]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
Merge tag 'sunxi-fixes-for-4.12' of https://git.kernel.org/pub/scm/linux/kernel/git...
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/decode.h>
36 #include <linux/parser.h>
37 #include <linux/bsearch.h>
38
39 #include <linux/kernel.h>
40 #include <linux/device.h>
41 #include <linux/module.h>
42 #include <linux/blk-mq.h>
43 #include <linux/fs.h>
44 #include <linux/blkdev.h>
45 #include <linux/slab.h>
46 #include <linux/idr.h>
47 #include <linux/workqueue.h>
48
49 #include "rbd_types.h"
50
51 #define RBD_DEBUG       /* Activate rbd_assert() calls */
52
53 /*
54  * The basic unit of block I/O is a sector.  It is interpreted in a
55  * number of contexts in Linux (blk, bio, genhd), but the default is
56  * universally 512 bytes.  These symbols are just slightly more
57  * meaningful than the bare numbers they represent.
58  */
59 #define SECTOR_SHIFT    9
60 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
61
62 /*
63  * Increment the given counter and return its updated value.
64  * If the counter is already 0 it will not be incremented.
65  * If the counter is already at its maximum value returns
66  * -EINVAL without updating it.
67  */
68 static int atomic_inc_return_safe(atomic_t *v)
69 {
70         unsigned int counter;
71
72         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
73         if (counter <= (unsigned int)INT_MAX)
74                 return (int)counter;
75
76         atomic_dec(v);
77
78         return -EINVAL;
79 }
80
81 /* Decrement the counter.  Return the resulting value, or -EINVAL */
82 static int atomic_dec_return_safe(atomic_t *v)
83 {
84         int counter;
85
86         counter = atomic_dec_return(v);
87         if (counter >= 0)
88                 return counter;
89
90         atomic_inc(v);
91
92         return -EINVAL;
93 }
94
95 #define RBD_DRV_NAME "rbd"
96
97 #define RBD_MINORS_PER_MAJOR            256
98 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
99
100 #define RBD_MAX_PARENT_CHAIN_LEN        16
101
102 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
103 #define RBD_MAX_SNAP_NAME_LEN   \
104                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
105
106 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
107
108 #define RBD_SNAP_HEAD_NAME      "-"
109
110 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
111
112 /* This allows a single page to hold an image name sent by OSD */
113 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
114 #define RBD_IMAGE_ID_LEN_MAX    64
115
116 #define RBD_OBJ_PREFIX_LEN_MAX  64
117
118 #define RBD_NOTIFY_TIMEOUT      5       /* seconds */
119 #define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
120
121 /* Feature bits */
122
123 #define RBD_FEATURE_LAYERING            (1ULL<<0)
124 #define RBD_FEATURE_STRIPINGV2          (1ULL<<1)
125 #define RBD_FEATURE_EXCLUSIVE_LOCK      (1ULL<<2)
126 #define RBD_FEATURE_DATA_POOL           (1ULL<<7)
127
128 #define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
129                                  RBD_FEATURE_STRIPINGV2 |       \
130                                  RBD_FEATURE_EXCLUSIVE_LOCK |   \
131                                  RBD_FEATURE_DATA_POOL)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
136
137 /*
138  * An RBD device name will be "rbd#", where the "rbd" comes from
139  * RBD_DRV_NAME above, and # is a unique integer identifier.
140  */
141 #define DEV_NAME_LEN            32
142
143 /*
144  * block device image metadata (in-memory version)
145  */
146 struct rbd_image_header {
147         /* These six fields never change for a given rbd image */
148         char *object_prefix;
149         __u8 obj_order;
150         u64 stripe_unit;
151         u64 stripe_count;
152         s64 data_pool_id;
153         u64 features;           /* Might be changeable someday? */
154
155         /* The remaining fields need to be updated occasionally */
156         u64 image_size;
157         struct ceph_snap_context *snapc;
158         char *snap_names;       /* format 1 only */
159         u64 *snap_sizes;        /* format 1 only */
160 };
161
162 /*
163  * An rbd image specification.
164  *
165  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166  * identify an image.  Each rbd_dev structure includes a pointer to
167  * an rbd_spec structure that encapsulates this identity.
168  *
169  * Each of the id's in an rbd_spec has an associated name.  For a
170  * user-mapped image, the names are supplied and the id's associated
171  * with them are looked up.  For a layered image, a parent image is
172  * defined by the tuple, and the names are looked up.
173  *
174  * An rbd_dev structure contains a parent_spec pointer which is
175  * non-null if the image it represents is a child in a layered
176  * image.  This pointer will refer to the rbd_spec structure used
177  * by the parent rbd_dev for its own identity (i.e., the structure
178  * is shared between the parent and child).
179  *
180  * Since these structures are populated once, during the discovery
181  * phase of image construction, they are effectively immutable so
182  * we make no effort to synchronize access to them.
183  *
184  * Note that code herein does not assume the image name is known (it
185  * could be a null pointer).
186  */
187 struct rbd_spec {
188         u64             pool_id;
189         const char      *pool_name;
190
191         const char      *image_id;
192         const char      *image_name;
193
194         u64             snap_id;
195         const char      *snap_name;
196
197         struct kref     kref;
198 };
199
200 /*
201  * an instance of the client.  multiple devices may share an rbd client.
202  */
203 struct rbd_client {
204         struct ceph_client      *client;
205         struct kref             kref;
206         struct list_head        node;
207 };
208
209 struct rbd_img_request;
210 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
211
212 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
213
214 struct rbd_obj_request;
215 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
216
217 enum obj_request_type {
218         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
219 };
220
221 enum obj_operation_type {
222         OBJ_OP_WRITE,
223         OBJ_OP_READ,
224         OBJ_OP_DISCARD,
225 };
226
227 enum obj_req_flags {
228         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
229         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
230         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
231         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
232 };
233
234 struct rbd_obj_request {
235         u64                     object_no;
236         u64                     offset;         /* object start byte */
237         u64                     length;         /* bytes from offset */
238         unsigned long           flags;
239
240         /*
241          * An object request associated with an image will have its
242          * img_data flag set; a standalone object request will not.
243          *
244          * A standalone object request will have which == BAD_WHICH
245          * and a null obj_request pointer.
246          *
247          * An object request initiated in support of a layered image
248          * object (to check for its existence before a write) will
249          * have which == BAD_WHICH and a non-null obj_request pointer.
250          *
251          * Finally, an object request for rbd image data will have
252          * which != BAD_WHICH, and will have a non-null img_request
253          * pointer.  The value of which will be in the range
254          * 0..(img_request->obj_request_count-1).
255          */
256         union {
257                 struct rbd_obj_request  *obj_request;   /* STAT op */
258                 struct {
259                         struct rbd_img_request  *img_request;
260                         u64                     img_offset;
261                         /* links for img_request->obj_requests list */
262                         struct list_head        links;
263                 };
264         };
265         u32                     which;          /* posn image request list */
266
267         enum obj_request_type   type;
268         union {
269                 struct bio      *bio_list;
270                 struct {
271                         struct page     **pages;
272                         u32             page_count;
273                 };
274         };
275         struct page             **copyup_pages;
276         u32                     copyup_page_count;
277
278         struct ceph_osd_request *osd_req;
279
280         u64                     xferred;        /* bytes transferred */
281         int                     result;
282
283         rbd_obj_callback_t      callback;
284         struct completion       completion;
285
286         struct kref             kref;
287 };
288
289 enum img_req_flags {
290         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
291         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
292         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
293         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
294 };
295
296 struct rbd_img_request {
297         struct rbd_device       *rbd_dev;
298         u64                     offset; /* starting image byte offset */
299         u64                     length; /* byte count from offset */
300         unsigned long           flags;
301         union {
302                 u64                     snap_id;        /* for reads */
303                 struct ceph_snap_context *snapc;        /* for writes */
304         };
305         union {
306                 struct request          *rq;            /* block request */
307                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
308         };
309         struct page             **copyup_pages;
310         u32                     copyup_page_count;
311         spinlock_t              completion_lock;/* protects next_completion */
312         u32                     next_completion;
313         rbd_img_callback_t      callback;
314         u64                     xferred;/* aggregate bytes transferred */
315         int                     result; /* first nonzero obj_request result */
316
317         u32                     obj_request_count;
318         struct list_head        obj_requests;   /* rbd_obj_request structs */
319
320         struct kref             kref;
321 };
322
323 #define for_each_obj_request(ireq, oreq) \
324         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
325 #define for_each_obj_request_from(ireq, oreq) \
326         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
327 #define for_each_obj_request_safe(ireq, oreq, n) \
328         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
329
330 enum rbd_watch_state {
331         RBD_WATCH_STATE_UNREGISTERED,
332         RBD_WATCH_STATE_REGISTERED,
333         RBD_WATCH_STATE_ERROR,
334 };
335
336 enum rbd_lock_state {
337         RBD_LOCK_STATE_UNLOCKED,
338         RBD_LOCK_STATE_LOCKED,
339         RBD_LOCK_STATE_RELEASING,
340 };
341
342 /* WatchNotify::ClientId */
343 struct rbd_client_id {
344         u64 gid;
345         u64 handle;
346 };
347
348 struct rbd_mapping {
349         u64                     size;
350         u64                     features;
351         bool                    read_only;
352 };
353
354 /*
355  * a single device
356  */
357 struct rbd_device {
358         int                     dev_id;         /* blkdev unique id */
359
360         int                     major;          /* blkdev assigned major */
361         int                     minor;
362         struct gendisk          *disk;          /* blkdev's gendisk and rq */
363
364         u32                     image_format;   /* Either 1 or 2 */
365         struct rbd_client       *rbd_client;
366
367         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
368
369         spinlock_t              lock;           /* queue, flags, open_count */
370
371         struct rbd_image_header header;
372         unsigned long           flags;          /* possibly lock protected */
373         struct rbd_spec         *spec;
374         struct rbd_options      *opts;
375         char                    *config_info;   /* add{,_single_major} string */
376
377         struct ceph_object_id   header_oid;
378         struct ceph_object_locator header_oloc;
379
380         struct ceph_file_layout layout;         /* used for all rbd requests */
381
382         struct mutex            watch_mutex;
383         enum rbd_watch_state    watch_state;
384         struct ceph_osd_linger_request *watch_handle;
385         u64                     watch_cookie;
386         struct delayed_work     watch_dwork;
387
388         struct rw_semaphore     lock_rwsem;
389         enum rbd_lock_state     lock_state;
390         char                    lock_cookie[32];
391         struct rbd_client_id    owner_cid;
392         struct work_struct      acquired_lock_work;
393         struct work_struct      released_lock_work;
394         struct delayed_work     lock_dwork;
395         struct work_struct      unlock_work;
396         wait_queue_head_t       lock_waitq;
397
398         struct workqueue_struct *task_wq;
399
400         struct rbd_spec         *parent_spec;
401         u64                     parent_overlap;
402         atomic_t                parent_ref;
403         struct rbd_device       *parent;
404
405         /* Block layer tags. */
406         struct blk_mq_tag_set   tag_set;
407
408         /* protects updating the header */
409         struct rw_semaphore     header_rwsem;
410
411         struct rbd_mapping      mapping;
412
413         struct list_head        node;
414
415         /* sysfs related */
416         struct device           dev;
417         unsigned long           open_count;     /* protected by lock */
418 };
419
420 /*
421  * Flag bits for rbd_dev->flags:
422  * - REMOVING (which is coupled with rbd_dev->open_count) is protected
423  *   by rbd_dev->lock
424  * - BLACKLISTED is protected by rbd_dev->lock_rwsem
425  */
426 enum rbd_dev_flags {
427         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
428         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
429         RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
430 };
431
432 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
433
434 static LIST_HEAD(rbd_dev_list);    /* devices */
435 static DEFINE_SPINLOCK(rbd_dev_list_lock);
436
437 static LIST_HEAD(rbd_client_list);              /* clients */
438 static DEFINE_SPINLOCK(rbd_client_list_lock);
439
440 /* Slab caches for frequently-allocated structures */
441
442 static struct kmem_cache        *rbd_img_request_cache;
443 static struct kmem_cache        *rbd_obj_request_cache;
444
445 static int rbd_major;
446 static DEFINE_IDA(rbd_dev_id_ida);
447
448 static struct workqueue_struct *rbd_wq;
449
450 /*
451  * Default to false for now, as single-major requires >= 0.75 version of
452  * userspace rbd utility.
453  */
454 static bool single_major = false;
455 module_param(single_major, bool, S_IRUGO);
456 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
457
458 static int rbd_img_request_submit(struct rbd_img_request *img_request);
459
460 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
461                        size_t count);
462 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
463                           size_t count);
464 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
465                                     size_t count);
466 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
467                                        size_t count);
468 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
469 static void rbd_spec_put(struct rbd_spec *spec);
470
471 static int rbd_dev_id_to_minor(int dev_id)
472 {
473         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
474 }
475
476 static int minor_to_rbd_dev_id(int minor)
477 {
478         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
479 }
480
481 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
482 {
483         return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
484                rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
485 }
486
487 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
488 {
489         bool is_lock_owner;
490
491         down_read(&rbd_dev->lock_rwsem);
492         is_lock_owner = __rbd_is_lock_owner(rbd_dev);
493         up_read(&rbd_dev->lock_rwsem);
494         return is_lock_owner;
495 }
496
497 static ssize_t rbd_supported_features_show(struct bus_type *bus, char *buf)
498 {
499         return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
500 }
501
502 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
503 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
504 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
505 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
506 static BUS_ATTR(supported_features, S_IRUGO, rbd_supported_features_show, NULL);
507
508 static struct attribute *rbd_bus_attrs[] = {
509         &bus_attr_add.attr,
510         &bus_attr_remove.attr,
511         &bus_attr_add_single_major.attr,
512         &bus_attr_remove_single_major.attr,
513         &bus_attr_supported_features.attr,
514         NULL,
515 };
516
517 static umode_t rbd_bus_is_visible(struct kobject *kobj,
518                                   struct attribute *attr, int index)
519 {
520         if (!single_major &&
521             (attr == &bus_attr_add_single_major.attr ||
522              attr == &bus_attr_remove_single_major.attr))
523                 return 0;
524
525         return attr->mode;
526 }
527
528 static const struct attribute_group rbd_bus_group = {
529         .attrs = rbd_bus_attrs,
530         .is_visible = rbd_bus_is_visible,
531 };
532 __ATTRIBUTE_GROUPS(rbd_bus);
533
534 static struct bus_type rbd_bus_type = {
535         .name           = "rbd",
536         .bus_groups     = rbd_bus_groups,
537 };
538
539 static void rbd_root_dev_release(struct device *dev)
540 {
541 }
542
543 static struct device rbd_root_dev = {
544         .init_name =    "rbd",
545         .release =      rbd_root_dev_release,
546 };
547
548 static __printf(2, 3)
549 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
550 {
551         struct va_format vaf;
552         va_list args;
553
554         va_start(args, fmt);
555         vaf.fmt = fmt;
556         vaf.va = &args;
557
558         if (!rbd_dev)
559                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
560         else if (rbd_dev->disk)
561                 printk(KERN_WARNING "%s: %s: %pV\n",
562                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
563         else if (rbd_dev->spec && rbd_dev->spec->image_name)
564                 printk(KERN_WARNING "%s: image %s: %pV\n",
565                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
566         else if (rbd_dev->spec && rbd_dev->spec->image_id)
567                 printk(KERN_WARNING "%s: id %s: %pV\n",
568                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
569         else    /* punt */
570                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
571                         RBD_DRV_NAME, rbd_dev, &vaf);
572         va_end(args);
573 }
574
575 #ifdef RBD_DEBUG
576 #define rbd_assert(expr)                                                \
577                 if (unlikely(!(expr))) {                                \
578                         printk(KERN_ERR "\nAssertion failure in %s() "  \
579                                                 "at line %d:\n\n"       \
580                                         "\trbd_assert(%s);\n\n",        \
581                                         __func__, __LINE__, #expr);     \
582                         BUG();                                          \
583                 }
584 #else /* !RBD_DEBUG */
585 #  define rbd_assert(expr)      ((void) 0)
586 #endif /* !RBD_DEBUG */
587
588 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
589 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
590 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
591 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
592
593 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
594 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
595 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
596 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
597 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
598                                         u64 snap_id);
599 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
600                                 u8 *order, u64 *snap_size);
601 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
602                 u64 *snap_features);
603
604 static int rbd_open(struct block_device *bdev, fmode_t mode)
605 {
606         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
607         bool removing = false;
608
609         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
610                 return -EROFS;
611
612         spin_lock_irq(&rbd_dev->lock);
613         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
614                 removing = true;
615         else
616                 rbd_dev->open_count++;
617         spin_unlock_irq(&rbd_dev->lock);
618         if (removing)
619                 return -ENOENT;
620
621         (void) get_device(&rbd_dev->dev);
622
623         return 0;
624 }
625
626 static void rbd_release(struct gendisk *disk, fmode_t mode)
627 {
628         struct rbd_device *rbd_dev = disk->private_data;
629         unsigned long open_count_before;
630
631         spin_lock_irq(&rbd_dev->lock);
632         open_count_before = rbd_dev->open_count--;
633         spin_unlock_irq(&rbd_dev->lock);
634         rbd_assert(open_count_before > 0);
635
636         put_device(&rbd_dev->dev);
637 }
638
639 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
640 {
641         int ret = 0;
642         int val;
643         bool ro;
644         bool ro_changed = false;
645
646         /* get_user() may sleep, so call it before taking rbd_dev->lock */
647         if (get_user(val, (int __user *)(arg)))
648                 return -EFAULT;
649
650         ro = val ? true : false;
651         /* Snapshot doesn't allow to write*/
652         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
653                 return -EROFS;
654
655         spin_lock_irq(&rbd_dev->lock);
656         /* prevent others open this device */
657         if (rbd_dev->open_count > 1) {
658                 ret = -EBUSY;
659                 goto out;
660         }
661
662         if (rbd_dev->mapping.read_only != ro) {
663                 rbd_dev->mapping.read_only = ro;
664                 ro_changed = true;
665         }
666
667 out:
668         spin_unlock_irq(&rbd_dev->lock);
669         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
670         if (ret == 0 && ro_changed)
671                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
672
673         return ret;
674 }
675
676 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
677                         unsigned int cmd, unsigned long arg)
678 {
679         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
680         int ret = 0;
681
682         switch (cmd) {
683         case BLKROSET:
684                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
685                 break;
686         default:
687                 ret = -ENOTTY;
688         }
689
690         return ret;
691 }
692
693 #ifdef CONFIG_COMPAT
694 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
695                                 unsigned int cmd, unsigned long arg)
696 {
697         return rbd_ioctl(bdev, mode, cmd, arg);
698 }
699 #endif /* CONFIG_COMPAT */
700
701 static const struct block_device_operations rbd_bd_ops = {
702         .owner                  = THIS_MODULE,
703         .open                   = rbd_open,
704         .release                = rbd_release,
705         .ioctl                  = rbd_ioctl,
706 #ifdef CONFIG_COMPAT
707         .compat_ioctl           = rbd_compat_ioctl,
708 #endif
709 };
710
711 /*
712  * Initialize an rbd client instance.  Success or not, this function
713  * consumes ceph_opts.  Caller holds client_mutex.
714  */
715 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
716 {
717         struct rbd_client *rbdc;
718         int ret = -ENOMEM;
719
720         dout("%s:\n", __func__);
721         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
722         if (!rbdc)
723                 goto out_opt;
724
725         kref_init(&rbdc->kref);
726         INIT_LIST_HEAD(&rbdc->node);
727
728         rbdc->client = ceph_create_client(ceph_opts, rbdc);
729         if (IS_ERR(rbdc->client))
730                 goto out_rbdc;
731         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
732
733         ret = ceph_open_session(rbdc->client);
734         if (ret < 0)
735                 goto out_client;
736
737         spin_lock(&rbd_client_list_lock);
738         list_add_tail(&rbdc->node, &rbd_client_list);
739         spin_unlock(&rbd_client_list_lock);
740
741         dout("%s: rbdc %p\n", __func__, rbdc);
742
743         return rbdc;
744 out_client:
745         ceph_destroy_client(rbdc->client);
746 out_rbdc:
747         kfree(rbdc);
748 out_opt:
749         if (ceph_opts)
750                 ceph_destroy_options(ceph_opts);
751         dout("%s: error %d\n", __func__, ret);
752
753         return ERR_PTR(ret);
754 }
755
756 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
757 {
758         kref_get(&rbdc->kref);
759
760         return rbdc;
761 }
762
763 /*
764  * Find a ceph client with specific addr and configuration.  If
765  * found, bump its reference count.
766  */
767 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
768 {
769         struct rbd_client *client_node;
770         bool found = false;
771
772         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
773                 return NULL;
774
775         spin_lock(&rbd_client_list_lock);
776         list_for_each_entry(client_node, &rbd_client_list, node) {
777                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
778                         __rbd_get_client(client_node);
779
780                         found = true;
781                         break;
782                 }
783         }
784         spin_unlock(&rbd_client_list_lock);
785
786         return found ? client_node : NULL;
787 }
788
789 /*
790  * (Per device) rbd map options
791  */
792 enum {
793         Opt_queue_depth,
794         Opt_last_int,
795         /* int args above */
796         Opt_last_string,
797         /* string args above */
798         Opt_read_only,
799         Opt_read_write,
800         Opt_lock_on_read,
801         Opt_exclusive,
802         Opt_err
803 };
804
805 static match_table_t rbd_opts_tokens = {
806         {Opt_queue_depth, "queue_depth=%d"},
807         /* int args above */
808         /* string args above */
809         {Opt_read_only, "read_only"},
810         {Opt_read_only, "ro"},          /* Alternate spelling */
811         {Opt_read_write, "read_write"},
812         {Opt_read_write, "rw"},         /* Alternate spelling */
813         {Opt_lock_on_read, "lock_on_read"},
814         {Opt_exclusive, "exclusive"},
815         {Opt_err, NULL}
816 };
817
818 struct rbd_options {
819         int     queue_depth;
820         bool    read_only;
821         bool    lock_on_read;
822         bool    exclusive;
823 };
824
825 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
826 #define RBD_READ_ONLY_DEFAULT   false
827 #define RBD_LOCK_ON_READ_DEFAULT false
828 #define RBD_EXCLUSIVE_DEFAULT   false
829
830 static int parse_rbd_opts_token(char *c, void *private)
831 {
832         struct rbd_options *rbd_opts = private;
833         substring_t argstr[MAX_OPT_ARGS];
834         int token, intval, ret;
835
836         token = match_token(c, rbd_opts_tokens, argstr);
837         if (token < Opt_last_int) {
838                 ret = match_int(&argstr[0], &intval);
839                 if (ret < 0) {
840                         pr_err("bad mount option arg (not int) at '%s'\n", c);
841                         return ret;
842                 }
843                 dout("got int token %d val %d\n", token, intval);
844         } else if (token > Opt_last_int && token < Opt_last_string) {
845                 dout("got string token %d val %s\n", token, argstr[0].from);
846         } else {
847                 dout("got token %d\n", token);
848         }
849
850         switch (token) {
851         case Opt_queue_depth:
852                 if (intval < 1) {
853                         pr_err("queue_depth out of range\n");
854                         return -EINVAL;
855                 }
856                 rbd_opts->queue_depth = intval;
857                 break;
858         case Opt_read_only:
859                 rbd_opts->read_only = true;
860                 break;
861         case Opt_read_write:
862                 rbd_opts->read_only = false;
863                 break;
864         case Opt_lock_on_read:
865                 rbd_opts->lock_on_read = true;
866                 break;
867         case Opt_exclusive:
868                 rbd_opts->exclusive = true;
869                 break;
870         default:
871                 /* libceph prints "bad option" msg */
872                 return -EINVAL;
873         }
874
875         return 0;
876 }
877
878 static char* obj_op_name(enum obj_operation_type op_type)
879 {
880         switch (op_type) {
881         case OBJ_OP_READ:
882                 return "read";
883         case OBJ_OP_WRITE:
884                 return "write";
885         case OBJ_OP_DISCARD:
886                 return "discard";
887         default:
888                 return "???";
889         }
890 }
891
892 /*
893  * Get a ceph client with specific addr and configuration, if one does
894  * not exist create it.  Either way, ceph_opts is consumed by this
895  * function.
896  */
897 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
898 {
899         struct rbd_client *rbdc;
900
901         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
902         rbdc = rbd_client_find(ceph_opts);
903         if (rbdc)       /* using an existing client */
904                 ceph_destroy_options(ceph_opts);
905         else
906                 rbdc = rbd_client_create(ceph_opts);
907         mutex_unlock(&client_mutex);
908
909         return rbdc;
910 }
911
912 /*
913  * Destroy ceph client
914  *
915  * Caller must hold rbd_client_list_lock.
916  */
917 static void rbd_client_release(struct kref *kref)
918 {
919         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
920
921         dout("%s: rbdc %p\n", __func__, rbdc);
922         spin_lock(&rbd_client_list_lock);
923         list_del(&rbdc->node);
924         spin_unlock(&rbd_client_list_lock);
925
926         ceph_destroy_client(rbdc->client);
927         kfree(rbdc);
928 }
929
930 /*
931  * Drop reference to ceph client node. If it's not referenced anymore, release
932  * it.
933  */
934 static void rbd_put_client(struct rbd_client *rbdc)
935 {
936         if (rbdc)
937                 kref_put(&rbdc->kref, rbd_client_release);
938 }
939
940 static bool rbd_image_format_valid(u32 image_format)
941 {
942         return image_format == 1 || image_format == 2;
943 }
944
945 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
946 {
947         size_t size;
948         u32 snap_count;
949
950         /* The header has to start with the magic rbd header text */
951         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
952                 return false;
953
954         /* The bio layer requires at least sector-sized I/O */
955
956         if (ondisk->options.order < SECTOR_SHIFT)
957                 return false;
958
959         /* If we use u64 in a few spots we may be able to loosen this */
960
961         if (ondisk->options.order > 8 * sizeof (int) - 1)
962                 return false;
963
964         /*
965          * The size of a snapshot header has to fit in a size_t, and
966          * that limits the number of snapshots.
967          */
968         snap_count = le32_to_cpu(ondisk->snap_count);
969         size = SIZE_MAX - sizeof (struct ceph_snap_context);
970         if (snap_count > size / sizeof (__le64))
971                 return false;
972
973         /*
974          * Not only that, but the size of the entire the snapshot
975          * header must also be representable in a size_t.
976          */
977         size -= snap_count * sizeof (__le64);
978         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
979                 return false;
980
981         return true;
982 }
983
984 /*
985  * returns the size of an object in the image
986  */
987 static u32 rbd_obj_bytes(struct rbd_image_header *header)
988 {
989         return 1U << header->obj_order;
990 }
991
992 static void rbd_init_layout(struct rbd_device *rbd_dev)
993 {
994         if (rbd_dev->header.stripe_unit == 0 ||
995             rbd_dev->header.stripe_count == 0) {
996                 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
997                 rbd_dev->header.stripe_count = 1;
998         }
999
1000         rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1001         rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1002         rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1003         rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1004                           rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1005         RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1006 }
1007
1008 /*
1009  * Fill an rbd image header with information from the given format 1
1010  * on-disk header.
1011  */
1012 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1013                                  struct rbd_image_header_ondisk *ondisk)
1014 {
1015         struct rbd_image_header *header = &rbd_dev->header;
1016         bool first_time = header->object_prefix == NULL;
1017         struct ceph_snap_context *snapc;
1018         char *object_prefix = NULL;
1019         char *snap_names = NULL;
1020         u64 *snap_sizes = NULL;
1021         u32 snap_count;
1022         int ret = -ENOMEM;
1023         u32 i;
1024
1025         /* Allocate this now to avoid having to handle failure below */
1026
1027         if (first_time) {
1028                 object_prefix = kstrndup(ondisk->object_prefix,
1029                                          sizeof(ondisk->object_prefix),
1030                                          GFP_KERNEL);
1031                 if (!object_prefix)
1032                         return -ENOMEM;
1033         }
1034
1035         /* Allocate the snapshot context and fill it in */
1036
1037         snap_count = le32_to_cpu(ondisk->snap_count);
1038         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1039         if (!snapc)
1040                 goto out_err;
1041         snapc->seq = le64_to_cpu(ondisk->snap_seq);
1042         if (snap_count) {
1043                 struct rbd_image_snap_ondisk *snaps;
1044                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1045
1046                 /* We'll keep a copy of the snapshot names... */
1047
1048                 if (snap_names_len > (u64)SIZE_MAX)
1049                         goto out_2big;
1050                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1051                 if (!snap_names)
1052                         goto out_err;
1053
1054                 /* ...as well as the array of their sizes. */
1055                 snap_sizes = kmalloc_array(snap_count,
1056                                            sizeof(*header->snap_sizes),
1057                                            GFP_KERNEL);
1058                 if (!snap_sizes)
1059                         goto out_err;
1060
1061                 /*
1062                  * Copy the names, and fill in each snapshot's id
1063                  * and size.
1064                  *
1065                  * Note that rbd_dev_v1_header_info() guarantees the
1066                  * ondisk buffer we're working with has
1067                  * snap_names_len bytes beyond the end of the
1068                  * snapshot id array, this memcpy() is safe.
1069                  */
1070                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1071                 snaps = ondisk->snaps;
1072                 for (i = 0; i < snap_count; i++) {
1073                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1074                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1075                 }
1076         }
1077
1078         /* We won't fail any more, fill in the header */
1079
1080         if (first_time) {
1081                 header->object_prefix = object_prefix;
1082                 header->obj_order = ondisk->options.order;
1083                 rbd_init_layout(rbd_dev);
1084         } else {
1085                 ceph_put_snap_context(header->snapc);
1086                 kfree(header->snap_names);
1087                 kfree(header->snap_sizes);
1088         }
1089
1090         /* The remaining fields always get updated (when we refresh) */
1091
1092         header->image_size = le64_to_cpu(ondisk->image_size);
1093         header->snapc = snapc;
1094         header->snap_names = snap_names;
1095         header->snap_sizes = snap_sizes;
1096
1097         return 0;
1098 out_2big:
1099         ret = -EIO;
1100 out_err:
1101         kfree(snap_sizes);
1102         kfree(snap_names);
1103         ceph_put_snap_context(snapc);
1104         kfree(object_prefix);
1105
1106         return ret;
1107 }
1108
1109 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1110 {
1111         const char *snap_name;
1112
1113         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1114
1115         /* Skip over names until we find the one we are looking for */
1116
1117         snap_name = rbd_dev->header.snap_names;
1118         while (which--)
1119                 snap_name += strlen(snap_name) + 1;
1120
1121         return kstrdup(snap_name, GFP_KERNEL);
1122 }
1123
1124 /*
1125  * Snapshot id comparison function for use with qsort()/bsearch().
1126  * Note that result is for snapshots in *descending* order.
1127  */
1128 static int snapid_compare_reverse(const void *s1, const void *s2)
1129 {
1130         u64 snap_id1 = *(u64 *)s1;
1131         u64 snap_id2 = *(u64 *)s2;
1132
1133         if (snap_id1 < snap_id2)
1134                 return 1;
1135         return snap_id1 == snap_id2 ? 0 : -1;
1136 }
1137
1138 /*
1139  * Search a snapshot context to see if the given snapshot id is
1140  * present.
1141  *
1142  * Returns the position of the snapshot id in the array if it's found,
1143  * or BAD_SNAP_INDEX otherwise.
1144  *
1145  * Note: The snapshot array is in kept sorted (by the osd) in
1146  * reverse order, highest snapshot id first.
1147  */
1148 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1149 {
1150         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1151         u64 *found;
1152
1153         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1154                                 sizeof (snap_id), snapid_compare_reverse);
1155
1156         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1157 }
1158
1159 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1160                                         u64 snap_id)
1161 {
1162         u32 which;
1163         const char *snap_name;
1164
1165         which = rbd_dev_snap_index(rbd_dev, snap_id);
1166         if (which == BAD_SNAP_INDEX)
1167                 return ERR_PTR(-ENOENT);
1168
1169         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1170         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1171 }
1172
1173 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1174 {
1175         if (snap_id == CEPH_NOSNAP)
1176                 return RBD_SNAP_HEAD_NAME;
1177
1178         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1179         if (rbd_dev->image_format == 1)
1180                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1181
1182         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1183 }
1184
1185 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1186                                 u64 *snap_size)
1187 {
1188         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1189         if (snap_id == CEPH_NOSNAP) {
1190                 *snap_size = rbd_dev->header.image_size;
1191         } else if (rbd_dev->image_format == 1) {
1192                 u32 which;
1193
1194                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1195                 if (which == BAD_SNAP_INDEX)
1196                         return -ENOENT;
1197
1198                 *snap_size = rbd_dev->header.snap_sizes[which];
1199         } else {
1200                 u64 size = 0;
1201                 int ret;
1202
1203                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1204                 if (ret)
1205                         return ret;
1206
1207                 *snap_size = size;
1208         }
1209         return 0;
1210 }
1211
1212 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1213                         u64 *snap_features)
1214 {
1215         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1216         if (snap_id == CEPH_NOSNAP) {
1217                 *snap_features = rbd_dev->header.features;
1218         } else if (rbd_dev->image_format == 1) {
1219                 *snap_features = 0;     /* No features for format 1 */
1220         } else {
1221                 u64 features = 0;
1222                 int ret;
1223
1224                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1225                 if (ret)
1226                         return ret;
1227
1228                 *snap_features = features;
1229         }
1230         return 0;
1231 }
1232
1233 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1234 {
1235         u64 snap_id = rbd_dev->spec->snap_id;
1236         u64 size = 0;
1237         u64 features = 0;
1238         int ret;
1239
1240         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1241         if (ret)
1242                 return ret;
1243         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1244         if (ret)
1245                 return ret;
1246
1247         rbd_dev->mapping.size = size;
1248         rbd_dev->mapping.features = features;
1249
1250         return 0;
1251 }
1252
1253 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1254 {
1255         rbd_dev->mapping.size = 0;
1256         rbd_dev->mapping.features = 0;
1257 }
1258
1259 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1260 {
1261         u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1262
1263         return offset & (segment_size - 1);
1264 }
1265
1266 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1267                                 u64 offset, u64 length)
1268 {
1269         u64 segment_size = rbd_obj_bytes(&rbd_dev->header);
1270
1271         offset &= segment_size - 1;
1272
1273         rbd_assert(length <= U64_MAX - offset);
1274         if (offset + length > segment_size)
1275                 length = segment_size - offset;
1276
1277         return length;
1278 }
1279
1280 /*
1281  * bio helpers
1282  */
1283
1284 static void bio_chain_put(struct bio *chain)
1285 {
1286         struct bio *tmp;
1287
1288         while (chain) {
1289                 tmp = chain;
1290                 chain = chain->bi_next;
1291                 bio_put(tmp);
1292         }
1293 }
1294
1295 /*
1296  * zeros a bio chain, starting at specific offset
1297  */
1298 static void zero_bio_chain(struct bio *chain, int start_ofs)
1299 {
1300         struct bio_vec bv;
1301         struct bvec_iter iter;
1302         unsigned long flags;
1303         void *buf;
1304         int pos = 0;
1305
1306         while (chain) {
1307                 bio_for_each_segment(bv, chain, iter) {
1308                         if (pos + bv.bv_len > start_ofs) {
1309                                 int remainder = max(start_ofs - pos, 0);
1310                                 buf = bvec_kmap_irq(&bv, &flags);
1311                                 memset(buf + remainder, 0,
1312                                        bv.bv_len - remainder);
1313                                 flush_dcache_page(bv.bv_page);
1314                                 bvec_kunmap_irq(buf, &flags);
1315                         }
1316                         pos += bv.bv_len;
1317                 }
1318
1319                 chain = chain->bi_next;
1320         }
1321 }
1322
1323 /*
1324  * similar to zero_bio_chain(), zeros data defined by a page array,
1325  * starting at the given byte offset from the start of the array and
1326  * continuing up to the given end offset.  The pages array is
1327  * assumed to be big enough to hold all bytes up to the end.
1328  */
1329 static void zero_pages(struct page **pages, u64 offset, u64 end)
1330 {
1331         struct page **page = &pages[offset >> PAGE_SHIFT];
1332
1333         rbd_assert(end > offset);
1334         rbd_assert(end - offset <= (u64)SIZE_MAX);
1335         while (offset < end) {
1336                 size_t page_offset;
1337                 size_t length;
1338                 unsigned long flags;
1339                 void *kaddr;
1340
1341                 page_offset = offset & ~PAGE_MASK;
1342                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1343                 local_irq_save(flags);
1344                 kaddr = kmap_atomic(*page);
1345                 memset(kaddr + page_offset, 0, length);
1346                 flush_dcache_page(*page);
1347                 kunmap_atomic(kaddr);
1348                 local_irq_restore(flags);
1349
1350                 offset += length;
1351                 page++;
1352         }
1353 }
1354
1355 /*
1356  * Clone a portion of a bio, starting at the given byte offset
1357  * and continuing for the number of bytes indicated.
1358  */
1359 static struct bio *bio_clone_range(struct bio *bio_src,
1360                                         unsigned int offset,
1361                                         unsigned int len,
1362                                         gfp_t gfpmask)
1363 {
1364         struct bio *bio;
1365
1366         bio = bio_clone(bio_src, gfpmask);
1367         if (!bio)
1368                 return NULL;    /* ENOMEM */
1369
1370         bio_advance(bio, offset);
1371         bio->bi_iter.bi_size = len;
1372
1373         return bio;
1374 }
1375
1376 /*
1377  * Clone a portion of a bio chain, starting at the given byte offset
1378  * into the first bio in the source chain and continuing for the
1379  * number of bytes indicated.  The result is another bio chain of
1380  * exactly the given length, or a null pointer on error.
1381  *
1382  * The bio_src and offset parameters are both in-out.  On entry they
1383  * refer to the first source bio and the offset into that bio where
1384  * the start of data to be cloned is located.
1385  *
1386  * On return, bio_src is updated to refer to the bio in the source
1387  * chain that contains first un-cloned byte, and *offset will
1388  * contain the offset of that byte within that bio.
1389  */
1390 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1391                                         unsigned int *offset,
1392                                         unsigned int len,
1393                                         gfp_t gfpmask)
1394 {
1395         struct bio *bi = *bio_src;
1396         unsigned int off = *offset;
1397         struct bio *chain = NULL;
1398         struct bio **end;
1399
1400         /* Build up a chain of clone bios up to the limit */
1401
1402         if (!bi || off >= bi->bi_iter.bi_size || !len)
1403                 return NULL;            /* Nothing to clone */
1404
1405         end = &chain;
1406         while (len) {
1407                 unsigned int bi_size;
1408                 struct bio *bio;
1409
1410                 if (!bi) {
1411                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1412                         goto out_err;   /* EINVAL; ran out of bio's */
1413                 }
1414                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1415                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1416                 if (!bio)
1417                         goto out_err;   /* ENOMEM */
1418
1419                 *end = bio;
1420                 end = &bio->bi_next;
1421
1422                 off += bi_size;
1423                 if (off == bi->bi_iter.bi_size) {
1424                         bi = bi->bi_next;
1425                         off = 0;
1426                 }
1427                 len -= bi_size;
1428         }
1429         *bio_src = bi;
1430         *offset = off;
1431
1432         return chain;
1433 out_err:
1434         bio_chain_put(chain);
1435
1436         return NULL;
1437 }
1438
1439 /*
1440  * The default/initial value for all object request flags is 0.  For
1441  * each flag, once its value is set to 1 it is never reset to 0
1442  * again.
1443  */
1444 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1445 {
1446         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1447                 struct rbd_device *rbd_dev;
1448
1449                 rbd_dev = obj_request->img_request->rbd_dev;
1450                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1451                         obj_request);
1452         }
1453 }
1454
1455 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1456 {
1457         smp_mb();
1458         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1459 }
1460
1461 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1462 {
1463         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1464                 struct rbd_device *rbd_dev = NULL;
1465
1466                 if (obj_request_img_data_test(obj_request))
1467                         rbd_dev = obj_request->img_request->rbd_dev;
1468                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1469                         obj_request);
1470         }
1471 }
1472
1473 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1474 {
1475         smp_mb();
1476         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1477 }
1478
1479 /*
1480  * This sets the KNOWN flag after (possibly) setting the EXISTS
1481  * flag.  The latter is set based on the "exists" value provided.
1482  *
1483  * Note that for our purposes once an object exists it never goes
1484  * away again.  It's possible that the response from two existence
1485  * checks are separated by the creation of the target object, and
1486  * the first ("doesn't exist") response arrives *after* the second
1487  * ("does exist").  In that case we ignore the second one.
1488  */
1489 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1490                                 bool exists)
1491 {
1492         if (exists)
1493                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1494         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1495         smp_mb();
1496 }
1497
1498 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1499 {
1500         smp_mb();
1501         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1502 }
1503
1504 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1505 {
1506         smp_mb();
1507         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1508 }
1509
1510 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1511 {
1512         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1513
1514         return obj_request->img_offset <
1515             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1516 }
1517
1518 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1519 {
1520         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1521                 kref_read(&obj_request->kref));
1522         kref_get(&obj_request->kref);
1523 }
1524
1525 static void rbd_obj_request_destroy(struct kref *kref);
1526 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1527 {
1528         rbd_assert(obj_request != NULL);
1529         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1530                 kref_read(&obj_request->kref));
1531         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1532 }
1533
1534 static void rbd_img_request_get(struct rbd_img_request *img_request)
1535 {
1536         dout("%s: img %p (was %d)\n", __func__, img_request,
1537              kref_read(&img_request->kref));
1538         kref_get(&img_request->kref);
1539 }
1540
1541 static bool img_request_child_test(struct rbd_img_request *img_request);
1542 static void rbd_parent_request_destroy(struct kref *kref);
1543 static void rbd_img_request_destroy(struct kref *kref);
1544 static void rbd_img_request_put(struct rbd_img_request *img_request)
1545 {
1546         rbd_assert(img_request != NULL);
1547         dout("%s: img %p (was %d)\n", __func__, img_request,
1548                 kref_read(&img_request->kref));
1549         if (img_request_child_test(img_request))
1550                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1551         else
1552                 kref_put(&img_request->kref, rbd_img_request_destroy);
1553 }
1554
1555 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1556                                         struct rbd_obj_request *obj_request)
1557 {
1558         rbd_assert(obj_request->img_request == NULL);
1559
1560         /* Image request now owns object's original reference */
1561         obj_request->img_request = img_request;
1562         obj_request->which = img_request->obj_request_count;
1563         rbd_assert(!obj_request_img_data_test(obj_request));
1564         obj_request_img_data_set(obj_request);
1565         rbd_assert(obj_request->which != BAD_WHICH);
1566         img_request->obj_request_count++;
1567         list_add_tail(&obj_request->links, &img_request->obj_requests);
1568         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1569                 obj_request->which);
1570 }
1571
1572 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1573                                         struct rbd_obj_request *obj_request)
1574 {
1575         rbd_assert(obj_request->which != BAD_WHICH);
1576
1577         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1578                 obj_request->which);
1579         list_del(&obj_request->links);
1580         rbd_assert(img_request->obj_request_count > 0);
1581         img_request->obj_request_count--;
1582         rbd_assert(obj_request->which == img_request->obj_request_count);
1583         obj_request->which = BAD_WHICH;
1584         rbd_assert(obj_request_img_data_test(obj_request));
1585         rbd_assert(obj_request->img_request == img_request);
1586         obj_request->img_request = NULL;
1587         obj_request->callback = NULL;
1588         rbd_obj_request_put(obj_request);
1589 }
1590
1591 static bool obj_request_type_valid(enum obj_request_type type)
1592 {
1593         switch (type) {
1594         case OBJ_REQUEST_NODATA:
1595         case OBJ_REQUEST_BIO:
1596         case OBJ_REQUEST_PAGES:
1597                 return true;
1598         default:
1599                 return false;
1600         }
1601 }
1602
1603 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1604
1605 static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1606 {
1607         struct ceph_osd_request *osd_req = obj_request->osd_req;
1608
1609         dout("%s %p object_no %016llx %llu~%llu osd_req %p\n", __func__,
1610              obj_request, obj_request->object_no, obj_request->offset,
1611              obj_request->length, osd_req);
1612         if (obj_request_img_data_test(obj_request)) {
1613                 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1614                 rbd_img_request_get(obj_request->img_request);
1615         }
1616         ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1617 }
1618
1619 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1620 {
1621
1622         dout("%s: img %p\n", __func__, img_request);
1623
1624         /*
1625          * If no error occurred, compute the aggregate transfer
1626          * count for the image request.  We could instead use
1627          * atomic64_cmpxchg() to update it as each object request
1628          * completes; not clear which way is better off hand.
1629          */
1630         if (!img_request->result) {
1631                 struct rbd_obj_request *obj_request;
1632                 u64 xferred = 0;
1633
1634                 for_each_obj_request(img_request, obj_request)
1635                         xferred += obj_request->xferred;
1636                 img_request->xferred = xferred;
1637         }
1638
1639         if (img_request->callback)
1640                 img_request->callback(img_request);
1641         else
1642                 rbd_img_request_put(img_request);
1643 }
1644
1645 /*
1646  * The default/initial value for all image request flags is 0.  Each
1647  * is conditionally set to 1 at image request initialization time
1648  * and currently never change thereafter.
1649  */
1650 static void img_request_write_set(struct rbd_img_request *img_request)
1651 {
1652         set_bit(IMG_REQ_WRITE, &img_request->flags);
1653         smp_mb();
1654 }
1655
1656 static bool img_request_write_test(struct rbd_img_request *img_request)
1657 {
1658         smp_mb();
1659         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1660 }
1661
1662 /*
1663  * Set the discard flag when the img_request is an discard request
1664  */
1665 static void img_request_discard_set(struct rbd_img_request *img_request)
1666 {
1667         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1668         smp_mb();
1669 }
1670
1671 static bool img_request_discard_test(struct rbd_img_request *img_request)
1672 {
1673         smp_mb();
1674         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1675 }
1676
1677 static void img_request_child_set(struct rbd_img_request *img_request)
1678 {
1679         set_bit(IMG_REQ_CHILD, &img_request->flags);
1680         smp_mb();
1681 }
1682
1683 static void img_request_child_clear(struct rbd_img_request *img_request)
1684 {
1685         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1686         smp_mb();
1687 }
1688
1689 static bool img_request_child_test(struct rbd_img_request *img_request)
1690 {
1691         smp_mb();
1692         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1693 }
1694
1695 static void img_request_layered_set(struct rbd_img_request *img_request)
1696 {
1697         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1698         smp_mb();
1699 }
1700
1701 static void img_request_layered_clear(struct rbd_img_request *img_request)
1702 {
1703         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1704         smp_mb();
1705 }
1706
1707 static bool img_request_layered_test(struct rbd_img_request *img_request)
1708 {
1709         smp_mb();
1710         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1711 }
1712
1713 static enum obj_operation_type
1714 rbd_img_request_op_type(struct rbd_img_request *img_request)
1715 {
1716         if (img_request_write_test(img_request))
1717                 return OBJ_OP_WRITE;
1718         else if (img_request_discard_test(img_request))
1719                 return OBJ_OP_DISCARD;
1720         else
1721                 return OBJ_OP_READ;
1722 }
1723
1724 static void
1725 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1726 {
1727         u64 xferred = obj_request->xferred;
1728         u64 length = obj_request->length;
1729
1730         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1731                 obj_request, obj_request->img_request, obj_request->result,
1732                 xferred, length);
1733         /*
1734          * ENOENT means a hole in the image.  We zero-fill the entire
1735          * length of the request.  A short read also implies zero-fill
1736          * to the end of the request.  An error requires the whole
1737          * length of the request to be reported finished with an error
1738          * to the block layer.  In each case we update the xferred
1739          * count to indicate the whole request was satisfied.
1740          */
1741         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1742         if (obj_request->result == -ENOENT) {
1743                 if (obj_request->type == OBJ_REQUEST_BIO)
1744                         zero_bio_chain(obj_request->bio_list, 0);
1745                 else
1746                         zero_pages(obj_request->pages, 0, length);
1747                 obj_request->result = 0;
1748         } else if (xferred < length && !obj_request->result) {
1749                 if (obj_request->type == OBJ_REQUEST_BIO)
1750                         zero_bio_chain(obj_request->bio_list, xferred);
1751                 else
1752                         zero_pages(obj_request->pages, xferred, length);
1753         }
1754         obj_request->xferred = length;
1755         obj_request_done_set(obj_request);
1756 }
1757
1758 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1759 {
1760         dout("%s: obj %p cb %p\n", __func__, obj_request,
1761                 obj_request->callback);
1762         if (obj_request->callback)
1763                 obj_request->callback(obj_request);
1764         else
1765                 complete_all(&obj_request->completion);
1766 }
1767
1768 static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1769 {
1770         obj_request->result = err;
1771         obj_request->xferred = 0;
1772         /*
1773          * kludge - mirror rbd_obj_request_submit() to match a put in
1774          * rbd_img_obj_callback()
1775          */
1776         if (obj_request_img_data_test(obj_request)) {
1777                 WARN_ON(obj_request->callback != rbd_img_obj_callback);
1778                 rbd_img_request_get(obj_request->img_request);
1779         }
1780         obj_request_done_set(obj_request);
1781         rbd_obj_request_complete(obj_request);
1782 }
1783
1784 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1785 {
1786         struct rbd_img_request *img_request = NULL;
1787         struct rbd_device *rbd_dev = NULL;
1788         bool layered = false;
1789
1790         if (obj_request_img_data_test(obj_request)) {
1791                 img_request = obj_request->img_request;
1792                 layered = img_request && img_request_layered_test(img_request);
1793                 rbd_dev = img_request->rbd_dev;
1794         }
1795
1796         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1797                 obj_request, img_request, obj_request->result,
1798                 obj_request->xferred, obj_request->length);
1799         if (layered && obj_request->result == -ENOENT &&
1800                         obj_request->img_offset < rbd_dev->parent_overlap)
1801                 rbd_img_parent_read(obj_request);
1802         else if (img_request)
1803                 rbd_img_obj_request_read_callback(obj_request);
1804         else
1805                 obj_request_done_set(obj_request);
1806 }
1807
1808 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1809 {
1810         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1811                 obj_request->result, obj_request->length);
1812         /*
1813          * There is no such thing as a successful short write.  Set
1814          * it to our originally-requested length.
1815          */
1816         obj_request->xferred = obj_request->length;
1817         obj_request_done_set(obj_request);
1818 }
1819
1820 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1821 {
1822         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1823                 obj_request->result, obj_request->length);
1824         /*
1825          * There is no such thing as a successful short discard.  Set
1826          * it to our originally-requested length.
1827          */
1828         obj_request->xferred = obj_request->length;
1829         /* discarding a non-existent object is not a problem */
1830         if (obj_request->result == -ENOENT)
1831                 obj_request->result = 0;
1832         obj_request_done_set(obj_request);
1833 }
1834
1835 /*
1836  * For a simple stat call there's nothing to do.  We'll do more if
1837  * this is part of a write sequence for a layered image.
1838  */
1839 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1840 {
1841         dout("%s: obj %p\n", __func__, obj_request);
1842         obj_request_done_set(obj_request);
1843 }
1844
1845 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1846 {
1847         dout("%s: obj %p\n", __func__, obj_request);
1848
1849         if (obj_request_img_data_test(obj_request))
1850                 rbd_osd_copyup_callback(obj_request);
1851         else
1852                 obj_request_done_set(obj_request);
1853 }
1854
1855 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1856 {
1857         struct rbd_obj_request *obj_request = osd_req->r_priv;
1858         u16 opcode;
1859
1860         dout("%s: osd_req %p\n", __func__, osd_req);
1861         rbd_assert(osd_req == obj_request->osd_req);
1862         if (obj_request_img_data_test(obj_request)) {
1863                 rbd_assert(obj_request->img_request);
1864                 rbd_assert(obj_request->which != BAD_WHICH);
1865         } else {
1866                 rbd_assert(obj_request->which == BAD_WHICH);
1867         }
1868
1869         if (osd_req->r_result < 0)
1870                 obj_request->result = osd_req->r_result;
1871
1872         /*
1873          * We support a 64-bit length, but ultimately it has to be
1874          * passed to the block layer, which just supports a 32-bit
1875          * length field.
1876          */
1877         obj_request->xferred = osd_req->r_ops[0].outdata_len;
1878         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1879
1880         opcode = osd_req->r_ops[0].op;
1881         switch (opcode) {
1882         case CEPH_OSD_OP_READ:
1883                 rbd_osd_read_callback(obj_request);
1884                 break;
1885         case CEPH_OSD_OP_SETALLOCHINT:
1886                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1887                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1888                 /* fall through */
1889         case CEPH_OSD_OP_WRITE:
1890         case CEPH_OSD_OP_WRITEFULL:
1891                 rbd_osd_write_callback(obj_request);
1892                 break;
1893         case CEPH_OSD_OP_STAT:
1894                 rbd_osd_stat_callback(obj_request);
1895                 break;
1896         case CEPH_OSD_OP_DELETE:
1897         case CEPH_OSD_OP_TRUNCATE:
1898         case CEPH_OSD_OP_ZERO:
1899                 rbd_osd_discard_callback(obj_request);
1900                 break;
1901         case CEPH_OSD_OP_CALL:
1902                 rbd_osd_call_callback(obj_request);
1903                 break;
1904         default:
1905                 rbd_warn(NULL, "unexpected OSD op: object_no %016llx opcode %d",
1906                          obj_request->object_no, opcode);
1907                 break;
1908         }
1909
1910         if (obj_request_done_test(obj_request))
1911                 rbd_obj_request_complete(obj_request);
1912 }
1913
1914 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1915 {
1916         struct ceph_osd_request *osd_req = obj_request->osd_req;
1917
1918         rbd_assert(obj_request_img_data_test(obj_request));
1919         osd_req->r_snapid = obj_request->img_request->snap_id;
1920 }
1921
1922 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1923 {
1924         struct ceph_osd_request *osd_req = obj_request->osd_req;
1925
1926         ktime_get_real_ts(&osd_req->r_mtime);
1927         osd_req->r_data_offset = obj_request->offset;
1928 }
1929
1930 static struct ceph_osd_request *
1931 __rbd_osd_req_create(struct rbd_device *rbd_dev,
1932                      struct ceph_snap_context *snapc,
1933                      int num_ops, unsigned int flags,
1934                      struct rbd_obj_request *obj_request)
1935 {
1936         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1937         struct ceph_osd_request *req;
1938         const char *name_format = rbd_dev->image_format == 1 ?
1939                                       RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1940
1941         req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1942         if (!req)
1943                 return NULL;
1944
1945         req->r_flags = flags;
1946         req->r_callback = rbd_osd_req_callback;
1947         req->r_priv = obj_request;
1948
1949         req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1950         if (ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1951                         rbd_dev->header.object_prefix, obj_request->object_no))
1952                 goto err_req;
1953
1954         if (ceph_osdc_alloc_messages(req, GFP_NOIO))
1955                 goto err_req;
1956
1957         return req;
1958
1959 err_req:
1960         ceph_osdc_put_request(req);
1961         return NULL;
1962 }
1963
1964 /*
1965  * Create an osd request.  A read request has one osd op (read).
1966  * A write request has either one (watch) or two (hint+write) osd ops.
1967  * (All rbd data writes are prefixed with an allocation hint op, but
1968  * technically osd watch is a write request, hence this distinction.)
1969  */
1970 static struct ceph_osd_request *rbd_osd_req_create(
1971                                         struct rbd_device *rbd_dev,
1972                                         enum obj_operation_type op_type,
1973                                         unsigned int num_ops,
1974                                         struct rbd_obj_request *obj_request)
1975 {
1976         struct ceph_snap_context *snapc = NULL;
1977
1978         if (obj_request_img_data_test(obj_request) &&
1979                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1980                 struct rbd_img_request *img_request = obj_request->img_request;
1981                 if (op_type == OBJ_OP_WRITE) {
1982                         rbd_assert(img_request_write_test(img_request));
1983                 } else {
1984                         rbd_assert(img_request_discard_test(img_request));
1985                 }
1986                 snapc = img_request->snapc;
1987         }
1988
1989         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1990
1991         return __rbd_osd_req_create(rbd_dev, snapc, num_ops,
1992             (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD) ?
1993             CEPH_OSD_FLAG_WRITE : CEPH_OSD_FLAG_READ, obj_request);
1994 }
1995
1996 /*
1997  * Create a copyup osd request based on the information in the object
1998  * request supplied.  A copyup request has two or three osd ops, a
1999  * copyup method call, potentially a hint op, and a write or truncate
2000  * or zero op.
2001  */
2002 static struct ceph_osd_request *
2003 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2004 {
2005         struct rbd_img_request *img_request;
2006         int num_osd_ops = 3;
2007
2008         rbd_assert(obj_request_img_data_test(obj_request));
2009         img_request = obj_request->img_request;
2010         rbd_assert(img_request);
2011         rbd_assert(img_request_write_test(img_request) ||
2012                         img_request_discard_test(img_request));
2013
2014         if (img_request_discard_test(img_request))
2015                 num_osd_ops = 2;
2016
2017         return __rbd_osd_req_create(img_request->rbd_dev,
2018                                     img_request->snapc, num_osd_ops,
2019                                     CEPH_OSD_FLAG_WRITE, obj_request);
2020 }
2021
2022 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2023 {
2024         ceph_osdc_put_request(osd_req);
2025 }
2026
2027 static struct rbd_obj_request *
2028 rbd_obj_request_create(enum obj_request_type type)
2029 {
2030         struct rbd_obj_request *obj_request;
2031
2032         rbd_assert(obj_request_type_valid(type));
2033
2034         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2035         if (!obj_request)
2036                 return NULL;
2037
2038         obj_request->which = BAD_WHICH;
2039         obj_request->type = type;
2040         INIT_LIST_HEAD(&obj_request->links);
2041         init_completion(&obj_request->completion);
2042         kref_init(&obj_request->kref);
2043
2044         dout("%s %p\n", __func__, obj_request);
2045         return obj_request;
2046 }
2047
2048 static void rbd_obj_request_destroy(struct kref *kref)
2049 {
2050         struct rbd_obj_request *obj_request;
2051
2052         obj_request = container_of(kref, struct rbd_obj_request, kref);
2053
2054         dout("%s: obj %p\n", __func__, obj_request);
2055
2056         rbd_assert(obj_request->img_request == NULL);
2057         rbd_assert(obj_request->which == BAD_WHICH);
2058
2059         if (obj_request->osd_req)
2060                 rbd_osd_req_destroy(obj_request->osd_req);
2061
2062         rbd_assert(obj_request_type_valid(obj_request->type));
2063         switch (obj_request->type) {
2064         case OBJ_REQUEST_NODATA:
2065                 break;          /* Nothing to do */
2066         case OBJ_REQUEST_BIO:
2067                 if (obj_request->bio_list)
2068                         bio_chain_put(obj_request->bio_list);
2069                 break;
2070         case OBJ_REQUEST_PAGES:
2071                 /* img_data requests don't own their page array */
2072                 if (obj_request->pages &&
2073                     !obj_request_img_data_test(obj_request))
2074                         ceph_release_page_vector(obj_request->pages,
2075                                                 obj_request->page_count);
2076                 break;
2077         }
2078
2079         kmem_cache_free(rbd_obj_request_cache, obj_request);
2080 }
2081
2082 /* It's OK to call this for a device with no parent */
2083
2084 static void rbd_spec_put(struct rbd_spec *spec);
2085 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2086 {
2087         rbd_dev_remove_parent(rbd_dev);
2088         rbd_spec_put(rbd_dev->parent_spec);
2089         rbd_dev->parent_spec = NULL;
2090         rbd_dev->parent_overlap = 0;
2091 }
2092
2093 /*
2094  * Parent image reference counting is used to determine when an
2095  * image's parent fields can be safely torn down--after there are no
2096  * more in-flight requests to the parent image.  When the last
2097  * reference is dropped, cleaning them up is safe.
2098  */
2099 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2100 {
2101         int counter;
2102
2103         if (!rbd_dev->parent_spec)
2104                 return;
2105
2106         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2107         if (counter > 0)
2108                 return;
2109
2110         /* Last reference; clean up parent data structures */
2111
2112         if (!counter)
2113                 rbd_dev_unparent(rbd_dev);
2114         else
2115                 rbd_warn(rbd_dev, "parent reference underflow");
2116 }
2117
2118 /*
2119  * If an image has a non-zero parent overlap, get a reference to its
2120  * parent.
2121  *
2122  * Returns true if the rbd device has a parent with a non-zero
2123  * overlap and a reference for it was successfully taken, or
2124  * false otherwise.
2125  */
2126 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2127 {
2128         int counter = 0;
2129
2130         if (!rbd_dev->parent_spec)
2131                 return false;
2132
2133         down_read(&rbd_dev->header_rwsem);
2134         if (rbd_dev->parent_overlap)
2135                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2136         up_read(&rbd_dev->header_rwsem);
2137
2138         if (counter < 0)
2139                 rbd_warn(rbd_dev, "parent reference overflow");
2140
2141         return counter > 0;
2142 }
2143
2144 /*
2145  * Caller is responsible for filling in the list of object requests
2146  * that comprises the image request, and the Linux request pointer
2147  * (if there is one).
2148  */
2149 static struct rbd_img_request *rbd_img_request_create(
2150                                         struct rbd_device *rbd_dev,
2151                                         u64 offset, u64 length,
2152                                         enum obj_operation_type op_type,
2153                                         struct ceph_snap_context *snapc)
2154 {
2155         struct rbd_img_request *img_request;
2156
2157         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2158         if (!img_request)
2159                 return NULL;
2160
2161         img_request->rq = NULL;
2162         img_request->rbd_dev = rbd_dev;
2163         img_request->offset = offset;
2164         img_request->length = length;
2165         img_request->flags = 0;
2166         if (op_type == OBJ_OP_DISCARD) {
2167                 img_request_discard_set(img_request);
2168                 img_request->snapc = snapc;
2169         } else if (op_type == OBJ_OP_WRITE) {
2170                 img_request_write_set(img_request);
2171                 img_request->snapc = snapc;
2172         } else {
2173                 img_request->snap_id = rbd_dev->spec->snap_id;
2174         }
2175         if (rbd_dev_parent_get(rbd_dev))
2176                 img_request_layered_set(img_request);
2177         spin_lock_init(&img_request->completion_lock);
2178         img_request->next_completion = 0;
2179         img_request->callback = NULL;
2180         img_request->result = 0;
2181         img_request->obj_request_count = 0;
2182         INIT_LIST_HEAD(&img_request->obj_requests);
2183         kref_init(&img_request->kref);
2184
2185         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2186                 obj_op_name(op_type), offset, length, img_request);
2187
2188         return img_request;
2189 }
2190
2191 static void rbd_img_request_destroy(struct kref *kref)
2192 {
2193         struct rbd_img_request *img_request;
2194         struct rbd_obj_request *obj_request;
2195         struct rbd_obj_request *next_obj_request;
2196
2197         img_request = container_of(kref, struct rbd_img_request, kref);
2198
2199         dout("%s: img %p\n", __func__, img_request);
2200
2201         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2202                 rbd_img_obj_request_del(img_request, obj_request);
2203         rbd_assert(img_request->obj_request_count == 0);
2204
2205         if (img_request_layered_test(img_request)) {
2206                 img_request_layered_clear(img_request);
2207                 rbd_dev_parent_put(img_request->rbd_dev);
2208         }
2209
2210         if (img_request_write_test(img_request) ||
2211                 img_request_discard_test(img_request))
2212                 ceph_put_snap_context(img_request->snapc);
2213
2214         kmem_cache_free(rbd_img_request_cache, img_request);
2215 }
2216
2217 static struct rbd_img_request *rbd_parent_request_create(
2218                                         struct rbd_obj_request *obj_request,
2219                                         u64 img_offset, u64 length)
2220 {
2221         struct rbd_img_request *parent_request;
2222         struct rbd_device *rbd_dev;
2223
2224         rbd_assert(obj_request->img_request);
2225         rbd_dev = obj_request->img_request->rbd_dev;
2226
2227         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2228                                                 length, OBJ_OP_READ, NULL);
2229         if (!parent_request)
2230                 return NULL;
2231
2232         img_request_child_set(parent_request);
2233         rbd_obj_request_get(obj_request);
2234         parent_request->obj_request = obj_request;
2235
2236         return parent_request;
2237 }
2238
2239 static void rbd_parent_request_destroy(struct kref *kref)
2240 {
2241         struct rbd_img_request *parent_request;
2242         struct rbd_obj_request *orig_request;
2243
2244         parent_request = container_of(kref, struct rbd_img_request, kref);
2245         orig_request = parent_request->obj_request;
2246
2247         parent_request->obj_request = NULL;
2248         rbd_obj_request_put(orig_request);
2249         img_request_child_clear(parent_request);
2250
2251         rbd_img_request_destroy(kref);
2252 }
2253
2254 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2255 {
2256         struct rbd_img_request *img_request;
2257         unsigned int xferred;
2258         int result;
2259         bool more;
2260
2261         rbd_assert(obj_request_img_data_test(obj_request));
2262         img_request = obj_request->img_request;
2263
2264         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2265         xferred = (unsigned int)obj_request->xferred;
2266         result = obj_request->result;
2267         if (result) {
2268                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2269                 enum obj_operation_type op_type;
2270
2271                 if (img_request_discard_test(img_request))
2272                         op_type = OBJ_OP_DISCARD;
2273                 else if (img_request_write_test(img_request))
2274                         op_type = OBJ_OP_WRITE;
2275                 else
2276                         op_type = OBJ_OP_READ;
2277
2278                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2279                         obj_op_name(op_type), obj_request->length,
2280                         obj_request->img_offset, obj_request->offset);
2281                 rbd_warn(rbd_dev, "  result %d xferred %x",
2282                         result, xferred);
2283                 if (!img_request->result)
2284                         img_request->result = result;
2285                 /*
2286                  * Need to end I/O on the entire obj_request worth of
2287                  * bytes in case of error.
2288                  */
2289                 xferred = obj_request->length;
2290         }
2291
2292         if (img_request_child_test(img_request)) {
2293                 rbd_assert(img_request->obj_request != NULL);
2294                 more = obj_request->which < img_request->obj_request_count - 1;
2295         } else {
2296                 rbd_assert(img_request->rq != NULL);
2297
2298                 more = blk_update_request(img_request->rq, result, xferred);
2299                 if (!more)
2300                         __blk_mq_end_request(img_request->rq, result);
2301         }
2302
2303         return more;
2304 }
2305
2306 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2307 {
2308         struct rbd_img_request *img_request;
2309         u32 which = obj_request->which;
2310         bool more = true;
2311
2312         rbd_assert(obj_request_img_data_test(obj_request));
2313         img_request = obj_request->img_request;
2314
2315         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2316         rbd_assert(img_request != NULL);
2317         rbd_assert(img_request->obj_request_count > 0);
2318         rbd_assert(which != BAD_WHICH);
2319         rbd_assert(which < img_request->obj_request_count);
2320
2321         spin_lock_irq(&img_request->completion_lock);
2322         if (which != img_request->next_completion)
2323                 goto out;
2324
2325         for_each_obj_request_from(img_request, obj_request) {
2326                 rbd_assert(more);
2327                 rbd_assert(which < img_request->obj_request_count);
2328
2329                 if (!obj_request_done_test(obj_request))
2330                         break;
2331                 more = rbd_img_obj_end_request(obj_request);
2332                 which++;
2333         }
2334
2335         rbd_assert(more ^ (which == img_request->obj_request_count));
2336         img_request->next_completion = which;
2337 out:
2338         spin_unlock_irq(&img_request->completion_lock);
2339         rbd_img_request_put(img_request);
2340
2341         if (!more)
2342                 rbd_img_request_complete(img_request);
2343 }
2344
2345 /*
2346  * Add individual osd ops to the given ceph_osd_request and prepare
2347  * them for submission. num_ops is the current number of
2348  * osd operations already to the object request.
2349  */
2350 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2351                                 struct ceph_osd_request *osd_request,
2352                                 enum obj_operation_type op_type,
2353                                 unsigned int num_ops)
2354 {
2355         struct rbd_img_request *img_request = obj_request->img_request;
2356         struct rbd_device *rbd_dev = img_request->rbd_dev;
2357         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2358         u64 offset = obj_request->offset;
2359         u64 length = obj_request->length;
2360         u64 img_end;
2361         u16 opcode;
2362
2363         if (op_type == OBJ_OP_DISCARD) {
2364                 if (!offset && length == object_size &&
2365                     (!img_request_layered_test(img_request) ||
2366                      !obj_request_overlaps_parent(obj_request))) {
2367                         opcode = CEPH_OSD_OP_DELETE;
2368                 } else if ((offset + length == object_size)) {
2369                         opcode = CEPH_OSD_OP_TRUNCATE;
2370                 } else {
2371                         down_read(&rbd_dev->header_rwsem);
2372                         img_end = rbd_dev->header.image_size;
2373                         up_read(&rbd_dev->header_rwsem);
2374
2375                         if (obj_request->img_offset + length == img_end)
2376                                 opcode = CEPH_OSD_OP_TRUNCATE;
2377                         else
2378                                 opcode = CEPH_OSD_OP_ZERO;
2379                 }
2380         } else if (op_type == OBJ_OP_WRITE) {
2381                 if (!offset && length == object_size)
2382                         opcode = CEPH_OSD_OP_WRITEFULL;
2383                 else
2384                         opcode = CEPH_OSD_OP_WRITE;
2385                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2386                                         object_size, object_size);
2387                 num_ops++;
2388         } else {
2389                 opcode = CEPH_OSD_OP_READ;
2390         }
2391
2392         if (opcode == CEPH_OSD_OP_DELETE)
2393                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2394         else
2395                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2396                                        offset, length, 0, 0);
2397
2398         if (obj_request->type == OBJ_REQUEST_BIO)
2399                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2400                                         obj_request->bio_list, length);
2401         else if (obj_request->type == OBJ_REQUEST_PAGES)
2402                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2403                                         obj_request->pages, length,
2404                                         offset & ~PAGE_MASK, false, false);
2405
2406         /* Discards are also writes */
2407         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2408                 rbd_osd_req_format_write(obj_request);
2409         else
2410                 rbd_osd_req_format_read(obj_request);
2411 }
2412
2413 /*
2414  * Split up an image request into one or more object requests, each
2415  * to a different object.  The "type" parameter indicates whether
2416  * "data_desc" is the pointer to the head of a list of bio
2417  * structures, or the base of a page array.  In either case this
2418  * function assumes data_desc describes memory sufficient to hold
2419  * all data described by the image request.
2420  */
2421 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2422                                         enum obj_request_type type,
2423                                         void *data_desc)
2424 {
2425         struct rbd_device *rbd_dev = img_request->rbd_dev;
2426         struct rbd_obj_request *obj_request = NULL;
2427         struct rbd_obj_request *next_obj_request;
2428         struct bio *bio_list = NULL;
2429         unsigned int bio_offset = 0;
2430         struct page **pages = NULL;
2431         enum obj_operation_type op_type;
2432         u64 img_offset;
2433         u64 resid;
2434
2435         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2436                 (int)type, data_desc);
2437
2438         img_offset = img_request->offset;
2439         resid = img_request->length;
2440         rbd_assert(resid > 0);
2441         op_type = rbd_img_request_op_type(img_request);
2442
2443         if (type == OBJ_REQUEST_BIO) {
2444                 bio_list = data_desc;
2445                 rbd_assert(img_offset ==
2446                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2447         } else if (type == OBJ_REQUEST_PAGES) {
2448                 pages = data_desc;
2449         }
2450
2451         while (resid) {
2452                 struct ceph_osd_request *osd_req;
2453                 u64 object_no = img_offset >> rbd_dev->header.obj_order;
2454                 u64 offset = rbd_segment_offset(rbd_dev, img_offset);
2455                 u64 length = rbd_segment_length(rbd_dev, img_offset, resid);
2456
2457                 obj_request = rbd_obj_request_create(type);
2458                 if (!obj_request)
2459                         goto out_unwind;
2460
2461                 obj_request->object_no = object_no;
2462                 obj_request->offset = offset;
2463                 obj_request->length = length;
2464
2465                 /*
2466                  * set obj_request->img_request before creating the
2467                  * osd_request so that it gets the right snapc
2468                  */
2469                 rbd_img_obj_request_add(img_request, obj_request);
2470
2471                 if (type == OBJ_REQUEST_BIO) {
2472                         unsigned int clone_size;
2473
2474                         rbd_assert(length <= (u64)UINT_MAX);
2475                         clone_size = (unsigned int)length;
2476                         obj_request->bio_list =
2477                                         bio_chain_clone_range(&bio_list,
2478                                                                 &bio_offset,
2479                                                                 clone_size,
2480                                                                 GFP_NOIO);
2481                         if (!obj_request->bio_list)
2482                                 goto out_unwind;
2483                 } else if (type == OBJ_REQUEST_PAGES) {
2484                         unsigned int page_count;
2485
2486                         obj_request->pages = pages;
2487                         page_count = (u32)calc_pages_for(offset, length);
2488                         obj_request->page_count = page_count;
2489                         if ((offset + length) & ~PAGE_MASK)
2490                                 page_count--;   /* more on last page */
2491                         pages += page_count;
2492                 }
2493
2494                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2495                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2496                                         obj_request);
2497                 if (!osd_req)
2498                         goto out_unwind;
2499
2500                 obj_request->osd_req = osd_req;
2501                 obj_request->callback = rbd_img_obj_callback;
2502                 obj_request->img_offset = img_offset;
2503
2504                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2505
2506                 img_offset += length;
2507                 resid -= length;
2508         }
2509
2510         return 0;
2511
2512 out_unwind:
2513         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2514                 rbd_img_obj_request_del(img_request, obj_request);
2515
2516         return -ENOMEM;
2517 }
2518
2519 static void
2520 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2521 {
2522         struct rbd_img_request *img_request;
2523         struct rbd_device *rbd_dev;
2524         struct page **pages;
2525         u32 page_count;
2526
2527         dout("%s: obj %p\n", __func__, obj_request);
2528
2529         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2530                 obj_request->type == OBJ_REQUEST_NODATA);
2531         rbd_assert(obj_request_img_data_test(obj_request));
2532         img_request = obj_request->img_request;
2533         rbd_assert(img_request);
2534
2535         rbd_dev = img_request->rbd_dev;
2536         rbd_assert(rbd_dev);
2537
2538         pages = obj_request->copyup_pages;
2539         rbd_assert(pages != NULL);
2540         obj_request->copyup_pages = NULL;
2541         page_count = obj_request->copyup_page_count;
2542         rbd_assert(page_count);
2543         obj_request->copyup_page_count = 0;
2544         ceph_release_page_vector(pages, page_count);
2545
2546         /*
2547          * We want the transfer count to reflect the size of the
2548          * original write request.  There is no such thing as a
2549          * successful short write, so if the request was successful
2550          * we can just set it to the originally-requested length.
2551          */
2552         if (!obj_request->result)
2553                 obj_request->xferred = obj_request->length;
2554
2555         obj_request_done_set(obj_request);
2556 }
2557
2558 static void
2559 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2560 {
2561         struct rbd_obj_request *orig_request;
2562         struct ceph_osd_request *osd_req;
2563         struct rbd_device *rbd_dev;
2564         struct page **pages;
2565         enum obj_operation_type op_type;
2566         u32 page_count;
2567         int img_result;
2568         u64 parent_length;
2569
2570         rbd_assert(img_request_child_test(img_request));
2571
2572         /* First get what we need from the image request */
2573
2574         pages = img_request->copyup_pages;
2575         rbd_assert(pages != NULL);
2576         img_request->copyup_pages = NULL;
2577         page_count = img_request->copyup_page_count;
2578         rbd_assert(page_count);
2579         img_request->copyup_page_count = 0;
2580
2581         orig_request = img_request->obj_request;
2582         rbd_assert(orig_request != NULL);
2583         rbd_assert(obj_request_type_valid(orig_request->type));
2584         img_result = img_request->result;
2585         parent_length = img_request->length;
2586         rbd_assert(img_result || parent_length == img_request->xferred);
2587         rbd_img_request_put(img_request);
2588
2589         rbd_assert(orig_request->img_request);
2590         rbd_dev = orig_request->img_request->rbd_dev;
2591         rbd_assert(rbd_dev);
2592
2593         /*
2594          * If the overlap has become 0 (most likely because the
2595          * image has been flattened) we need to free the pages
2596          * and re-submit the original write request.
2597          */
2598         if (!rbd_dev->parent_overlap) {
2599                 ceph_release_page_vector(pages, page_count);
2600                 rbd_obj_request_submit(orig_request);
2601                 return;
2602         }
2603
2604         if (img_result)
2605                 goto out_err;
2606
2607         /*
2608          * The original osd request is of no use to use any more.
2609          * We need a new one that can hold the three ops in a copyup
2610          * request.  Allocate the new copyup osd request for the
2611          * original request, and release the old one.
2612          */
2613         img_result = -ENOMEM;
2614         osd_req = rbd_osd_req_create_copyup(orig_request);
2615         if (!osd_req)
2616                 goto out_err;
2617         rbd_osd_req_destroy(orig_request->osd_req);
2618         orig_request->osd_req = osd_req;
2619         orig_request->copyup_pages = pages;
2620         orig_request->copyup_page_count = page_count;
2621
2622         /* Initialize the copyup op */
2623
2624         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2625         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2626                                                 false, false);
2627
2628         /* Add the other op(s) */
2629
2630         op_type = rbd_img_request_op_type(orig_request->img_request);
2631         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2632
2633         /* All set, send it off. */
2634
2635         rbd_obj_request_submit(orig_request);
2636         return;
2637
2638 out_err:
2639         ceph_release_page_vector(pages, page_count);
2640         rbd_obj_request_error(orig_request, img_result);
2641 }
2642
2643 /*
2644  * Read from the parent image the range of data that covers the
2645  * entire target of the given object request.  This is used for
2646  * satisfying a layered image write request when the target of an
2647  * object request from the image request does not exist.
2648  *
2649  * A page array big enough to hold the returned data is allocated
2650  * and supplied to rbd_img_request_fill() as the "data descriptor."
2651  * When the read completes, this page array will be transferred to
2652  * the original object request for the copyup operation.
2653  *
2654  * If an error occurs, it is recorded as the result of the original
2655  * object request in rbd_img_obj_exists_callback().
2656  */
2657 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2658 {
2659         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2660         struct rbd_img_request *parent_request = NULL;
2661         u64 img_offset;
2662         u64 length;
2663         struct page **pages = NULL;
2664         u32 page_count;
2665         int result;
2666
2667         rbd_assert(rbd_dev->parent != NULL);
2668
2669         /*
2670          * Determine the byte range covered by the object in the
2671          * child image to which the original request was to be sent.
2672          */
2673         img_offset = obj_request->img_offset - obj_request->offset;
2674         length = rbd_obj_bytes(&rbd_dev->header);
2675
2676         /*
2677          * There is no defined parent data beyond the parent
2678          * overlap, so limit what we read at that boundary if
2679          * necessary.
2680          */
2681         if (img_offset + length > rbd_dev->parent_overlap) {
2682                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2683                 length = rbd_dev->parent_overlap - img_offset;
2684         }
2685
2686         /*
2687          * Allocate a page array big enough to receive the data read
2688          * from the parent.
2689          */
2690         page_count = (u32)calc_pages_for(0, length);
2691         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2692         if (IS_ERR(pages)) {
2693                 result = PTR_ERR(pages);
2694                 pages = NULL;
2695                 goto out_err;
2696         }
2697
2698         result = -ENOMEM;
2699         parent_request = rbd_parent_request_create(obj_request,
2700                                                 img_offset, length);
2701         if (!parent_request)
2702                 goto out_err;
2703
2704         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2705         if (result)
2706                 goto out_err;
2707
2708         parent_request->copyup_pages = pages;
2709         parent_request->copyup_page_count = page_count;
2710         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2711
2712         result = rbd_img_request_submit(parent_request);
2713         if (!result)
2714                 return 0;
2715
2716         parent_request->copyup_pages = NULL;
2717         parent_request->copyup_page_count = 0;
2718         parent_request->obj_request = NULL;
2719         rbd_obj_request_put(obj_request);
2720 out_err:
2721         if (pages)
2722                 ceph_release_page_vector(pages, page_count);
2723         if (parent_request)
2724                 rbd_img_request_put(parent_request);
2725         return result;
2726 }
2727
2728 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2729 {
2730         struct rbd_obj_request *orig_request;
2731         struct rbd_device *rbd_dev;
2732         int result;
2733
2734         rbd_assert(!obj_request_img_data_test(obj_request));
2735
2736         /*
2737          * All we need from the object request is the original
2738          * request and the result of the STAT op.  Grab those, then
2739          * we're done with the request.
2740          */
2741         orig_request = obj_request->obj_request;
2742         obj_request->obj_request = NULL;
2743         rbd_obj_request_put(orig_request);
2744         rbd_assert(orig_request);
2745         rbd_assert(orig_request->img_request);
2746
2747         result = obj_request->result;
2748         obj_request->result = 0;
2749
2750         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2751                 obj_request, orig_request, result,
2752                 obj_request->xferred, obj_request->length);
2753         rbd_obj_request_put(obj_request);
2754
2755         /*
2756          * If the overlap has become 0 (most likely because the
2757          * image has been flattened) we need to re-submit the
2758          * original request.
2759          */
2760         rbd_dev = orig_request->img_request->rbd_dev;
2761         if (!rbd_dev->parent_overlap) {
2762                 rbd_obj_request_submit(orig_request);
2763                 return;
2764         }
2765
2766         /*
2767          * Our only purpose here is to determine whether the object
2768          * exists, and we don't want to treat the non-existence as
2769          * an error.  If something else comes back, transfer the
2770          * error to the original request and complete it now.
2771          */
2772         if (!result) {
2773                 obj_request_existence_set(orig_request, true);
2774         } else if (result == -ENOENT) {
2775                 obj_request_existence_set(orig_request, false);
2776         } else {
2777                 goto fail_orig_request;
2778         }
2779
2780         /*
2781          * Resubmit the original request now that we have recorded
2782          * whether the target object exists.
2783          */
2784         result = rbd_img_obj_request_submit(orig_request);
2785         if (result)
2786                 goto fail_orig_request;
2787
2788         return;
2789
2790 fail_orig_request:
2791         rbd_obj_request_error(orig_request, result);
2792 }
2793
2794 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2795 {
2796         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2797         struct rbd_obj_request *stat_request;
2798         struct page **pages;
2799         u32 page_count;
2800         size_t size;
2801         int ret;
2802
2803         stat_request = rbd_obj_request_create(OBJ_REQUEST_PAGES);
2804         if (!stat_request)
2805                 return -ENOMEM;
2806
2807         stat_request->object_no = obj_request->object_no;
2808
2809         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2810                                                    stat_request);
2811         if (!stat_request->osd_req) {
2812                 ret = -ENOMEM;
2813                 goto fail_stat_request;
2814         }
2815
2816         /*
2817          * The response data for a STAT call consists of:
2818          *     le64 length;
2819          *     struct {
2820          *         le32 tv_sec;
2821          *         le32 tv_nsec;
2822          *     } mtime;
2823          */
2824         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2825         page_count = (u32)calc_pages_for(0, size);
2826         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2827         if (IS_ERR(pages)) {
2828                 ret = PTR_ERR(pages);
2829                 goto fail_stat_request;
2830         }
2831
2832         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2833         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2834                                      false, false);
2835
2836         rbd_obj_request_get(obj_request);
2837         stat_request->obj_request = obj_request;
2838         stat_request->pages = pages;
2839         stat_request->page_count = page_count;
2840         stat_request->callback = rbd_img_obj_exists_callback;
2841
2842         rbd_obj_request_submit(stat_request);
2843         return 0;
2844
2845 fail_stat_request:
2846         rbd_obj_request_put(stat_request);
2847         return ret;
2848 }
2849
2850 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2851 {
2852         struct rbd_img_request *img_request = obj_request->img_request;
2853         struct rbd_device *rbd_dev = img_request->rbd_dev;
2854
2855         /* Reads */
2856         if (!img_request_write_test(img_request) &&
2857             !img_request_discard_test(img_request))
2858                 return true;
2859
2860         /* Non-layered writes */
2861         if (!img_request_layered_test(img_request))
2862                 return true;
2863
2864         /*
2865          * Layered writes outside of the parent overlap range don't
2866          * share any data with the parent.
2867          */
2868         if (!obj_request_overlaps_parent(obj_request))
2869                 return true;
2870
2871         /*
2872          * Entire-object layered writes - we will overwrite whatever
2873          * parent data there is anyway.
2874          */
2875         if (!obj_request->offset &&
2876             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2877                 return true;
2878
2879         /*
2880          * If the object is known to already exist, its parent data has
2881          * already been copied.
2882          */
2883         if (obj_request_known_test(obj_request) &&
2884             obj_request_exists_test(obj_request))
2885                 return true;
2886
2887         return false;
2888 }
2889
2890 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2891 {
2892         rbd_assert(obj_request_img_data_test(obj_request));
2893         rbd_assert(obj_request_type_valid(obj_request->type));
2894         rbd_assert(obj_request->img_request);
2895
2896         if (img_obj_request_simple(obj_request)) {
2897                 rbd_obj_request_submit(obj_request);
2898                 return 0;
2899         }
2900
2901         /*
2902          * It's a layered write.  The target object might exist but
2903          * we may not know that yet.  If we know it doesn't exist,
2904          * start by reading the data for the full target object from
2905          * the parent so we can use it for a copyup to the target.
2906          */
2907         if (obj_request_known_test(obj_request))
2908                 return rbd_img_obj_parent_read_full(obj_request);
2909
2910         /* We don't know whether the target exists.  Go find out. */
2911
2912         return rbd_img_obj_exists_submit(obj_request);
2913 }
2914
2915 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2916 {
2917         struct rbd_obj_request *obj_request;
2918         struct rbd_obj_request *next_obj_request;
2919         int ret = 0;
2920
2921         dout("%s: img %p\n", __func__, img_request);
2922
2923         rbd_img_request_get(img_request);
2924         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2925                 ret = rbd_img_obj_request_submit(obj_request);
2926                 if (ret)
2927                         goto out_put_ireq;
2928         }
2929
2930 out_put_ireq:
2931         rbd_img_request_put(img_request);
2932         return ret;
2933 }
2934
2935 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2936 {
2937         struct rbd_obj_request *obj_request;
2938         struct rbd_device *rbd_dev;
2939         u64 obj_end;
2940         u64 img_xferred;
2941         int img_result;
2942
2943         rbd_assert(img_request_child_test(img_request));
2944
2945         /* First get what we need from the image request and release it */
2946
2947         obj_request = img_request->obj_request;
2948         img_xferred = img_request->xferred;
2949         img_result = img_request->result;
2950         rbd_img_request_put(img_request);
2951
2952         /*
2953          * If the overlap has become 0 (most likely because the
2954          * image has been flattened) we need to re-submit the
2955          * original request.
2956          */
2957         rbd_assert(obj_request);
2958         rbd_assert(obj_request->img_request);
2959         rbd_dev = obj_request->img_request->rbd_dev;
2960         if (!rbd_dev->parent_overlap) {
2961                 rbd_obj_request_submit(obj_request);
2962                 return;
2963         }
2964
2965         obj_request->result = img_result;
2966         if (obj_request->result)
2967                 goto out;
2968
2969         /*
2970          * We need to zero anything beyond the parent overlap
2971          * boundary.  Since rbd_img_obj_request_read_callback()
2972          * will zero anything beyond the end of a short read, an
2973          * easy way to do this is to pretend the data from the
2974          * parent came up short--ending at the overlap boundary.
2975          */
2976         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2977         obj_end = obj_request->img_offset + obj_request->length;
2978         if (obj_end > rbd_dev->parent_overlap) {
2979                 u64 xferred = 0;
2980
2981                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2982                         xferred = rbd_dev->parent_overlap -
2983                                         obj_request->img_offset;
2984
2985                 obj_request->xferred = min(img_xferred, xferred);
2986         } else {
2987                 obj_request->xferred = img_xferred;
2988         }
2989 out:
2990         rbd_img_obj_request_read_callback(obj_request);
2991         rbd_obj_request_complete(obj_request);
2992 }
2993
2994 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2995 {
2996         struct rbd_img_request *img_request;
2997         int result;
2998
2999         rbd_assert(obj_request_img_data_test(obj_request));
3000         rbd_assert(obj_request->img_request != NULL);
3001         rbd_assert(obj_request->result == (s32) -ENOENT);
3002         rbd_assert(obj_request_type_valid(obj_request->type));
3003
3004         /* rbd_read_finish(obj_request, obj_request->length); */
3005         img_request = rbd_parent_request_create(obj_request,
3006                                                 obj_request->img_offset,
3007                                                 obj_request->length);
3008         result = -ENOMEM;
3009         if (!img_request)
3010                 goto out_err;
3011
3012         if (obj_request->type == OBJ_REQUEST_BIO)
3013                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3014                                                 obj_request->bio_list);
3015         else
3016                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3017                                                 obj_request->pages);
3018         if (result)
3019                 goto out_err;
3020
3021         img_request->callback = rbd_img_parent_read_callback;
3022         result = rbd_img_request_submit(img_request);
3023         if (result)
3024                 goto out_err;
3025
3026         return;
3027 out_err:
3028         if (img_request)
3029                 rbd_img_request_put(img_request);
3030         obj_request->result = result;
3031         obj_request->xferred = 0;
3032         obj_request_done_set(obj_request);
3033 }
3034
3035 static const struct rbd_client_id rbd_empty_cid;
3036
3037 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3038                           const struct rbd_client_id *rhs)
3039 {
3040         return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3041 }
3042
3043 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3044 {
3045         struct rbd_client_id cid;
3046
3047         mutex_lock(&rbd_dev->watch_mutex);
3048         cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3049         cid.handle = rbd_dev->watch_cookie;
3050         mutex_unlock(&rbd_dev->watch_mutex);
3051         return cid;
3052 }
3053
3054 /*
3055  * lock_rwsem must be held for write
3056  */
3057 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3058                               const struct rbd_client_id *cid)
3059 {
3060         dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3061              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3062              cid->gid, cid->handle);
3063         rbd_dev->owner_cid = *cid; /* struct */
3064 }
3065
3066 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3067 {
3068         mutex_lock(&rbd_dev->watch_mutex);
3069         sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3070         mutex_unlock(&rbd_dev->watch_mutex);
3071 }
3072
3073 /*
3074  * lock_rwsem must be held for write
3075  */
3076 static int rbd_lock(struct rbd_device *rbd_dev)
3077 {
3078         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3079         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3080         char cookie[32];
3081         int ret;
3082
3083         WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3084                 rbd_dev->lock_cookie[0] != '\0');
3085
3086         format_lock_cookie(rbd_dev, cookie);
3087         ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3088                             RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3089                             RBD_LOCK_TAG, "", 0);
3090         if (ret)
3091                 return ret;
3092
3093         rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3094         strcpy(rbd_dev->lock_cookie, cookie);
3095         rbd_set_owner_cid(rbd_dev, &cid);
3096         queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3097         return 0;
3098 }
3099
3100 /*
3101  * lock_rwsem must be held for write
3102  */
3103 static void rbd_unlock(struct rbd_device *rbd_dev)
3104 {
3105         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3106         int ret;
3107
3108         WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3109                 rbd_dev->lock_cookie[0] == '\0');
3110
3111         ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3112                               RBD_LOCK_NAME, rbd_dev->lock_cookie);
3113         if (ret && ret != -ENOENT)
3114                 rbd_warn(rbd_dev, "failed to unlock: %d", ret);
3115
3116         /* treat errors as the image is unlocked */
3117         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3118         rbd_dev->lock_cookie[0] = '\0';
3119         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3120         queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3121 }
3122
3123 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3124                                 enum rbd_notify_op notify_op,
3125                                 struct page ***preply_pages,
3126                                 size_t *preply_len)
3127 {
3128         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3129         struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3130         int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3131         char buf[buf_size];
3132         void *p = buf;
3133
3134         dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3135
3136         /* encode *LockPayload NotifyMessage (op + ClientId) */
3137         ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3138         ceph_encode_32(&p, notify_op);
3139         ceph_encode_64(&p, cid.gid);
3140         ceph_encode_64(&p, cid.handle);
3141
3142         return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3143                                 &rbd_dev->header_oloc, buf, buf_size,
3144                                 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3145 }
3146
3147 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3148                                enum rbd_notify_op notify_op)
3149 {
3150         struct page **reply_pages;
3151         size_t reply_len;
3152
3153         __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3154         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3155 }
3156
3157 static void rbd_notify_acquired_lock(struct work_struct *work)
3158 {
3159         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3160                                                   acquired_lock_work);
3161
3162         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3163 }
3164
3165 static void rbd_notify_released_lock(struct work_struct *work)
3166 {
3167         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3168                                                   released_lock_work);
3169
3170         rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3171 }
3172
3173 static int rbd_request_lock(struct rbd_device *rbd_dev)
3174 {
3175         struct page **reply_pages;
3176         size_t reply_len;
3177         bool lock_owner_responded = false;
3178         int ret;
3179
3180         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3181
3182         ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3183                                    &reply_pages, &reply_len);
3184         if (ret && ret != -ETIMEDOUT) {
3185                 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3186                 goto out;
3187         }
3188
3189         if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3190                 void *p = page_address(reply_pages[0]);
3191                 void *const end = p + reply_len;
3192                 u32 n;
3193
3194                 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3195                 while (n--) {
3196                         u8 struct_v;
3197                         u32 len;
3198
3199                         ceph_decode_need(&p, end, 8 + 8, e_inval);
3200                         p += 8 + 8; /* skip gid and cookie */
3201
3202                         ceph_decode_32_safe(&p, end, len, e_inval);
3203                         if (!len)
3204                                 continue;
3205
3206                         if (lock_owner_responded) {
3207                                 rbd_warn(rbd_dev,
3208                                          "duplicate lock owners detected");
3209                                 ret = -EIO;
3210                                 goto out;
3211                         }
3212
3213                         lock_owner_responded = true;
3214                         ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3215                                                   &struct_v, &len);
3216                         if (ret) {
3217                                 rbd_warn(rbd_dev,
3218                                          "failed to decode ResponseMessage: %d",
3219                                          ret);
3220                                 goto e_inval;
3221                         }
3222
3223                         ret = ceph_decode_32(&p);
3224                 }
3225         }
3226
3227         if (!lock_owner_responded) {
3228                 rbd_warn(rbd_dev, "no lock owners detected");
3229                 ret = -ETIMEDOUT;
3230         }
3231
3232 out:
3233         ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3234         return ret;
3235
3236 e_inval:
3237         ret = -EINVAL;
3238         goto out;
3239 }
3240
3241 static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3242 {
3243         dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3244
3245         cancel_delayed_work(&rbd_dev->lock_dwork);
3246         if (wake_all)
3247                 wake_up_all(&rbd_dev->lock_waitq);
3248         else
3249                 wake_up(&rbd_dev->lock_waitq);
3250 }
3251
3252 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3253                                struct ceph_locker **lockers, u32 *num_lockers)
3254 {
3255         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3256         u8 lock_type;
3257         char *lock_tag;
3258         int ret;
3259
3260         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3261
3262         ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3263                                  &rbd_dev->header_oloc, RBD_LOCK_NAME,
3264                                  &lock_type, &lock_tag, lockers, num_lockers);
3265         if (ret)
3266                 return ret;
3267
3268         if (*num_lockers == 0) {
3269                 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3270                 goto out;
3271         }
3272
3273         if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3274                 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3275                          lock_tag);
3276                 ret = -EBUSY;
3277                 goto out;
3278         }
3279
3280         if (lock_type == CEPH_CLS_LOCK_SHARED) {
3281                 rbd_warn(rbd_dev, "shared lock type detected");
3282                 ret = -EBUSY;
3283                 goto out;
3284         }
3285
3286         if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3287                     strlen(RBD_LOCK_COOKIE_PREFIX))) {
3288                 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3289                          (*lockers)[0].id.cookie);
3290                 ret = -EBUSY;
3291                 goto out;
3292         }
3293
3294 out:
3295         kfree(lock_tag);
3296         return ret;
3297 }
3298
3299 static int find_watcher(struct rbd_device *rbd_dev,
3300                         const struct ceph_locker *locker)
3301 {
3302         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3303         struct ceph_watch_item *watchers;
3304         u32 num_watchers;
3305         u64 cookie;
3306         int i;
3307         int ret;
3308
3309         ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3310                                       &rbd_dev->header_oloc, &watchers,
3311                                       &num_watchers);
3312         if (ret)
3313                 return ret;
3314
3315         sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3316         for (i = 0; i < num_watchers; i++) {
3317                 if (!memcmp(&watchers[i].addr, &locker->info.addr,
3318                             sizeof(locker->info.addr)) &&
3319                     watchers[i].cookie == cookie) {
3320                         struct rbd_client_id cid = {
3321                                 .gid = le64_to_cpu(watchers[i].name.num),
3322                                 .handle = cookie,
3323                         };
3324
3325                         dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3326                              rbd_dev, cid.gid, cid.handle);
3327                         rbd_set_owner_cid(rbd_dev, &cid);
3328                         ret = 1;
3329                         goto out;
3330                 }
3331         }
3332
3333         dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3334         ret = 0;
3335 out:
3336         kfree(watchers);
3337         return ret;
3338 }
3339
3340 /*
3341  * lock_rwsem must be held for write
3342  */
3343 static int rbd_try_lock(struct rbd_device *rbd_dev)
3344 {
3345         struct ceph_client *client = rbd_dev->rbd_client->client;
3346         struct ceph_locker *lockers;
3347         u32 num_lockers;
3348         int ret;
3349
3350         for (;;) {
3351                 ret = rbd_lock(rbd_dev);
3352                 if (ret != -EBUSY)
3353                         return ret;
3354
3355                 /* determine if the current lock holder is still alive */
3356                 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3357                 if (ret)
3358                         return ret;
3359
3360                 if (num_lockers == 0)
3361                         goto again;
3362
3363                 ret = find_watcher(rbd_dev, lockers);
3364                 if (ret) {
3365                         if (ret > 0)
3366                                 ret = 0; /* have to request lock */
3367                         goto out;
3368                 }
3369
3370                 rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3371                          ENTITY_NAME(lockers[0].id.name));
3372
3373                 ret = ceph_monc_blacklist_add(&client->monc,
3374                                               &lockers[0].info.addr);
3375                 if (ret) {
3376                         rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3377                                  ENTITY_NAME(lockers[0].id.name), ret);
3378                         goto out;
3379                 }
3380
3381                 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3382                                           &rbd_dev->header_oloc, RBD_LOCK_NAME,
3383                                           lockers[0].id.cookie,
3384                                           &lockers[0].id.name);
3385                 if (ret && ret != -ENOENT)
3386                         goto out;
3387
3388 again:
3389                 ceph_free_lockers(lockers, num_lockers);
3390         }
3391
3392 out:
3393         ceph_free_lockers(lockers, num_lockers);
3394         return ret;
3395 }
3396
3397 /*
3398  * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3399  */
3400 static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3401                                                 int *pret)
3402 {
3403         enum rbd_lock_state lock_state;
3404
3405         down_read(&rbd_dev->lock_rwsem);
3406         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3407              rbd_dev->lock_state);
3408         if (__rbd_is_lock_owner(rbd_dev)) {
3409                 lock_state = rbd_dev->lock_state;
3410                 up_read(&rbd_dev->lock_rwsem);
3411                 return lock_state;
3412         }
3413
3414         up_read(&rbd_dev->lock_rwsem);
3415         down_write(&rbd_dev->lock_rwsem);
3416         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3417              rbd_dev->lock_state);
3418         if (!__rbd_is_lock_owner(rbd_dev)) {
3419                 *pret = rbd_try_lock(rbd_dev);
3420                 if (*pret)
3421                         rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3422         }
3423
3424         lock_state = rbd_dev->lock_state;
3425         up_write(&rbd_dev->lock_rwsem);
3426         return lock_state;
3427 }
3428
3429 static void rbd_acquire_lock(struct work_struct *work)
3430 {
3431         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3432                                             struct rbd_device, lock_dwork);
3433         enum rbd_lock_state lock_state;
3434         int ret;
3435
3436         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3437 again:
3438         lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3439         if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3440                 if (lock_state == RBD_LOCK_STATE_LOCKED)
3441                         wake_requests(rbd_dev, true);
3442                 dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3443                      rbd_dev, lock_state, ret);
3444                 return;
3445         }
3446
3447         ret = rbd_request_lock(rbd_dev);
3448         if (ret == -ETIMEDOUT) {
3449                 goto again; /* treat this as a dead client */
3450         } else if (ret == -EROFS) {
3451                 rbd_warn(rbd_dev, "peer will not release lock");
3452                 /*
3453                  * If this is rbd_add_acquire_lock(), we want to fail
3454                  * immediately -- reuse BLACKLISTED flag.  Otherwise we
3455                  * want to block.
3456                  */
3457                 if (!(rbd_dev->disk->flags & GENHD_FL_UP)) {
3458                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3459                         /* wake "rbd map --exclusive" process */
3460                         wake_requests(rbd_dev, false);
3461                 }
3462         } else if (ret < 0) {
3463                 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3464                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3465                                  RBD_RETRY_DELAY);
3466         } else {
3467                 /*
3468                  * lock owner acked, but resend if we don't see them
3469                  * release the lock
3470                  */
3471                 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3472                      rbd_dev);
3473                 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3474                     msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3475         }
3476 }
3477
3478 /*
3479  * lock_rwsem must be held for write
3480  */
3481 static bool rbd_release_lock(struct rbd_device *rbd_dev)
3482 {
3483         dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3484              rbd_dev->lock_state);
3485         if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3486                 return false;
3487
3488         rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3489         downgrade_write(&rbd_dev->lock_rwsem);
3490         /*
3491          * Ensure that all in-flight IO is flushed.
3492          *
3493          * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3494          * may be shared with other devices.
3495          */
3496         ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3497         up_read(&rbd_dev->lock_rwsem);
3498
3499         down_write(&rbd_dev->lock_rwsem);
3500         dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3501              rbd_dev->lock_state);
3502         if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3503                 return false;
3504
3505         rbd_unlock(rbd_dev);
3506         /*
3507          * Give others a chance to grab the lock - we would re-acquire
3508          * almost immediately if we got new IO during ceph_osdc_sync()
3509          * otherwise.  We need to ack our own notifications, so this
3510          * lock_dwork will be requeued from rbd_wait_state_locked()
3511          * after wake_requests() in rbd_handle_released_lock().
3512          */
3513         cancel_delayed_work(&rbd_dev->lock_dwork);
3514         return true;
3515 }
3516
3517 static void rbd_release_lock_work(struct work_struct *work)
3518 {
3519         struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3520                                                   unlock_work);
3521
3522         down_write(&rbd_dev->lock_rwsem);
3523         rbd_release_lock(rbd_dev);
3524         up_write(&rbd_dev->lock_rwsem);
3525 }
3526
3527 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3528                                      void **p)
3529 {
3530         struct rbd_client_id cid = { 0 };
3531
3532         if (struct_v >= 2) {
3533                 cid.gid = ceph_decode_64(p);
3534                 cid.handle = ceph_decode_64(p);
3535         }
3536
3537         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3538              cid.handle);
3539         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3540                 down_write(&rbd_dev->lock_rwsem);
3541                 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3542                         /*
3543                          * we already know that the remote client is
3544                          * the owner
3545                          */
3546                         up_write(&rbd_dev->lock_rwsem);
3547                         return;
3548                 }
3549
3550                 rbd_set_owner_cid(rbd_dev, &cid);
3551                 downgrade_write(&rbd_dev->lock_rwsem);
3552         } else {
3553                 down_read(&rbd_dev->lock_rwsem);
3554         }
3555
3556         if (!__rbd_is_lock_owner(rbd_dev))
3557                 wake_requests(rbd_dev, false);
3558         up_read(&rbd_dev->lock_rwsem);
3559 }
3560
3561 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3562                                      void **p)
3563 {
3564         struct rbd_client_id cid = { 0 };
3565
3566         if (struct_v >= 2) {
3567                 cid.gid = ceph_decode_64(p);
3568                 cid.handle = ceph_decode_64(p);
3569         }
3570
3571         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3572              cid.handle);
3573         if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3574                 down_write(&rbd_dev->lock_rwsem);
3575                 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3576                         dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3577                              __func__, rbd_dev, cid.gid, cid.handle,
3578                              rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3579                         up_write(&rbd_dev->lock_rwsem);
3580                         return;
3581                 }
3582
3583                 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3584                 downgrade_write(&rbd_dev->lock_rwsem);
3585         } else {
3586                 down_read(&rbd_dev->lock_rwsem);
3587         }
3588
3589         if (!__rbd_is_lock_owner(rbd_dev))
3590                 wake_requests(rbd_dev, false);
3591         up_read(&rbd_dev->lock_rwsem);
3592 }
3593
3594 /*
3595  * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
3596  * ResponseMessage is needed.
3597  */
3598 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3599                                    void **p)
3600 {
3601         struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3602         struct rbd_client_id cid = { 0 };
3603         int result = 1;
3604
3605         if (struct_v >= 2) {
3606                 cid.gid = ceph_decode_64(p);
3607                 cid.handle = ceph_decode_64(p);
3608         }
3609
3610         dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3611              cid.handle);
3612         if (rbd_cid_equal(&cid, &my_cid))
3613                 return result;
3614
3615         down_read(&rbd_dev->lock_rwsem);
3616         if (__rbd_is_lock_owner(rbd_dev)) {
3617                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
3618                     rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
3619                         goto out_unlock;
3620
3621                 /*
3622                  * encode ResponseMessage(0) so the peer can detect
3623                  * a missing owner
3624                  */
3625                 result = 0;
3626
3627                 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3628                         if (!rbd_dev->opts->exclusive) {
3629                                 dout("%s rbd_dev %p queueing unlock_work\n",
3630                                      __func__, rbd_dev);
3631                                 queue_work(rbd_dev->task_wq,
3632                                            &rbd_dev->unlock_work);
3633                         } else {
3634                                 /* refuse to release the lock */
3635                                 result = -EROFS;
3636                         }
3637                 }
3638         }
3639
3640 out_unlock:
3641         up_read(&rbd_dev->lock_rwsem);
3642         return result;
3643 }
3644
3645 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3646                                      u64 notify_id, u64 cookie, s32 *result)
3647 {
3648         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3649         int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3650         char buf[buf_size];
3651         int ret;
3652
3653         if (result) {
3654                 void *p = buf;
3655
3656                 /* encode ResponseMessage */
3657                 ceph_start_encoding(&p, 1, 1,
3658                                     buf_size - CEPH_ENCODING_START_BLK_LEN);
3659                 ceph_encode_32(&p, *result);
3660         } else {
3661                 buf_size = 0;
3662         }
3663
3664         ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3665                                    &rbd_dev->header_oloc, notify_id, cookie,
3666                                    buf, buf_size);
3667         if (ret)
3668                 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3669 }
3670
3671 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3672                                    u64 cookie)
3673 {
3674         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3675         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3676 }
3677
3678 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3679                                           u64 notify_id, u64 cookie, s32 result)
3680 {
3681         dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3682         __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3683 }
3684
3685 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3686                          u64 notifier_id, void *data, size_t data_len)
3687 {
3688         struct rbd_device *rbd_dev = arg;
3689         void *p = data;
3690         void *const end = p + data_len;
3691         u8 struct_v = 0;
3692         u32 len;
3693         u32 notify_op;
3694         int ret;
3695
3696         dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3697              __func__, rbd_dev, cookie, notify_id, data_len);
3698         if (data_len) {
3699                 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3700                                           &struct_v, &len);
3701                 if (ret) {
3702                         rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3703                                  ret);
3704                         return;
3705                 }
3706
3707                 notify_op = ceph_decode_32(&p);
3708         } else {
3709                 /* legacy notification for header updates */
3710                 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3711                 len = 0;
3712         }
3713
3714         dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3715         switch (notify_op) {
3716         case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3717                 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3718                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3719                 break;
3720         case RBD_NOTIFY_OP_RELEASED_LOCK:
3721                 rbd_handle_released_lock(rbd_dev, struct_v, &p);
3722                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3723                 break;
3724         case RBD_NOTIFY_OP_REQUEST_LOCK:
3725                 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
3726                 if (ret <= 0)
3727                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3728                                                       cookie, ret);
3729                 else
3730                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3731                 break;
3732         case RBD_NOTIFY_OP_HEADER_UPDATE:
3733                 ret = rbd_dev_refresh(rbd_dev);
3734                 if (ret)
3735                         rbd_warn(rbd_dev, "refresh failed: %d", ret);
3736
3737                 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3738                 break;
3739         default:
3740                 if (rbd_is_lock_owner(rbd_dev))
3741                         rbd_acknowledge_notify_result(rbd_dev, notify_id,
3742                                                       cookie, -EOPNOTSUPP);
3743                 else
3744                         rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3745                 break;
3746         }
3747 }
3748
3749 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3750
3751 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3752 {
3753         struct rbd_device *rbd_dev = arg;
3754
3755         rbd_warn(rbd_dev, "encountered watch error: %d", err);
3756
3757         down_write(&rbd_dev->lock_rwsem);
3758         rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3759         up_write(&rbd_dev->lock_rwsem);
3760
3761         mutex_lock(&rbd_dev->watch_mutex);
3762         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3763                 __rbd_unregister_watch(rbd_dev);
3764                 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3765
3766                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3767         }
3768         mutex_unlock(&rbd_dev->watch_mutex);
3769 }
3770
3771 /*
3772  * watch_mutex must be locked
3773  */
3774 static int __rbd_register_watch(struct rbd_device *rbd_dev)
3775 {
3776         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3777         struct ceph_osd_linger_request *handle;
3778
3779         rbd_assert(!rbd_dev->watch_handle);
3780         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3781
3782         handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3783                                  &rbd_dev->header_oloc, rbd_watch_cb,
3784                                  rbd_watch_errcb, rbd_dev);
3785         if (IS_ERR(handle))
3786                 return PTR_ERR(handle);
3787
3788         rbd_dev->watch_handle = handle;
3789         return 0;
3790 }
3791
3792 /*
3793  * watch_mutex must be locked
3794  */
3795 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3796 {
3797         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3798         int ret;
3799
3800         rbd_assert(rbd_dev->watch_handle);
3801         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3802
3803         ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3804         if (ret)
3805                 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3806
3807         rbd_dev->watch_handle = NULL;
3808 }
3809
3810 static int rbd_register_watch(struct rbd_device *rbd_dev)
3811 {
3812         int ret;
3813
3814         mutex_lock(&rbd_dev->watch_mutex);
3815         rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3816         ret = __rbd_register_watch(rbd_dev);
3817         if (ret)
3818                 goto out;
3819
3820         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3821         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3822
3823 out:
3824         mutex_unlock(&rbd_dev->watch_mutex);
3825         return ret;
3826 }
3827
3828 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3829 {
3830         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3831
3832         cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3833         cancel_work_sync(&rbd_dev->acquired_lock_work);
3834         cancel_work_sync(&rbd_dev->released_lock_work);
3835         cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3836         cancel_work_sync(&rbd_dev->unlock_work);
3837 }
3838
3839 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3840 {
3841         WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3842         cancel_tasks_sync(rbd_dev);
3843
3844         mutex_lock(&rbd_dev->watch_mutex);
3845         if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3846                 __rbd_unregister_watch(rbd_dev);
3847         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3848         mutex_unlock(&rbd_dev->watch_mutex);
3849
3850         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3851 }
3852
3853 /*
3854  * lock_rwsem must be held for write
3855  */
3856 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
3857 {
3858         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3859         char cookie[32];
3860         int ret;
3861
3862         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED);
3863
3864         format_lock_cookie(rbd_dev, cookie);
3865         ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
3866                                   &rbd_dev->header_oloc, RBD_LOCK_NAME,
3867                                   CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
3868                                   RBD_LOCK_TAG, cookie);
3869         if (ret) {
3870                 if (ret != -EOPNOTSUPP)
3871                         rbd_warn(rbd_dev, "failed to update lock cookie: %d",
3872                                  ret);
3873
3874                 /*
3875                  * Lock cookie cannot be updated on older OSDs, so do
3876                  * a manual release and queue an acquire.
3877                  */
3878                 if (rbd_release_lock(rbd_dev))
3879                         queue_delayed_work(rbd_dev->task_wq,
3880                                            &rbd_dev->lock_dwork, 0);
3881         } else {
3882                 strcpy(rbd_dev->lock_cookie, cookie);
3883         }
3884 }
3885
3886 static void rbd_reregister_watch(struct work_struct *work)
3887 {
3888         struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3889                                             struct rbd_device, watch_dwork);
3890         int ret;
3891
3892         dout("%s rbd_dev %p\n", __func__, rbd_dev);
3893
3894         mutex_lock(&rbd_dev->watch_mutex);
3895         if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3896                 mutex_unlock(&rbd_dev->watch_mutex);
3897                 return;
3898         }
3899
3900         ret = __rbd_register_watch(rbd_dev);
3901         if (ret) {
3902                 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3903                 if (ret == -EBLACKLISTED || ret == -ENOENT) {
3904                         set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3905                         wake_requests(rbd_dev, true);
3906                 } else {
3907                         queue_delayed_work(rbd_dev->task_wq,
3908                                            &rbd_dev->watch_dwork,
3909                                            RBD_RETRY_DELAY);
3910                 }
3911                 mutex_unlock(&rbd_dev->watch_mutex);
3912                 return;
3913         }
3914
3915         rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3916         rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3917         mutex_unlock(&rbd_dev->watch_mutex);
3918
3919         down_write(&rbd_dev->lock_rwsem);
3920         if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3921                 rbd_reacquire_lock(rbd_dev);
3922         up_write(&rbd_dev->lock_rwsem);
3923
3924         ret = rbd_dev_refresh(rbd_dev);
3925         if (ret)
3926                 rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3927 }
3928
3929 /*
3930  * Synchronous osd object method call.  Returns the number of bytes
3931  * returned in the outbound buffer, or a negative error code.
3932  */
3933 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3934                              struct ceph_object_id *oid,
3935                              struct ceph_object_locator *oloc,
3936                              const char *method_name,
3937                              const void *outbound,
3938                              size_t outbound_size,
3939                              void *inbound,
3940                              size_t inbound_size)
3941 {
3942         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3943         struct page *req_page = NULL;
3944         struct page *reply_page;
3945         int ret;
3946
3947         /*
3948          * Method calls are ultimately read operations.  The result
3949          * should placed into the inbound buffer provided.  They
3950          * also supply outbound data--parameters for the object
3951          * method.  Currently if this is present it will be a
3952          * snapshot id.
3953          */
3954         if (outbound) {
3955                 if (outbound_size > PAGE_SIZE)
3956                         return -E2BIG;
3957
3958                 req_page = alloc_page(GFP_KERNEL);
3959                 if (!req_page)
3960                         return -ENOMEM;
3961
3962                 memcpy(page_address(req_page), outbound, outbound_size);
3963         }
3964
3965         reply_page = alloc_page(GFP_KERNEL);
3966         if (!reply_page) {
3967                 if (req_page)
3968                         __free_page(req_page);
3969                 return -ENOMEM;
3970         }
3971
3972         ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
3973                              CEPH_OSD_FLAG_READ, req_page, outbound_size,
3974                              reply_page, &inbound_size);
3975         if (!ret) {
3976                 memcpy(inbound, page_address(reply_page), inbound_size);
3977                 ret = inbound_size;
3978         }
3979
3980         if (req_page)
3981                 __free_page(req_page);
3982         __free_page(reply_page);
3983         return ret;
3984 }
3985
3986 /*
3987  * lock_rwsem must be held for read
3988  */
3989 static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
3990 {
3991         DEFINE_WAIT(wait);
3992
3993         do {
3994                 /*
3995                  * Note the use of mod_delayed_work() in rbd_acquire_lock()
3996                  * and cancel_delayed_work() in wake_requests().
3997                  */
3998                 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3999                 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4000                 prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4001                                           TASK_UNINTERRUPTIBLE);
4002                 up_read(&rbd_dev->lock_rwsem);
4003                 schedule();
4004                 down_read(&rbd_dev->lock_rwsem);
4005         } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4006                  !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4007
4008         finish_wait(&rbd_dev->lock_waitq, &wait);
4009 }
4010
4011 static void rbd_queue_workfn(struct work_struct *work)
4012 {
4013         struct request *rq = blk_mq_rq_from_pdu(work);
4014         struct rbd_device *rbd_dev = rq->q->queuedata;
4015         struct rbd_img_request *img_request;
4016         struct ceph_snap_context *snapc = NULL;
4017         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4018         u64 length = blk_rq_bytes(rq);
4019         enum obj_operation_type op_type;
4020         u64 mapping_size;
4021         bool must_be_locked;
4022         int result;
4023
4024         switch (req_op(rq)) {
4025         case REQ_OP_DISCARD:
4026                 op_type = OBJ_OP_DISCARD;
4027                 break;
4028         case REQ_OP_WRITE:
4029                 op_type = OBJ_OP_WRITE;
4030                 break;
4031         case REQ_OP_READ:
4032                 op_type = OBJ_OP_READ;
4033                 break;
4034         default:
4035                 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4036                 result = -EIO;
4037                 goto err;
4038         }
4039
4040         /* Ignore/skip any zero-length requests */
4041
4042         if (!length) {
4043                 dout("%s: zero-length request\n", __func__);
4044                 result = 0;
4045                 goto err_rq;
4046         }
4047
4048         /* Only reads are allowed to a read-only device */
4049
4050         if (op_type != OBJ_OP_READ) {
4051                 if (rbd_dev->mapping.read_only) {
4052                         result = -EROFS;
4053                         goto err_rq;
4054                 }
4055                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4056         }
4057
4058         /*
4059          * Quit early if the mapped snapshot no longer exists.  It's
4060          * still possible the snapshot will have disappeared by the
4061          * time our request arrives at the osd, but there's no sense in
4062          * sending it if we already know.
4063          */
4064         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4065                 dout("request for non-existent snapshot");
4066                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4067                 result = -ENXIO;
4068                 goto err_rq;
4069         }
4070
4071         if (offset && length > U64_MAX - offset + 1) {
4072                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4073                          length);
4074                 result = -EINVAL;
4075                 goto err_rq;    /* Shouldn't happen */
4076         }
4077
4078         blk_mq_start_request(rq);
4079
4080         down_read(&rbd_dev->header_rwsem);
4081         mapping_size = rbd_dev->mapping.size;
4082         if (op_type != OBJ_OP_READ) {
4083                 snapc = rbd_dev->header.snapc;
4084                 ceph_get_snap_context(snapc);
4085         }
4086         up_read(&rbd_dev->header_rwsem);
4087
4088         if (offset + length > mapping_size) {
4089                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4090                          length, mapping_size);
4091                 result = -EIO;
4092                 goto err_rq;
4093         }
4094
4095         must_be_locked =
4096             (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
4097             (op_type != OBJ_OP_READ || rbd_dev->opts->lock_on_read);
4098         if (must_be_locked) {
4099                 down_read(&rbd_dev->lock_rwsem);
4100                 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4101                     !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4102                         if (rbd_dev->opts->exclusive) {
4103                                 rbd_warn(rbd_dev, "exclusive lock required");
4104                                 result = -EROFS;
4105                                 goto err_unlock;
4106                         }
4107                         rbd_wait_state_locked(rbd_dev);
4108                 }
4109                 if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4110                         result = -EBLACKLISTED;
4111                         goto err_unlock;
4112                 }
4113         }
4114
4115         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4116                                              snapc);
4117         if (!img_request) {
4118                 result = -ENOMEM;
4119                 goto err_unlock;
4120         }
4121         img_request->rq = rq;
4122         snapc = NULL; /* img_request consumes a ref */
4123
4124         if (op_type == OBJ_OP_DISCARD)
4125                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4126                                               NULL);
4127         else
4128                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4129                                               rq->bio);
4130         if (result)
4131                 goto err_img_request;
4132
4133         result = rbd_img_request_submit(img_request);
4134         if (result)
4135                 goto err_img_request;
4136
4137         if (must_be_locked)
4138                 up_read(&rbd_dev->lock_rwsem);
4139         return;
4140
4141 err_img_request:
4142         rbd_img_request_put(img_request);
4143 err_unlock:
4144         if (must_be_locked)
4145                 up_read(&rbd_dev->lock_rwsem);
4146 err_rq:
4147         if (result)
4148                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4149                          obj_op_name(op_type), length, offset, result);
4150         ceph_put_snap_context(snapc);
4151 err:
4152         blk_mq_end_request(rq, result);
4153 }
4154
4155 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4156                 const struct blk_mq_queue_data *bd)
4157 {
4158         struct request *rq = bd->rq;
4159         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4160
4161         queue_work(rbd_wq, work);
4162         return BLK_MQ_RQ_QUEUE_OK;
4163 }
4164
4165 static void rbd_free_disk(struct rbd_device *rbd_dev)
4166 {
4167         blk_cleanup_queue(rbd_dev->disk->queue);
4168         blk_mq_free_tag_set(&rbd_dev->tag_set);
4169         put_disk(rbd_dev->disk);
4170         rbd_dev->disk = NULL;
4171 }
4172
4173 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4174                              struct ceph_object_id *oid,
4175                              struct ceph_object_locator *oloc,
4176                              void *buf, int buf_len)
4177
4178 {
4179         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4180         struct ceph_osd_request *req;
4181         struct page **pages;
4182         int num_pages = calc_pages_for(0, buf_len);
4183         int ret;
4184
4185         req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4186         if (!req)
4187                 return -ENOMEM;
4188
4189         ceph_oid_copy(&req->r_base_oid, oid);
4190         ceph_oloc_copy(&req->r_base_oloc, oloc);
4191         req->r_flags = CEPH_OSD_FLAG_READ;
4192
4193         ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4194         if (ret)
4195                 goto out_req;
4196
4197         pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4198         if (IS_ERR(pages)) {
4199                 ret = PTR_ERR(pages);
4200                 goto out_req;
4201         }
4202
4203         osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4204         osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4205                                          true);
4206
4207         ceph_osdc_start_request(osdc, req, false);
4208         ret = ceph_osdc_wait_request(osdc, req);
4209         if (ret >= 0)
4210                 ceph_copy_from_page_vector(pages, buf, 0, ret);
4211
4212 out_req:
4213         ceph_osdc_put_request(req);
4214         return ret;
4215 }
4216
4217 /*
4218  * Read the complete header for the given rbd device.  On successful
4219  * return, the rbd_dev->header field will contain up-to-date
4220  * information about the image.
4221  */
4222 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4223 {
4224         struct rbd_image_header_ondisk *ondisk = NULL;
4225         u32 snap_count = 0;
4226         u64 names_size = 0;
4227         u32 want_count;
4228         int ret;
4229
4230         /*
4231          * The complete header will include an array of its 64-bit
4232          * snapshot ids, followed by the names of those snapshots as
4233          * a contiguous block of NUL-terminated strings.  Note that
4234          * the number of snapshots could change by the time we read
4235          * it in, in which case we re-read it.
4236          */
4237         do {
4238                 size_t size;
4239
4240                 kfree(ondisk);
4241
4242                 size = sizeof (*ondisk);
4243                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4244                 size += names_size;
4245                 ondisk = kmalloc(size, GFP_KERNEL);
4246                 if (!ondisk)
4247                         return -ENOMEM;
4248
4249                 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4250                                         &rbd_dev->header_oloc, ondisk, size);
4251                 if (ret < 0)
4252                         goto out;
4253                 if ((size_t)ret < size) {
4254                         ret = -ENXIO;
4255                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4256                                 size, ret);
4257                         goto out;
4258                 }
4259                 if (!rbd_dev_ondisk_valid(ondisk)) {
4260                         ret = -ENXIO;
4261                         rbd_warn(rbd_dev, "invalid header");
4262                         goto out;
4263                 }
4264
4265                 names_size = le64_to_cpu(ondisk->snap_names_len);
4266                 want_count = snap_count;
4267                 snap_count = le32_to_cpu(ondisk->snap_count);
4268         } while (snap_count != want_count);
4269
4270         ret = rbd_header_from_disk(rbd_dev, ondisk);
4271 out:
4272         kfree(ondisk);
4273
4274         return ret;
4275 }
4276
4277 /*
4278  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4279  * has disappeared from the (just updated) snapshot context.
4280  */
4281 static void rbd_exists_validate(struct rbd_device *rbd_dev)
4282 {
4283         u64 snap_id;
4284
4285         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4286                 return;
4287
4288         snap_id = rbd_dev->spec->snap_id;
4289         if (snap_id == CEPH_NOSNAP)
4290                 return;
4291
4292         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4293                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4294 }
4295
4296 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4297 {
4298         sector_t size;
4299
4300         /*
4301          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4302          * try to update its size.  If REMOVING is set, updating size
4303          * is just useless work since the device can't be opened.
4304          */
4305         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4306             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4307                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4308                 dout("setting size to %llu sectors", (unsigned long long)size);
4309                 set_capacity(rbd_dev->disk, size);
4310                 revalidate_disk(rbd_dev->disk);
4311         }
4312 }
4313
4314 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4315 {
4316         u64 mapping_size;
4317         int ret;
4318
4319         down_write(&rbd_dev->header_rwsem);
4320         mapping_size = rbd_dev->mapping.size;
4321
4322         ret = rbd_dev_header_info(rbd_dev);
4323         if (ret)
4324                 goto out;
4325
4326         /*
4327          * If there is a parent, see if it has disappeared due to the
4328          * mapped image getting flattened.
4329          */
4330         if (rbd_dev->parent) {
4331                 ret = rbd_dev_v2_parent_info(rbd_dev);
4332                 if (ret)
4333                         goto out;
4334         }
4335
4336         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4337                 rbd_dev->mapping.size = rbd_dev->header.image_size;
4338         } else {
4339                 /* validate mapped snapshot's EXISTS flag */
4340                 rbd_exists_validate(rbd_dev);
4341         }
4342
4343 out:
4344         up_write(&rbd_dev->header_rwsem);
4345         if (!ret && mapping_size != rbd_dev->mapping.size)
4346                 rbd_dev_update_size(rbd_dev);
4347
4348         return ret;
4349 }
4350
4351 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
4352                 unsigned int hctx_idx, unsigned int numa_node)
4353 {
4354         struct work_struct *work = blk_mq_rq_to_pdu(rq);
4355
4356         INIT_WORK(work, rbd_queue_workfn);
4357         return 0;
4358 }
4359
4360 static const struct blk_mq_ops rbd_mq_ops = {
4361         .queue_rq       = rbd_queue_rq,
4362         .init_request   = rbd_init_request,
4363 };
4364
4365 static int rbd_init_disk(struct rbd_device *rbd_dev)
4366 {
4367         struct gendisk *disk;
4368         struct request_queue *q;
4369         u64 segment_size;
4370         int err;
4371
4372         /* create gendisk info */
4373         disk = alloc_disk(single_major ?
4374                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4375                           RBD_MINORS_PER_MAJOR);
4376         if (!disk)
4377                 return -ENOMEM;
4378
4379         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4380                  rbd_dev->dev_id);
4381         disk->major = rbd_dev->major;
4382         disk->first_minor = rbd_dev->minor;
4383         if (single_major)
4384                 disk->flags |= GENHD_FL_EXT_DEVT;
4385         disk->fops = &rbd_bd_ops;
4386         disk->private_data = rbd_dev;
4387
4388         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4389         rbd_dev->tag_set.ops = &rbd_mq_ops;
4390         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4391         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4392         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4393         rbd_dev->tag_set.nr_hw_queues = 1;
4394         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4395
4396         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4397         if (err)
4398                 goto out_disk;
4399
4400         q = blk_mq_init_queue(&rbd_dev->tag_set);
4401         if (IS_ERR(q)) {
4402                 err = PTR_ERR(q);
4403                 goto out_tag_set;
4404         }
4405
4406         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4407         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4408
4409         /* set io sizes to object size */
4410         segment_size = rbd_obj_bytes(&rbd_dev->header);
4411         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4412         q->limits.max_sectors = queue_max_hw_sectors(q);
4413         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4414         blk_queue_max_segment_size(q, segment_size);
4415         blk_queue_io_min(q, segment_size);
4416         blk_queue_io_opt(q, segment_size);
4417
4418         /* enable the discard support */
4419         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4420         q->limits.discard_granularity = segment_size;
4421         q->limits.discard_alignment = segment_size;
4422         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4423
4424         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4425                 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
4426
4427         /*
4428          * disk_release() expects a queue ref from add_disk() and will
4429          * put it.  Hold an extra ref until add_disk() is called.
4430          */
4431         WARN_ON(!blk_get_queue(q));
4432         disk->queue = q;
4433         q->queuedata = rbd_dev;
4434
4435         rbd_dev->disk = disk;
4436
4437         return 0;
4438 out_tag_set:
4439         blk_mq_free_tag_set(&rbd_dev->tag_set);
4440 out_disk:
4441         put_disk(disk);
4442         return err;
4443 }
4444
4445 /*
4446   sysfs
4447 */
4448
4449 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4450 {
4451         return container_of(dev, struct rbd_device, dev);
4452 }
4453
4454 static ssize_t rbd_size_show(struct device *dev,
4455                              struct device_attribute *attr, char *buf)
4456 {
4457         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4458
4459         return sprintf(buf, "%llu\n",
4460                 (unsigned long long)rbd_dev->mapping.size);
4461 }
4462
4463 /*
4464  * Note this shows the features for whatever's mapped, which is not
4465  * necessarily the base image.
4466  */
4467 static ssize_t rbd_features_show(struct device *dev,
4468                              struct device_attribute *attr, char *buf)
4469 {
4470         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4471
4472         return sprintf(buf, "0x%016llx\n",
4473                         (unsigned long long)rbd_dev->mapping.features);
4474 }
4475
4476 static ssize_t rbd_major_show(struct device *dev,
4477                               struct device_attribute *attr, char *buf)
4478 {
4479         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4480
4481         if (rbd_dev->major)
4482                 return sprintf(buf, "%d\n", rbd_dev->major);
4483
4484         return sprintf(buf, "(none)\n");
4485 }
4486
4487 static ssize_t rbd_minor_show(struct device *dev,
4488                               struct device_attribute *attr, char *buf)
4489 {
4490         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4491
4492         return sprintf(buf, "%d\n", rbd_dev->minor);
4493 }
4494
4495 static ssize_t rbd_client_addr_show(struct device *dev,
4496                                     struct device_attribute *attr, char *buf)
4497 {
4498         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4499         struct ceph_entity_addr *client_addr =
4500             ceph_client_addr(rbd_dev->rbd_client->client);
4501
4502         return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4503                        le32_to_cpu(client_addr->nonce));
4504 }
4505
4506 static ssize_t rbd_client_id_show(struct device *dev,
4507                                   struct device_attribute *attr, char *buf)
4508 {
4509         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4510
4511         return sprintf(buf, "client%lld\n",
4512                        ceph_client_gid(rbd_dev->rbd_client->client));
4513 }
4514
4515 static ssize_t rbd_cluster_fsid_show(struct device *dev,
4516                                      struct device_attribute *attr, char *buf)
4517 {
4518         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4519
4520         return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4521 }
4522
4523 static ssize_t rbd_config_info_show(struct device *dev,
4524                                     struct device_attribute *attr, char *buf)
4525 {
4526         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4527
4528         return sprintf(buf, "%s\n", rbd_dev->config_info);
4529 }
4530
4531 static ssize_t rbd_pool_show(struct device *dev,
4532                              struct device_attribute *attr, char *buf)
4533 {
4534         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4535
4536         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4537 }
4538
4539 static ssize_t rbd_pool_id_show(struct device *dev,
4540                              struct device_attribute *attr, char *buf)
4541 {
4542         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4543
4544         return sprintf(buf, "%llu\n",
4545                         (unsigned long long) rbd_dev->spec->pool_id);
4546 }
4547
4548 static ssize_t rbd_name_show(struct device *dev,
4549                              struct device_attribute *attr, char *buf)
4550 {
4551         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4552
4553         if (rbd_dev->spec->image_name)
4554                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4555
4556         return sprintf(buf, "(unknown)\n");
4557 }
4558
4559 static ssize_t rbd_image_id_show(struct device *dev,
4560                              struct device_attribute *attr, char *buf)
4561 {
4562         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4563
4564         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4565 }
4566
4567 /*
4568  * Shows the name of the currently-mapped snapshot (or
4569  * RBD_SNAP_HEAD_NAME for the base image).
4570  */
4571 static ssize_t rbd_snap_show(struct device *dev,
4572                              struct device_attribute *attr,
4573                              char *buf)
4574 {
4575         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4576
4577         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4578 }
4579
4580 static ssize_t rbd_snap_id_show(struct device *dev,
4581                                 struct device_attribute *attr, char *buf)
4582 {
4583         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4584
4585         return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4586 }
4587
4588 /*
4589  * For a v2 image, shows the chain of parent images, separated by empty
4590  * lines.  For v1 images or if there is no parent, shows "(no parent
4591  * image)".
4592  */
4593 static ssize_t rbd_parent_show(struct device *dev,
4594                                struct device_attribute *attr,
4595                                char *buf)
4596 {
4597         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4598         ssize_t count = 0;
4599
4600         if (!rbd_dev->parent)
4601                 return sprintf(buf, "(no parent image)\n");
4602
4603         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4604                 struct rbd_spec *spec = rbd_dev->parent_spec;
4605
4606                 count += sprintf(&buf[count], "%s"
4607                             "pool_id %llu\npool_name %s\n"
4608                             "image_id %s\nimage_name %s\n"
4609                             "snap_id %llu\nsnap_name %s\n"
4610                             "overlap %llu\n",
4611                             !count ? "" : "\n", /* first? */
4612                             spec->pool_id, spec->pool_name,
4613                             spec->image_id, spec->image_name ?: "(unknown)",
4614                             spec->snap_id, spec->snap_name,
4615                             rbd_dev->parent_overlap);
4616         }
4617
4618         return count;
4619 }
4620
4621 static ssize_t rbd_image_refresh(struct device *dev,
4622                                  struct device_attribute *attr,
4623                                  const char *buf,
4624                                  size_t size)
4625 {
4626         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4627         int ret;
4628
4629         ret = rbd_dev_refresh(rbd_dev);
4630         if (ret)
4631                 return ret;
4632
4633         return size;
4634 }
4635
4636 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4637 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4638 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4639 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4640 static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4641 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4642 static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4643 static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4644 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4645 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4646 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4647 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4648 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4649 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4650 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4651 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4652
4653 static struct attribute *rbd_attrs[] = {
4654         &dev_attr_size.attr,
4655         &dev_attr_features.attr,
4656         &dev_attr_major.attr,
4657         &dev_attr_minor.attr,
4658         &dev_attr_client_addr.attr,
4659         &dev_attr_client_id.attr,
4660         &dev_attr_cluster_fsid.attr,
4661         &dev_attr_config_info.attr,
4662         &dev_attr_pool.attr,
4663         &dev_attr_pool_id.attr,
4664         &dev_attr_name.attr,
4665         &dev_attr_image_id.attr,
4666         &dev_attr_current_snap.attr,
4667         &dev_attr_snap_id.attr,
4668         &dev_attr_parent.attr,
4669         &dev_attr_refresh.attr,
4670         NULL
4671 };
4672
4673 static struct attribute_group rbd_attr_group = {
4674         .attrs = rbd_attrs,
4675 };
4676
4677 static const struct attribute_group *rbd_attr_groups[] = {
4678         &rbd_attr_group,
4679         NULL
4680 };
4681
4682 static void rbd_dev_release(struct device *dev);
4683
4684 static const struct device_type rbd_device_type = {
4685         .name           = "rbd",
4686         .groups         = rbd_attr_groups,
4687         .release        = rbd_dev_release,
4688 };
4689
4690 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4691 {
4692         kref_get(&spec->kref);
4693
4694         return spec;
4695 }
4696
4697 static void rbd_spec_free(struct kref *kref);
4698 static void rbd_spec_put(struct rbd_spec *spec)
4699 {
4700         if (spec)
4701                 kref_put(&spec->kref, rbd_spec_free);
4702 }
4703
4704 static struct rbd_spec *rbd_spec_alloc(void)
4705 {
4706         struct rbd_spec *spec;
4707
4708         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4709         if (!spec)
4710                 return NULL;
4711
4712         spec->pool_id = CEPH_NOPOOL;
4713         spec->snap_id = CEPH_NOSNAP;
4714         kref_init(&spec->kref);
4715
4716         return spec;
4717 }
4718
4719 static void rbd_spec_free(struct kref *kref)
4720 {
4721         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4722
4723         kfree(spec->pool_name);
4724         kfree(spec->image_id);
4725         kfree(spec->image_name);
4726         kfree(spec->snap_name);
4727         kfree(spec);
4728 }
4729
4730 static void rbd_dev_free(struct rbd_device *rbd_dev)
4731 {
4732         WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4733         WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4734
4735         ceph_oid_destroy(&rbd_dev->header_oid);
4736         ceph_oloc_destroy(&rbd_dev->header_oloc);
4737         kfree(rbd_dev->config_info);
4738
4739         rbd_put_client(rbd_dev->rbd_client);
4740         rbd_spec_put(rbd_dev->spec);
4741         kfree(rbd_dev->opts);
4742         kfree(rbd_dev);
4743 }
4744
4745 static void rbd_dev_release(struct device *dev)
4746 {
4747         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4748         bool need_put = !!rbd_dev->opts;
4749
4750         if (need_put) {
4751                 destroy_workqueue(rbd_dev->task_wq);
4752                 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4753         }
4754
4755         rbd_dev_free(rbd_dev);
4756
4757         /*
4758          * This is racy, but way better than putting module outside of
4759          * the release callback.  The race window is pretty small, so
4760          * doing something similar to dm (dm-builtin.c) is overkill.
4761          */
4762         if (need_put)
4763                 module_put(THIS_MODULE);
4764 }
4765
4766 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4767                                            struct rbd_spec *spec)
4768 {
4769         struct rbd_device *rbd_dev;
4770
4771         rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4772         if (!rbd_dev)
4773                 return NULL;
4774
4775         spin_lock_init(&rbd_dev->lock);
4776         INIT_LIST_HEAD(&rbd_dev->node);
4777         init_rwsem(&rbd_dev->header_rwsem);
4778
4779         rbd_dev->header.data_pool_id = CEPH_NOPOOL;
4780         ceph_oid_init(&rbd_dev->header_oid);
4781         rbd_dev->header_oloc.pool = spec->pool_id;
4782
4783         mutex_init(&rbd_dev->watch_mutex);
4784         rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4785         INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4786
4787         init_rwsem(&rbd_dev->lock_rwsem);
4788         rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4789         INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4790         INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4791         INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4792         INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4793         init_waitqueue_head(&rbd_dev->lock_waitq);
4794
4795         rbd_dev->dev.bus = &rbd_bus_type;
4796         rbd_dev->dev.type = &rbd_device_type;
4797         rbd_dev->dev.parent = &rbd_root_dev;
4798         device_initialize(&rbd_dev->dev);
4799
4800         rbd_dev->rbd_client = rbdc;
4801         rbd_dev->spec = spec;
4802
4803         return rbd_dev;
4804 }
4805
4806 /*
4807  * Create a mapping rbd_dev.
4808  */
4809 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4810                                          struct rbd_spec *spec,
4811                                          struct rbd_options *opts)
4812 {
4813         struct rbd_device *rbd_dev;
4814
4815         rbd_dev = __rbd_dev_create(rbdc, spec);
4816         if (!rbd_dev)
4817                 return NULL;
4818
4819         rbd_dev->opts = opts;
4820
4821         /* get an id and fill in device name */
4822         rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4823                                          minor_to_rbd_dev_id(1 << MINORBITS),
4824                                          GFP_KERNEL);
4825         if (rbd_dev->dev_id < 0)
4826                 goto fail_rbd_dev;
4827
4828         sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4829         rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4830                                                    rbd_dev->name);
4831         if (!rbd_dev->task_wq)
4832                 goto fail_dev_id;
4833
4834         /* we have a ref from do_rbd_add() */
4835         __module_get(THIS_MODULE);
4836
4837         dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4838         return rbd_dev;
4839
4840 fail_dev_id:
4841         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4842 fail_rbd_dev:
4843         rbd_dev_free(rbd_dev);
4844         return NULL;
4845 }
4846
4847 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4848 {
4849         if (rbd_dev)
4850                 put_device(&rbd_dev->dev);
4851 }
4852
4853 /*
4854  * Get the size and object order for an image snapshot, or if
4855  * snap_id is CEPH_NOSNAP, gets this information for the base
4856  * image.
4857  */
4858 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4859                                 u8 *order, u64 *snap_size)
4860 {
4861         __le64 snapid = cpu_to_le64(snap_id);
4862         int ret;
4863         struct {
4864                 u8 order;
4865                 __le64 size;
4866         } __attribute__ ((packed)) size_buf = { 0 };
4867
4868         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4869                                   &rbd_dev->header_oloc, "get_size",
4870                                   &snapid, sizeof(snapid),
4871                                   &size_buf, sizeof(size_buf));
4872         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4873         if (ret < 0)
4874                 return ret;
4875         if (ret < sizeof (size_buf))
4876                 return -ERANGE;
4877
4878         if (order) {
4879                 *order = size_buf.order;
4880                 dout("  order %u", (unsigned int)*order);
4881         }
4882         *snap_size = le64_to_cpu(size_buf.size);
4883
4884         dout("  snap_id 0x%016llx snap_size = %llu\n",
4885                 (unsigned long long)snap_id,
4886                 (unsigned long long)*snap_size);
4887
4888         return 0;
4889 }
4890
4891 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4892 {
4893         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4894                                         &rbd_dev->header.obj_order,
4895                                         &rbd_dev->header.image_size);
4896 }
4897
4898 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4899 {
4900         void *reply_buf;
4901         int ret;
4902         void *p;
4903
4904         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4905         if (!reply_buf)
4906                 return -ENOMEM;
4907
4908         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4909                                   &rbd_dev->header_oloc, "get_object_prefix",
4910                                   NULL, 0, reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4911         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4912         if (ret < 0)
4913                 goto out;
4914
4915         p = reply_buf;
4916         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4917                                                 p + ret, NULL, GFP_NOIO);
4918         ret = 0;
4919
4920         if (IS_ERR(rbd_dev->header.object_prefix)) {
4921                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4922                 rbd_dev->header.object_prefix = NULL;
4923         } else {
4924                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4925         }
4926 out:
4927         kfree(reply_buf);
4928
4929         return ret;
4930 }
4931
4932 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4933                 u64 *snap_features)
4934 {
4935         __le64 snapid = cpu_to_le64(snap_id);
4936         struct {
4937                 __le64 features;
4938                 __le64 incompat;
4939         } __attribute__ ((packed)) features_buf = { 0 };
4940         u64 unsup;
4941         int ret;
4942
4943         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
4944                                   &rbd_dev->header_oloc, "get_features",
4945                                   &snapid, sizeof(snapid),
4946                                   &features_buf, sizeof(features_buf));
4947         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4948         if (ret < 0)
4949                 return ret;
4950         if (ret < sizeof (features_buf))
4951                 return -ERANGE;
4952
4953         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4954         if (unsup) {
4955                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4956                          unsup);
4957                 return -ENXIO;
4958         }
4959
4960         *snap_features = le64_to_cpu(features_buf.features);
4961
4962         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4963                 (unsigned long long)snap_id,
4964                 (unsigned long long)*snap_features,
4965                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4966
4967         return 0;
4968 }
4969
4970 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4971 {
4972         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4973                                                 &rbd_dev->header.features);
4974 }
4975
4976 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4977 {
4978         struct rbd_spec *parent_spec;
4979         size_t size;
4980         void *reply_buf = NULL;
4981         __le64 snapid;
4982         void *p;
4983         void *end;
4984         u64 pool_id;
4985         char *image_id;
4986         u64 snap_id;
4987         u64 overlap;
4988         int ret;
4989
4990         parent_spec = rbd_spec_alloc();
4991         if (!parent_spec)
4992                 return -ENOMEM;
4993
4994         size = sizeof (__le64) +                                /* pool_id */
4995                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4996                 sizeof (__le64) +                               /* snap_id */
4997                 sizeof (__le64);                                /* overlap */
4998         reply_buf = kmalloc(size, GFP_KERNEL);
4999         if (!reply_buf) {
5000                 ret = -ENOMEM;
5001                 goto out_err;
5002         }
5003
5004         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5005         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5006                                   &rbd_dev->header_oloc, "get_parent",
5007                                   &snapid, sizeof(snapid), reply_buf, size);
5008         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5009         if (ret < 0)
5010                 goto out_err;
5011
5012         p = reply_buf;
5013         end = reply_buf + ret;
5014         ret = -ERANGE;
5015         ceph_decode_64_safe(&p, end, pool_id, out_err);
5016         if (pool_id == CEPH_NOPOOL) {
5017                 /*
5018                  * Either the parent never existed, or we have
5019                  * record of it but the image got flattened so it no
5020                  * longer has a parent.  When the parent of a
5021                  * layered image disappears we immediately set the
5022                  * overlap to 0.  The effect of this is that all new
5023                  * requests will be treated as if the image had no
5024                  * parent.
5025                  */
5026                 if (rbd_dev->parent_overlap) {
5027                         rbd_dev->parent_overlap = 0;
5028                         rbd_dev_parent_put(rbd_dev);
5029                         pr_info("%s: clone image has been flattened\n",
5030                                 rbd_dev->disk->disk_name);
5031                 }
5032
5033                 goto out;       /* No parent?  No problem. */
5034         }
5035
5036         /* The ceph file layout needs to fit pool id in 32 bits */
5037
5038         ret = -EIO;
5039         if (pool_id > (u64)U32_MAX) {
5040                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5041                         (unsigned long long)pool_id, U32_MAX);
5042                 goto out_err;
5043         }
5044
5045         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5046         if (IS_ERR(image_id)) {
5047                 ret = PTR_ERR(image_id);
5048                 goto out_err;
5049         }
5050         ceph_decode_64_safe(&p, end, snap_id, out_err);
5051         ceph_decode_64_safe(&p, end, overlap, out_err);
5052
5053         /*
5054          * The parent won't change (except when the clone is
5055          * flattened, already handled that).  So we only need to
5056          * record the parent spec we have not already done so.
5057          */
5058         if (!rbd_dev->parent_spec) {
5059                 parent_spec->pool_id = pool_id;
5060                 parent_spec->image_id = image_id;
5061                 parent_spec->snap_id = snap_id;
5062                 rbd_dev->parent_spec = parent_spec;
5063                 parent_spec = NULL;     /* rbd_dev now owns this */
5064         } else {
5065                 kfree(image_id);
5066         }
5067
5068         /*
5069          * We always update the parent overlap.  If it's zero we issue
5070          * a warning, as we will proceed as if there was no parent.
5071          */
5072         if (!overlap) {
5073                 if (parent_spec) {
5074                         /* refresh, careful to warn just once */
5075                         if (rbd_dev->parent_overlap)
5076                                 rbd_warn(rbd_dev,
5077                                     "clone now standalone (overlap became 0)");
5078                 } else {
5079                         /* initial probe */
5080                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5081                 }
5082         }
5083         rbd_dev->parent_overlap = overlap;
5084
5085 out:
5086         ret = 0;
5087 out_err:
5088         kfree(reply_buf);
5089         rbd_spec_put(parent_spec);
5090
5091         return ret;
5092 }
5093
5094 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5095 {
5096         struct {
5097                 __le64 stripe_unit;
5098                 __le64 stripe_count;
5099         } __attribute__ ((packed)) striping_info_buf = { 0 };
5100         size_t size = sizeof (striping_info_buf);
5101         void *p;
5102         u64 obj_size;
5103         u64 stripe_unit;
5104         u64 stripe_count;
5105         int ret;
5106
5107         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5108                                 &rbd_dev->header_oloc, "get_stripe_unit_count",
5109                                 NULL, 0, &striping_info_buf, size);
5110         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5111         if (ret < 0)
5112                 return ret;
5113         if (ret < size)
5114                 return -ERANGE;
5115
5116         /*
5117          * We don't actually support the "fancy striping" feature
5118          * (STRIPINGV2) yet, but if the striping sizes are the
5119          * defaults the behavior is the same as before.  So find
5120          * out, and only fail if the image has non-default values.
5121          */
5122         ret = -EINVAL;
5123         obj_size = rbd_obj_bytes(&rbd_dev->header);
5124         p = &striping_info_buf;
5125         stripe_unit = ceph_decode_64(&p);
5126         if (stripe_unit != obj_size) {
5127                 rbd_warn(rbd_dev, "unsupported stripe unit "
5128                                 "(got %llu want %llu)",
5129                                 stripe_unit, obj_size);
5130                 return -EINVAL;
5131         }
5132         stripe_count = ceph_decode_64(&p);
5133         if (stripe_count != 1) {
5134                 rbd_warn(rbd_dev, "unsupported stripe count "
5135                                 "(got %llu want 1)", stripe_count);
5136                 return -EINVAL;
5137         }
5138         rbd_dev->header.stripe_unit = stripe_unit;
5139         rbd_dev->header.stripe_count = stripe_count;
5140
5141         return 0;
5142 }
5143
5144 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
5145 {
5146         __le64 data_pool_id;
5147         int ret;
5148
5149         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5150                                   &rbd_dev->header_oloc, "get_data_pool",
5151                                   NULL, 0, &data_pool_id, sizeof(data_pool_id));
5152         if (ret < 0)
5153                 return ret;
5154         if (ret < sizeof(data_pool_id))
5155                 return -EBADMSG;
5156
5157         rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
5158         WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
5159         return 0;
5160 }
5161
5162 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5163 {
5164         CEPH_DEFINE_OID_ONSTACK(oid);
5165         size_t image_id_size;
5166         char *image_id;
5167         void *p;
5168         void *end;
5169         size_t size;
5170         void *reply_buf = NULL;
5171         size_t len = 0;
5172         char *image_name = NULL;
5173         int ret;
5174
5175         rbd_assert(!rbd_dev->spec->image_name);
5176
5177         len = strlen(rbd_dev->spec->image_id);
5178         image_id_size = sizeof (__le32) + len;
5179         image_id = kmalloc(image_id_size, GFP_KERNEL);
5180         if (!image_id)
5181                 return NULL;
5182
5183         p = image_id;
5184         end = image_id + image_id_size;
5185         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5186
5187         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5188         reply_buf = kmalloc(size, GFP_KERNEL);
5189         if (!reply_buf)
5190                 goto out;
5191
5192         ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5193         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5194                                   "dir_get_name", image_id, image_id_size,
5195                                   reply_buf, size);
5196         if (ret < 0)
5197                 goto out;
5198         p = reply_buf;
5199         end = reply_buf + ret;
5200
5201         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5202         if (IS_ERR(image_name))
5203                 image_name = NULL;
5204         else
5205                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5206 out:
5207         kfree(reply_buf);
5208         kfree(image_id);
5209
5210         return image_name;
5211 }
5212
5213 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5214 {
5215         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5216         const char *snap_name;
5217         u32 which = 0;
5218
5219         /* Skip over names until we find the one we are looking for */
5220
5221         snap_name = rbd_dev->header.snap_names;
5222         while (which < snapc->num_snaps) {
5223                 if (!strcmp(name, snap_name))
5224                         return snapc->snaps[which];
5225                 snap_name += strlen(snap_name) + 1;
5226                 which++;
5227         }
5228         return CEPH_NOSNAP;
5229 }
5230
5231 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5232 {
5233         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5234         u32 which;
5235         bool found = false;
5236         u64 snap_id;
5237
5238         for (which = 0; !found && which < snapc->num_snaps; which++) {
5239                 const char *snap_name;
5240
5241                 snap_id = snapc->snaps[which];
5242                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5243                 if (IS_ERR(snap_name)) {
5244                         /* ignore no-longer existing snapshots */
5245                         if (PTR_ERR(snap_name) == -ENOENT)
5246                                 continue;
5247                         else
5248                                 break;
5249                 }
5250                 found = !strcmp(name, snap_name);
5251                 kfree(snap_name);
5252         }
5253         return found ? snap_id : CEPH_NOSNAP;
5254 }
5255
5256 /*
5257  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5258  * no snapshot by that name is found, or if an error occurs.
5259  */
5260 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5261 {
5262         if (rbd_dev->image_format == 1)
5263                 return rbd_v1_snap_id_by_name(rbd_dev, name);
5264
5265         return rbd_v2_snap_id_by_name(rbd_dev, name);
5266 }
5267
5268 /*
5269  * An image being mapped will have everything but the snap id.
5270  */
5271 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5272 {
5273         struct rbd_spec *spec = rbd_dev->spec;
5274
5275         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5276         rbd_assert(spec->image_id && spec->image_name);
5277         rbd_assert(spec->snap_name);
5278
5279         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5280                 u64 snap_id;
5281
5282                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5283                 if (snap_id == CEPH_NOSNAP)
5284                         return -ENOENT;
5285
5286                 spec->snap_id = snap_id;
5287         } else {
5288                 spec->snap_id = CEPH_NOSNAP;
5289         }
5290
5291         return 0;
5292 }
5293
5294 /*
5295  * A parent image will have all ids but none of the names.
5296  *
5297  * All names in an rbd spec are dynamically allocated.  It's OK if we
5298  * can't figure out the name for an image id.
5299  */
5300 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5301 {
5302         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5303         struct rbd_spec *spec = rbd_dev->spec;
5304         const char *pool_name;
5305         const char *image_name;
5306         const char *snap_name;
5307         int ret;
5308
5309         rbd_assert(spec->pool_id != CEPH_NOPOOL);
5310         rbd_assert(spec->image_id);
5311         rbd_assert(spec->snap_id != CEPH_NOSNAP);
5312
5313         /* Get the pool name; we have to make our own copy of this */
5314
5315         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5316         if (!pool_name) {
5317                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5318                 return -EIO;
5319         }
5320         pool_name = kstrdup(pool_name, GFP_KERNEL);
5321         if (!pool_name)
5322                 return -ENOMEM;
5323
5324         /* Fetch the image name; tolerate failure here */
5325
5326         image_name = rbd_dev_image_name(rbd_dev);
5327         if (!image_name)
5328                 rbd_warn(rbd_dev, "unable to get image name");
5329
5330         /* Fetch the snapshot name */
5331
5332         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5333         if (IS_ERR(snap_name)) {
5334                 ret = PTR_ERR(snap_name);
5335                 goto out_err;
5336         }
5337
5338         spec->pool_name = pool_name;
5339         spec->image_name = image_name;
5340         spec->snap_name = snap_name;
5341
5342         return 0;
5343
5344 out_err:
5345         kfree(image_name);
5346         kfree(pool_name);
5347         return ret;
5348 }
5349
5350 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5351 {
5352         size_t size;
5353         int ret;
5354         void *reply_buf;
5355         void *p;
5356         void *end;
5357         u64 seq;
5358         u32 snap_count;
5359         struct ceph_snap_context *snapc;
5360         u32 i;
5361
5362         /*
5363          * We'll need room for the seq value (maximum snapshot id),
5364          * snapshot count, and array of that many snapshot ids.
5365          * For now we have a fixed upper limit on the number we're
5366          * prepared to receive.
5367          */
5368         size = sizeof (__le64) + sizeof (__le32) +
5369                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
5370         reply_buf = kzalloc(size, GFP_KERNEL);
5371         if (!reply_buf)
5372                 return -ENOMEM;
5373
5374         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5375                                   &rbd_dev->header_oloc, "get_snapcontext",
5376                                   NULL, 0, reply_buf, size);
5377         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5378         if (ret < 0)
5379                 goto out;
5380
5381         p = reply_buf;
5382         end = reply_buf + ret;
5383         ret = -ERANGE;
5384         ceph_decode_64_safe(&p, end, seq, out);
5385         ceph_decode_32_safe(&p, end, snap_count, out);
5386
5387         /*
5388          * Make sure the reported number of snapshot ids wouldn't go
5389          * beyond the end of our buffer.  But before checking that,
5390          * make sure the computed size of the snapshot context we
5391          * allocate is representable in a size_t.
5392          */
5393         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5394                                  / sizeof (u64)) {
5395                 ret = -EINVAL;
5396                 goto out;
5397         }
5398         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5399                 goto out;
5400         ret = 0;
5401
5402         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5403         if (!snapc) {
5404                 ret = -ENOMEM;
5405                 goto out;
5406         }
5407         snapc->seq = seq;
5408         for (i = 0; i < snap_count; i++)
5409                 snapc->snaps[i] = ceph_decode_64(&p);
5410
5411         ceph_put_snap_context(rbd_dev->header.snapc);
5412         rbd_dev->header.snapc = snapc;
5413
5414         dout("  snap context seq = %llu, snap_count = %u\n",
5415                 (unsigned long long)seq, (unsigned int)snap_count);
5416 out:
5417         kfree(reply_buf);
5418
5419         return ret;
5420 }
5421
5422 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5423                                         u64 snap_id)
5424 {
5425         size_t size;
5426         void *reply_buf;
5427         __le64 snapid;
5428         int ret;
5429         void *p;
5430         void *end;
5431         char *snap_name;
5432
5433         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5434         reply_buf = kmalloc(size, GFP_KERNEL);
5435         if (!reply_buf)
5436                 return ERR_PTR(-ENOMEM);
5437
5438         snapid = cpu_to_le64(snap_id);
5439         ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5440                                   &rbd_dev->header_oloc, "get_snapshot_name",
5441                                   &snapid, sizeof(snapid), reply_buf, size);
5442         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5443         if (ret < 0) {
5444                 snap_name = ERR_PTR(ret);
5445                 goto out;
5446         }
5447
5448         p = reply_buf;
5449         end = reply_buf + ret;
5450         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5451         if (IS_ERR(snap_name))
5452                 goto out;
5453
5454         dout("  snap_id 0x%016llx snap_name = %s\n",
5455                 (unsigned long long)snap_id, snap_name);
5456 out:
5457         kfree(reply_buf);
5458
5459         return snap_name;
5460 }
5461
5462 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5463 {
5464         bool first_time = rbd_dev->header.object_prefix == NULL;
5465         int ret;
5466
5467         ret = rbd_dev_v2_image_size(rbd_dev);
5468         if (ret)
5469                 return ret;
5470
5471         if (first_time) {
5472                 ret = rbd_dev_v2_header_onetime(rbd_dev);
5473                 if (ret)
5474                         return ret;
5475         }
5476
5477         ret = rbd_dev_v2_snap_context(rbd_dev);
5478         if (ret && first_time) {
5479                 kfree(rbd_dev->header.object_prefix);
5480                 rbd_dev->header.object_prefix = NULL;
5481         }
5482
5483         return ret;
5484 }
5485
5486 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5487 {
5488         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5489
5490         if (rbd_dev->image_format == 1)
5491                 return rbd_dev_v1_header_info(rbd_dev);
5492
5493         return rbd_dev_v2_header_info(rbd_dev);
5494 }
5495
5496 /*
5497  * Skips over white space at *buf, and updates *buf to point to the
5498  * first found non-space character (if any). Returns the length of
5499  * the token (string of non-white space characters) found.  Note
5500  * that *buf must be terminated with '\0'.
5501  */
5502 static inline size_t next_token(const char **buf)
5503 {
5504         /*
5505         * These are the characters that produce nonzero for
5506         * isspace() in the "C" and "POSIX" locales.
5507         */
5508         const char *spaces = " \f\n\r\t\v";
5509
5510         *buf += strspn(*buf, spaces);   /* Find start of token */
5511
5512         return strcspn(*buf, spaces);   /* Return token length */
5513 }
5514
5515 /*
5516  * Finds the next token in *buf, dynamically allocates a buffer big
5517  * enough to hold a copy of it, and copies the token into the new
5518  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5519  * that a duplicate buffer is created even for a zero-length token.
5520  *
5521  * Returns a pointer to the newly-allocated duplicate, or a null
5522  * pointer if memory for the duplicate was not available.  If
5523  * the lenp argument is a non-null pointer, the length of the token
5524  * (not including the '\0') is returned in *lenp.
5525  *
5526  * If successful, the *buf pointer will be updated to point beyond
5527  * the end of the found token.
5528  *
5529  * Note: uses GFP_KERNEL for allocation.
5530  */
5531 static inline char *dup_token(const char **buf, size_t *lenp)
5532 {
5533         char *dup;
5534         size_t len;
5535
5536         len = next_token(buf);
5537         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5538         if (!dup)
5539                 return NULL;
5540         *(dup + len) = '\0';
5541         *buf += len;
5542
5543         if (lenp)
5544                 *lenp = len;
5545
5546         return dup;
5547 }
5548
5549 /*
5550  * Parse the options provided for an "rbd add" (i.e., rbd image
5551  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5552  * and the data written is passed here via a NUL-terminated buffer.
5553  * Returns 0 if successful or an error code otherwise.
5554  *
5555  * The information extracted from these options is recorded in
5556  * the other parameters which return dynamically-allocated
5557  * structures:
5558  *  ceph_opts
5559  *      The address of a pointer that will refer to a ceph options
5560  *      structure.  Caller must release the returned pointer using
5561  *      ceph_destroy_options() when it is no longer needed.
5562  *  rbd_opts
5563  *      Address of an rbd options pointer.  Fully initialized by
5564  *      this function; caller must release with kfree().
5565  *  spec
5566  *      Address of an rbd image specification pointer.  Fully
5567  *      initialized by this function based on parsed options.
5568  *      Caller must release with rbd_spec_put().
5569  *
5570  * The options passed take this form:
5571  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5572  * where:
5573  *  <mon_addrs>
5574  *      A comma-separated list of one or more monitor addresses.
5575  *      A monitor address is an ip address, optionally followed
5576  *      by a port number (separated by a colon).
5577  *        I.e.:  ip1[:port1][,ip2[:port2]...]
5578  *  <options>
5579  *      A comma-separated list of ceph and/or rbd options.
5580  *  <pool_name>
5581  *      The name of the rados pool containing the rbd image.
5582  *  <image_name>
5583  *      The name of the image in that pool to map.
5584  *  <snap_id>
5585  *      An optional snapshot id.  If provided, the mapping will
5586  *      present data from the image at the time that snapshot was
5587  *      created.  The image head is used if no snapshot id is
5588  *      provided.  Snapshot mappings are always read-only.
5589  */
5590 static int rbd_add_parse_args(const char *buf,
5591                                 struct ceph_options **ceph_opts,
5592                                 struct rbd_options **opts,
5593                                 struct rbd_spec **rbd_spec)
5594 {
5595         size_t len;
5596         char *options;
5597         const char *mon_addrs;
5598         char *snap_name;
5599         size_t mon_addrs_size;
5600         struct rbd_spec *spec = NULL;
5601         struct rbd_options *rbd_opts = NULL;
5602         struct ceph_options *copts;
5603         int ret;
5604
5605         /* The first four tokens are required */
5606
5607         len = next_token(&buf);
5608         if (!len) {
5609                 rbd_warn(NULL, "no monitor address(es) provided");
5610                 return -EINVAL;
5611         }
5612         mon_addrs = buf;
5613         mon_addrs_size = len + 1;
5614         buf += len;
5615
5616         ret = -EINVAL;
5617         options = dup_token(&buf, NULL);
5618         if (!options)
5619                 return -ENOMEM;
5620         if (!*options) {
5621                 rbd_warn(NULL, "no options provided");
5622                 goto out_err;
5623         }
5624
5625         spec = rbd_spec_alloc();
5626         if (!spec)
5627                 goto out_mem;
5628
5629         spec->pool_name = dup_token(&buf, NULL);
5630         if (!spec->pool_name)
5631                 goto out_mem;
5632         if (!*spec->pool_name) {
5633                 rbd_warn(NULL, "no pool name provided");
5634                 goto out_err;
5635         }
5636
5637         spec->image_name = dup_token(&buf, NULL);
5638         if (!spec->image_name)
5639                 goto out_mem;
5640         if (!*spec->image_name) {
5641                 rbd_warn(NULL, "no image name provided");
5642                 goto out_err;
5643         }
5644
5645         /*
5646          * Snapshot name is optional; default is to use "-"
5647          * (indicating the head/no snapshot).
5648          */
5649         len = next_token(&buf);
5650         if (!len) {
5651                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5652                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5653         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5654                 ret = -ENAMETOOLONG;
5655                 goto out_err;
5656         }
5657         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5658         if (!snap_name)
5659                 goto out_mem;
5660         *(snap_name + len) = '\0';
5661         spec->snap_name = snap_name;
5662
5663         /* Initialize all rbd options to the defaults */
5664
5665         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5666         if (!rbd_opts)
5667                 goto out_mem;
5668
5669         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5670         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5671         rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5672         rbd_opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
5673
5674         copts = ceph_parse_options(options, mon_addrs,
5675                                         mon_addrs + mon_addrs_size - 1,
5676                                         parse_rbd_opts_token, rbd_opts);
5677         if (IS_ERR(copts)) {
5678                 ret = PTR_ERR(copts);
5679                 goto out_err;
5680         }
5681         kfree(options);
5682
5683         *ceph_opts = copts;
5684         *opts = rbd_opts;
5685         *rbd_spec = spec;
5686
5687         return 0;
5688 out_mem:
5689         ret = -ENOMEM;
5690 out_err:
5691         kfree(rbd_opts);
5692         rbd_spec_put(spec);
5693         kfree(options);
5694
5695         return ret;
5696 }
5697
5698 /*
5699  * Return pool id (>= 0) or a negative error code.
5700  */
5701 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5702 {
5703         struct ceph_options *opts = rbdc->client->options;
5704         u64 newest_epoch;
5705         int tries = 0;
5706         int ret;
5707
5708 again:
5709         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5710         if (ret == -ENOENT && tries++ < 1) {
5711                 ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5712                                             &newest_epoch);
5713                 if (ret < 0)
5714                         return ret;
5715
5716                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5717                         ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5718                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5719                                                      newest_epoch,
5720                                                      opts->mount_timeout);
5721                         goto again;
5722                 } else {
5723                         /* the osdmap we have is new enough */
5724                         return -ENOENT;
5725                 }
5726         }
5727
5728         return ret;
5729 }
5730
5731 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
5732 {
5733         down_write(&rbd_dev->lock_rwsem);
5734         if (__rbd_is_lock_owner(rbd_dev))
5735                 rbd_unlock(rbd_dev);
5736         up_write(&rbd_dev->lock_rwsem);
5737 }
5738
5739 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
5740 {
5741         if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
5742                 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
5743                 return -EINVAL;
5744         }
5745
5746         /* FIXME: "rbd map --exclusive" should be in interruptible */
5747         down_read(&rbd_dev->lock_rwsem);
5748         rbd_wait_state_locked(rbd_dev);
5749         up_read(&rbd_dev->lock_rwsem);
5750         if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
5751                 rbd_warn(rbd_dev, "failed to acquire exclusive lock");
5752                 return -EROFS;
5753         }
5754
5755         return 0;
5756 }
5757
5758 /*
5759  * An rbd format 2 image has a unique identifier, distinct from the
5760  * name given to it by the user.  Internally, that identifier is
5761  * what's used to specify the names of objects related to the image.
5762  *
5763  * A special "rbd id" object is used to map an rbd image name to its
5764  * id.  If that object doesn't exist, then there is no v2 rbd image
5765  * with the supplied name.
5766  *
5767  * This function will record the given rbd_dev's image_id field if
5768  * it can be determined, and in that case will return 0.  If any
5769  * errors occur a negative errno will be returned and the rbd_dev's
5770  * image_id field will be unchanged (and should be NULL).
5771  */
5772 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5773 {
5774         int ret;
5775         size_t size;
5776         CEPH_DEFINE_OID_ONSTACK(oid);
5777         void *response;
5778         char *image_id;
5779
5780         /*
5781          * When probing a parent image, the image id is already
5782          * known (and the image name likely is not).  There's no
5783          * need to fetch the image id again in this case.  We
5784          * do still need to set the image format though.
5785          */
5786         if (rbd_dev->spec->image_id) {
5787                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5788
5789                 return 0;
5790         }
5791
5792         /*
5793          * First, see if the format 2 image id file exists, and if
5794          * so, get the image's persistent id from it.
5795          */
5796         ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
5797                                rbd_dev->spec->image_name);
5798         if (ret)
5799                 return ret;
5800
5801         dout("rbd id object name is %s\n", oid.name);
5802
5803         /* Response will be an encoded string, which includes a length */
5804
5805         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5806         response = kzalloc(size, GFP_NOIO);
5807         if (!response) {
5808                 ret = -ENOMEM;
5809                 goto out;
5810         }
5811
5812         /* If it doesn't exist we'll assume it's a format 1 image */
5813
5814         ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5815                                   "get_id", NULL, 0,
5816                                   response, RBD_IMAGE_ID_LEN_MAX);
5817         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5818         if (ret == -ENOENT) {
5819                 image_id = kstrdup("", GFP_KERNEL);
5820                 ret = image_id ? 0 : -ENOMEM;
5821                 if (!ret)
5822                         rbd_dev->image_format = 1;
5823         } else if (ret >= 0) {
5824                 void *p = response;
5825
5826                 image_id = ceph_extract_encoded_string(&p, p + ret,
5827                                                 NULL, GFP_NOIO);
5828                 ret = PTR_ERR_OR_ZERO(image_id);
5829                 if (!ret)
5830                         rbd_dev->image_format = 2;
5831         }
5832
5833         if (!ret) {
5834                 rbd_dev->spec->image_id = image_id;
5835                 dout("image_id is %s\n", image_id);
5836         }
5837 out:
5838         kfree(response);
5839         ceph_oid_destroy(&oid);
5840         return ret;
5841 }
5842
5843 /*
5844  * Undo whatever state changes are made by v1 or v2 header info
5845  * call.
5846  */
5847 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5848 {
5849         struct rbd_image_header *header;
5850
5851         rbd_dev_parent_put(rbd_dev);
5852
5853         /* Free dynamic fields from the header, then zero it out */
5854
5855         header = &rbd_dev->header;
5856         ceph_put_snap_context(header->snapc);
5857         kfree(header->snap_sizes);
5858         kfree(header->snap_names);
5859         kfree(header->object_prefix);
5860         memset(header, 0, sizeof (*header));
5861 }
5862
5863 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5864 {
5865         int ret;
5866
5867         ret = rbd_dev_v2_object_prefix(rbd_dev);
5868         if (ret)
5869                 goto out_err;
5870
5871         /*
5872          * Get the and check features for the image.  Currently the
5873          * features are assumed to never change.
5874          */
5875         ret = rbd_dev_v2_features(rbd_dev);
5876         if (ret)
5877                 goto out_err;
5878
5879         /* If the image supports fancy striping, get its parameters */
5880
5881         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5882                 ret = rbd_dev_v2_striping_info(rbd_dev);
5883                 if (ret < 0)
5884                         goto out_err;
5885         }
5886
5887         if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
5888                 ret = rbd_dev_v2_data_pool(rbd_dev);
5889                 if (ret)
5890                         goto out_err;
5891         }
5892
5893         rbd_init_layout(rbd_dev);
5894         return 0;
5895
5896 out_err:
5897         rbd_dev->header.features = 0;
5898         kfree(rbd_dev->header.object_prefix);
5899         rbd_dev->header.object_prefix = NULL;
5900         return ret;
5901 }
5902
5903 /*
5904  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5905  * rbd_dev_image_probe() recursion depth, which means it's also the
5906  * length of the already discovered part of the parent chain.
5907  */
5908 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5909 {
5910         struct rbd_device *parent = NULL;
5911         int ret;
5912
5913         if (!rbd_dev->parent_spec)
5914                 return 0;
5915
5916         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5917                 pr_info("parent chain is too long (%d)\n", depth);
5918                 ret = -EINVAL;
5919                 goto out_err;
5920         }
5921
5922         parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5923         if (!parent) {
5924                 ret = -ENOMEM;
5925                 goto out_err;
5926         }
5927
5928         /*
5929          * Images related by parent/child relationships always share
5930          * rbd_client and spec/parent_spec, so bump their refcounts.
5931          */
5932         __rbd_get_client(rbd_dev->rbd_client);
5933         rbd_spec_get(rbd_dev->parent_spec);
5934
5935         ret = rbd_dev_image_probe(parent, depth);
5936         if (ret < 0)
5937                 goto out_err;
5938
5939         rbd_dev->parent = parent;
5940         atomic_set(&rbd_dev->parent_ref, 1);
5941         return 0;
5942
5943 out_err:
5944         rbd_dev_unparent(rbd_dev);
5945         rbd_dev_destroy(parent);
5946         return ret;
5947 }
5948
5949 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5950 {
5951         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5952         rbd_dev_mapping_clear(rbd_dev);
5953         rbd_free_disk(rbd_dev);
5954         if (!single_major)
5955                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5956 }
5957
5958 /*
5959  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5960  * upon return.
5961  */
5962 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5963 {
5964         int ret;
5965
5966         /* Record our major and minor device numbers. */
5967
5968         if (!single_major) {
5969                 ret = register_blkdev(0, rbd_dev->name);
5970                 if (ret < 0)
5971                         goto err_out_unlock;
5972
5973                 rbd_dev->major = ret;
5974                 rbd_dev->minor = 0;
5975         } else {
5976                 rbd_dev->major = rbd_major;
5977                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5978         }
5979
5980         /* Set up the blkdev mapping. */
5981
5982         ret = rbd_init_disk(rbd_dev);
5983         if (ret)
5984                 goto err_out_blkdev;
5985
5986         ret = rbd_dev_mapping_set(rbd_dev);
5987         if (ret)
5988                 goto err_out_disk;
5989
5990         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5991         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5992
5993         ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5994         if (ret)
5995                 goto err_out_mapping;
5996
5997         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5998         up_write(&rbd_dev->header_rwsem);
5999         return 0;
6000
6001 err_out_mapping:
6002         rbd_dev_mapping_clear(rbd_dev);
6003 err_out_disk:
6004         rbd_free_disk(rbd_dev);
6005 err_out_blkdev:
6006         if (!single_major)
6007                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6008 err_out_unlock:
6009         up_write(&rbd_dev->header_rwsem);
6010         return ret;
6011 }
6012
6013 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6014 {
6015         struct rbd_spec *spec = rbd_dev->spec;
6016         int ret;
6017
6018         /* Record the header object name for this rbd image. */
6019
6020         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6021         if (rbd_dev->image_format == 1)
6022                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6023                                        spec->image_name, RBD_SUFFIX);
6024         else
6025                 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6026                                        RBD_HEADER_PREFIX, spec->image_id);
6027
6028         return ret;
6029 }
6030
6031 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6032 {
6033         rbd_dev_unprobe(rbd_dev);
6034         if (rbd_dev->opts)
6035                 rbd_unregister_watch(rbd_dev);
6036         rbd_dev->image_format = 0;
6037         kfree(rbd_dev->spec->image_id);
6038         rbd_dev->spec->image_id = NULL;
6039 }
6040
6041 /*
6042  * Probe for the existence of the header object for the given rbd
6043  * device.  If this image is the one being mapped (i.e., not a
6044  * parent), initiate a watch on its header object before using that
6045  * object to get detailed information about the rbd image.
6046  */
6047 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6048 {
6049         int ret;
6050
6051         /*
6052          * Get the id from the image id object.  Unless there's an
6053          * error, rbd_dev->spec->image_id will be filled in with
6054          * a dynamically-allocated string, and rbd_dev->image_format
6055          * will be set to either 1 or 2.
6056          */
6057         ret = rbd_dev_image_id(rbd_dev);
6058         if (ret)
6059                 return ret;
6060
6061         ret = rbd_dev_header_name(rbd_dev);
6062         if (ret)
6063                 goto err_out_format;
6064
6065         if (!depth) {
6066                 ret = rbd_register_watch(rbd_dev);
6067                 if (ret) {
6068                         if (ret == -ENOENT)
6069                                 pr_info("image %s/%s does not exist\n",
6070                                         rbd_dev->spec->pool_name,
6071                                         rbd_dev->spec->image_name);
6072                         goto err_out_format;
6073                 }
6074         }
6075
6076         ret = rbd_dev_header_info(rbd_dev);
6077         if (ret)
6078                 goto err_out_watch;
6079
6080         /*
6081          * If this image is the one being mapped, we have pool name and
6082          * id, image name and id, and snap name - need to fill snap id.
6083          * Otherwise this is a parent image, identified by pool, image
6084          * and snap ids - need to fill in names for those ids.
6085          */
6086         if (!depth)
6087                 ret = rbd_spec_fill_snap_id(rbd_dev);
6088         else
6089                 ret = rbd_spec_fill_names(rbd_dev);
6090         if (ret) {
6091                 if (ret == -ENOENT)
6092                         pr_info("snap %s/%s@%s does not exist\n",
6093                                 rbd_dev->spec->pool_name,
6094                                 rbd_dev->spec->image_name,
6095                                 rbd_dev->spec->snap_name);
6096                 goto err_out_probe;
6097         }
6098
6099         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6100                 ret = rbd_dev_v2_parent_info(rbd_dev);
6101                 if (ret)
6102                         goto err_out_probe;
6103
6104                 /*
6105                  * Need to warn users if this image is the one being
6106                  * mapped and has a parent.
6107                  */
6108                 if (!depth && rbd_dev->parent_spec)
6109                         rbd_warn(rbd_dev,
6110                                  "WARNING: kernel layering is EXPERIMENTAL!");
6111         }
6112
6113         ret = rbd_dev_probe_parent(rbd_dev, depth);
6114         if (ret)
6115                 goto err_out_probe;
6116
6117         dout("discovered format %u image, header name is %s\n",
6118                 rbd_dev->image_format, rbd_dev->header_oid.name);
6119         return 0;
6120
6121 err_out_probe:
6122         rbd_dev_unprobe(rbd_dev);
6123 err_out_watch:
6124         if (!depth)
6125                 rbd_unregister_watch(rbd_dev);
6126 err_out_format:
6127         rbd_dev->image_format = 0;
6128         kfree(rbd_dev->spec->image_id);
6129         rbd_dev->spec->image_id = NULL;
6130         return ret;
6131 }
6132
6133 static ssize_t do_rbd_add(struct bus_type *bus,
6134                           const char *buf,
6135                           size_t count)
6136 {
6137         struct rbd_device *rbd_dev = NULL;
6138         struct ceph_options *ceph_opts = NULL;
6139         struct rbd_options *rbd_opts = NULL;
6140         struct rbd_spec *spec = NULL;
6141         struct rbd_client *rbdc;
6142         bool read_only;
6143         int rc;
6144
6145         if (!try_module_get(THIS_MODULE))
6146                 return -ENODEV;
6147
6148         /* parse add command */
6149         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6150         if (rc < 0)
6151                 goto out;
6152
6153         rbdc = rbd_get_client(ceph_opts);
6154         if (IS_ERR(rbdc)) {
6155                 rc = PTR_ERR(rbdc);
6156                 goto err_out_args;
6157         }
6158
6159         /* pick the pool */
6160         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6161         if (rc < 0) {
6162                 if (rc == -ENOENT)
6163                         pr_info("pool %s does not exist\n", spec->pool_name);
6164                 goto err_out_client;
6165         }
6166         spec->pool_id = (u64)rc;
6167
6168         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6169         if (!rbd_dev) {
6170                 rc = -ENOMEM;
6171                 goto err_out_client;
6172         }
6173         rbdc = NULL;            /* rbd_dev now owns this */
6174         spec = NULL;            /* rbd_dev now owns this */
6175         rbd_opts = NULL;        /* rbd_dev now owns this */
6176
6177         rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6178         if (!rbd_dev->config_info) {
6179                 rc = -ENOMEM;
6180                 goto err_out_rbd_dev;
6181         }
6182
6183         down_write(&rbd_dev->header_rwsem);
6184         rc = rbd_dev_image_probe(rbd_dev, 0);
6185         if (rc < 0) {
6186                 up_write(&rbd_dev->header_rwsem);
6187                 goto err_out_rbd_dev;
6188         }
6189
6190         /* If we are mapping a snapshot it must be marked read-only */
6191
6192         read_only = rbd_dev->opts->read_only;
6193         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6194                 read_only = true;
6195         rbd_dev->mapping.read_only = read_only;
6196
6197         rc = rbd_dev_device_setup(rbd_dev);
6198         if (rc)
6199                 goto err_out_image_probe;
6200
6201         if (rbd_dev->opts->exclusive) {
6202                 rc = rbd_add_acquire_lock(rbd_dev);
6203                 if (rc)
6204                         goto err_out_device_setup;
6205         }
6206
6207         /* Everything's ready.  Announce the disk to the world. */
6208
6209         rc = device_add(&rbd_dev->dev);
6210         if (rc)
6211                 goto err_out_image_lock;
6212
6213         add_disk(rbd_dev->disk);
6214         /* see rbd_init_disk() */
6215         blk_put_queue(rbd_dev->disk->queue);
6216
6217         spin_lock(&rbd_dev_list_lock);
6218         list_add_tail(&rbd_dev->node, &rbd_dev_list);
6219         spin_unlock(&rbd_dev_list_lock);
6220
6221         pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6222                 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6223                 rbd_dev->header.features);
6224         rc = count;
6225 out:
6226         module_put(THIS_MODULE);
6227         return rc;
6228
6229 err_out_image_lock:
6230         rbd_dev_image_unlock(rbd_dev);
6231 err_out_device_setup:
6232         rbd_dev_device_release(rbd_dev);
6233 err_out_image_probe:
6234         rbd_dev_image_release(rbd_dev);
6235 err_out_rbd_dev:
6236         rbd_dev_destroy(rbd_dev);
6237 err_out_client:
6238         rbd_put_client(rbdc);
6239 err_out_args:
6240         rbd_spec_put(spec);
6241         kfree(rbd_opts);
6242         goto out;
6243 }
6244
6245 static ssize_t rbd_add(struct bus_type *bus,
6246                        const char *buf,
6247                        size_t count)
6248 {
6249         if (single_major)
6250                 return -EINVAL;
6251
6252         return do_rbd_add(bus, buf, count);
6253 }
6254
6255 static ssize_t rbd_add_single_major(struct bus_type *bus,
6256                                     const char *buf,
6257                                     size_t count)
6258 {
6259         return do_rbd_add(bus, buf, count);
6260 }
6261
6262 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6263 {
6264         while (rbd_dev->parent) {
6265                 struct rbd_device *first = rbd_dev;
6266                 struct rbd_device *second = first->parent;
6267                 struct rbd_device *third;
6268
6269                 /*
6270                  * Follow to the parent with no grandparent and
6271                  * remove it.
6272                  */
6273                 while (second && (third = second->parent)) {
6274                         first = second;
6275                         second = third;
6276                 }
6277                 rbd_assert(second);
6278                 rbd_dev_image_release(second);
6279                 rbd_dev_destroy(second);
6280                 first->parent = NULL;
6281                 first->parent_overlap = 0;
6282
6283                 rbd_assert(first->parent_spec);
6284                 rbd_spec_put(first->parent_spec);
6285                 first->parent_spec = NULL;
6286         }
6287 }
6288
6289 static ssize_t do_rbd_remove(struct bus_type *bus,
6290                              const char *buf,
6291                              size_t count)
6292 {
6293         struct rbd_device *rbd_dev = NULL;
6294         struct list_head *tmp;
6295         int dev_id;
6296         char opt_buf[6];
6297         bool already = false;
6298         bool force = false;
6299         int ret;
6300
6301         dev_id = -1;
6302         opt_buf[0] = '\0';
6303         sscanf(buf, "%d %5s", &dev_id, opt_buf);
6304         if (dev_id < 0) {
6305                 pr_err("dev_id out of range\n");
6306                 return -EINVAL;
6307         }
6308         if (opt_buf[0] != '\0') {
6309                 if (!strcmp(opt_buf, "force")) {
6310                         force = true;
6311                 } else {
6312                         pr_err("bad remove option at '%s'\n", opt_buf);
6313                         return -EINVAL;
6314                 }
6315         }
6316
6317         ret = -ENOENT;
6318         spin_lock(&rbd_dev_list_lock);
6319         list_for_each(tmp, &rbd_dev_list) {
6320                 rbd_dev = list_entry(tmp, struct rbd_device, node);
6321                 if (rbd_dev->dev_id == dev_id) {
6322                         ret = 0;
6323                         break;
6324                 }
6325         }
6326         if (!ret) {
6327                 spin_lock_irq(&rbd_dev->lock);
6328                 if (rbd_dev->open_count && !force)
6329                         ret = -EBUSY;
6330                 else
6331                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6332                                                         &rbd_dev->flags);
6333                 spin_unlock_irq(&rbd_dev->lock);
6334         }
6335         spin_unlock(&rbd_dev_list_lock);
6336         if (ret < 0 || already)
6337                 return ret;
6338
6339         if (force) {
6340                 /*
6341                  * Prevent new IO from being queued and wait for existing
6342                  * IO to complete/fail.
6343                  */
6344                 blk_mq_freeze_queue(rbd_dev->disk->queue);
6345                 blk_set_queue_dying(rbd_dev->disk->queue);
6346         }
6347
6348         del_gendisk(rbd_dev->disk);
6349         spin_lock(&rbd_dev_list_lock);
6350         list_del_init(&rbd_dev->node);
6351         spin_unlock(&rbd_dev_list_lock);
6352         device_del(&rbd_dev->dev);
6353
6354         rbd_dev_image_unlock(rbd_dev);
6355         rbd_dev_device_release(rbd_dev);
6356         rbd_dev_image_release(rbd_dev);
6357         rbd_dev_destroy(rbd_dev);
6358         return count;
6359 }
6360
6361 static ssize_t rbd_remove(struct bus_type *bus,
6362                           const char *buf,
6363                           size_t count)
6364 {
6365         if (single_major)
6366                 return -EINVAL;
6367
6368         return do_rbd_remove(bus, buf, count);
6369 }
6370
6371 static ssize_t rbd_remove_single_major(struct bus_type *bus,
6372                                        const char *buf,
6373                                        size_t count)
6374 {
6375         return do_rbd_remove(bus, buf, count);
6376 }
6377
6378 /*
6379  * create control files in sysfs
6380  * /sys/bus/rbd/...
6381  */
6382 static int rbd_sysfs_init(void)
6383 {
6384         int ret;
6385
6386         ret = device_register(&rbd_root_dev);
6387         if (ret < 0)
6388                 return ret;
6389
6390         ret = bus_register(&rbd_bus_type);
6391         if (ret < 0)
6392                 device_unregister(&rbd_root_dev);
6393
6394         return ret;
6395 }
6396
6397 static void rbd_sysfs_cleanup(void)
6398 {
6399         bus_unregister(&rbd_bus_type);
6400         device_unregister(&rbd_root_dev);
6401 }
6402
6403 static int rbd_slab_init(void)
6404 {
6405         rbd_assert(!rbd_img_request_cache);
6406         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6407         if (!rbd_img_request_cache)
6408                 return -ENOMEM;
6409
6410         rbd_assert(!rbd_obj_request_cache);
6411         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6412         if (!rbd_obj_request_cache)
6413                 goto out_err;
6414
6415         return 0;
6416
6417 out_err:
6418         kmem_cache_destroy(rbd_img_request_cache);
6419         rbd_img_request_cache = NULL;
6420         return -ENOMEM;
6421 }
6422
6423 static void rbd_slab_exit(void)
6424 {
6425         rbd_assert(rbd_obj_request_cache);
6426         kmem_cache_destroy(rbd_obj_request_cache);
6427         rbd_obj_request_cache = NULL;
6428
6429         rbd_assert(rbd_img_request_cache);
6430         kmem_cache_destroy(rbd_img_request_cache);
6431         rbd_img_request_cache = NULL;
6432 }
6433
6434 static int __init rbd_init(void)
6435 {
6436         int rc;
6437
6438         if (!libceph_compatible(NULL)) {
6439                 rbd_warn(NULL, "libceph incompatibility (quitting)");
6440                 return -EINVAL;
6441         }
6442
6443         rc = rbd_slab_init();
6444         if (rc)
6445                 return rc;
6446
6447         /*
6448          * The number of active work items is limited by the number of
6449          * rbd devices * queue depth, so leave @max_active at default.
6450          */
6451         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6452         if (!rbd_wq) {
6453                 rc = -ENOMEM;
6454                 goto err_out_slab;
6455         }
6456
6457         if (single_major) {
6458                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
6459                 if (rbd_major < 0) {
6460                         rc = rbd_major;
6461                         goto err_out_wq;
6462                 }
6463         }
6464
6465         rc = rbd_sysfs_init();
6466         if (rc)
6467                 goto err_out_blkdev;
6468
6469         if (single_major)
6470                 pr_info("loaded (major %d)\n", rbd_major);
6471         else
6472                 pr_info("loaded\n");
6473
6474         return 0;
6475
6476 err_out_blkdev:
6477         if (single_major)
6478                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6479 err_out_wq:
6480         destroy_workqueue(rbd_wq);
6481 err_out_slab:
6482         rbd_slab_exit();
6483         return rc;
6484 }
6485
6486 static void __exit rbd_exit(void)
6487 {
6488         ida_destroy(&rbd_dev_id_ida);
6489         rbd_sysfs_cleanup();
6490         if (single_major)
6491                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
6492         destroy_workqueue(rbd_wq);
6493         rbd_slab_exit();
6494 }
6495
6496 module_init(rbd_init);
6497 module_exit(rbd_exit);
6498
6499 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6500 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6501 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6502 /* following authorship retained from original osdblk.c */
6503 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6504
6505 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6506 MODULE_LICENSE("GPL");