]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/nvme.c
NVMe: Pass the nvme_dev to nvme_free_prps and nvme_setup_prps
[karo-tx-linux.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
39
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
44 #define IO_TIMEOUT      (5 * HZ)
45 #define ADMIN_TIMEOUT   (60 * HZ)
46
47 static int nvme_major;
48 module_param(nvme_major, int, 0);
49
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52
53 /*
54  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
55  */
56 struct nvme_dev {
57         struct nvme_queue **queues;
58         u32 __iomem *dbs;
59         struct pci_dev *pci_dev;
60         struct dma_pool *prp_page_pool;
61         struct dma_pool *prp_small_pool;
62         int instance;
63         int queue_count;
64         u32 ctrl_config;
65         struct msix_entry *entry;
66         struct nvme_bar __iomem *bar;
67         struct list_head namespaces;
68         char serial[20];
69         char model[40];
70         char firmware_rev[8];
71 };
72
73 /*
74  * An NVM Express namespace is equivalent to a SCSI LUN
75  */
76 struct nvme_ns {
77         struct list_head list;
78
79         struct nvme_dev *dev;
80         struct request_queue *queue;
81         struct gendisk *disk;
82
83         int ns_id;
84         int lba_shift;
85 };
86
87 /*
88  * An NVM Express queue.  Each device has at least two (one for admin
89  * commands and one for I/O commands).
90  */
91 struct nvme_queue {
92         struct device *q_dmadev;
93         struct nvme_dev *dev;
94         spinlock_t q_lock;
95         struct nvme_command *sq_cmds;
96         volatile struct nvme_completion *cqes;
97         dma_addr_t sq_dma_addr;
98         dma_addr_t cq_dma_addr;
99         wait_queue_head_t sq_full;
100         struct bio_list sq_cong;
101         u32 __iomem *q_db;
102         u16 q_depth;
103         u16 cq_vector;
104         u16 sq_head;
105         u16 sq_tail;
106         u16 cq_head;
107         u16 cq_phase;
108         unsigned long cmdid_data[];
109 };
110
111 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
112
113 /*
114  * Check we didin't inadvertently grow the command struct
115  */
116 static inline void _nvme_check_size(void)
117 {
118         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
119         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
120         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
121         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
122         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
123         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
125         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
126         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
127 }
128
129 struct nvme_cmd_info {
130         unsigned long ctx;
131         unsigned long timeout;
132 };
133
134 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
135 {
136         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
137 }
138
139 /**
140  * alloc_cmdid - Allocate a Command ID
141  * @param nvmeq The queue that will be used for this command
142  * @param ctx A pointer that will be passed to the handler
143  * @param handler The ID of the handler to call
144  *
145  * Allocate a Command ID for a queue.  The data passed in will
146  * be passed to the completion handler.  This is implemented by using
147  * the bottom two bits of the ctx pointer to store the handler ID.
148  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
149  * We can change this if it becomes a problem.
150  */
151 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
152                                                         unsigned timeout)
153 {
154         int depth = nvmeq->q_depth;
155         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
156         int cmdid;
157
158         BUG_ON((unsigned long)ctx & 3);
159
160         do {
161                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
162                 if (cmdid >= depth)
163                         return -EBUSY;
164         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
165
166         info[cmdid].ctx = (unsigned long)ctx | handler;
167         info[cmdid].timeout = jiffies + timeout;
168         return cmdid;
169 }
170
171 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
172                                                 int handler, unsigned timeout)
173 {
174         int cmdid;
175         wait_event_killable(nvmeq->sq_full,
176                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
177         return (cmdid < 0) ? -EINTR : cmdid;
178 }
179
180 /* If you need more than four handlers, you'll need to change how
181  * alloc_cmdid and nvme_process_cq work.  Consider using a special
182  * CMD_CTX value instead, if that works for your situation.
183  */
184 enum {
185         sync_completion_id = 0,
186         bio_completion_id,
187 };
188
189 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
190 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
191 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
192 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
193
194 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
195 {
196         unsigned long data;
197         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
198
199         if (cmdid >= nvmeq->q_depth)
200                 return CMD_CTX_INVALID;
201         data = info[cmdid].ctx;
202         info[cmdid].ctx = CMD_CTX_COMPLETED;
203         clear_bit(cmdid, nvmeq->cmdid_data);
204         wake_up(&nvmeq->sq_full);
205         return data;
206 }
207
208 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
209 {
210         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
211         info[cmdid].ctx = CMD_CTX_CANCELLED;
212 }
213
214 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
215 {
216         int qid, cpu = get_cpu();
217         if (cpu < ns->dev->queue_count)
218                 qid = cpu + 1;
219         else
220                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
221         return ns->dev->queues[qid];
222 }
223
224 static void put_nvmeq(struct nvme_queue *nvmeq)
225 {
226         put_cpu();
227 }
228
229 /**
230  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
231  * @nvmeq: The queue to use
232  * @cmd: The command to send
233  *
234  * Safe to use from interrupt context
235  */
236 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
237 {
238         unsigned long flags;
239         u16 tail;
240         /* XXX: Need to check tail isn't going to overrun head */
241         spin_lock_irqsave(&nvmeq->q_lock, flags);
242         tail = nvmeq->sq_tail;
243         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
244         writel(tail, nvmeq->q_db);
245         if (++tail == nvmeq->q_depth)
246                 tail = 0;
247         nvmeq->sq_tail = tail;
248         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
249
250         return 0;
251 }
252
253 struct nvme_prps {
254         int npages;
255         dma_addr_t first_dma;
256         __le64 *list[0];
257 };
258
259 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
260 {
261         const int last_prp = PAGE_SIZE / 8 - 1;
262         int i;
263         dma_addr_t prp_dma;
264
265         if (!prps)
266                 return;
267
268         prp_dma = prps->first_dma;
269
270         if (prps->npages == 0)
271                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
272         for (i = 0; i < prps->npages; i++) {
273                 __le64 *prp_list = prps->list[i];
274                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
275                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
276                 prp_dma = next_prp_dma;
277         }
278         kfree(prps);
279 }
280
281 struct nvme_bio {
282         struct bio *bio;
283         int nents;
284         struct nvme_prps *prps;
285         struct scatterlist sg[0];
286 };
287
288 /* XXX: use a mempool */
289 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
290 {
291         return kzalloc(sizeof(struct nvme_bio) +
292                         sizeof(struct scatterlist) * nseg, gfp);
293 }
294
295 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
296 {
297         nvme_free_prps(nvmeq->dev, nbio->prps);
298         kfree(nbio);
299 }
300
301 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
302                                                 struct nvme_completion *cqe)
303 {
304         struct nvme_bio *nbio = ctx;
305         struct bio *bio = nbio->bio;
306         u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
309                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
310         free_nbio(nvmeq, nbio);
311         bio_endio(bio, status ? -EIO : 0);
312         bio = bio_list_pop(&nvmeq->sq_cong);
313         if (bio)
314                 nvme_resubmit_bio(nvmeq, bio);
315 }
316
317 /* length is in bytes */
318 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
319                                         struct nvme_common_command *cmd,
320                                         struct scatterlist *sg, int length)
321 {
322         struct dma_pool *pool;
323         int dma_len = sg_dma_len(sg);
324         u64 dma_addr = sg_dma_address(sg);
325         int offset = offset_in_page(dma_addr);
326         __le64 *prp_list;
327         dma_addr_t prp_dma;
328         int nprps, npages, i, prp_page;
329         struct nvme_prps *prps = NULL;
330
331         cmd->prp1 = cpu_to_le64(dma_addr);
332         length -= (PAGE_SIZE - offset);
333         if (length <= 0)
334                 return prps;
335
336         dma_len -= (PAGE_SIZE - offset);
337         if (dma_len) {
338                 dma_addr += (PAGE_SIZE - offset);
339         } else {
340                 sg = sg_next(sg);
341                 dma_addr = sg_dma_address(sg);
342                 dma_len = sg_dma_len(sg);
343         }
344
345         if (length <= PAGE_SIZE) {
346                 cmd->prp2 = cpu_to_le64(dma_addr);
347                 return prps;
348         }
349
350         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
351         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
352         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
353         prp_page = 0;
354         if (nprps <= (256 / 8)) {
355                 pool = dev->prp_small_pool;
356                 prps->npages = 0;
357         } else {
358                 pool = dev->prp_page_pool;
359                 prps->npages = npages;
360         }
361
362         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
363         prps->list[prp_page++] = prp_list;
364         prps->first_dma = prp_dma;
365         cmd->prp2 = cpu_to_le64(prp_dma);
366         i = 0;
367         for (;;) {
368                 if (i == PAGE_SIZE / 8 - 1) {
369                         __le64 *old_prp_list = prp_list;
370                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
371                         prps->list[prp_page++] = prp_list;
372                         old_prp_list[i] = cpu_to_le64(prp_dma);
373                         i = 0;
374                 }
375                 prp_list[i++] = cpu_to_le64(dma_addr);
376                 dma_len -= PAGE_SIZE;
377                 dma_addr += PAGE_SIZE;
378                 length -= PAGE_SIZE;
379                 if (length <= 0)
380                         break;
381                 if (dma_len > 0)
382                         continue;
383                 BUG_ON(dma_len < 0);
384                 sg = sg_next(sg);
385                 dma_addr = sg_dma_address(sg);
386                 dma_len = sg_dma_len(sg);
387         }
388
389         return prps;
390 }
391
392 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
393                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
394 {
395         struct bio_vec *bvec;
396         struct scatterlist *sg = nbio->sg;
397         int i, nsegs;
398
399         sg_init_table(sg, psegs);
400         bio_for_each_segment(bvec, bio, i) {
401                 sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
402                 sg++;
403                 /* XXX: handle non-mergable here */
404                 nsegs++;
405         }
406         nbio->nents = nsegs;
407
408         return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
409 }
410
411 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
412                                                                 struct bio *bio)
413 {
414         struct nvme_command *cmnd;
415         struct nvme_bio *nbio;
416         enum dma_data_direction dma_dir;
417         int cmdid;
418         u16 control;
419         u32 dsmgmt;
420         unsigned long flags;
421         int psegs = bio_phys_segments(ns->queue, bio);
422
423         nbio = alloc_nbio(psegs, GFP_NOIO);
424         if (!nbio)
425                 goto congestion;
426         nbio->bio = bio;
427
428         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
429         if (unlikely(cmdid < 0))
430                 goto free_nbio;
431
432         control = 0;
433         if (bio->bi_rw & REQ_FUA)
434                 control |= NVME_RW_FUA;
435         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
436                 control |= NVME_RW_LR;
437
438         dsmgmt = 0;
439         if (bio->bi_rw & REQ_RAHEAD)
440                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
441
442         spin_lock_irqsave(&nvmeq->q_lock, flags);
443         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
444
445         memset(cmnd, 0, sizeof(*cmnd));
446         if (bio_data_dir(bio)) {
447                 cmnd->rw.opcode = nvme_cmd_write;
448                 dma_dir = DMA_TO_DEVICE;
449         } else {
450                 cmnd->rw.opcode = nvme_cmd_read;
451                 dma_dir = DMA_FROM_DEVICE;
452         }
453
454         nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
455
456         cmnd->rw.flags = 1;
457         cmnd->rw.command_id = cmdid;
458         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
459         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
460                                                                 bio->bi_size);
461         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
462         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
463         cmnd->rw.control = cpu_to_le16(control);
464         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
465
466         writel(nvmeq->sq_tail, nvmeq->q_db);
467         if (++nvmeq->sq_tail == nvmeq->q_depth)
468                 nvmeq->sq_tail = 0;
469
470         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
471
472         return 0;
473
474  free_nbio:
475         free_nbio(nvmeq, nbio);
476  congestion:
477         return -EBUSY;
478 }
479
480 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
481 {
482         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
483         if (nvme_submit_bio_queue(nvmeq, ns, bio))
484                 bio_list_add_head(&nvmeq->sq_cong, bio);
485         else if (bio_list_empty(&nvmeq->sq_cong))
486                 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
487         /* XXX: Need to duplicate the logic from __freed_request here */
488 }
489
490 /*
491  * NB: return value of non-zero would mean that we were a stacking driver.
492  * make_request must always succeed.
493  */
494 static int nvme_make_request(struct request_queue *q, struct bio *bio)
495 {
496         struct nvme_ns *ns = q->queuedata;
497         struct nvme_queue *nvmeq = get_nvmeq(ns);
498
499         if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
500                 blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
501                 spin_lock_irq(&nvmeq->q_lock);
502                 bio_list_add(&nvmeq->sq_cong, bio);
503                 spin_unlock_irq(&nvmeq->q_lock);
504         }
505         put_nvmeq(nvmeq);
506
507         return 0;
508 }
509
510 struct sync_cmd_info {
511         struct task_struct *task;
512         u32 result;
513         int status;
514 };
515
516 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
517                                                 struct nvme_completion *cqe)
518 {
519         struct sync_cmd_info *cmdinfo = ctx;
520         if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
521                 return;
522         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
523                 dev_warn(nvmeq->q_dmadev,
524                                 "completed id %d twice on queue %d\n",
525                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
526                 return;
527         }
528         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
529                 dev_warn(nvmeq->q_dmadev,
530                                 "invalid id %d completed on queue %d\n",
531                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
532                 return;
533         }
534         cmdinfo->result = le32_to_cpup(&cqe->result);
535         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
536         wake_up_process(cmdinfo->task);
537 }
538
539 typedef void (*completion_fn)(struct nvme_queue *, void *,
540                                                 struct nvme_completion *);
541
542 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
543 {
544         u16 head, phase;
545
546         static const completion_fn completions[4] = {
547                 [sync_completion_id] = sync_completion,
548                 [bio_completion_id]  = bio_completion,
549         };
550
551         head = nvmeq->cq_head;
552         phase = nvmeq->cq_phase;
553
554         for (;;) {
555                 unsigned long data;
556                 void *ptr;
557                 unsigned char handler;
558                 struct nvme_completion cqe = nvmeq->cqes[head];
559                 if ((le16_to_cpu(cqe.status) & 1) != phase)
560                         break;
561                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
562                 if (++head == nvmeq->q_depth) {
563                         head = 0;
564                         phase = !phase;
565                 }
566
567                 data = free_cmdid(nvmeq, cqe.command_id);
568                 handler = data & 3;
569                 ptr = (void *)(data & ~3UL);
570                 completions[handler](nvmeq, ptr, &cqe);
571         }
572
573         /* If the controller ignores the cq head doorbell and continuously
574          * writes to the queue, it is theoretically possible to wrap around
575          * the queue twice and mistakenly return IRQ_NONE.  Linux only
576          * requires that 0.1% of your interrupts are handled, so this isn't
577          * a big problem.
578          */
579         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
580                 return IRQ_NONE;
581
582         writel(head, nvmeq->q_db + 1);
583         nvmeq->cq_head = head;
584         nvmeq->cq_phase = phase;
585
586         return IRQ_HANDLED;
587 }
588
589 static irqreturn_t nvme_irq(int irq, void *data)
590 {
591         irqreturn_t result;
592         struct nvme_queue *nvmeq = data;
593         spin_lock(&nvmeq->q_lock);
594         result = nvme_process_cq(nvmeq);
595         spin_unlock(&nvmeq->q_lock);
596         return result;
597 }
598
599 static irqreturn_t nvme_irq_check(int irq, void *data)
600 {
601         struct nvme_queue *nvmeq = data;
602         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
603         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
604                 return IRQ_NONE;
605         return IRQ_WAKE_THREAD;
606 }
607
608 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
609 {
610         spin_lock_irq(&nvmeq->q_lock);
611         cancel_cmdid_data(nvmeq, cmdid);
612         spin_unlock_irq(&nvmeq->q_lock);
613 }
614
615 /*
616  * Returns 0 on success.  If the result is negative, it's a Linux error code;
617  * if the result is positive, it's an NVM Express status code
618  */
619 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
620                         struct nvme_command *cmd, u32 *result, unsigned timeout)
621 {
622         int cmdid;
623         struct sync_cmd_info cmdinfo;
624
625         cmdinfo.task = current;
626         cmdinfo.status = -EINTR;
627
628         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
629                                                                 timeout);
630         if (cmdid < 0)
631                 return cmdid;
632         cmd->common.command_id = cmdid;
633
634         set_current_state(TASK_KILLABLE);
635         nvme_submit_cmd(nvmeq, cmd);
636         schedule();
637
638         if (cmdinfo.status == -EINTR) {
639                 nvme_abort_command(nvmeq, cmdid);
640                 return -EINTR;
641         }
642
643         if (result)
644                 *result = cmdinfo.result;
645
646         return cmdinfo.status;
647 }
648
649 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
650                                                                 u32 *result)
651 {
652         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
653 }
654
655 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
656 {
657         int status;
658         struct nvme_command c;
659
660         memset(&c, 0, sizeof(c));
661         c.delete_queue.opcode = opcode;
662         c.delete_queue.qid = cpu_to_le16(id);
663
664         status = nvme_submit_admin_cmd(dev, &c, NULL);
665         if (status)
666                 return -EIO;
667         return 0;
668 }
669
670 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
671                                                 struct nvme_queue *nvmeq)
672 {
673         int status;
674         struct nvme_command c;
675         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
676
677         memset(&c, 0, sizeof(c));
678         c.create_cq.opcode = nvme_admin_create_cq;
679         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
680         c.create_cq.cqid = cpu_to_le16(qid);
681         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
682         c.create_cq.cq_flags = cpu_to_le16(flags);
683         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
684
685         status = nvme_submit_admin_cmd(dev, &c, NULL);
686         if (status)
687                 return -EIO;
688         return 0;
689 }
690
691 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
692                                                 struct nvme_queue *nvmeq)
693 {
694         int status;
695         struct nvme_command c;
696         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
697
698         memset(&c, 0, sizeof(c));
699         c.create_sq.opcode = nvme_admin_create_sq;
700         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
701         c.create_sq.sqid = cpu_to_le16(qid);
702         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
703         c.create_sq.sq_flags = cpu_to_le16(flags);
704         c.create_sq.cqid = cpu_to_le16(qid);
705
706         status = nvme_submit_admin_cmd(dev, &c, NULL);
707         if (status)
708                 return -EIO;
709         return 0;
710 }
711
712 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
713 {
714         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
715 }
716
717 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
718 {
719         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
720 }
721
722 static void nvme_free_queue(struct nvme_dev *dev, int qid)
723 {
724         struct nvme_queue *nvmeq = dev->queues[qid];
725
726         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
727
728         /* Don't tell the adapter to delete the admin queue */
729         if (qid) {
730                 adapter_delete_sq(dev, qid);
731                 adapter_delete_cq(dev, qid);
732         }
733
734         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
735                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
736         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
737                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
738         kfree(nvmeq);
739 }
740
741 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
742                                                         int depth, int vector)
743 {
744         struct device *dmadev = &dev->pci_dev->dev;
745         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
746         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
747         if (!nvmeq)
748                 return NULL;
749
750         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
751                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
752         if (!nvmeq->cqes)
753                 goto free_nvmeq;
754         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
755
756         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
757                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
758         if (!nvmeq->sq_cmds)
759                 goto free_cqdma;
760
761         nvmeq->q_dmadev = dmadev;
762         nvmeq->dev = dev;
763         spin_lock_init(&nvmeq->q_lock);
764         nvmeq->cq_head = 0;
765         nvmeq->cq_phase = 1;
766         init_waitqueue_head(&nvmeq->sq_full);
767         bio_list_init(&nvmeq->sq_cong);
768         nvmeq->q_db = &dev->dbs[qid * 2];
769         nvmeq->q_depth = depth;
770         nvmeq->cq_vector = vector;
771
772         return nvmeq;
773
774  free_cqdma:
775         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
776                                                         nvmeq->cq_dma_addr);
777  free_nvmeq:
778         kfree(nvmeq);
779         return NULL;
780 }
781
782 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
783                                                         const char *name)
784 {
785         if (use_threaded_interrupts)
786                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
787                                         nvme_irq_check, nvme_irq,
788                                         IRQF_DISABLED | IRQF_SHARED,
789                                         name, nvmeq);
790         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
791                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
792 }
793
794 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
795                                         int qid, int cq_size, int vector)
796 {
797         int result;
798         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
799
800         if (!nvmeq)
801                 return NULL;
802
803         result = adapter_alloc_cq(dev, qid, nvmeq);
804         if (result < 0)
805                 goto free_nvmeq;
806
807         result = adapter_alloc_sq(dev, qid, nvmeq);
808         if (result < 0)
809                 goto release_cq;
810
811         result = queue_request_irq(dev, nvmeq, "nvme");
812         if (result < 0)
813                 goto release_sq;
814
815         return nvmeq;
816
817  release_sq:
818         adapter_delete_sq(dev, qid);
819  release_cq:
820         adapter_delete_cq(dev, qid);
821  free_nvmeq:
822         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
823                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
824         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
825                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
826         kfree(nvmeq);
827         return NULL;
828 }
829
830 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
831 {
832         int result;
833         u32 aqa;
834         struct nvme_queue *nvmeq;
835
836         dev->dbs = ((void __iomem *)dev->bar) + 4096;
837
838         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
839         if (!nvmeq)
840                 return -ENOMEM;
841
842         aqa = nvmeq->q_depth - 1;
843         aqa |= aqa << 16;
844
845         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
846         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
847         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
848
849         writel(0, &dev->bar->cc);
850         writel(aqa, &dev->bar->aqa);
851         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
852         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
853         writel(dev->ctrl_config, &dev->bar->cc);
854
855         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
856                 msleep(100);
857                 if (fatal_signal_pending(current))
858                         return -EINTR;
859         }
860
861         result = queue_request_irq(dev, nvmeq, "nvme admin");
862         dev->queues[0] = nvmeq;
863         return result;
864 }
865
866 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
867                                 unsigned long addr, unsigned length,
868                                 struct scatterlist **sgp)
869 {
870         int i, err, count, nents, offset;
871         struct scatterlist *sg;
872         struct page **pages;
873
874         if (addr & 3)
875                 return -EINVAL;
876         if (!length)
877                 return -EINVAL;
878
879         offset = offset_in_page(addr);
880         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
881         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
882
883         err = get_user_pages_fast(addr, count, 1, pages);
884         if (err < count) {
885                 count = err;
886                 err = -EFAULT;
887                 goto put_pages;
888         }
889
890         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
891         sg_init_table(sg, count);
892         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
893         length -= (PAGE_SIZE - offset);
894         for (i = 1; i < count; i++) {
895                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
896                 length -= PAGE_SIZE;
897         }
898
899         err = -ENOMEM;
900         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
901                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
902         if (!nents)
903                 goto put_pages;
904
905         kfree(pages);
906         *sgp = sg;
907         return nents;
908
909  put_pages:
910         for (i = 0; i < count; i++)
911                 put_page(pages[i]);
912         kfree(pages);
913         return err;
914 }
915
916 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
917                                 unsigned long addr, int length,
918                                 struct scatterlist *sg, int nents)
919 {
920         int i, count;
921
922         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
923         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
924
925         for (i = 0; i < count; i++)
926                 put_page(sg_page(&sg[i]));
927 }
928
929 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
930                                         unsigned long addr, unsigned length,
931                                         struct nvme_command *cmd)
932 {
933         int err, nents;
934         struct scatterlist *sg;
935         struct nvme_prps *prps;
936
937         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
938         if (nents < 0)
939                 return nents;
940         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
941         err = nvme_submit_admin_cmd(dev, cmd, NULL);
942         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
943         nvme_free_prps(dev, prps);
944         return err ? -EIO : 0;
945 }
946
947 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
948 {
949         struct nvme_command c;
950
951         memset(&c, 0, sizeof(c));
952         c.identify.opcode = nvme_admin_identify;
953         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
954         c.identify.cns = cpu_to_le32(cns);
955
956         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
957 }
958
959 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
960 {
961         struct nvme_command c;
962
963         memset(&c, 0, sizeof(c));
964         c.features.opcode = nvme_admin_get_features;
965         c.features.nsid = cpu_to_le32(ns->ns_id);
966         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
967
968         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
969 }
970
971 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
972 {
973         struct nvme_dev *dev = ns->dev;
974         struct nvme_queue *nvmeq;
975         struct nvme_user_io io;
976         struct nvme_command c;
977         unsigned length;
978         u32 result;
979         int nents, status;
980         struct scatterlist *sg;
981         struct nvme_prps *prps;
982
983         if (copy_from_user(&io, uio, sizeof(io)))
984                 return -EFAULT;
985         length = io.nblocks << io.block_shift;
986         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
987         if (nents < 0)
988                 return nents;
989
990         memset(&c, 0, sizeof(c));
991         c.rw.opcode = io.opcode;
992         c.rw.flags = io.flags;
993         c.rw.nsid = cpu_to_le32(io.nsid);
994         c.rw.slba = cpu_to_le64(io.slba);
995         c.rw.length = cpu_to_le16(io.nblocks - 1);
996         c.rw.control = cpu_to_le16(io.control);
997         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
998         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
999         c.rw.apptag = cpu_to_le16(io.apptag);
1000         c.rw.appmask = cpu_to_le16(io.appmask);
1001         /* XXX: metadata */
1002         prps = nvme_setup_prps(dev, &c.common, sg, length);
1003
1004         nvmeq = get_nvmeq(ns);
1005         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1006          * disabled.  We may be preempted at any point, and be rescheduled
1007          * to a different CPU.  That will cause cacheline bouncing, but no
1008          * additional races since q_lock already protects against other CPUs.
1009          */
1010         put_nvmeq(nvmeq);
1011         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1012
1013         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1014         nvme_free_prps(dev, prps);
1015         put_user(result, &uio->result);
1016         return status;
1017 }
1018
1019 static int nvme_download_firmware(struct nvme_ns *ns,
1020                                                 struct nvme_dlfw __user *udlfw)
1021 {
1022         struct nvme_dev *dev = ns->dev;
1023         struct nvme_dlfw dlfw;
1024         struct nvme_command c;
1025         int nents, status;
1026         struct scatterlist *sg;
1027         struct nvme_prps *prps;
1028
1029         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1030                 return -EFAULT;
1031         if (dlfw.length >= (1 << 30))
1032                 return -EINVAL;
1033
1034         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1035         if (nents < 0)
1036                 return nents;
1037
1038         memset(&c, 0, sizeof(c));
1039         c.dlfw.opcode = nvme_admin_download_fw;
1040         c.dlfw.numd = cpu_to_le32(dlfw.length);
1041         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1042         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1043
1044         status = nvme_submit_admin_cmd(dev, &c, NULL);
1045         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1046         nvme_free_prps(dev, prps);
1047         return status;
1048 }
1049
1050 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1051 {
1052         struct nvme_dev *dev = ns->dev;
1053         struct nvme_command c;
1054
1055         memset(&c, 0, sizeof(c));
1056         c.common.opcode = nvme_admin_activate_fw;
1057         c.common.rsvd10[0] = cpu_to_le32(arg);
1058
1059         return nvme_submit_admin_cmd(dev, &c, NULL);
1060 }
1061
1062 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1063                                                         unsigned long arg)
1064 {
1065         struct nvme_ns *ns = bdev->bd_disk->private_data;
1066
1067         switch (cmd) {
1068         case NVME_IOCTL_IDENTIFY_NS:
1069                 return nvme_identify(ns, arg, 0);
1070         case NVME_IOCTL_IDENTIFY_CTRL:
1071                 return nvme_identify(ns, arg, 1);
1072         case NVME_IOCTL_GET_RANGE_TYPE:
1073                 return nvme_get_range_type(ns, arg);
1074         case NVME_IOCTL_SUBMIT_IO:
1075                 return nvme_submit_io(ns, (void __user *)arg);
1076         case NVME_IOCTL_DOWNLOAD_FW:
1077                 return nvme_download_firmware(ns, (void __user *)arg);
1078         case NVME_IOCTL_ACTIVATE_FW:
1079                 return nvme_activate_firmware(ns, arg);
1080         default:
1081                 return -ENOTTY;
1082         }
1083 }
1084
1085 static const struct block_device_operations nvme_fops = {
1086         .owner          = THIS_MODULE,
1087         .ioctl          = nvme_ioctl,
1088 };
1089
1090 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1091                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1092 {
1093         struct nvme_ns *ns;
1094         struct gendisk *disk;
1095         int lbaf;
1096
1097         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1098                 return NULL;
1099
1100         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1101         if (!ns)
1102                 return NULL;
1103         ns->queue = blk_alloc_queue(GFP_KERNEL);
1104         if (!ns->queue)
1105                 goto out_free_ns;
1106         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1107                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1108         blk_queue_make_request(ns->queue, nvme_make_request);
1109         ns->dev = dev;
1110         ns->queue->queuedata = ns;
1111
1112         disk = alloc_disk(NVME_MINORS);
1113         if (!disk)
1114                 goto out_free_queue;
1115         ns->ns_id = index;
1116         ns->disk = disk;
1117         lbaf = id->flbas & 0xf;
1118         ns->lba_shift = id->lbaf[lbaf].ds;
1119
1120         disk->major = nvme_major;
1121         disk->minors = NVME_MINORS;
1122         disk->first_minor = NVME_MINORS * index;
1123         disk->fops = &nvme_fops;
1124         disk->private_data = ns;
1125         disk->queue = ns->queue;
1126         disk->driverfs_dev = &dev->pci_dev->dev;
1127         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1128         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1129
1130         return ns;
1131
1132  out_free_queue:
1133         blk_cleanup_queue(ns->queue);
1134  out_free_ns:
1135         kfree(ns);
1136         return NULL;
1137 }
1138
1139 static void nvme_ns_free(struct nvme_ns *ns)
1140 {
1141         put_disk(ns->disk);
1142         blk_cleanup_queue(ns->queue);
1143         kfree(ns);
1144 }
1145
1146 static int set_queue_count(struct nvme_dev *dev, int count)
1147 {
1148         int status;
1149         u32 result;
1150         struct nvme_command c;
1151         u32 q_count = (count - 1) | ((count - 1) << 16);
1152
1153         memset(&c, 0, sizeof(c));
1154         c.features.opcode = nvme_admin_get_features;
1155         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1156         c.features.dword11 = cpu_to_le32(q_count);
1157
1158         status = nvme_submit_admin_cmd(dev, &c, &result);
1159         if (status)
1160                 return -EIO;
1161         return min(result & 0xffff, result >> 16) + 1;
1162 }
1163
1164 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1165 {
1166         int result, cpu, i, nr_queues;
1167
1168         nr_queues = num_online_cpus();
1169         result = set_queue_count(dev, nr_queues);
1170         if (result < 0)
1171                 return result;
1172         if (result < nr_queues)
1173                 nr_queues = result;
1174
1175         /* Deregister the admin queue's interrupt */
1176         free_irq(dev->entry[0].vector, dev->queues[0]);
1177
1178         for (i = 0; i < nr_queues; i++)
1179                 dev->entry[i].entry = i;
1180         for (;;) {
1181                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1182                 if (result == 0) {
1183                         break;
1184                 } else if (result > 0) {
1185                         nr_queues = result;
1186                         continue;
1187                 } else {
1188                         nr_queues = 1;
1189                         break;
1190                 }
1191         }
1192
1193         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1194         /* XXX: handle failure here */
1195
1196         cpu = cpumask_first(cpu_online_mask);
1197         for (i = 0; i < nr_queues; i++) {
1198                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1199                 cpu = cpumask_next(cpu, cpu_online_mask);
1200         }
1201
1202         for (i = 0; i < nr_queues; i++) {
1203                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1204                                                         NVME_Q_DEPTH, i);
1205                 if (!dev->queues[i + 1])
1206                         return -ENOMEM;
1207                 dev->queue_count++;
1208         }
1209
1210         return 0;
1211 }
1212
1213 static void nvme_free_queues(struct nvme_dev *dev)
1214 {
1215         int i;
1216
1217         for (i = dev->queue_count - 1; i >= 0; i--)
1218                 nvme_free_queue(dev, i);
1219 }
1220
1221 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1222 {
1223         int res, nn, i;
1224         struct nvme_ns *ns, *next;
1225         struct nvme_id_ctrl *ctrl;
1226         void *id;
1227         dma_addr_t dma_addr;
1228         struct nvme_command cid, crt;
1229
1230         res = nvme_setup_io_queues(dev);
1231         if (res)
1232                 return res;
1233
1234         /* XXX: Switch to a SG list once prp2 works */
1235         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1236                                                                 GFP_KERNEL);
1237
1238         memset(&cid, 0, sizeof(cid));
1239         cid.identify.opcode = nvme_admin_identify;
1240         cid.identify.nsid = 0;
1241         cid.identify.prp1 = cpu_to_le64(dma_addr);
1242         cid.identify.cns = cpu_to_le32(1);
1243
1244         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1245         if (res) {
1246                 res = -EIO;
1247                 goto out_free;
1248         }
1249
1250         ctrl = id;
1251         nn = le32_to_cpup(&ctrl->nn);
1252         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1253         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1254         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1255
1256         cid.identify.cns = 0;
1257         memset(&crt, 0, sizeof(crt));
1258         crt.features.opcode = nvme_admin_get_features;
1259         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1260         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1261
1262         for (i = 0; i < nn; i++) {
1263                 cid.identify.nsid = cpu_to_le32(i);
1264                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1265                 if (res)
1266                         continue;
1267
1268                 if (((struct nvme_id_ns *)id)->ncap == 0)
1269                         continue;
1270
1271                 crt.features.nsid = cpu_to_le32(i);
1272                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1273                 if (res)
1274                         continue;
1275
1276                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1277                 if (ns)
1278                         list_add_tail(&ns->list, &dev->namespaces);
1279         }
1280         list_for_each_entry(ns, &dev->namespaces, list)
1281                 add_disk(ns->disk);
1282
1283         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1284         return 0;
1285
1286  out_free:
1287         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1288                 list_del(&ns->list);
1289                 nvme_ns_free(ns);
1290         }
1291
1292         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1293         return res;
1294 }
1295
1296 static int nvme_dev_remove(struct nvme_dev *dev)
1297 {
1298         struct nvme_ns *ns, *next;
1299
1300         /* TODO: wait all I/O finished or cancel them */
1301
1302         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1303                 list_del(&ns->list);
1304                 del_gendisk(ns->disk);
1305                 nvme_ns_free(ns);
1306         }
1307
1308         nvme_free_queues(dev);
1309
1310         return 0;
1311 }
1312
1313 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1314 {
1315         struct device *dmadev = &dev->pci_dev->dev;
1316         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1317                                                 PAGE_SIZE, PAGE_SIZE, 0);
1318         if (!dev->prp_page_pool)
1319                 return -ENOMEM;
1320
1321         /* Optimisation for I/Os between 4k and 128k */
1322         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1323                                                 256, 256, 0);
1324         if (!dev->prp_small_pool) {
1325                 dma_pool_destroy(dev->prp_page_pool);
1326                 return -ENOMEM;
1327         }
1328         return 0;
1329 }
1330
1331 static void nvme_release_prp_pools(struct nvme_dev *dev)
1332 {
1333         dma_pool_destroy(dev->prp_page_pool);
1334         dma_pool_destroy(dev->prp_small_pool);
1335 }
1336
1337 /* XXX: Use an ida or something to let remove / add work correctly */
1338 static void nvme_set_instance(struct nvme_dev *dev)
1339 {
1340         static int instance;
1341         dev->instance = instance++;
1342 }
1343
1344 static void nvme_release_instance(struct nvme_dev *dev)
1345 {
1346 }
1347
1348 static int __devinit nvme_probe(struct pci_dev *pdev,
1349                                                 const struct pci_device_id *id)
1350 {
1351         int bars, result = -ENOMEM;
1352         struct nvme_dev *dev;
1353
1354         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1355         if (!dev)
1356                 return -ENOMEM;
1357         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1358                                                                 GFP_KERNEL);
1359         if (!dev->entry)
1360                 goto free;
1361         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1362                                                                 GFP_KERNEL);
1363         if (!dev->queues)
1364                 goto free;
1365
1366         if (pci_enable_device_mem(pdev))
1367                 goto free;
1368         pci_set_master(pdev);
1369         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1370         if (pci_request_selected_regions(pdev, bars, "nvme"))
1371                 goto disable;
1372
1373         INIT_LIST_HEAD(&dev->namespaces);
1374         dev->pci_dev = pdev;
1375         pci_set_drvdata(pdev, dev);
1376         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1377         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1378         nvme_set_instance(dev);
1379         dev->entry[0].vector = pdev->irq;
1380
1381         result = nvme_setup_prp_pools(dev);
1382         if (result)
1383                 goto disable_msix;
1384
1385         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1386         if (!dev->bar) {
1387                 result = -ENOMEM;
1388                 goto disable_msix;
1389         }
1390
1391         result = nvme_configure_admin_queue(dev);
1392         if (result)
1393                 goto unmap;
1394         dev->queue_count++;
1395
1396         result = nvme_dev_add(dev);
1397         if (result)
1398                 goto delete;
1399         return 0;
1400
1401  delete:
1402         nvme_free_queues(dev);
1403  unmap:
1404         iounmap(dev->bar);
1405  disable_msix:
1406         pci_disable_msix(pdev);
1407         nvme_release_instance(dev);
1408         nvme_release_prp_pools(dev);
1409  disable:
1410         pci_disable_device(pdev);
1411         pci_release_regions(pdev);
1412  free:
1413         kfree(dev->queues);
1414         kfree(dev->entry);
1415         kfree(dev);
1416         return result;
1417 }
1418
1419 static void __devexit nvme_remove(struct pci_dev *pdev)
1420 {
1421         struct nvme_dev *dev = pci_get_drvdata(pdev);
1422         nvme_dev_remove(dev);
1423         pci_disable_msix(pdev);
1424         iounmap(dev->bar);
1425         nvme_release_instance(dev);
1426         nvme_release_prp_pools(dev);
1427         pci_disable_device(pdev);
1428         pci_release_regions(pdev);
1429         kfree(dev->queues);
1430         kfree(dev->entry);
1431         kfree(dev);
1432 }
1433
1434 /* These functions are yet to be implemented */
1435 #define nvme_error_detected NULL
1436 #define nvme_dump_registers NULL
1437 #define nvme_link_reset NULL
1438 #define nvme_slot_reset NULL
1439 #define nvme_error_resume NULL
1440 #define nvme_suspend NULL
1441 #define nvme_resume NULL
1442
1443 static struct pci_error_handlers nvme_err_handler = {
1444         .error_detected = nvme_error_detected,
1445         .mmio_enabled   = nvme_dump_registers,
1446         .link_reset     = nvme_link_reset,
1447         .slot_reset     = nvme_slot_reset,
1448         .resume         = nvme_error_resume,
1449 };
1450
1451 /* Move to pci_ids.h later */
1452 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1453
1454 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1455         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1456         { 0, }
1457 };
1458 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1459
1460 static struct pci_driver nvme_driver = {
1461         .name           = "nvme",
1462         .id_table       = nvme_id_table,
1463         .probe          = nvme_probe,
1464         .remove         = __devexit_p(nvme_remove),
1465         .suspend        = nvme_suspend,
1466         .resume         = nvme_resume,
1467         .err_handler    = &nvme_err_handler,
1468 };
1469
1470 static int __init nvme_init(void)
1471 {
1472         int result;
1473
1474         nvme_major = register_blkdev(nvme_major, "nvme");
1475         if (nvme_major <= 0)
1476                 return -EBUSY;
1477
1478         result = pci_register_driver(&nvme_driver);
1479         if (!result)
1480                 return 0;
1481
1482         unregister_blkdev(nvme_major, "nvme");
1483         return result;
1484 }
1485
1486 static void __exit nvme_exit(void)
1487 {
1488         pci_unregister_driver(&nvme_driver);
1489         unregister_blkdev(nvme_major, "nvme");
1490 }
1491
1492 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1493 MODULE_LICENSE("GPL");
1494 MODULE_VERSION("0.2");
1495 module_init(nvme_init);
1496 module_exit(nvme_exit);