]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/nvme.c
NVMe: Read the model, serial & firmware rev from the controller
[karo-tx-linux.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/types.h>
37 #include <linux/version.h>
38
39 #define NVME_Q_DEPTH 1024
40 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
41 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
42 #define NVME_MINORS 64
43
44 static int nvme_major;
45 module_param(nvme_major, int, 0);
46
47 /*
48  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
49  */
50 struct nvme_dev {
51         struct list_head node;
52         struct nvme_queue **queues;
53         u32 __iomem *dbs;
54         struct pci_dev *pci_dev;
55         int instance;
56         int queue_count;
57         u32 ctrl_config;
58         struct msix_entry *entry;
59         struct nvme_bar __iomem *bar;
60         struct list_head namespaces;
61         char serial[20];
62         char model[40];
63         char firmware_rev[8];
64 };
65
66 /*
67  * An NVM Express namespace is equivalent to a SCSI LUN
68  */
69 struct nvme_ns {
70         struct list_head list;
71
72         struct nvme_dev *dev;
73         struct request_queue *queue;
74         struct gendisk *disk;
75
76         int ns_id;
77         int lba_shift;
78 };
79
80 /*
81  * An NVM Express queue.  Each device has at least two (one for admin
82  * commands and one for I/O commands).
83  */
84 struct nvme_queue {
85         struct device *q_dmadev;
86         spinlock_t q_lock;
87         struct nvme_command *sq_cmds;
88         volatile struct nvme_completion *cqes;
89         dma_addr_t sq_dma_addr;
90         dma_addr_t cq_dma_addr;
91         wait_queue_head_t sq_full;
92         struct bio_list sq_cong;
93         u32 __iomem *q_db;
94         u16 q_depth;
95         u16 cq_vector;
96         u16 sq_head;
97         u16 sq_tail;
98         u16 cq_head;
99         u16 cq_phase;
100         unsigned long cmdid_data[];
101 };
102
103 /*
104  * Check we didin't inadvertently grow the command struct
105  */
106 static inline void _nvme_check_size(void)
107 {
108         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
109         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
110         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
111         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
112         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
113         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
114         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
115         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
116         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
117 }
118
119 /**
120  * alloc_cmdid - Allocate a Command ID
121  * @param nvmeq The queue that will be used for this command
122  * @param ctx A pointer that will be passed to the handler
123  * @param handler The ID of the handler to call
124  *
125  * Allocate a Command ID for a queue.  The data passed in will
126  * be passed to the completion handler.  This is implemented by using
127  * the bottom two bits of the ctx pointer to store the handler ID.
128  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
129  * We can change this if it becomes a problem.
130  */
131 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
132 {
133         int depth = nvmeq->q_depth;
134         unsigned long data = (unsigned long)ctx | handler;
135         int cmdid;
136
137         BUG_ON((unsigned long)ctx & 3);
138
139         do {
140                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
141                 if (cmdid >= depth)
142                         return -EBUSY;
143         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
144
145         nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
146         return cmdid;
147 }
148
149 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
150                                                                 int handler)
151 {
152         int cmdid;
153         wait_event_killable(nvmeq->sq_full,
154                         (cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
155         return (cmdid < 0) ? -EINTR : cmdid;
156 }
157
158 /* If you need more than four handlers, you'll need to change how
159  * alloc_cmdid and nvme_process_cq work
160  */
161 enum {
162         sync_completion_id = 0,
163         bio_completion_id,
164 };
165
166 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
167 {
168         unsigned long data;
169
170         data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
171         clear_bit(cmdid, nvmeq->cmdid_data);
172         wake_up(&nvmeq->sq_full);
173         return data;
174 }
175
176 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
177 {
178         int qid, cpu = get_cpu();
179         if (cpu < ns->dev->queue_count)
180                 qid = cpu + 1;
181         else
182                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
183         return ns->dev->queues[qid];
184 }
185
186 static void put_nvmeq(struct nvme_queue *nvmeq)
187 {
188         put_cpu();
189 }
190
191 /**
192  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
193  * @nvmeq: The queue to use
194  * @cmd: The command to send
195  *
196  * Safe to use from interrupt context
197  */
198 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
199 {
200         unsigned long flags;
201         u16 tail;
202         /* XXX: Need to check tail isn't going to overrun head */
203         spin_lock_irqsave(&nvmeq->q_lock, flags);
204         tail = nvmeq->sq_tail;
205         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
206         writel(tail, nvmeq->q_db);
207         if (++tail == nvmeq->q_depth)
208                 tail = 0;
209         nvmeq->sq_tail = tail;
210         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
211
212         return 0;
213 }
214
215 struct nvme_req_info {
216         struct bio *bio;
217         int nents;
218         struct scatterlist sg[0];
219 };
220
221 /* XXX: use a mempool */
222 static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
223 {
224         return kmalloc(sizeof(struct nvme_req_info) +
225                         sizeof(struct scatterlist) * nseg, gfp);
226 }
227
228 static void free_info(struct nvme_req_info *info)
229 {
230         kfree(info);
231 }
232
233 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
234                                                 struct nvme_completion *cqe)
235 {
236         struct nvme_req_info *info = ctx;
237         struct bio *bio = info->bio;
238         u16 status = le16_to_cpup(&cqe->status) >> 1;
239
240         dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
241                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
242         free_info(info);
243         bio_endio(bio, status ? -EIO : 0);
244 }
245
246 /* length is in bytes */
247 static void nvme_setup_prps(struct nvme_common_command *cmd,
248                                         struct scatterlist *sg, int length)
249 {
250         int dma_len = sg_dma_len(sg);
251         u64 dma_addr = sg_dma_address(sg);
252         int offset = offset_in_page(dma_addr);
253
254         cmd->prp1 = cpu_to_le64(dma_addr);
255         length -= (PAGE_SIZE - offset);
256         if (length <= 0)
257                 return;
258
259         dma_len -= (PAGE_SIZE - offset);
260         if (dma_len) {
261                 dma_addr += (PAGE_SIZE - offset);
262         } else {
263                 sg = sg_next(sg);
264                 dma_addr = sg_dma_address(sg);
265                 dma_len = sg_dma_len(sg);
266         }
267
268         if (length <= PAGE_SIZE) {
269                 cmd->prp2 = cpu_to_le64(dma_addr);
270                 return;
271         }
272
273         /* XXX: support PRP lists */
274 }
275
276 static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
277                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
278 {
279         struct bio_vec *bvec;
280         struct scatterlist *sg = info->sg;
281         int i, nsegs;
282
283         sg_init_table(sg, psegs);
284         bio_for_each_segment(bvec, bio, i) {
285                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
286                 /* XXX: handle non-mergable here */
287                 nsegs++;
288         }
289         info->nents = nsegs;
290
291         return dma_map_sg(dev, info->sg, info->nents, dma_dir);
292 }
293
294 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
295                                                                 struct bio *bio)
296 {
297         struct nvme_command *cmnd;
298         struct nvme_req_info *info;
299         enum dma_data_direction dma_dir;
300         int cmdid;
301         u16 control;
302         u32 dsmgmt;
303         unsigned long flags;
304         int psegs = bio_phys_segments(ns->queue, bio);
305
306         info = alloc_info(psegs, GFP_NOIO);
307         if (!info)
308                 goto congestion;
309         info->bio = bio;
310
311         cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
312         if (unlikely(cmdid < 0))
313                 goto free_info;
314
315         control = 0;
316         if (bio->bi_rw & REQ_FUA)
317                 control |= NVME_RW_FUA;
318         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
319                 control |= NVME_RW_LR;
320
321         dsmgmt = 0;
322         if (bio->bi_rw & REQ_RAHEAD)
323                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
324
325         spin_lock_irqsave(&nvmeq->q_lock, flags);
326         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
327
328         memset(cmnd, 0, sizeof(*cmnd));
329         if (bio_data_dir(bio)) {
330                 cmnd->rw.opcode = nvme_cmd_write;
331                 dma_dir = DMA_TO_DEVICE;
332         } else {
333                 cmnd->rw.opcode = nvme_cmd_read;
334                 dma_dir = DMA_FROM_DEVICE;
335         }
336
337         nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
338
339         cmnd->rw.flags = 1;
340         cmnd->rw.command_id = cmdid;
341         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
342         nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
343         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
344         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
345         cmnd->rw.control = cpu_to_le16(control);
346         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
347
348         writel(nvmeq->sq_tail, nvmeq->q_db);
349         if (++nvmeq->sq_tail == nvmeq->q_depth)
350                 nvmeq->sq_tail = 0;
351
352         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
353
354         return 0;
355
356  free_info:
357         free_info(info);
358  congestion:
359         return -EBUSY;
360 }
361
362 /*
363  * NB: return value of non-zero would mean that we were a stacking driver.
364  * make_request must always succeed.
365  */
366 static int nvme_make_request(struct request_queue *q, struct bio *bio)
367 {
368         struct nvme_ns *ns = q->queuedata;
369         struct nvme_queue *nvmeq = get_nvmeq(ns);
370
371         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
372                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
373                 bio_list_add(&nvmeq->sq_cong, bio);
374         }
375         put_nvmeq(nvmeq);
376
377         return 0;
378 }
379
380 struct sync_cmd_info {
381         struct task_struct *task;
382         u32 result;
383         int status;
384 };
385
386 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
387                                                 struct nvme_completion *cqe)
388 {
389         struct sync_cmd_info *cmdinfo = ctx;
390         cmdinfo->result = le32_to_cpup(&cqe->result);
391         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
392         wake_up_process(cmdinfo->task);
393 }
394
395 typedef void (*completion_fn)(struct nvme_queue *, void *,
396                                                 struct nvme_completion *);
397
398 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
399 {
400         u16 head, phase;
401
402         static const completion_fn completions[4] = {
403                 [sync_completion_id] = sync_completion,
404                 [bio_completion_id]  = bio_completion,
405         };
406
407         head = nvmeq->cq_head;
408         phase = nvmeq->cq_phase;
409
410         for (;;) {
411                 unsigned long data;
412                 void *ptr;
413                 unsigned char handler;
414                 struct nvme_completion cqe = nvmeq->cqes[head];
415                 if ((le16_to_cpu(cqe.status) & 1) != phase)
416                         break;
417                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
418                 if (++head == nvmeq->q_depth) {
419                         head = 0;
420                         phase = !phase;
421                 }
422
423                 data = free_cmdid(nvmeq, cqe.command_id);
424                 handler = data & 3;
425                 ptr = (void *)(data & ~3UL);
426                 completions[handler](nvmeq, ptr, &cqe);
427         }
428
429         /* If the controller ignores the cq head doorbell and continuously
430          * writes to the queue, it is theoretically possible to wrap around
431          * the queue twice and mistakenly return IRQ_NONE.  Linux only
432          * requires that 0.1% of your interrupts are handled, so this isn't
433          * a big problem.
434          */
435         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
436                 return IRQ_NONE;
437
438         writel(head, nvmeq->q_db + 1);
439         nvmeq->cq_head = head;
440         nvmeq->cq_phase = phase;
441
442         return IRQ_HANDLED;
443 }
444
445 static irqreturn_t nvme_irq(int irq, void *data)
446 {
447         return nvme_process_cq(data);
448 }
449
450 /*
451  * Returns 0 on success.  If the result is negative, it's a Linux error code;
452  * if the result is positive, it's an NVM Express status code
453  */
454 static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
455                                                                 u32 *result)
456 {
457         int cmdid;
458         struct sync_cmd_info cmdinfo;
459
460         cmdinfo.task = current;
461         cmdinfo.status = -EINTR;
462
463         cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
464         if (cmdid < 0)
465                 return cmdid;
466         cmd->common.command_id = cmdid;
467
468         set_current_state(TASK_UNINTERRUPTIBLE);
469         nvme_submit_cmd(q, cmd);
470         schedule();
471
472         if (result)
473                 *result = cmdinfo.result;
474
475         return cmdinfo.status;
476 }
477
478 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
479                                                                 u32 *result)
480 {
481         return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
482 }
483
484 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
485 {
486         int status;
487         struct nvme_command c;
488
489         memset(&c, 0, sizeof(c));
490         c.delete_queue.opcode = opcode;
491         c.delete_queue.qid = cpu_to_le16(id);
492
493         status = nvme_submit_admin_cmd(dev, &c, NULL);
494         if (status)
495                 return -EIO;
496         return 0;
497 }
498
499 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
500                                                 struct nvme_queue *nvmeq)
501 {
502         int status;
503         struct nvme_command c;
504         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
505
506         memset(&c, 0, sizeof(c));
507         c.create_cq.opcode = nvme_admin_create_cq;
508         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
509         c.create_cq.cqid = cpu_to_le16(qid);
510         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
511         c.create_cq.cq_flags = cpu_to_le16(flags);
512         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
513
514         status = nvme_submit_admin_cmd(dev, &c, NULL);
515         if (status)
516                 return -EIO;
517         return 0;
518 }
519
520 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
521                                                 struct nvme_queue *nvmeq)
522 {
523         int status;
524         struct nvme_command c;
525         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
526
527         memset(&c, 0, sizeof(c));
528         c.create_sq.opcode = nvme_admin_create_sq;
529         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
530         c.create_sq.sqid = cpu_to_le16(qid);
531         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
532         c.create_sq.sq_flags = cpu_to_le16(flags);
533         c.create_sq.cqid = cpu_to_le16(qid);
534
535         status = nvme_submit_admin_cmd(dev, &c, NULL);
536         if (status)
537                 return -EIO;
538         return 0;
539 }
540
541 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
542 {
543         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
544 }
545
546 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
547 {
548         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
549 }
550
551 static void nvme_free_queue(struct nvme_dev *dev, int qid)
552 {
553         struct nvme_queue *nvmeq = dev->queues[qid];
554
555         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
556
557         /* Don't tell the adapter to delete the admin queue */
558         if (qid) {
559                 adapter_delete_sq(dev, qid);
560                 adapter_delete_cq(dev, qid);
561         }
562
563         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
564                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
565         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
566                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
567         kfree(nvmeq);
568 }
569
570 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
571                                                         int depth, int vector)
572 {
573         struct device *dmadev = &dev->pci_dev->dev;
574         unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
575         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
576         if (!nvmeq)
577                 return NULL;
578
579         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
580                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
581         if (!nvmeq->cqes)
582                 goto free_nvmeq;
583         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
584
585         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
586                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
587         if (!nvmeq->sq_cmds)
588                 goto free_cqdma;
589
590         nvmeq->q_dmadev = dmadev;
591         spin_lock_init(&nvmeq->q_lock);
592         nvmeq->cq_head = 0;
593         nvmeq->cq_phase = 1;
594         init_waitqueue_head(&nvmeq->sq_full);
595         bio_list_init(&nvmeq->sq_cong);
596         nvmeq->q_db = &dev->dbs[qid * 2];
597         nvmeq->q_depth = depth;
598         nvmeq->cq_vector = vector;
599
600         return nvmeq;
601
602  free_cqdma:
603         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
604                                                         nvmeq->cq_dma_addr);
605  free_nvmeq:
606         kfree(nvmeq);
607         return NULL;
608 }
609
610 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
611                                                         const char *name)
612 {
613         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
614                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
615 }
616
617 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
618                                         int qid, int cq_size, int vector)
619 {
620         int result;
621         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
622
623         result = adapter_alloc_cq(dev, qid, nvmeq);
624         if (result < 0)
625                 goto free_nvmeq;
626
627         result = adapter_alloc_sq(dev, qid, nvmeq);
628         if (result < 0)
629                 goto release_cq;
630
631         result = queue_request_irq(dev, nvmeq, "nvme");
632         if (result < 0)
633                 goto release_sq;
634
635         return nvmeq;
636
637  release_sq:
638         adapter_delete_sq(dev, qid);
639  release_cq:
640         adapter_delete_cq(dev, qid);
641  free_nvmeq:
642         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
643                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
644         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
645                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
646         kfree(nvmeq);
647         return NULL;
648 }
649
650 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
651 {
652         int result;
653         u32 aqa;
654         struct nvme_queue *nvmeq;
655
656         dev->dbs = ((void __iomem *)dev->bar) + 4096;
657
658         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
659
660         aqa = nvmeq->q_depth - 1;
661         aqa |= aqa << 16;
662
663         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
664         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
665         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
666
667         writel(aqa, &dev->bar->aqa);
668         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
669         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
670         writel(dev->ctrl_config, &dev->bar->cc);
671
672         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
673                 msleep(100);
674                 if (fatal_signal_pending(current))
675                         return -EINTR;
676         }
677
678         result = queue_request_irq(dev, nvmeq, "nvme admin");
679         dev->queues[0] = nvmeq;
680         return result;
681 }
682
683 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
684                                 unsigned long addr, unsigned length,
685                                 struct scatterlist **sgp)
686 {
687         int i, err, count, nents, offset;
688         struct scatterlist *sg;
689         struct page **pages;
690
691         if (addr & 3)
692                 return -EINVAL;
693         if (!length)
694                 return -EINVAL;
695
696         offset = offset_in_page(addr);
697         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
698         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
699
700         err = get_user_pages_fast(addr, count, 1, pages);
701         if (err < count) {
702                 count = err;
703                 err = -EFAULT;
704                 goto put_pages;
705         }
706
707         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
708         sg_init_table(sg, count);
709         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
710         length -= (PAGE_SIZE - offset);
711         for (i = 1; i < count; i++) {
712                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
713                 length -= PAGE_SIZE;
714         }
715
716         err = -ENOMEM;
717         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
718                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
719         if (!nents)
720                 goto put_pages;
721
722         kfree(pages);
723         *sgp = sg;
724         return nents;
725
726  put_pages:
727         for (i = 0; i < count; i++)
728                 put_page(pages[i]);
729         kfree(pages);
730         return err;
731 }
732
733 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
734                                 unsigned long addr, int length,
735                                 struct scatterlist *sg, int nents)
736 {
737         int i, count;
738
739         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
740         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
741
742         for (i = 0; i < count; i++)
743                 put_page(sg_page(&sg[i]));
744 }
745
746 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
747                                         unsigned long addr, unsigned length,
748                                         struct nvme_command *cmd)
749 {
750         int err, nents;
751         struct scatterlist *sg;
752
753         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
754         if (nents < 0)
755                 return nents;
756         nvme_setup_prps(&cmd->common, sg, length);
757         err = nvme_submit_admin_cmd(dev, cmd, NULL);
758         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
759         return err ? -EIO : 0;
760 }
761
762 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
763 {
764         struct nvme_command c;
765
766         memset(&c, 0, sizeof(c));
767         c.identify.opcode = nvme_admin_identify;
768         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
769         c.identify.cns = cpu_to_le32(cns);
770
771         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
772 }
773
774 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
775 {
776         struct nvme_command c;
777
778         memset(&c, 0, sizeof(c));
779         c.features.opcode = nvme_admin_get_features;
780         c.features.nsid = cpu_to_le32(ns->ns_id);
781         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
782
783         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
784 }
785
786 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
787 {
788         struct nvme_dev *dev = ns->dev;
789         struct nvme_queue *nvmeq;
790         struct nvme_user_io io;
791         struct nvme_command c;
792         unsigned length;
793         u32 result;
794         int nents, status;
795         struct scatterlist *sg;
796
797         if (copy_from_user(&io, uio, sizeof(io)))
798                 return -EFAULT;
799         length = io.nblocks << io.block_shift;
800         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
801         if (nents < 0)
802                 return nents;
803
804         memset(&c, 0, sizeof(c));
805         c.rw.opcode = io.opcode;
806         c.rw.flags = io.flags;
807         c.rw.nsid = cpu_to_le32(io.nsid);
808         c.rw.slba = cpu_to_le64(io.slba);
809         c.rw.length = cpu_to_le16(io.nblocks - 1);
810         c.rw.control = cpu_to_le16(io.control);
811         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
812         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
813         c.rw.apptag = cpu_to_le16(io.apptag);
814         c.rw.appmask = cpu_to_le16(io.appmask);
815         /* XXX: metadata */
816         nvme_setup_prps(&c.common, sg, length);
817
818         nvmeq = get_nvmeq(ns);
819         status = nvme_submit_sync_cmd(nvmeq, &c, &result);
820         put_nvmeq(nvmeq);
821
822         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
823         put_user(result, &uio->result);
824         return status;
825 }
826
827 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
828                                                         unsigned long arg)
829 {
830         struct nvme_ns *ns = bdev->bd_disk->private_data;
831
832         switch (cmd) {
833         case NVME_IOCTL_IDENTIFY_NS:
834                 return nvme_identify(ns, arg, 0);
835         case NVME_IOCTL_IDENTIFY_CTRL:
836                 return nvme_identify(ns, arg, 1);
837         case NVME_IOCTL_GET_RANGE_TYPE:
838                 return nvme_get_range_type(ns, arg);
839         case NVME_IOCTL_SUBMIT_IO:
840                 return nvme_submit_io(ns, (void __user *)arg);
841         default:
842                 return -ENOTTY;
843         }
844 }
845
846 static const struct block_device_operations nvme_fops = {
847         .owner          = THIS_MODULE,
848         .ioctl          = nvme_ioctl,
849 };
850
851 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
852                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
853 {
854         struct nvme_ns *ns;
855         struct gendisk *disk;
856         int lbaf;
857
858         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
859                 return NULL;
860
861         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
862         if (!ns)
863                 return NULL;
864         ns->queue = blk_alloc_queue(GFP_KERNEL);
865         if (!ns->queue)
866                 goto out_free_ns;
867         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
868                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
869         blk_queue_make_request(ns->queue, nvme_make_request);
870         ns->dev = dev;
871         ns->queue->queuedata = ns;
872
873         disk = alloc_disk(NVME_MINORS);
874         if (!disk)
875                 goto out_free_queue;
876         ns->ns_id = index;
877         ns->disk = disk;
878         lbaf = id->flbas & 0xf;
879         ns->lba_shift = id->lbaf[lbaf].ds;
880
881         disk->major = nvme_major;
882         disk->minors = NVME_MINORS;
883         disk->first_minor = NVME_MINORS * index;
884         disk->fops = &nvme_fops;
885         disk->private_data = ns;
886         disk->queue = ns->queue;
887         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
888         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
889
890         return ns;
891
892  out_free_queue:
893         blk_cleanup_queue(ns->queue);
894  out_free_ns:
895         kfree(ns);
896         return NULL;
897 }
898
899 static void nvme_ns_free(struct nvme_ns *ns)
900 {
901         put_disk(ns->disk);
902         blk_cleanup_queue(ns->queue);
903         kfree(ns);
904 }
905
906 static int set_queue_count(struct nvme_dev *dev, int count)
907 {
908         int status;
909         u32 result;
910         struct nvme_command c;
911         u32 q_count = (count - 1) | ((count - 1) << 16);
912
913         memset(&c, 0, sizeof(c));
914         c.features.opcode = nvme_admin_get_features;
915         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
916         c.features.dword11 = cpu_to_le32(q_count);
917
918         status = nvme_submit_admin_cmd(dev, &c, &result);
919         if (status)
920                 return -EIO;
921         return min(result & 0xffff, result >> 16) + 1;
922 }
923
924 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
925 {
926         int result, cpu, i, nr_queues;
927
928         nr_queues = num_online_cpus();
929         result = set_queue_count(dev, nr_queues);
930         if (result < 0)
931                 return result;
932         if (result < nr_queues)
933                 nr_queues = result;
934
935         /* Deregister the admin queue's interrupt */
936         free_irq(dev->entry[0].vector, dev->queues[0]);
937
938         for (i = 0; i < nr_queues; i++)
939                 dev->entry[i].entry = i;
940         for (;;) {
941                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
942                 if (result == 0) {
943                         break;
944                 } else if (result > 0) {
945                         nr_queues = result;
946                         continue;
947                 } else {
948                         nr_queues = 1;
949                         break;
950                 }
951         }
952
953         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
954         /* XXX: handle failure here */
955
956         cpu = cpumask_first(cpu_online_mask);
957         for (i = 0; i < nr_queues; i++) {
958                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
959                 cpu = cpumask_next(cpu, cpu_online_mask);
960         }
961
962         for (i = 0; i < nr_queues; i++) {
963                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
964                                                         NVME_Q_DEPTH, i);
965                 if (!dev->queues[i + 1])
966                         return -ENOMEM;
967                 dev->queue_count++;
968         }
969
970         return 0;
971 }
972
973 static void nvme_free_queues(struct nvme_dev *dev)
974 {
975         int i;
976
977         for (i = dev->queue_count - 1; i >= 0; i--)
978                 nvme_free_queue(dev, i);
979 }
980
981 static int __devinit nvme_dev_add(struct nvme_dev *dev)
982 {
983         int res, nn, i;
984         struct nvme_ns *ns, *next;
985         struct nvme_id_ctrl *ctrl;
986         void *id;
987         dma_addr_t dma_addr;
988         struct nvme_command cid, crt;
989
990         res = nvme_setup_io_queues(dev);
991         if (res)
992                 return res;
993
994         /* XXX: Switch to a SG list once prp2 works */
995         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
996                                                                 GFP_KERNEL);
997
998         memset(&cid, 0, sizeof(cid));
999         cid.identify.opcode = nvme_admin_identify;
1000         cid.identify.nsid = 0;
1001         cid.identify.prp1 = cpu_to_le64(dma_addr);
1002         cid.identify.cns = cpu_to_le32(1);
1003
1004         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1005         if (res) {
1006                 res = -EIO;
1007                 goto out_free;
1008         }
1009
1010         ctrl = id;
1011         nn = le32_to_cpup(&ctrl->nn);
1012         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1013         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1014         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1015
1016         cid.identify.cns = 0;
1017         memset(&crt, 0, sizeof(crt));
1018         crt.features.opcode = nvme_admin_get_features;
1019         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1020         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1021
1022         for (i = 0; i < nn; i++) {
1023                 cid.identify.nsid = cpu_to_le32(i);
1024                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1025                 if (res)
1026                         continue;
1027
1028                 if (((struct nvme_id_ns *)id)->ncap == 0)
1029                         continue;
1030
1031                 crt.features.nsid = cpu_to_le32(i);
1032                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1033                 if (res)
1034                         continue;
1035
1036                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1037                 if (ns)
1038                         list_add_tail(&ns->list, &dev->namespaces);
1039         }
1040         list_for_each_entry(ns, &dev->namespaces, list)
1041                 add_disk(ns->disk);
1042
1043         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1044         return 0;
1045
1046  out_free:
1047         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1048                 list_del(&ns->list);
1049                 nvme_ns_free(ns);
1050         }
1051
1052         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1053         return res;
1054 }
1055
1056 static int nvme_dev_remove(struct nvme_dev *dev)
1057 {
1058         struct nvme_ns *ns, *next;
1059
1060         /* TODO: wait all I/O finished or cancel them */
1061
1062         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1063                 list_del(&ns->list);
1064                 del_gendisk(ns->disk);
1065                 nvme_ns_free(ns);
1066         }
1067
1068         nvme_free_queues(dev);
1069
1070         return 0;
1071 }
1072
1073 /* XXX: Use an ida or something to let remove / add work correctly */
1074 static void nvme_set_instance(struct nvme_dev *dev)
1075 {
1076         static int instance;
1077         dev->instance = instance++;
1078 }
1079
1080 static void nvme_release_instance(struct nvme_dev *dev)
1081 {
1082 }
1083
1084 static int __devinit nvme_probe(struct pci_dev *pdev,
1085                                                 const struct pci_device_id *id)
1086 {
1087         int result = -ENOMEM;
1088         struct nvme_dev *dev;
1089
1090         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1091         if (!dev)
1092                 return -ENOMEM;
1093         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1094                                                                 GFP_KERNEL);
1095         if (!dev->entry)
1096                 goto free;
1097         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1098                                                                 GFP_KERNEL);
1099         if (!dev->queues)
1100                 goto free;
1101
1102         INIT_LIST_HEAD(&dev->namespaces);
1103         dev->pci_dev = pdev;
1104         pci_set_drvdata(pdev, dev);
1105         dma_set_mask(&dev->pci_dev->dev, DMA_BIT_MASK(64));
1106         nvme_set_instance(dev);
1107         dev->entry[0].vector = pdev->irq;
1108
1109         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1110         if (!dev->bar) {
1111                 result = -ENOMEM;
1112                 goto disable;
1113         }
1114
1115         result = nvme_configure_admin_queue(dev);
1116         if (result)
1117                 goto unmap;
1118         dev->queue_count++;
1119
1120         result = nvme_dev_add(dev);
1121         if (result)
1122                 goto delete;
1123         return 0;
1124
1125  delete:
1126         nvme_free_queues(dev);
1127  unmap:
1128         iounmap(dev->bar);
1129  disable:
1130         pci_disable_msix(pdev);
1131         nvme_release_instance(dev);
1132  free:
1133         kfree(dev->queues);
1134         kfree(dev->entry);
1135         kfree(dev);
1136         return result;
1137 }
1138
1139 static void __devexit nvme_remove(struct pci_dev *pdev)
1140 {
1141         struct nvme_dev *dev = pci_get_drvdata(pdev);
1142         nvme_dev_remove(dev);
1143         pci_disable_msix(pdev);
1144         iounmap(dev->bar);
1145         nvme_release_instance(dev);
1146         kfree(dev->queues);
1147         kfree(dev->entry);
1148         kfree(dev);
1149 }
1150
1151 /* These functions are yet to be implemented */
1152 #define nvme_error_detected NULL
1153 #define nvme_dump_registers NULL
1154 #define nvme_link_reset NULL
1155 #define nvme_slot_reset NULL
1156 #define nvme_error_resume NULL
1157 #define nvme_suspend NULL
1158 #define nvme_resume NULL
1159
1160 static struct pci_error_handlers nvme_err_handler = {
1161         .error_detected = nvme_error_detected,
1162         .mmio_enabled   = nvme_dump_registers,
1163         .link_reset     = nvme_link_reset,
1164         .slot_reset     = nvme_slot_reset,
1165         .resume         = nvme_error_resume,
1166 };
1167
1168 /* Move to pci_ids.h later */
1169 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1170
1171 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1172         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1173         { 0, }
1174 };
1175 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1176
1177 static struct pci_driver nvme_driver = {
1178         .name           = "nvme",
1179         .id_table       = nvme_id_table,
1180         .probe          = nvme_probe,
1181         .remove         = __devexit_p(nvme_remove),
1182         .suspend        = nvme_suspend,
1183         .resume         = nvme_resume,
1184         .err_handler    = &nvme_err_handler,
1185 };
1186
1187 static int __init nvme_init(void)
1188 {
1189         int result;
1190
1191         nvme_major = register_blkdev(nvme_major, "nvme");
1192         if (nvme_major <= 0)
1193                 return -EBUSY;
1194
1195         result = pci_register_driver(&nvme_driver);
1196         if (!result)
1197                 return 0;
1198
1199         unregister_blkdev(nvme_major, "nvme");
1200         return result;
1201 }
1202
1203 static void __exit nvme_exit(void)
1204 {
1205         pci_unregister_driver(&nvme_driver);
1206         unregister_blkdev(nvme_major, "nvme");
1207 }
1208
1209 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1210 MODULE_LICENSE("GPL");
1211 MODULE_VERSION("0.1");
1212 module_init(nvme_init);
1213 module_exit(nvme_exit);