include <linux/percpu.h>
41 #include <linux/poison.h>
42 #include <linux/ptrace.h>
43 #include <linux/sched.h>
44 #include <linux/slab.h>
45 #include <linux/types.h>
46 #include <scsi/sg.h>
47 #include <asm-generic/io-64-nonatomic-lo-hi.h>
48
49 #define NVME_Q_DEPTH 1024
50 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
52 #define ADMIN_TIMEOUT   (60 * HZ)
53
54 unsigned char io_timeout = 30;
55 module_param(io_timeout, byte, 0644);
56 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
57
58 static int nvme_major;
59 module_param(nvme_major, int, 0);
60
61 static int use_threaded_interrupts;
62 module_param(use_threaded_interrupts, int, 0);
63
64 static DEFINE_SPINLOCK(dev_list_lock);
65 static LIST_HEAD(dev_list);
66 static struct task_struct *nvme_thread;
67 static struct workqueue_struct *nvme_workq;
68 static wait_queue_head_t nvme_kthread_wait;
69
70 static void nvme_reset_failed_dev(struct work_struct *ws);
71
72 struct async_cmd_info {
73         struct kthread_work work;
74         struct kthread_worker *worker;
75         u32 result;
76         int status;
77         void *ctx;
78 };
79
80 /*
81  * An NVM Express queue.  Each device has at least two (one for admin
82  * commands and one for I/O commands).
83  */
84 struct nvme_queue {
85         struct rcu_head r_head;
86         struct device *q_dmadev;
87         struct nvme_dev *dev;
88         char irqname[24];       /* nvme4294967295-65535\0 */
89         spinlock_t q_lock;
90         struct nvme_command *sq_cmds;
91         volatile struct nvme_completion *cqes;
92         dma_addr_t sq_dma_addr;
93         dma_addr_t cq_dma_addr;
94         wait_queue_head_t sq_full;
95         wait_queue_t sq_cong_wait;
96         struct bio_list sq_cong;
97         u32 __iomem *q_db;
98         u16 q_depth;
99         u16 cq_vector;
100         u16 sq_head;
101         u16 sq_tail;
102         u16 cq_head;
103         u16 qid;
104         u8 cq_phase;
105         u8 cqe_seen;
106         u8 q_suspended;
107         cpumask_var_t cpu_mask;
108         struct async_cmd_info cmdinfo;
109         unsigned long cmdid_data[];
110 };
111
112 /*
113  * Check we didin't inadvertently grow the command struct
114  */
115 static inline void _nvme_check_size(void)
116 {
117         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
118         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
119         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
120         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
121         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
122         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
123         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
125         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
126         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
127         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
128         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
129 }
130
131 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
132                                                 struct nvme_completion *);
133
134 struct nvme_cmd_info {
135         nvme_completion_fn fn;
136         void *ctx;
137         unsigned long timeout;
138         int aborted;
139 };
140
141 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
142 {
143         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
144 }
145
146 static unsigned nvme_queue_extra(int depth)
147 {
148         return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
149 }
150
151 /**
152  * alloc_cmdid() - Allocate a Command ID
153  * @nvmeq: The queue that will be used for this command
154  * @ctx: A pointer that will be passed to the handler
155  * @handler: The function to call on completion
156  *
157  * Allocate a Command ID for a queue.  The data passed in will
158  * be passed to the completion handler.  This is implemented by using
159  * the bottom two bits of the ctx pointer to store the handler ID.
160  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
161  * We can change this if it becomes a problem.
162  *
163  * May be called with local interrupts disabled and the q_lock held,
164  * or with interrupts enabled and no locks held.
165  */
166 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
167                                 nvme_completion_fn handler, unsigned timeout)
168 {
169         int depth = nvmeq->q_depth - 1;
170         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
171         int cmdid;
172
173         do {
174                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
175                 if (cmdid >= depth)
176                         return -EBUSY;
177         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
178
179         info[cmdid].fn = handler;
180         info[cmdid].ctx = ctx;
181         info[cmdid].timeout = jiffies + timeout;
182         info[cmdid].aborted = 0;
183         return cmdid;
184 }
185
186 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
187                                 nvme_completion_fn handler, unsigned timeout)
188 {
189         int cmdid;
190         wait_event_killable(nvmeq->sq_full,
191                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
192         return (cmdid < 0) ? -EINTR : cmdid;
193 }
194
195 /* Special values must be less than 0x1000 */
196 #define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
197 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
198 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
199 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
200 #define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
201 #define CMD_CTX_ABORT           (0x31C + CMD_CTX_BASE)
202
203 static void special_completion(struct nvme_dev *dev, void *ctx,
204                                                 struct nvme_completion *cqe)
205 {
206         if (ctx == CMD_CTX_CANCELLED)
207                 return;
208         if (ctx == CMD_CTX_FLUSH)
209                 return;
210         if (ctx == CMD_CTX_ABORT) {
211                 ++dev->abort_limit;
212                 return;
213         }
214         if (ctx == CMD_CTX_COMPLETED) {
215                 dev_warn(&dev->pci_dev->dev,
216                                 "completed id %d twice on queue %d\n",
217                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
218                 return;
219         }
220         if (ctx == CMD_CTX_INVALID) {
221                 dev_warn(&dev->pci_dev->dev,
222                                 "invalid id %d completed on queue %d\n",
223                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
224                 return;
225         }
226
227         dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
228 }
229
230 static void async_completion(struct nvme_dev *dev, void *ctx,
231                                                 struct nvme_completion *cqe)
232 {
233         struct async_cmd_info *cmdinfo = ctx;
234         cmdinfo->result = le32_to_cpup(&cqe->result);
235         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
236         queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
237 }
238
239 /*
240  * Called with local interrupts disabled and the q_lock held.  May not sleep.
241  */
242 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
243                                                 nvme_completion_fn *fn)
244 {
245         void *ctx;
246         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
247
248         if (cmdid >= nvmeq->q_depth) {
249                 *fn = special_completion;
250                 return CMD_CTX_INVALID;
251         }
252         if (fn)
253                 *fn = info[cmdid].fn;
254         ctx = info[cmdid].ctx;
255         info[cmdid].fn = special_completion;
256         info[cmdid].ctx = CMD_CTX_COMPLETED;
257         clear_bit(cmdid, nvmeq->cmdid_data);
258         wake_up(&nvmeq->sq_full);
259         return ctx;
260 }
261
262 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
263                                                 nvme_completion_fn *fn)
264 {
265         void *ctx;
266         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
267         if (fn)
268                 *fn = info[cmdid].fn;
269         ctx = info[cmdid].ctx;
270         info[cmdid].fn = special_completion;
271         info[cmdid].ctx = CMD_CTX_CANCELLED;
272         return ctx;
273 }
274
275 static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
276 {
277         return rcu_dereference_raw(dev->queues[qid]);
278 }
279
280 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
281 {
282         unsigned queue_id = get_cpu_var(*dev->io_queue);
283         rcu_read_lock();
284         return rcu_dereference(dev->queues[queue_id]);
285 }
286
287 static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
288 {
289         rcu_read_unlock();
290         put_cpu_var(nvmeq->dev->io_queue);
291 }
292
293 static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
294                                                         __acquires(RCU)
295 {
296         rcu_read_lock();
297         return rcu_dereference(dev->queues[q_idx]);
298 }
299
300 static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
301 {
302         rcu_read_unlock();
303 }
304
305 /**
306  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
307  * @nvmeq: The queue to use
308  * @cmd: The command to send
309  *
310  * Safe to use from interrupt context
311  */
312 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
313 {
314         unsigned long flags;
315         u16 tail;
316         spin_lock_irqsave(&nvmeq->q_lock, flags);
317         if (nvmeq->q_suspended) {
318                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
319                 return -EBUSY;
320         }
321         tail = nvmeq->sq_tail;
322         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
323         if (++tail == nvmeq->q_depth)
324                 tail = 0;
325         writel(tail, nvmeq->q_db);
326         nvmeq->sq_tail = tail;
327         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
328
329         return 0;
330 }
331
332 static __le64 **iod_list(struct nvme_iod *iod)
333 {
334         return ((void *)iod) + iod->offset;
335 }
336
337 /*
338  * Will slightly overestimate the number of pages needed.  This is OK
339  * as it only leads to a small amount of wasted memory for the lifetime of
340  * the I/O.
341  */
342 static int nvme_npages(unsigned size)
343 {
344         unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
345         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
346 }
347
348 static struct nvme_iod *
349 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
350 {
351         struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
352                                 sizeof(__le64 *) * nvme_npages(nbytes) +
353                                 sizeof(struct scatterlist) * nseg, gfp);
354
355         if (iod) {
356                 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
357                 iod->npages = -1;
358                 iod->length = nbytes;
359                 iod->nents = 0;
360                 iod->start_time = jiffies;
361         }
362
363         return iod;
364 }
365
366 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
367 {
368         const int last_prp = PAGE_SIZE / 8 - 1;
369         int i;
370         __le64 **list = iod_list(iod);
371         dma_addr_t prp_dma = iod->first_dma;
372
373         if (iod->npages == 0)
374                 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
375         for (i = 0; i < iod->npages; i++) {
376                 __le64 *prp_list = list[i];
377                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
378                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
379                 prp_dma = next_prp_dma;
380         }
381         kfree(iod);
382 }
383
384 static void nvme_start_io_acct(struct bio *bio)
385 {
386         struct gendisk *disk = bio->bi_bdev->bd_disk;
387         const int rw = bio_data_dir(bio);
388         int cpu = part_stat_lock();
389         part_round_stats(cpu, &disk->part0);
390         part_stat_inc(cpu, &disk->part0, ios[rw]);
391         part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
392         part_inc_in_flight(&disk->part0, rw);
393         part_stat_unlock();
394 }
395
396 static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
397 {
398         struct gendisk *disk = bio->bi_bdev->bd_disk;
399         const int rw = bio_data_dir(bio);
400         unsigned long duration = jiffies - start_time;
401         int cpu = part_stat_lock();
402         part_stat_add(cpu, &disk->part0, ticks[rw], duration);
403         part_round_stats(cpu, &disk->part0);
404         part_dec_in_flight(&disk->part0, rw);
405         part_stat_unlock();
406 }
407
408 static void bio_completion(struct nvme_dev *dev, void *ctx,
409                                                 struct nvme_completion *cqe)
410 {
411         struct nvme_iod *iod = ctx;
412         struct bio *bio = iod->private;
413         u16 status = le16_to_cpup(&cqe->status) >> 1;
414
415         if (iod->nents) {
416                 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
417                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
418                 nvme_end_io_acct(bio, iod->start_time);
419         }
420         nvme_free_iod(dev, iod);
421         if (status)
422                 bio_endio(bio, -EIO);
423         else
424                 bio_endio(bio, 0);
425 }
426
427 /* length is in bytes.  gfp flags indicates whether we may sleep. */
428 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
429                         struct nvme_iod *iod, int total_len, gfp_t gfp)
430 {
431         struct dma_pool *pool;
432         int length = total_len;
433         struct scatterlist *sg = iod->sg;
434         int dma_len = sg_dma_len(sg);
435         u64 dma_addr = sg_dma_address(sg);
436         int offset = offset_in_page(dma_addr);
437         __le64 *prp_list;
438         __le64 **list = iod_list(iod);
439         dma_addr_t prp_dma;
440         int nprps, i;
441
442         cmd->prp1 = cpu_to_le64(dma_addr);
443         length -= (PAGE_SIZE - offset);
444         if (length <= 0)
445                 return total_len;
446
447         dma_len -= (PAGE_SIZE - offset);
448         if (dma_len) {
449                 dma_addr += (PAGE_SIZE - offset);
450         } else {
451                 sg = sg_next(sg);
452                 dma_addr = sg_dma_address(sg);
453                 dma_len = sg_dma_len(sg);
454         }
455
456         if (length <= PAGE_SIZE) {
457                 cmd->prp2 = cpu_to_le64(dma_addr);
458                 return total_len;
459         }
460
461         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
462         if (nprps <= (256 / 8)) {
463                 pool = dev->prp_small_pool;
464                 iod->npages = 0;
465         } else {
466                 pool = dev->prp_page_pool;
467                 iod->npages = 1;
468         }
469
470         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
471         if (!prp_list) {
472                 cmd->prp2 = cpu_to_le64(dma_addr);
473                 iod->npages = -1;
474                 return (total_len - length) + PAGE_SIZE;
475         }
476         list[0] = prp_list;
477         iod->first_dma = prp_dma;
478         cmd->prp2 = cpu_to_le64(prp_dma);
479         i = 0;
480         for (;;) {
481                 if (i == PAGE_SIZE / 8) {
482                         __le64 *old_prp_list = prp_list;
483                         prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
484                         if (!prp_list)
485                                 return total_len - length;
486                         list[iod->npages++] = prp_list;
487                         prp_list[0] = old_prp_list[i - 1];
488                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
489                         i = 1;
490                 }
491                 prp_list[i++] = cpu_to_le64(dma_addr);
492                 dma_len -= PAGE_SIZE;
493                 dma_addr += PAGE_SIZE;
494                 length -= PAGE_SIZE;
495                 if (length <= 0)
496                         break;
497                 if (dma_len > 0)
498                         continue;
499                 BUG_ON(dma_len < 0);
500                 sg = sg_next(sg);
501                 dma_addr = sg_dma_address(sg);
502                 dma_len = sg_dma_len(sg);
503         }
504
505         return total_len;
506 }
507
508 static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
509                                  int len)
510 {
511         struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
512         if (!split)
513                 return -ENOMEM;
514
515         bio_chain(split, bio);
516
517         if (bio_list_empty(&nvmeq->sq_cong))
518                 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
519         bio_list_add(&nvmeq->sq_cong, split);
520         bio_list_add(&nvmeq->sq_cong, bio);
521
522         return 0;
523 }
524
525 /* NVMe scatterlists require no holes in the virtual address */
526 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
527                         (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
528
529 static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
530                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
531 {
532         struct bio_vec bvec, bvprv;
533         struct bvec_iter iter;
534         struct scatterlist *sg = NULL;
535         int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
536         int first = 1;
537
538         if (nvmeq->dev->stripe_size)
539                 split_len = nvmeq->dev->stripe_size -
540                         ((bio->bi_iter.bi_sector << 9) &
541                          (nvmeq->dev->stripe_size - 1));
542
543         sg_init_table(iod->sg, psegs);
544         bio_for_each_segment(bvec, bio, iter) {
545                 if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
546                         sg->length += bvec.bv_len;
547                 } else {
548                         if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
549                                 return nvme_split_and_submit(bio, nvmeq,
550                                                              length);
551
552                         sg = sg ? sg + 1 : iod->sg;
553                         sg_set_page(sg, bvec.bv_page,
554                                     bvec.bv_len, bvec.bv_offset);
555                         nsegs++;
556                 }
557
558                 if (split_len - length < bvec.bv_len)
559                         return nvme_split_and_submit(bio, nvmeq, split_len);
560                 length += bvec.bv_len;
561                 bvprv = bvec;
562                 first = 0;
563         }
564         iod->nents = nsegs;
565         sg_mark_end(sg);
566         if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
567                 return -ENOMEM;
568
569         BUG_ON(length != bio->bi_iter.bi_size);
570         return length;
571 }
572
573 /*
574  * We reuse the small pool to allocate the 16-byte range here as it is not
575  * worth having a special pool for these or additional cases to handle freeing
576  * the iod.
577  */
578 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
579                 struct bio *bio, struct nvme_iod *iod, int cmdid)
580 {
581         struct nvme_dsm_range *range;
582         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
583
584         range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
585                                                         &iod->first_dma);
586         if (!range)
587                 return -ENOMEM;
588
589         iod_list(iod)[0] = (__le64 *)range;
590         iod->npages = 0;
591
592         range->cattr = cpu_to_le32(0);
593         range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
594         range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
595
596         memset(cmnd, 0, sizeof(*cmnd));
597         cmnd->dsm.opcode = nvme_cmd_dsm;
598         cmnd->dsm.command_id = cmdid;
599         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
600         cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
601         cmnd->dsm.nr = 0;
602         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
603
604         if (++nvmeq->sq_tail == nvmeq->q_depth)
605                 nvmeq->sq_tail = 0;
606         writel(nvmeq->sq_tail, nvmeq->q_db);
607
608         return 0;
609 }
610
611 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
612                                                                 int cmdid)
613 {
614         struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
615
616         memset(cmnd, 0, sizeof(*cmnd));
617         cmnd->common.opcode = nvme_cmd_flush;
618         cmnd->common.command_id = cmdid;
619         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
620
621         if (++nvmeq->sq_tail == nvmeq->q_depth)
622                 nvmeq->sq_tail = 0;
623         writel(nvmeq->sq_tail, nvmeq->q_db);
624
625         return 0;
626 }
627
628 int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
629 {
630         int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
631                                         special_completion, NVME_IO_TIMEOUT);
632         if (unlikely(cmdid < 0))
633                 return cmdid;
634
635         return nvme_submit_flush(nvmeq, ns, cmdid);
636 }
637
638 /*
639  * Called with local interrupts disabled and the q_lock held.  May not sleep.
640  */
641 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
642                                                                 struct bio *bio)
643 {
644         struct nvme_command *cmnd;
645         struct nvme_iod *iod;
646         enum dma_data_direction dma_dir;
647         int cmdid, length, result;
648         u16 control;
649         u32 dsmgmt;
650         int psegs = bio_phys_segments(ns->queue, bio);
651
652         if ((bio->bi_rw & REQ_FLUSH) && psegs) {
653                 result = nvme_submit_flush_data(nvmeq, ns);
654                 if (result)
655                         return result;
656         }
657
658         result = -ENOMEM;
659         iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
660         if (!iod)
661                 goto nomem;
662         iod->private = bio;
663
664         result = -EBUSY;
665         cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
666         if (unlikely(cmdid < 0))
667                 goto free_iod;
668
669         if (bio->bi_rw & REQ_DISCARD) {
670                 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
671                 if (result)
672                         goto free_cmdid;
673                 return result;
674         }
675         if ((bio->bi_rw & REQ_FLUSH) && !psegs)
676                 return nvme_submit_flush(nvmeq, ns, cmdid);
677
678         control = 0;
679         if (bio->bi_rw & REQ_FUA)
680                 control |= NVME_RW_FUA;
681         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
682                 control |= NVME_RW_LR;
683
684         dsmgmt = 0;
685         if (bio->bi_rw & REQ_RAHEAD)
686                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
687
688         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
689
690         memset(cmnd, 0, sizeof(*cmnd));
691         if (bio_data_dir(bio)) {
692                 cmnd->rw.opcode = nvme_cmd_write;
693                 dma_dir = DMA_TO_DEVICE;
694         } else {
695                 cmnd->rw.opcode = nvme_cmd_read;
696                 dma_dir = DMA_FROM_DEVICE;
697         }
698
699         result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
700         if (result <= 0)
701                 goto free_cmdid;
702         length = result;
703
704         cmnd->rw.command_id = cmdid;
705         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
706         length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
707                                                                 GFP_ATOMIC);
708         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
709         cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
710         cmnd->rw.control = cpu_to_le16(control);
711         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
712
713         nvme_start_io_acct(bio);
714         if (++nvmeq->sq_tail == nvmeq->q_depth)
715                 nvmeq->sq_tail = 0;
716         writel(nvmeq->sq_tail, nvmeq->q_db);
717
718         return 0;
719
720  free_cmdid:
721         free_cmdid(nvmeq, cmdid, NULL);
722  free_iod:
723         nvme_free_iod(nvmeq->dev, iod);
724  nomem:
725         return result;
726 }
727
728 static int nvme_process_cq(struct nvme_queue *nvmeq)
729 {
730         u16 head, phase;
731
732         head = nvmeq->cq_head;
733         phase = nvmeq->cq_phase;
734
735         for (;;) {
736                 void *ctx;
737                 nvme_completion_fn fn;
738                 struct nvme_completion cqe = nvmeq->cqes[head];
739                 if ((le16_to_cpu(cqe.status) & 1) != phase)
740                         break;
741                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
742                 if (++head == nvmeq->q_depth) {
743                         head = 0;
744                         phase = !phase;
745                 }
746
747                 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
748                 fn(nvmeq->dev, ctx, &cqe);
749         }
750
751         /* If the controller ignores the cq head doorbell and continuously
752          * writes to the queue, it is theoretically possible to wrap around
753          * the queue twice and mistakenly return IRQ_NONE.  Linux only
754          * requires that 0.1% of your interrupts are handled, so this isn't
755          * a big problem.
756          */
757         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
758                 return 0;
759
760         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
761         nvmeq->cq_head = head;
762         nvmeq->cq_phase = phase;
763
764         nvmeq->cqe_seen = 1;
765         return 1;
766 }
767
768 static void nvme_make_request(struct request_queue *q, struct bio *bio)
769 {
770         struct nvme_ns *ns = q->queuedata;
771         struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
772         int result = -EBUSY;
773
774         if (!nvmeq) {
775                 put_nvmeq(NULL);
776                 bio_endio(bio, -EIO);
777                 return;
778         }
779
780         spin_lock_irq(&nvmeq->q_lock);
781         if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
782                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
783         if (unlikely(result)) {
784                 if (bio_list_empty(&nvmeq->sq_cong))
785                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
786                 bio_list_add(&nvmeq->sq_cong, bio);
787         }
788
789         nvme_process_cq(nvmeq);
790         spin_unlock_irq(&nvmeq->q_lock);
791         put_nvmeq(nvmeq);
792 }
793
794 static irqreturn_t nvme_irq(int irq, void *data)
795 {
796         irqreturn_t result;
797         struct nvme_queue *nvmeq = data;
798         spin_lock(&nvmeq->q_lock);
799         nvme_process_cq(nvmeq);
800         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
801         nvmeq->cqe_seen = 0;
802         spin_unlock(&nvmeq->q_lock);
803         return result;
804 }
805
806 static irqreturn_t nvme_irq_check(int irq, void *data)
807 {
808         struct nvme_queue *nvmeq = data;
809         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
810         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
811                 return IRQ_NONE;
812         return IRQ_WAKE_THREAD;
813 }
814
815 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
816 {
817         spin_lock_irq(&nvmeq->q_lock);
818         cancel_cmdid(nvmeq, cmdid, NULL);
819         spin_unlock_irq(&nvmeq->q_lock);
820 }
821
822 struct sync_cmd_info {
823         struct task_struct *task;
824         u32 result;
825         int status;
826 };
827
828 static void sync_completion(struct nvme_dev *dev, void *ctx,
829                                                 struct nvme_completion *cqe)
830 {
831         struct sync_cmd_info *cmdinfo = ctx;
832         cmdinfo->result = le32_to_cpup(&cqe->result);
833         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
834         wake_up_process(cmdinfo->task);
835 }
836
837 /*
838  * Returns 0 on success.  If the result is negative, it's a Linux error code;
839  * if the result is positive, it's an NVM Express status code
840  */
841 static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
842                                                 struct nvme_command *cmd,
843                                                 u32 *result, unsigned timeout)
844 {
845         int cmdid, ret;
846         struct sync_cmd_info cmdinfo;
847         struct nvme_queue *nvmeq;
848
849         nvmeq = lock_nvmeq(dev, q_idx);
850         if (!nvmeq) {
851                 unlock_nvmeq(nvmeq);
852                 return -ENODEV;
853         }
854
855         cmdinfo.task = current;
856         cmdinfo.status = -EINTR;
857
858         cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
859         if (cmdid < 0) {
860                 unlock_nvmeq(nvmeq);
861                 return cmdid;
862         }
863         cmd->common.command_id = cmdid;
864
865         set_current_state(TASK_KILLABLE);
866         ret = nvme_submit_cmd(nvmeq, cmd);
867         if (ret) {
868                 free_cmdid(nvmeq, cmdid, NULL);
869                 unlock_nvmeq(nvmeq);
870                 set_current_state(TASK_RUNNING);
871                 return ret;
872         }
873         unlock_nvmeq(nvmeq);
874         schedule_timeout(timeout);
875
876         if (cmdinfo.status == -EINTR) {
877                 nvmeq = lock_nvmeq(dev, q_idx);
878                 if (nvmeq)
879                         nvme_abort_command(nvmeq, cmdid);
880                 unlock_nvmeq(nvmeq);
881                 return -EINTR;
882         }
883
884         if (result)
885                 *result = cmdinfo.result;
886
887         return cmdinfo.status;
888 }
889
890 static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
891                         struct nvme_command *cmd,
892                         struct async_cmd_info *cmdinfo, unsigned timeout)
893 {
894         int cmdid;
895
896         cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
897         if (cmdid < 0)
898                 return cmdid;
899         cmdinfo->status = -EINTR;
900         cmd->common.command_id = cmdid;
901         return nvme_submit_cmd(nvmeq, cmd);
902 }
903
904 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
905                                                                 u32 *result)
906 {
907         return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
908 }
909
910 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
911                                                                 u32 *result)
912 {
913         return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result,
914                                                         NVME_IO_TIMEOUT);
915 }
916
917 static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
918                 struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
919 {
920         return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
921                                                                 ADMIN_TIMEOUT);
922 }
923
924 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
925 {
926         int status;
927         struct nvme_command c;
928
929         memset(&c, 0, sizeof(c));
930         c.delete_queue.opcode = opcode;
931         c.delete_queue.qid = cpu_to_le16(id);
932
933         status = nvme_submit_admin_cmd(dev, &c, NULL);
934         if (status)
935                 return -EIO;
936         return 0;
937 }
938
939 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
940                                                 struct nvme_queue *nvmeq)
941 {
942         int status;
943         struct nvme_command c;
944         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
945
946         memset(&c, 0, sizeof(c));
947         c.create_cq.opcode = nvme_admin_create_cq;
948         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
949         c.create_cq.cqid = cpu_to_le16(qid);
950         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
951         c.create_cq.cq_flags = cpu_to_le16(flags);
952         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
953
954         status = nvme_submit_admin_cmd(dev, &c, NULL);
955         if (status)
956                 return -EIO;
957         return 0;
958 }
959
960 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
961                                                 struct nvme_queue *nvmeq)
962 {
963         int status;
964         struct nvme_command c;
965         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
966
967         memset(&c, 0, sizeof(c));
968         c.create_sq.opcode = nvme_admin_create_sq;
969         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
970         c.create_sq.sqid = cpu_to_le16(qid);
971         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
972         c.create_sq.sq_flags = cpu_to_le16(flags);
973         c.create_sq.cqid = cpu_to_le16(qid);
974
975         status = nvme_submit_admin_cmd(dev, &c, NULL);
976         if (status)
977                 return -EIO;
978         return 0;
979 }
980
981 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
982 {
983         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
984 }
985
986 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
987 {
988         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
989 }
990
991 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
992                                                         dma_addr_t dma_addr)
993 {
994         struct nvme_command c;
995
996         memset(&c, 0, sizeof(c));
997         c.identify.opcode = nvme_admin_identify;
998         c.identify.nsid = cpu_to_le32(nsid);
999         c.identify.prp1 = cpu_to_le64(dma_addr);
1000         c.identify.cns = cpu_to_le32(cns);
1001
1002         return nvme_submit_admin_cmd(dev, &c, NULL);
1003 }
1004
1005 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1006                                         dma_addr_t dma_addr, u32 *result)
1007 {
1008         struct nvme_command c;
1009
1010         memset(&c, 0, sizeof(c));
1011         c.features.opcode = nvme_admin_get_features;
1012         c.features.nsid = cpu_to_le32(nsid);
1013         c.features.prp1 = cpu_to_le64(dma_addr);
1014         c.features.fid = cpu_to_le32(fid);
1015
1016         return nvme_submit_admin_cmd(dev, &c, result);
1017 }
1018
1019 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1020                                         dma_addr_t dma_addr, u32 *result)
1021 {
1022         struct nvme_command c;
1023
1024         memset(&c, 0, sizeof(c));
1025         c.features.opcode = nvme_admin_set_features;
1026         c.features.prp1 = cpu_to_le64(dma_addr);
1027         c.features.fid = cpu_to_le32(fid);
1028         c.features.dword11 = cpu_to_le32(dword11);
1029
1030         return nvme_submit_admin_cmd(dev, &c, result);
1031 }
1032
1033 /**
1034  * nvme_abort_cmd - Attempt aborting a command
1035  * @cmdid: Command id of a timed out IO
1036  * @queue: The queue with timed out IO
1037  *
1038  * Schedule controller reset if the command was already aborted once before and
1039  * still hasn't been returned to the driver, or if this is the admin queue.
1040  */
1041 static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1042 {
1043         int a_cmdid;
1044         struct nvme_command cmd;
1045         struct nvme_dev *dev = nvmeq->dev;
1046         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1047         struct nvme_queue *adminq;
1048
1049         if (!nvmeq->qid || info[cmdid].aborted) {
1050                 if (work_busy(&dev->reset_work))
1051                         return;
1052                 list_del_init(&dev->node);
1053                 dev_warn(&dev->pci_dev->dev,
1054                         "I/O %d QID %d timeout, reset controller\n", cmdid,
1055                                                                 nvmeq->qid);
1056                 PREPARE_WORK(&dev->reset_work, nvme_reset_failed_dev);
1057                 queue_work(nvme_workq, &dev->reset_work);
1058                 return;
1059         }
1060
1061         if (!dev->abort_limit)
1062                 return;
1063
1064         adminq = rcu_dereference(dev->queues[0]);
1065         a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1066                                                                 ADMIN_TIMEOUT);
1067         if (a_cmdid < 0)
1068                 return;
1069
1070         memset(&cmd, 0, sizeof(cmd));
1071         cmd.abort.opcode = nvme_admin_abort_cmd;
1072         cmd.abort.cid = cmdid;
1073         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1074         cmd.abort.command_id = a_cmdid;
1075
1076         --dev->abort_limit;
1077         info[cmdid].aborted = 1;
1078         info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1079
1080         dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1081                                                         nvmeq->qid);
1082         nvme_submit_cmd(adminq, &cmd);
1083 }
1084
1085 /**
1086  * nvme_cancel_ios - Cancel outstanding I/Os
1087  * @queue: The queue to cancel I/Os on
1088  * @timeout: True to only cancel I/Os which have timed out
1089  */
1090 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1091 {
1092         int depth = nvmeq->q_depth - 1;
1093         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1094         unsigned long now = jiffies;
1095         int cmdid;
1096
1097         for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1098                 void *ctx;
1099                 nvme_completion_fn fn;
1100                 static struct nvme_completion cqe = {
1101                         .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1102                 };
1103
1104                 if (timeout && !time_after(now, info[cmdid].timeout))
1105                         continue;
1106                 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1107                         continue;
1108                 if (timeout && nvmeq->dev->initialized) {
1109                         nvme_abort_cmd(cmdid, nvmeq);
1110                         continue;
1111                 }
1112                 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1113                                                                 nvmeq->qid);
1114                 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1115                 fn(nvmeq->dev, ctx, &cqe);
1116         }
1117 }
1118
1119 static void nvme_free_queue(struct rcu_head *r)
1120 {
1121         struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head);
1122
1123         spin_lock_irq(&nvmeq->q_lock);
1124         while (bio_list_peek(&nvmeq->sq_cong)) {
1125                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1126                 bio_endio(bio, -EIO);
1127         }
1128         spin_unlock_irq(&nvmeq->q_lock);
1129
1130         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1131                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1132         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1133                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1134         if (nvmeq->qid)
1135                 free_cpumask_var(nvmeq->cpu_mask);
1136         kfree(nvmeq);
1137 }
1138
1139 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1140 {
1141         int i;
1142
1143         for (i = dev->queue_count - 1; i >= lowest; i--) {
1144                 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
1145                 rcu_assign_pointer(dev->queues[i], NULL);
1146                 call_rcu(&nvmeq->r_head, nvme_free_queue);
1147                 dev->queue_count--;
1148         }
1149 }
1150
1151 /**
1152  * nvme_suspend_queue - put queue into suspended state
1153  * @nvmeq - queue to suspend
1154  *
1155  * Returns 1 if already suspended, 0 otherwise.
1156  */
1157 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1158 {
1159         int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1160
1161         spin_lock_irq(&nvmeq->q_lock);
1162         if (nvmeq->q_suspended) {
1163                 spin_unlock_irq(&nvmeq->q_lock);
1164                 return 1;
1165         }
1166         nvmeq->q_suspended = 1;
1167         nvmeq->dev->online_queues--;
1168         spin_unlock_irq(&nvmeq->q_lock);
1169
1170         irq_set_affinity_hint(vector, NULL);
1171         free_irq(vector, nvmeq);
1172
1173         return 0;
1174 }
1175
1176 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1177 {
1178         spin_lock_irq(&nvmeq->q_lock);
1179         nvme_process_cq(nvmeq);
1180         nvme_cancel_ios(nvmeq, false);
1181         spin_unlock_irq(&nvmeq->q_lock);
1182 }
1183
1184 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1185 {
1186         struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1187
1188         if (!nvmeq)
1189                 return;
1190         if (nvme_suspend_queue(nvmeq))
1191                 return;
1192
1193         /* Don't tell the adapter to delete the admin queue.
1194          * Don't tell a removed adapter to delete IO queues. */
1195         if (qid && readl(&dev->bar->csts) != -1) {
1196                 adapter_delete_sq(dev, qid);
1197                 adapter_delete_cq(dev, qid);
1198         }
1199         nvme_clear_queue(nvmeq);
1200 }
1201
1202 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1203                                                         int depth, int vector)
1204 {
1205         struct device *dmadev = &dev->pci_dev->dev;
1206         unsigned extra = nvme_queue_extra(depth);
1207         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1208         if (!nvmeq)
1209                 return NULL;
1210
1211         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1212                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
1213         if (!nvmeq->cqes)
1214                 goto free_nvmeq;
1215         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1216
1217         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1218                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
1219         if (!nvmeq->sq_cmds)
1220                 goto free_cqdma;
1221
1222         if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1223                 goto free_sqdma;
1224
1225         nvmeq->q_dmadev = dmadev;
1226         nvmeq->dev = dev;
1227         snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1228                         dev->instance, qid);
1229         spin_lock_init(&nvmeq->q_lock);
1230         nvmeq->cq_head = 0;
1231         nvmeq->cq_phase = 1;
1232         init_waitqueue_head(&nvmeq->sq_full);
1233         init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1234         bio_list_init(&nvmeq->sq_cong);
1235         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1236         nvmeq->q_depth = depth;
1237         nvmeq->cq_vector = vector;
1238         nvmeq->qid = qid;
1239         nvmeq->q_suspended = 1;
1240         dev->queue_count++;
1241         rcu_assign_pointer(dev->queues[qid], nvmeq);
1242
1243         return nvmeq;
1244
1245  free_sqdma:
1246         dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1247                                                         nvmeq->sq_dma_addr);
1248  free_cqdma:
1249         dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1250                                                         nvmeq->cq_dma_addr);
1251  free_nvmeq:
1252         kfree(nvmeq);
1253         return NULL;
1254 }
1255
1256 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1257                                                         const char *name)
1258 {
1259         if (use_threaded_interrupts)
1260                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1261                                         nvme_irq_check, nvme_irq, IRQF_SHARED,
1262                                         name, nvmeq);
1263         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1264                                 IRQF_SHARED, name, nvmeq);
1265 }
1266
1267 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1268 {
1269         struct nvme_dev *dev = nvmeq->dev;
1270         unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1271
1272         nvmeq->sq_tail = 0;
1273         nvmeq->cq_head = 0;
1274         nvmeq->cq_phase = 1;
1275         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1276         memset(nvmeq->cmdid_data, 0, extra);
1277         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1278         nvme_cancel_ios(nvmeq, false);
1279         nvmeq->q_suspended = 0;
1280         dev->online_queues++;
1281 }
1282
1283 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1284 {
1285         struct nvme_dev *dev = nvmeq->dev;
1286         int result;
1287
1288         result = adapter_alloc_cq(dev, qid, nvmeq);
1289         if (result < 0)
1290                 return result;
1291
1292         result = adapter_alloc_sq(dev, qid, nvmeq);
1293         if (result < 0)
1294                 goto release_cq;
1295
1296         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1297         if (result < 0)
1298                 goto release_sq;
1299
1300         spin_lock_irq(&nvmeq->q_lock);
1301         nvme_init_queue(nvmeq, qid);
1302         spin_unlock_irq(&nvmeq->q_lock);
1303
1304         return result;
1305
1306  release_sq:
1307         adapter_delete_sq(dev, qid);
1308  release_cq:
1309         adapter_delete_cq(dev, qid);
1310         return result;
1311 }
1312
1313 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1314 {
1315         unsigned long timeout;
1316         u32 bit = enabled ? NVME_CSTS_RDY : 0;
1317
1318         timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1319
1320         while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1321                 msleep(100);
1322                 if (fatal_signal_pending(current))
1323                         return -EINTR;
1324                 if (time_after(jiffies, timeout)) {
1325                         dev_err(&dev->pci_dev->dev,
1326                                 "Device not ready; aborting initialisation\n");
1327                         return -ENODEV;
1328                 }
1329         }
1330
1331         return 0;
1332 }
1333
1334 /*
1335  * If the device has been passed off to us in an enabled state, just clear
1336  * the enabled bit.  The spec says we should set the 'shutdown notification
1337  * bits', but doing so may cause the device to complete commands to the
1338  * admin queue ... and we don't know what memory that might be pointing at!
1339  */
1340 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1341 {
1342         u32 cc = readl(&dev->bar->cc);
1343
1344         if (cc & NVME_CC_ENABLE)
1345                 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1346         return nvme_wait_ready(dev, cap, false);
1347 }
1348
1349 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1350 {
1351         return nvme_wait_ready(dev, cap, true);
1352 }
1353
1354 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1355 {
1356         unsigned long timeout;
1357         u32 cc;
1358
1359         cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1360         writel(cc, &dev->bar->cc);
1361
1362         timeout = 2 * HZ + jiffies;
1363         while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1364                                                         NVME_CSTS_SHST_CMPLT) {
1365                 msleep(100);
1366                 if (fatal_signal_pending(current))
1367                         return -EINTR;
1368                 if (time_after(jiffies, timeout)) {
1369                         dev_err(&dev->pci_dev->dev,
1370                                 "Device shutdown incomplete; abort shutdown\n");
1371                         return -ENODEV;
1372                 }
1373         }
1374
1375         return 0;
1376 }
1377
1378 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1379 {
1380         int result;
1381         u32 aqa;
1382         u64 cap = readq(&dev->bar->cap);
1383         struct nvme_queue *nvmeq;
1384
1385         result = nvme_disable_ctrl(dev, cap);
1386         if (result < 0)
1387                 return result;
1388
1389         nvmeq = raw_nvmeq(dev, 0);
1390         if (!nvmeq) {
1391                 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1392                 if (!nvmeq)
1393                         return -ENOMEM;
1394         }
1395
1396         aqa = nvmeq->q_depth - 1;
1397         aqa |= aqa << 16;
1398
1399         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1400         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1401         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1402         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1403
1404         writel(aqa, &dev->bar->aqa);
1405         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1406         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1407         writel(dev->ctrl_config, &dev->bar->cc);
1408
1409         result = nvme_enable_ctrl(dev, cap);
1410         if (result)
1411                 return result;
1412
1413         result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1414         if (result)
1415                 return result;
1416
1417         spin_lock_irq(&nvmeq->q_lock);
1418         nvme_init_queue(nvmeq, 0);
1419         spin_unlock_irq(&nvmeq->q_lock);
1420         return result;
1421 }
1422
1423 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1424                                 unsigned long addr, unsigned length)
1425 {
1426         int i, err, count, nents, offset;
1427         struct scatterlist *sg;
1428         struct page **pages;
1429         struct nvme_iod *iod;
1430
1431         if (addr & 3)
1432                 return ERR_PTR(-EINVAL);
1433         if (!length || length > INT_MAX - PAGE_SIZE)
1434                 return ERR_PTR(-EINVAL);
1435
1436         offset = offset_in_page(addr);
1437         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1438         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1439         if (!pages)
1440                 return ERR_PTR(-ENOMEM);
1441
1442         err = get_user_pages_fast(addr, count, 1, pages);
1443         if (err < count) {
1444                 count = err;
1445                 err = -EFAULT;
1446                 goto put_pages;
1447         }
1448
1449         iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1450         sg = iod->sg;
1451         sg_init_table(sg, count);
1452         for (i = 0; i < count; i++) {
1453                 sg_set_page(&sg[i], pages[i],
1454                             min_t(unsigned, length, PAGE_SIZE - offset),
1455                             offset);
1456                 length -= (PAGE_SIZE - offset);
1457                 offset = 0;
1458         }
1459         sg_mark_end(&sg[i - 1]);
1460         iod->nents = count;
1461
1462         err = -ENOMEM;
1463         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1464                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1465         if (!nents)
1466                 goto free_iod;
1467
1468         kfree(pages);
1469         return iod;
1470
1471  free_iod:
1472         kfree(iod);
1473  put_pages:
1474         for (i = 0; i < count; i++)
1475                 put_page(pages[i]);
1476         kfree(pages);
1477         return ERR_PTR(err);
1478 }
1479
1480 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1481                         struct nvme_iod *iod)
1482 {
1483         int i;
1484
1485         dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1486                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1487
1488         for (i = 0; i < iod->nents; i++)
1489                 put_page(sg_page(&iod->sg[i]));
1490 }
1491
1492 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1493 {
1494         struct nvme_dev *dev = ns->dev;
1495         struct nvme_user_io io;
1496         struct nvme_command c;
1497         unsigned length, meta_len;
1498         int status, i;
1499         struct nvme_iod *iod, *meta_iod = NULL;
1500         dma_addr_t meta_dma_addr;
1501         void *meta, *uninitialized_var(meta_mem);
1502
1503         if (copy_from_user(&io, uio, sizeof(io)))
1504                 return -EFAULT;
1505         length = (io.nblocks + 1) << ns->lba_shift;
1506         meta_len = (io.nblocks + 1) * ns->ms;
1507
1508         if (meta_len && ((io.metadata & 3) || !io.metadata))
1509                 return -EINVAL;
1510
1511         switch (io.opcode) {
1512         case nvme_cmd_write:
1513         case nvme_cmd_read:
1514         case nvme_cmd_compare:
1515                 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1516                 break;
1517         default:
1518                 return -EINVAL;
1519         }
1520
1521         if (IS_ERR(iod))
1522                 return PTR_ERR(iod);
1523
1524         memset(&c, 0, sizeof(c));
1525         c.rw.opcode = io.opcode;
1526         c.rw.flags = io.flags;
1527         c.rw.nsid = cpu_to_le32(ns->ns_id);
1528         c.rw.slba = cpu_to_le64(io.slba);
1529         c.rw.length = cpu_to_le16(io.nblocks);
1530         c.rw.control = cpu_to_le16(io.control);
1531         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1532         c.rw.reftag = cpu_to_le32(io.reftag);
1533         c.rw.apptag = cpu_to_le16(io.apptag);
1534         c.rw.appmask = cpu_to_le16(io.appmask);
1535
1536         if (meta_len) {
1537                 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1538                                                                 meta_len);
1539                 if (IS_ERR(meta_iod)) {
1540                         status = PTR_ERR(meta_iod);
1541                         meta_iod = NULL;
1542                         goto unmap;
1543                 }
1544
1545                 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1546                                                 &meta_dma_addr, GFP_KERNEL);
1547                 if (!meta_mem) {
1548                         status = -ENOMEM;
1549                         goto unmap;
1550                 }
1551
1552                 if (io.opcode & 1) {
1553                         int meta_offset = 0;
1554
1555                         for (i = 0; i < meta_iod->nents; i++) {
1556                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1557                                                 meta_iod->sg[i].offset;
1558                                 memcpy(meta_mem + meta_offset, meta,
1559                                                 meta_iod->sg[i].length);
1560                                 kunmap_atomic(meta);
1561                                 meta_offset += meta_iod->sg[i].length;
1562                         }
1563                 }
1564
1565                 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1566         }
1567
1568         length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1569
1570         if (length != (io.nblocks + 1) << ns->lba_shift)
1571                 status = -ENOMEM;
1572         else
1573                 status = nvme_submit_io_cmd(dev, &c, NULL);
1574
1575         if (meta_len) {
1576                 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1577                         int meta_offset = 0;
1578
1579                         for (i = 0; i < meta_iod->nents; i++) {
1580                                 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1581                                                 meta_iod->sg[i].offset;
1582                                 memcpy(meta, meta_mem + meta_offset,
1583                                                 meta_iod->sg[i].length);
1584                                 kunmap_atomic(meta);
1585                                 meta_offset += meta_iod->sg[i].length;
1586                         }
1587                 }
1588
1589                 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1590                                                                 meta_dma_addr);
1591         }
1592
1593  unmap:
1594         nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1595         nvme_free_iod(dev, iod);
1596
1597         if (meta_iod) {
1598                 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1599                 nvme_free_iod(dev, meta_iod);
1600         }
1601
1602         return status;
1603 }
1604
1605 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1606                                         struct nvme_admin_cmd __user *ucmd)
1607 {
1608         struct nvme_admin_cmd cmd;
1609         struct nvme_command c;
1610         int status, length;
1611         struct nvme_iod *uninitialized_var(iod);
1612         unsigned timeout;
1613
1614         if (!capable(CAP_SYS_ADMIN))
1615                 return -EACCES;
1616         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1617                 return -EFAULT;
1618
1619         memset(&c, 0, sizeof(c));
1620         c.common.opcode = cmd.opcode;
1621         c.common.flags = cmd.flags;
1622         c.common.nsid = cpu_to_le32(cmd.nsid);
1623         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1624         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1625         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1626         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1627         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1628         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1629         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1630         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1631
1632         length = cmd.data_len;
1633         if (cmd.data_len) {
1634                 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1635                                                                 length);
1636                 if (IS_ERR(iod))
1637                         return PTR_ERR(iod);
1638                 length = nvme_setup_prps(dev, &c.common, iod, length,
1639                                                                 GFP_KERNEL);
1640         }
1641
1642         timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1643                                                                 ADMIN_TIMEOUT;
1644         if (length != cmd.data_len)
1645                 status = -ENOMEM;
1646         else
1647                 status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1648
1649         if (cmd.data_len) {
1650                 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1651                 nvme_free_iod(dev, iod);
1652         }
1653
1654         if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1655                                                         sizeof(cmd.result)))
1656                 status = -EFAULT;
1657
1658         return status;
1659 }
1660
1661 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1662                                                         unsigned long arg)
1663 {
1664         struct nvme_ns *ns = bdev->bd_disk->private_data;
1665
1666         switch (cmd) {
1667         case NVME_IOCTL_ID:
1668                 force_successful_syscall_return();
1669                 return ns->ns_id;
1670         case NVME_IOCTL_ADMIN_CMD:
1671                 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1672         case NVME_IOCTL_SUBMIT_IO:
1673                 return nvme_submit_io(ns, (void __user *)arg);
1674         case SG_GET_VERSION_NUM:
1675                 return nvme_sg_get_version_num((void __user *)arg);
1676         case SG_IO:
1677                 return nvme_sg_io(ns, (void __user *)arg);
1678         default:
1679                 return -ENOTTY;
1680         }
1681 }
1682
1683 #ifdef CONFIG_COMPAT
1684 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1685                                         unsigned int cmd, unsigned long arg)
1686 {
1687         struct nvme_ns *ns = bdev->bd_disk->private_data;
1688
1689         switch (cmd) {
1690         case SG_IO:
1691                 return nvme_sg_io32(ns, arg);
1692         }
1693         return nvme_ioctl(bdev, mode, cmd, arg);
1694 }
1695 #else
1696 #define nvme_compat_ioctl       NULL
1697 #endif
1698
1699 static int nvme_open(struct block_device *bdev, fmode_t mode)
1700 {
1701         struct nvme_ns *ns = bdev->bd_disk->private_data;
1702         struct nvme_dev *dev = ns->dev;
1703
1704         kref_get(&dev->kref);
1705         return 0;
1706 }
1707
1708 static void nvme_free_dev(struct kref *kref);
1709
1710 static void nvme_release(struct gendisk *disk, fmode_t mode)
1711 {
1712         struct nvme_ns *ns = disk->private_data;
1713         struct nvme_dev *dev = ns->dev;
1714
1715         kref_put(&dev->kref, nvme_free_dev);
1716 }
1717
1718 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1719 {
1720         /* some standard values */
1721         geo->heads = 1 << 6;
1722         geo->sectors = 1 << 5;
1723         geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1724         return 0;
1725 }
1726
1727 static const struct block_device_operations nvme_fops = {
1728         .owner          = THIS_MODULE,
1729         .ioctl          = nvme_ioctl,
1730         .compat_ioctl   = nvme_compat_ioctl,
1731         .open           = nvme_open,
1732         .release        = nvme_release,
1733         .getgeo         = nvme_getgeo,
1734 };
1735
1736 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1737 {
1738         while (bio_list_peek(&nvmeq->sq_cong)) {
1739                 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1740                 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1741
1742                 if (bio_list_empty(&nvmeq->sq_cong))
1743                         remove_wait_queue(&nvmeq->sq_full,
1744                                                         &nvmeq->sq_cong_wait);
1745                 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1746                         if (bio_list_empty(&nvmeq->sq_cong))
1747                                 add_wait_queue(&nvmeq->sq_full,
1748                                                         &nvmeq->sq_cong_wait);
1749                         bio_list_add_head(&nvmeq->sq_cong, bio);
1750                         break;
1751                 }
1752         }
1753 }
1754
1755 static int nvme_kthread(void *data)
1756 {
1757         struct nvme_dev *dev, *next;
1758
1759         while (!kthread_should_stop()) {
1760                 set_current_state(TASK_INTERRUPTIBLE);
1761                 spin_lock(&dev_list_lock);
1762                 list_for_each_entry_safe(dev, next, &dev_list, node) {
1763                         int i;
1764                         if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1765                                                         dev->initialized) {
1766                                 if (work_busy(&dev->reset_work))
1767                                         continue;
1768                                 list_del_init(&dev->node);
1769                                 dev_warn(&dev->pci_dev->dev,
1770                                         "Failed status, reset controller\n");
1771                                 PREPARE_WORK(&dev->reset_work,
1772                                                         nvme_reset_failed_dev);
1773                                 queue_work(nvme_workq, &dev->reset_work);
1774                                 continue;
1775                         }
1776                         rcu_read_lock();
1777                         for (i = 0; i < dev->queue_count; i++) {
1778                                 struct nvme_queue *nvmeq =
1779                                                 rcu_dereference(dev->queues[i]);
1780                                 if (!nvmeq)
1781                                         continue;
1782                                 spin_lock_irq(&nvmeq->q_lock);
1783                                 if (nvmeq->q_suspended)
1784                                         goto unlock;
1785                                 nvme_process_cq(nvmeq);
1786                                 nvme_cancel_ios(nvmeq, true);
1787                                 nvme_resubmit_bios(nvmeq);
1788  unlock:
1789                                 spin_unlock_irq(&nvmeq->q_lock);
1790                         }
1791                         rcu_read_unlock();
1792                 }
1793                 spin_unlock(&dev_list_lock);
1794                 schedule_timeout(round_jiffies_relative(HZ));
1795         }
1796         return 0;
1797 }
1798
1799 static void nvme_config_discard(struct nvme_ns *ns)
1800 {
1801         u32 logical_block_size = queue_logical_block_size(ns->queue);
1802         ns->queue->limits.discard_zeroes_data = 0;
1803         ns->queue->limits.discard_alignment = logical_block_size;
1804         ns->queue->limits.discard_granularity = logical_block_size;
1805         ns->queue->limits.max_discard_sectors = 0xffffffff;
1806         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1807 }
1808
1809 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1810                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1811 {
1812         struct nvme_ns *ns;
1813         struct gendisk *disk;
1814         int lbaf;
1815
1816         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1817                 return NULL;
1818
1819         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1820         if (!ns)
1821                 return NULL;
1822         ns->queue = blk_alloc_queue(GFP_KERNEL);
1823         if (!ns->queue)
1824                 goto out_free_ns;
1825         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1826         queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1827         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1828         blk_queue_make_request(ns->queue, nvme_make_request);
1829         ns->dev = dev;
1830         ns->queue->queuedata = ns;
1831
1832         disk = alloc_disk(0);
1833         if (!disk)
1834                 goto out_free_queue;
1835         ns->ns_id = nsid;
1836         ns->disk = disk;
1837         lbaf = id->flbas & 0xf;
1838         ns->lba_shift = id->lbaf[lbaf].ds;
1839         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1840         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1841         if (dev->max_hw_sectors)
1842                 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1843
1844         disk->major = nvme_major;
1845         disk->first_minor = 0;
1846         disk->fops = &nvme_fops;
1847         disk->private_data = ns;
1848         disk->queue = ns->queue;
1849         disk->driverfs_dev = &dev->pci_dev->dev;
1850         disk->flags = GENHD_FL_EXT_DEVT;
1851         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1852         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1853
1854         if (dev->oncs & NVME_CTRL_ONCS_DSM)
1855                 nvme_config_discard(ns);
1856
1857         return ns;
1858
1859  out_free_queue:
1860         blk_cleanup_queue(ns->queue);
1861  out_free_ns:
1862         kfree(ns);
1863         return NULL;
1864 }
1865
1866 static int nvme_find_closest_node(int node)
1867 {
1868         int n, val, min_val = INT_MAX, best_node = node;
1869
1870         for_each_online_node(n) {
1871                 if (n == node)
1872                         continue;
1873                 val = node_distance(node, n);
1874                 if (val < min_val) {
1875                         min_val = val;
1876                         best_node = n;
1877                 }
1878         }
1879         return best_node;
1880 }
1881
1882 static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
1883                                                                 int count)
1884 {
1885         int cpu;
1886         for_each_cpu(cpu, qmask) {
1887                 if (cpumask_weight(nvmeq->cpu_mask) >= count)
1888                         break;
1889                 if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
1890                         *per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
1891         }
1892 }
1893
1894 static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
1895         const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
1896 {
1897         int next_cpu;
1898         for_each_cpu(next_cpu, new_mask) {
1899                 cpumask_or(mask, mask, get_cpu_mask(next_cpu));
1900                 cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
1901                 cpumask_and(mask, mask, unassigned_cpus);
1902                 nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
1903         }
1904 }
1905
1906 static void nvme_create_io_queues(struct nvme_dev *dev)
1907 {
1908         unsigned i, max;
1909
1910         max = min(dev->max_qid, num_online_cpus());
1911         for (i = dev->queue_count; i <= max; i++)
1912                 if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
1913                         break;
1914
1915         max = min(dev->queue_count - 1, num_online_cpus());
1916         for (i = dev->online_queues; i <= max; i++)
1917                 if (nvme_create_queue(raw_nvmeq(dev, i), i))
1918                         break;
1919 }
1920
1921 /*
1922  * If there are fewer queues than online cpus, this will try to optimally
1923  * assign a queue to multiple cpus by grouping cpus that are "close" together:
1924  * thread siblings, core, socket, closest node, then whatever else is
1925  * available.
1926  */
1927 static void nvme_assign_io_queues(struct nvme_dev *dev)
1928 {
1929         unsigned cpu, cpus_per_queue, queues, remainder, i;
1930         cpumask_var_t unassigned_cpus;
1931
1932         nvme_create_io_queues(dev);
1933
1934         queues = min(dev->online_queues - 1, num_online_cpus());
1935         if (!queues)
1936                 return;
1937
1938         cpus_per_queue = num_online_cpus() / queues;
1939         remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
1940
1941         if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
1942                 return;
1943
1944         cpumask_copy(unassigned_cpus, cpu_online_mask);
1945         cpu = cpumask_first(unassigned_cpus);
1946         for (i = 1; i <= queues; i++) {
1947                 struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
1948                 cpumask_t mask;
1949
1950                 cpumask_clear(nvmeq->cpu_mask);
1951                 if (!cpumask_weight(unassigned_cpus)) {
1952                         unlock_nvmeq(nvmeq);
1953                         break;
1954                 }
1955
1956                 mask = *get_cpu_mask(cpu);
1957                 nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
1958                 if (cpus_weight(mask) < cpus_per_queue)
1959                         nvme_add_cpus(&mask, unassigned_cpus,
1960                                 topology_thread_cpumask(cpu),
1961                                 nvmeq, cpus_per_queue);
1962                 if (cpus_weight(mask) < cpus_per_queue)
1963                         nvme_add_cpus(&mask, unassigned_cpus,
1964                                 topology_core_cpumask(cpu),
1965                                 nvmeq, cpus_per_queue);
1966                 if (cpus_weight(mask) < cpus_per_queue)
1967                         nvme_add_cpus(&mask, unassigned_cpus,
1968                                 cpumask_of_node(cpu_to_node(cpu)),
1969                                 nvmeq, cpus_per_queue);
1970                 if (cpus_weight(mask) < cpus_per_queue)
1971                         nvme_add_cpus(&mask, unassigned_cpus,
1972                                 cpumask_of_node(
1973                                         nvme_find_closest_node(
1974                                                 cpu_to_node(cpu))),
1975                                 nvmeq, cpus_per_queue);
1976                 if (cpus_weight(mask) < cpus_per_queue)
1977                         nvme_add_cpus(&mask, unassigned_cpus,
1978                                 unassigned_cpus,
1979                                 nvmeq, cpus_per_queue);
1980
1981                 WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
1982                         "nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
1983                         dev->instance, i);
1984
1985                 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1986                                                         nvmeq->cpu_mask);
1987                 cpumask_andnot(unassigned_cpus, unassigned_cpus,
1988                                                 nvmeq->cpu_mask);
1989                 cpu = cpumask_next(cpu, unassigned_cpus);
1990                 if (remainder && !--remainder)
1991                         cpus_per_queue++;
1992                 unlock_nvmeq(nvmeq);
1993         }
1994         WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
1995                                                                 dev->instance);
1996         i = 0;
1997         cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
1998         for_each_cpu(cpu, unassigned_cpus)
1999                 *per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
2000         free_cpumask_var(unassigned_cpus);
2001 }
2002
2003 static int set_queue_count(struct nvme_dev *dev, int count)
2004 {
2005         int status;
2006         u32 result;
2007         u32 q_count = (count - 1) | ((count - 1) << 16);
2008
2009         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2010                                                                 &result);
2011         if (status)
2012                 return status < 0 ? -EIO : -EBUSY;
2013         return min(result & 0xffff, result >> 16) + 1;
2014 }
2015
2016 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2017 {
2018         return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2019 }
2020
2021 static int nvme_cpu_notify(struct notifier_block *self,
2022                                 unsigned long action, void *hcpu)
2023 {
2024         struct nvme_dev *dev = container_of(self, struct nvme_dev, nb);
2025         switch (action) {
2026         case CPU_ONLINE:
2027         case CPU_DEAD:
2028                 nvme_assign_io_queues(dev);
2029                 break;
2030         }
2031         return NOTIFY_OK;
2032 }
2033
2034 static int nvme_setup_io_queues(struct nvme_dev *dev)
2035 {
2036         struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2037         struct pci_dev *pdev = dev->pci_dev;
2038         int result, i, vecs, nr_io_queues, size;
2039
2040         nr_io_queues = num_possible_cpus();
2041         result = set_queue_count(dev, nr_io_queues);
2042         if (result < 0)
2043                 return result;
2044         if (result < nr_io_queues)
2045                 nr_io_queues = result;
2046
2047         size = db_bar_size(dev, nr_io_queues);
2048         if (size > 8192) {
2049                 iounmap(dev->bar);
2050                 do {
2051                         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2052                         if (dev->bar)
2053                                 break;
2054                         if (!--nr_io_queues)
2055                                 return -ENOMEM;
2056                         size = db_bar_size(dev, nr_io_queues);
2057                 } while (1);
2058                 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2059                 adminq->q_db = dev->dbs;
2060         }
2061
2062         /* Deregister the admin queue's interrupt */
2063         free_irq(dev->entry[0].vector, adminq);
2064
2065         vecs = nr_io_queues;
2066         for (i = 0; i < vecs; i++)
2067                 dev->entry[i].entry = i;
2068         for (;;) {
2069                 result = pci_enable_msix(pdev, dev->entry, vecs);
2070                 if (result <= 0)
2071                         break;
2072                 vecs = result;
2073         }
2074
2075         if (result < 0) {
2076                 vecs = nr_io_queues;
2077                 if (vecs > 32)
2078                         vecs = 32;
2079                 for (;;) {
2080                         result = pci_enable_msi_block(pdev, vecs);
2081                         if (result == 0) {
2082                                 for (i = 0; i < vecs; i++)
2083                                         dev->entry[i].vector = i + pdev->irq;
2084                                 break;
2085                         } else if (result < 0) {
2086                                 vecs = 1;
2087                                 break;
2088                         }
2089                         vecs = result;
2090                 }
2091         }
2092
2093         /*
2094          * Should investigate if there's a performance win from allocating
2095          * more queues than interrupt vectors; it might allow the submission
2096          * path to scale better, even if the receive path is limited by the
2097          * number of interrupts.
2098          */
2099         nr_io_queues = vecs;
2100         dev->max_qid = nr_io_queues;
2101
2102         result = queue_request_irq(dev, adminq, adminq->irqname);
2103         if (result) {
2104                 adminq->q_suspended = 1;
2105                 goto free_queues;
2106         }
2107
2108         /* Free previously allocated queues that are no longer usable */
2109         nvme_free_queues(dev, nr_io_queues + 1);
2110         nvme_assign_io_queues(dev);
2111
2112         dev->nb.notifier_call = &nvme_cpu_notify;
2113         result = register_hotcpu_notifier(&dev->nb);
2114         if (result)
2115                 goto free_queues;
2116
2117         return 0;
2118
2119  free_queues:
2120         nvme_free_queues(dev, 1);
2121         return result;
2122 }
2123
2124 /*
2125  * Return: error value if an error occurred setting up the queues or calling
2126  * Identify Device.  0 if these succeeded, even if adding some of the
2127  * namespaces failed.  At the moment, these failures are silent.  TBD which
2128  * failures should be reported.
2129  */
2130 static int nvme_dev_add(struct nvme_dev *dev)
2131 {
2132         struct pci_dev *pdev = dev->pci_dev;
2133         int res;
2134         unsigned nn, i;
2135         struct nvme_ns *ns;
2136         struct nvme_id_ctrl *ctrl;
2137         struct nvme_id_ns *id_ns;
2138         void *mem;
2139         dma_addr_t dma_addr;
2140         int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2141
2142         mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2143         if (!mem)
2144                 return -ENOMEM;
2145
2146         res = nvme_identify(dev, 0, 1, dma_addr);
2147         if (res) {
2148                 res = -EIO;
2149                 goto out;
2150         }
2151
2152         ctrl = mem;
2153         nn = le32_to_cpup(&ctrl->nn);
2154         dev->oncs = le16_to_cpup(&ctrl->oncs);
2155         dev->abort_limit = ctrl->acl + 1;
2156         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2157         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2158         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2159         if (ctrl->mdts)
2160                 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2161         if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2162                         (pdev->device == 0x0953) && ctrl->vs[3])
2163                 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2164
2165         id_ns = mem;
2166         for (i = 1; i <= nn; i++) {
2167                 res = nvme_identify(dev, i, 0, dma_addr);
2168                 if (res)
2169                         continue;
2170
2171                 if (id_ns->ncap == 0)
2172                         continue;
2173
2174                 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2175                                                         dma_addr + 4096, NULL);
2176                 if (res)
2177                         memset(mem + 4096, 0, 4096);
2178
2179                 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2180                 if (ns)
2181                         list_add_tail(&ns->list, &dev->namespaces);
2182         }
2183         list_for_each_entry(ns, &dev->namespaces, list)
2184                 add_disk(ns->disk);
2185         res = 0;
2186
2187  out:
2188         dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2189         return res;
2190 }
2191
2192 static int nvme_dev_map(struct nvme_dev *dev)
2193 {
2194         u64 cap;
2195         int bars, result = -ENOMEM;
2196         struct pci_dev *pdev = dev->pci_dev;
2197
2198         if (pci_enable_device_mem(pdev))
2199                 return result;
2200
2201         dev->entry[0].vector = pdev->irq;
2202         pci_set_master(pdev);
2203         bars = pci_select_bars(pdev, IORESOURCE_MEM);
2204         if (pci_request_selected_regions(pdev, bars, "nvme"))
2205                 goto disable_pci;
2206
2207         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2208             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2209                 goto disable;
2210
2211         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2212         if (!dev->bar)
2213                 goto disable;
2214         if (readl(&dev->bar->csts) == -1) {
2215                 result = -ENODEV;
2216                 goto unmap;
2217         }
2218         cap = readq(&dev->bar->cap);
2219         dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2220         dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2221         dev->dbs = ((void __iomem *)dev->bar) + 4096;
2222
2223         return 0;
2224
2225  unmap:
2226         iounmap(dev->bar);
2227         dev->bar = NULL;
2228  disable:
2229         pci_release_regions(pdev);
2230  disable_pci:
2231         pci_disable_device(pdev);
2232         return result;
2233 }
2234
2235 static void nvme_dev_unmap(struct nvme_dev *dev)
2236 {
2237         if (dev->pci_dev->msi_enabled)
2238                 pci_disable_msi(dev->pci_dev);
2239         else if (dev->pci_dev->msix_enabled)
2240                 pci_disable_msix(dev->pci_dev);
2241
2242         if (dev->bar) {
2243                 iounmap(dev->bar);
2244                 dev->bar = NULL;
2245                 pci_release_regions(dev->pci_dev);
2246         }
2247
2248         if (pci_is_enabled(dev->pci_dev))
2249                 pci_disable_device(dev->pci_dev);
2250 }
2251
2252 struct nvme_delq_ctx {
2253         struct task_struct *waiter;
2254         struct kthread_worker *worker;
2255         atomic_t refcount;
2256 };
2257
2258 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2259 {
2260         dq->waiter = current;
2261         mb();
2262
2263         for (;;) {
2264                 set_current_state(TASK_KILLABLE);
2265                 if (!atomic_read(&dq->refcount))
2266                         break;
2267                 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2268                                         fatal_signal_pending(current)) {
2269                         set_current_state(TASK_RUNNING);
2270
2271                         nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2272                         nvme_disable_queue(dev, 0);
2273
2274                         send_sig(SIGKILL, dq->worker->task, 1);
2275                         flush_kthread_worker(dq->worker);
2276                         return;
2277                 }
2278         }
2279         set_current_state(TASK_RUNNING);
2280 }
2281
2282 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2283 {
2284         atomic_dec(&dq->refcount);
2285         if (dq->waiter)
2286                 wake_up_process(dq->waiter);
2287 }
2288
2289 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2290 {
2291         atomic_inc(&dq->refcount);
2292         return dq;
2293 }
2294
2295 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2296 {
2297         struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2298
2299         nvme_clear_queue(nvmeq);
2300         nvme_put_dq(dq);
2301 }
2302
2303 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2304                                                 kthread_work_func_t fn)
2305 {
2306         struct nvme_command c;
2307
2308         memset(&c, 0, sizeof(c));
2309         c.delete_queue.opcode = opcode;
2310         c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2311
2312         init_kthread_work(&nvmeq->cmdinfo.work, fn);
2313         return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2314 }
2315
2316 static void nvme_del_cq_work_handler(struct kthread_work *work)
2317 {
2318         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2319                                                         cmdinfo.work);
2320         nvme_del_queue_end(nvmeq);
2321 }
2322
2323 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2324 {
2325         return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2326                                                 nvme_del_cq_work_handler);
2327 }
2328
2329 static void nvme_del_sq_work_handler(struct kthread_work *work)
2330 {
2331         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2332                                                         cmdinfo.work);
2333         int status = nvmeq->cmdinfo.status;
2334
2335         if (!status)
2336                 status = nvme_delete_cq(nvmeq);
2337         if (status)
2338                 nvme_del_queue_end(nvmeq);
2339 }
2340
2341 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2342 {
2343         return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2344                                                 nvme_del_sq_work_handler);
2345 }
2346
2347 static void nvme_del_queue_start(struct kthread_work *work)
2348 {
2349         struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2350                                                         cmdinfo.work);
2351         allow_signal(SIGKILL);
2352         if (nvme_delete_sq(nvmeq))
2353                 nvme_del_queue_end(nvmeq);
2354 }
2355
2356 static void nvme_disable_io_queues(struct nvme_dev *dev)
2357 {
2358         int i;
2359         DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2360         struct nvme_delq_ctx dq;
2361         struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2362                                         &worker, "nvme%d", dev->instance);
2363
2364         if (IS_ERR(kworker_task)) {
2365                 dev_err(&dev->pci_dev->dev,
2366                         "Failed to create queue del task\n");
2367                 for (i = dev->queue_count - 1; i > 0; i--)
2368                         nvme_disable_queue(dev, i);
2369                 return;
2370         }
2371
2372         dq.waiter = NULL;
2373         atomic_set(&dq.refcount, 0);
2374         dq.worker = &worker;
2375         for (i = dev->queue_count - 1; i > 0; i--) {
2376                 struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2377
2378                 if (nvme_suspend_queue(nvmeq))
2379                         continue;
2380                 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2381                 nvmeq->cmdinfo.worker = dq.worker;
2382                 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2383                 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2384         }
2385         nvme_wait_dq(&dq, dev);
2386         kthread_stop(kworker_task);
2387 }
2388
2389 /*
2390 * Remove the node from the device list and check
2391 * for whether or not we need to stop the nvme_thread.
2392 */
2393 static void nvme_dev_list_remove(struct nvme_dev *dev)
2394 {
2395         struct task_struct *tmp = NULL;
2396
2397         spin_lock(&dev_list_lock);
2398         list_del_init(&dev->node);
2399         if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2400                 tmp = nvme_thread;
2401                 nvme_thread = NULL;
2402         }
2403         spin_unlock(&dev_list_lock);
2404
2405         if (tmp)
2406                 kthread_stop(tmp);
2407 }
2408
2409 static void nvme_dev_shutdown(struct nvme_dev *dev)
2410 {
2411         int i;
2412
2413         dev->initialized = 0;
2414         unregister_hotcpu_notifier(&dev->nb);
2415
2416         nvme_dev_list_remove(dev);
2417
2418         if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2419                 for (i = dev->queue_count - 1; i >= 0; i--) {
2420                         struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2421                         nvme_suspend_queue(nvmeq);
2422                         nvme_clear_queue(nvmeq);
2423                 }
2424         } else {
2425                 nvme_disable_io_queues(dev);
2426                 nvme_shutdown_ctrl(dev);
2427                 nvme_disable_queue(dev, 0);
2428         }
2429         nvme_dev_unmap(dev);
2430 }
2431
2432 static void nvme_dev_remove(struct nvme_dev *dev)
2433 {
2434         struct nvme_ns *ns;
2435
2436         list_for_each_entry(ns, &dev->namespaces, list) {
2437                 if (ns->disk->flags & GENHD_FL_UP)
2438                         del_gendisk(ns->disk);
2439                 if (!blk_queue_dying(ns->queue))
2440                         blk_cleanup_queue(ns->queue);
2441         }
2442 }
2443
2444 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2445 {
2446         struct device *dmadev = &dev->pci_dev->dev;
2447         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2448                                                 PAGE_SIZE, PAGE_SIZE, 0);
2449         if (!dev->prp_page_pool)
2450                 return -ENOMEM;
2451
2452         /* Optimisation for I/Os between 4k and 128k */
2453         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2454                                                 256, 256, 0);
2455         if (!dev->prp_small_pool) {
2456                 dma_pool_destroy(dev->prp_page_pool);
2457                 return -ENOMEM;
2458         }
2459         return 0;
2460 }
2461
2462 static void nvme_release_prp_pools(struct nvme_dev *dev)
2463 {
2464         dma_pool_destroy(dev->prp_page_pool);
2465         dma_pool_destroy(dev->prp_small_pool);
2466 }
2467
2468 static DEFINE_IDA(nvme_instance_ida);
2469
2470 static int nvme_set_instance(struct nvme_dev *dev)
2471 {
2472         int instance, error;
2473
2474         do {
2475                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2476                         return -ENODEV;
2477
2478                 spin_lock(&dev_list_lock);
2479                 error = ida_get_new(&nvme_instance_ida, &instance);
2480                 spin_unlock(&dev_list_lock);
2481         } while (error == -EAGAIN);
2482
2483         if (error)
2484                 return -ENODEV;
2485
2486         dev->instance = instance;
2487         return 0;
2488 }
2489
2490 static void nvme_release_instance(struct nvme_dev *dev)
2491 {
2492         spin_lock(&dev_list_lock);
2493         ida_remove(&nvme_instance_ida, dev->instance);
2494         spin_unlock(&dev_list_lock);
2495 }
2496
2497 static void nvme_free_namespaces(struct nvme_dev *dev)
2498 {
2499         struct nvme_ns *ns, *next;
2500
2501         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2502                 list_del(&ns->list);
2503                 put_disk(ns->disk);
2504                 kfree(ns);
2505         }
2506 }
2507
2508 static void nvme_free_dev(struct kref *kref)
2509 {
2510         struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2511
2512         nvme_free_namespaces(dev);
2513         free_percpu(dev->io_queue);
2514         kfree(dev->queues);
2515         kfree(dev->entry);
2516         kfree(dev);
2517 }
2518
2519 static int nvme_dev_open(struct inode *inode, struct file *f)
2520 {
2521         struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2522                                                                 miscdev);
2523         kref_get(&dev->kref);
2524         f->private_data = dev;
2525         return 0;
2526 }
2527
2528 static int nvme_dev_release(struct inode *inode, struct file *f)
2529 {
2530         struct nvme_dev *dev = f->private_data;
2531         kref_put(&dev->kref, nvme_free_dev);
2532         return 0;
2533 }
2534
2535 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2536 {
2537         struct nvme_dev *dev = f->private_data;
2538         switch (cmd) {
2539         case NVME_IOCTL_ADMIN_CMD:
2540                 return nvme_user_admin_cmd(dev, (void __user *)arg);
2541         default:
2542                 return -ENOTTY;
2543         }
2544 }
2545
2546 static const struct file_operations nvme_dev_fops = {
2547         .owner          = THIS_MODULE,
2548         .open           = nvme_dev_open,
2549         .release        = nvme_dev_release,
2550         .unlocked_ioctl = nvme_dev_ioctl,
2551         .compat_ioctl   = nvme_dev_ioctl,
2552 };
2553
2554 static int nvme_dev_start(struct nvme_dev *dev)
2555 {
2556         int result;
2557         bool start_thread = false;
2558
2559         result = nvme_dev_map(dev);
2560         if (result)
2561                 return result;
2562
2563         result = nvme_configure_admin_queue(dev);
2564         if (result)
2565                 goto unmap;
2566
2567         spin_lock(&dev_list_lock);
2568         if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2569                 start_thread = true;
2570                 nvme_thread = NULL;
2571         }
2572         list_add(&dev->node, &dev_list);
2573         spin_unlock(&dev_list_lock);
2574
2575         if (start_thread) {
2576                 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2577                 wake_up(&nvme_kthread_wait);
2578         } else
2579                 wait_event_killable(nvme_kthread_wait, nvme_thread);
2580
2581         if (IS_ERR_OR_NULL(nvme_thread)) {
2582                 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2583                 goto disable;
2584         }
2585
2586         result = nvme_setup_io_queues(dev);
2587         if (result && result != -EBUSY)
2588                 goto disable;
2589
2590         return result;
2591
2592  disable:
2593         nvme_disable_queue(dev, 0);
2594         nvme_dev_list_remove(dev);
2595  unmap:
2596         nvme_dev_unmap(dev);
2597         return result;
2598 }
2599
2600 static int nvme_remove_dead_ctrl(void *arg)
2601 {
2602         struct nvme_dev *dev = (struct nvme_dev *)arg;
2603         struct pci_dev *pdev = dev->pci_dev;
2604
2605         if (pci_get_drvdata(pdev))
2606                 pci_stop_and_remove_bus_device(pdev);
2607         kref_put(&dev->kref, nvme_free_dev);
2608         return 0;
2609 }
2610
2611 static void nvme_remove_disks(struct work_struct *ws)
2612 {
2613         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2614
2615         nvme_dev_remove(dev);
2616         nvme_free_queues(dev, 1);
2617 }
2618
2619 static int nvme_dev_resume(struct nvme_dev *dev)
2620 {
2621         int ret;
2622
2623         ret = nvme_dev_start(dev);
2624         if (ret && ret != -EBUSY)
2625                 return ret;
2626         if (ret == -EBUSY) {
2627                 spin_lock(&dev_list_lock);
2628                 PREPARE_WORK(&dev->reset_work, nvme_remove_disks);
2629                 queue_work(nvme_workq, &dev->reset_work);
2630                 spin_unlock(&dev_list_lock);
2631         }
2632         dev->initialized = 1;
2633         return 0;
2634 }
2635
2636 static void nvme_dev_reset(struct nvme_dev *dev)
2637 {
2638         nvme_dev_shutdown(dev);
2639         if (nvme_dev_resume(dev)) {
2640                 dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2641                 kref_get(&dev->kref);
2642                 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2643                                                         dev->instance))) {
2644                         dev_err(&dev->pci_dev->dev,
2645                                 "Failed to start controller remove task\n");
2646                         kref_put(&dev->kref, nvme_free_dev);
2647                 }
2648         }
2649 }
2650
2651 static void nvme_reset_failed_dev(struct work_struct *ws)
2652 {
2653         struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2654         nvme_dev_reset(dev);
2655 }
2656
2657 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2658 {
2659         int result = -ENOMEM;
2660         struct nvme_dev *dev;
2661
2662         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2663         if (!dev)
2664                 return -ENOMEM;
2665         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2666                                                                 GFP_KERNEL);
2667         if (!dev->entry)
2668                 goto free;
2669         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2670                                                                 GFP_KERNEL);
2671         if (!dev->queues)
2672                 goto free;
2673         dev->io_queue = alloc_percpu(unsigned short);
2674         if (!dev->io_queue)
2675                 goto free;
2676
2677         INIT_LIST_HEAD(&dev->namespaces);
2678         INIT_WORK(&dev->reset_work, nvme_reset_failed_dev);
2679         dev->pci_dev = pdev;
2680         pci_set_drvdata(pdev, dev);
2681         result = nvme_set_instance(dev);
2682         if (result)
2683                 goto free;
2684
2685         result = nvme_setup_prp_pools(dev);
2686         if (result)
2687                 goto release;
2688
2689         kref_init(&dev->kref);
2690         result = nvme_dev_start(dev);
2691         if (result) {
2692                 if (result == -EBUSY)
2693                         goto create_cdev;
2694                 goto release_pools;
2695         }
2696
2697         result = nvme_dev_add(dev);
2698         if (result)
2699                 goto shutdown;
2700
2701  create_cdev:
2702         scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2703         dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2704         dev->miscdev.parent = &pdev->dev;
2705         dev->miscdev.name = dev->name;
2706         dev->miscdev.fops = &nvme_dev_fops;
2707         result = misc_register(&dev->miscdev);
2708         if (result)
2709                 goto remove;
2710
2711         dev->initialized = 1;
2712         return 0;
2713
2714  remove:
2715         nvme_dev_remove(dev);
2716         nvme_free_namespaces(dev);
2717  shutdown:
2718         nvme_dev_shutdown(dev);
2719  release_pools:
2720         nvme_free_queues(dev, 0);
2721         nvme_release_prp_pools(dev);
2722  release:
2723         nvme_release_instance(dev);
2724  free:
2725         free_percpu(dev->io_queue);
2726         kfree(dev->queues);
2727         kfree(dev->entry);
2728         kfree(dev);
2729         return result;
2730 }
2731
2732 static void nvme_shutdown(struct pci_dev *pdev)
2733 {
2734         struct nvme_dev *dev = pci_get_drvdata(pdev);
2735         nvme_dev_shutdown(dev);
2736 }
2737
2738 static void nvme_remove(struct pci_dev *pdev)
2739 {
2740         struct nvme_dev *dev = pci_get_drvdata(pdev);
2741
2742         spin_lock(&dev_list_lock);
2743         list_del_init(&dev->node);
2744         spin_unlock(&dev_list_lock);
2745
2746         pci_set_drvdata(pdev, NULL);
2747         flush_work(&dev->reset_work);
2748         misc_deregister(&dev->miscdev);
2749         nvme_dev_remove(dev);
2750         nvme_dev_shutdown(dev);
2751         nvme_free_queues(dev, 0);
2752         rcu_barrier();
2753         nvme_release_instance(dev);
2754         nvme_release_prp_pools(dev);
2755         kref_put(&dev->kref, nvme_free_dev);
2756 }
2757
2758 /* These functions are yet to be implemented */
2759 #define nvme_error_detected NULL
2760 #define nvme_dump_registers NULL
2761 #define nvme_link_reset NULL
2762 #define nvme_slot_reset NULL
2763 #define nvme_error_resume NULL
2764
2765 #ifdef CONFIG_PM_SLEEP
2766 static int nvme_suspend(struct device *dev)
2767 {
2768         struct pci_dev *pdev = to_pci_dev(dev);
2769         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2770
2771         nvme_dev_shutdown(ndev);
2772         return 0;
2773 }
2774
2775 static int nvme_resume(struct device *dev)
2776 {
2777         struct pci_dev *pdev = to_pci_dev(dev);
2778         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2779
2780         if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2781                 PREPARE_WORK(&ndev->reset_work, nvme_reset_failed_dev);
2782                 queue_work(nvme_workq, &ndev->reset_work);
2783         }
2784         return 0;
2785 }
2786 #endif
2787
2788 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2789
2790 static const struct pci_error_handlers nvme_err_handler = {
2791         .error_detected = nvme_error_detected,
2792         .mmio_enabled   = nvme_dump_registers,
2793         .link_reset     = nvme_link_reset,
2794         .slot_reset     = nvme_slot_reset,
2795         .resume         = nvme_error_resume,
2796 };
2797
2798 /* Move to pci_ids.h later */
2799 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
2800
2801 static const struct pci_device_id nvme_id_table[] = {
2802         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2803         { 0, }
2804 };
2805 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2806
2807 static struct pci_driver nvme_driver = {
2808         .name           = "nvme",
2809         .id_table       = nvme_id_table,
2810         .probe          = nvme_probe,
2811         .remove         = nvme_remove,
2812         .shutdown       = nvme_shutdown,
2813         .driver         = {
2814                 .pm     = &nvme_dev_pm_ops,
2815         },
2816         .err_handler    = &nvme_err_handler,
2817 };
2818
2819 static int __init nvme_init(void)
2820 {
2821         int result;
2822
2823         init_waitqueue_head(&nvme_kthread_wait);
2824
2825         nvme_workq = create_singlethread_workqueue("nvme");
2826         if (!nvme_workq)
2827                 return -ENOMEM;
2828
2829         result = register_blkdev(nvme_major, "nvme");
2830         if (result < 0)
2831                 goto kill_workq;
2832         else if (result > 0)
2833                 nvme_major = result;
2834
2835         result = pci_register_driver(&nvme_driver);
2836         if (result)
2837                 goto unregister_blkdev;
2838         return 0;
2839
2840  unregister_blkdev:
2841         unregister_blkdev(nvme_major, "nvme");
2842  kill_workq:
2843         destroy_workqueue(nvme_workq);
2844         return result;
2845 }
2846
2847 static void __exit nvme_exit(void)
2848 {
2849         pci_unregister_driver(&nvme_driver);
2850         unregister_blkdev(nvme_major, "nvme");
2851         destroy_workqueue(nvme_workq);
2852         BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2853 }
2854
2855 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2856 MODULE_LICENSE("GPL");
2857 MODULE_VERSION("0.9");
2858 module_init(nvme_init);
2859 module_exit(nvme_exit);