]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
Merge remote-tracking branches 'asoc/topic/headers', 'asoc/topic/intel', 'asoc/topic...
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544         set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546         return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551         struct rbd_device *rbd_dev = disk->private_data;
552         unsigned long open_count_before;
553
554         spin_lock_irq(&rbd_dev->lock);
555         open_count_before = rbd_dev->open_count--;
556         spin_unlock_irq(&rbd_dev->lock);
557         rbd_assert(open_count_before > 0);
558
559         put_device(&rbd_dev->dev);
560 }
561
562 static const struct block_device_operations rbd_bd_ops = {
563         .owner                  = THIS_MODULE,
564         .open                   = rbd_open,
565         .release                = rbd_release,
566 };
567
568 /*
569  * Initialize an rbd client instance.  Success or not, this function
570  * consumes ceph_opts.  Caller holds client_mutex.
571  */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574         struct rbd_client *rbdc;
575         int ret = -ENOMEM;
576
577         dout("%s:\n", __func__);
578         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579         if (!rbdc)
580                 goto out_opt;
581
582         kref_init(&rbdc->kref);
583         INIT_LIST_HEAD(&rbdc->node);
584
585         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586         if (IS_ERR(rbdc->client))
587                 goto out_rbdc;
588         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590         ret = ceph_open_session(rbdc->client);
591         if (ret < 0)
592                 goto out_client;
593
594         spin_lock(&rbd_client_list_lock);
595         list_add_tail(&rbdc->node, &rbd_client_list);
596         spin_unlock(&rbd_client_list_lock);
597
598         dout("%s: rbdc %p\n", __func__, rbdc);
599
600         return rbdc;
601 out_client:
602         ceph_destroy_client(rbdc->client);
603 out_rbdc:
604         kfree(rbdc);
605 out_opt:
606         if (ceph_opts)
607                 ceph_destroy_options(ceph_opts);
608         dout("%s: error %d\n", __func__, ret);
609
610         return ERR_PTR(ret);
611 }
612
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615         kref_get(&rbdc->kref);
616
617         return rbdc;
618 }
619
620 /*
621  * Find a ceph client with specific addr and configuration.  If
622  * found, bump its reference count.
623  */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626         struct rbd_client *client_node;
627         bool found = false;
628
629         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630                 return NULL;
631
632         spin_lock(&rbd_client_list_lock);
633         list_for_each_entry(client_node, &rbd_client_list, node) {
634                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635                         __rbd_get_client(client_node);
636
637                         found = true;
638                         break;
639                 }
640         }
641         spin_unlock(&rbd_client_list_lock);
642
643         return found ? client_node : NULL;
644 }
645
646 /*
647  * mount options
648  */
649 enum {
650         Opt_last_int,
651         /* int args above */
652         Opt_last_string,
653         /* string args above */
654         Opt_read_only,
655         Opt_read_write,
656         /* Boolean args above */
657         Opt_last_bool,
658 };
659
660 static match_table_t rbd_opts_tokens = {
661         /* int args above */
662         /* string args above */
663         {Opt_read_only, "read_only"},
664         {Opt_read_only, "ro"},          /* Alternate spelling */
665         {Opt_read_write, "read_write"},
666         {Opt_read_write, "rw"},         /* Alternate spelling */
667         /* Boolean args above */
668         {-1, NULL}
669 };
670
671 struct rbd_options {
672         bool    read_only;
673 };
674
675 #define RBD_READ_ONLY_DEFAULT   false
676
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679         struct rbd_options *rbd_opts = private;
680         substring_t argstr[MAX_OPT_ARGS];
681         int token, intval, ret;
682
683         token = match_token(c, rbd_opts_tokens, argstr);
684         if (token < 0)
685                 return -EINVAL;
686
687         if (token < Opt_last_int) {
688                 ret = match_int(&argstr[0], &intval);
689                 if (ret < 0) {
690                         pr_err("bad mount option arg (not int) "
691                                "at '%s'\n", c);
692                         return ret;
693                 }
694                 dout("got int token %d val %d\n", token, intval);
695         } else if (token > Opt_last_int && token < Opt_last_string) {
696                 dout("got string token %d val %s\n", token,
697                      argstr[0].from);
698         } else if (token > Opt_last_string && token < Opt_last_bool) {
699                 dout("got Boolean token %d\n", token);
700         } else {
701                 dout("got token %d\n", token);
702         }
703
704         switch (token) {
705         case Opt_read_only:
706                 rbd_opts->read_only = true;
707                 break;
708         case Opt_read_write:
709                 rbd_opts->read_only = false;
710                 break;
711         default:
712                 rbd_assert(false);
713                 break;
714         }
715         return 0;
716 }
717
718 /*
719  * Get a ceph client with specific addr and configuration, if one does
720  * not exist create it.  Either way, ceph_opts is consumed by this
721  * function.
722  */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725         struct rbd_client *rbdc;
726
727         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728         rbdc = rbd_client_find(ceph_opts);
729         if (rbdc)       /* using an existing client */
730                 ceph_destroy_options(ceph_opts);
731         else
732                 rbdc = rbd_client_create(ceph_opts);
733         mutex_unlock(&client_mutex);
734
735         return rbdc;
736 }
737
738 /*
739  * Destroy ceph client
740  *
741  * Caller must hold rbd_client_list_lock.
742  */
743 static void rbd_client_release(struct kref *kref)
744 {
745         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747         dout("%s: rbdc %p\n", __func__, rbdc);
748         spin_lock(&rbd_client_list_lock);
749         list_del(&rbdc->node);
750         spin_unlock(&rbd_client_list_lock);
751
752         ceph_destroy_client(rbdc->client);
753         kfree(rbdc);
754 }
755
756 /*
757  * Drop reference to ceph client node. If it's not referenced anymore, release
758  * it.
759  */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762         if (rbdc)
763                 kref_put(&rbdc->kref, rbd_client_release);
764 }
765
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768         return image_format == 1 || image_format == 2;
769 }
770
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773         size_t size;
774         u32 snap_count;
775
776         /* The header has to start with the magic rbd header text */
777         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778                 return false;
779
780         /* The bio layer requires at least sector-sized I/O */
781
782         if (ondisk->options.order < SECTOR_SHIFT)
783                 return false;
784
785         /* If we use u64 in a few spots we may be able to loosen this */
786
787         if (ondisk->options.order > 8 * sizeof (int) - 1)
788                 return false;
789
790         /*
791          * The size of a snapshot header has to fit in a size_t, and
792          * that limits the number of snapshots.
793          */
794         snap_count = le32_to_cpu(ondisk->snap_count);
795         size = SIZE_MAX - sizeof (struct ceph_snap_context);
796         if (snap_count > size / sizeof (__le64))
797                 return false;
798
799         /*
800          * Not only that, but the size of the entire the snapshot
801          * header must also be representable in a size_t.
802          */
803         size -= snap_count * sizeof (__le64);
804         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805                 return false;
806
807         return true;
808 }
809
810 /*
811  * Fill an rbd image header with information from the given format 1
812  * on-disk header.
813  */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815                                  struct rbd_image_header_ondisk *ondisk)
816 {
817         struct rbd_image_header *header = &rbd_dev->header;
818         bool first_time = header->object_prefix == NULL;
819         struct ceph_snap_context *snapc;
820         char *object_prefix = NULL;
821         char *snap_names = NULL;
822         u64 *snap_sizes = NULL;
823         u32 snap_count;
824         size_t size;
825         int ret = -ENOMEM;
826         u32 i;
827
828         /* Allocate this now to avoid having to handle failure below */
829
830         if (first_time) {
831                 size_t len;
832
833                 len = strnlen(ondisk->object_prefix,
834                                 sizeof (ondisk->object_prefix));
835                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836                 if (!object_prefix)
837                         return -ENOMEM;
838                 memcpy(object_prefix, ondisk->object_prefix, len);
839                 object_prefix[len] = '\0';
840         }
841
842         /* Allocate the snapshot context and fill it in */
843
844         snap_count = le32_to_cpu(ondisk->snap_count);
845         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846         if (!snapc)
847                 goto out_err;
848         snapc->seq = le64_to_cpu(ondisk->snap_seq);
849         if (snap_count) {
850                 struct rbd_image_snap_ondisk *snaps;
851                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853                 /* We'll keep a copy of the snapshot names... */
854
855                 if (snap_names_len > (u64)SIZE_MAX)
856                         goto out_2big;
857                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858                 if (!snap_names)
859                         goto out_err;
860
861                 /* ...as well as the array of their sizes. */
862
863                 size = snap_count * sizeof (*header->snap_sizes);
864                 snap_sizes = kmalloc(size, GFP_KERNEL);
865                 if (!snap_sizes)
866                         goto out_err;
867
868                 /*
869                  * Copy the names, and fill in each snapshot's id
870                  * and size.
871                  *
872                  * Note that rbd_dev_v1_header_info() guarantees the
873                  * ondisk buffer we're working with has
874                  * snap_names_len bytes beyond the end of the
875                  * snapshot id array, this memcpy() is safe.
876                  */
877                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878                 snaps = ondisk->snaps;
879                 for (i = 0; i < snap_count; i++) {
880                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882                 }
883         }
884
885         /* We won't fail any more, fill in the header */
886
887         if (first_time) {
888                 header->object_prefix = object_prefix;
889                 header->obj_order = ondisk->options.order;
890                 header->crypt_type = ondisk->options.crypt_type;
891                 header->comp_type = ondisk->options.comp_type;
892                 /* The rest aren't used for format 1 images */
893                 header->stripe_unit = 0;
894                 header->stripe_count = 0;
895                 header->features = 0;
896         } else {
897                 ceph_put_snap_context(header->snapc);
898                 kfree(header->snap_names);
899                 kfree(header->snap_sizes);
900         }
901
902         /* The remaining fields always get updated (when we refresh) */
903
904         header->image_size = le64_to_cpu(ondisk->image_size);
905         header->snapc = snapc;
906         header->snap_names = snap_names;
907         header->snap_sizes = snap_sizes;
908
909         /* Make sure mapping size is consistent with header info */
910
911         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912                 if (rbd_dev->mapping.size != header->image_size)
913                         rbd_dev->mapping.size = header->image_size;
914
915         return 0;
916 out_2big:
917         ret = -EIO;
918 out_err:
919         kfree(snap_sizes);
920         kfree(snap_names);
921         ceph_put_snap_context(snapc);
922         kfree(object_prefix);
923
924         return ret;
925 }
926
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929         const char *snap_name;
930
931         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933         /* Skip over names until we find the one we are looking for */
934
935         snap_name = rbd_dev->header.snap_names;
936         while (which--)
937                 snap_name += strlen(snap_name) + 1;
938
939         return kstrdup(snap_name, GFP_KERNEL);
940 }
941
942 /*
943  * Snapshot id comparison function for use with qsort()/bsearch().
944  * Note that result is for snapshots in *descending* order.
945  */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948         u64 snap_id1 = *(u64 *)s1;
949         u64 snap_id2 = *(u64 *)s2;
950
951         if (snap_id1 < snap_id2)
952                 return 1;
953         return snap_id1 == snap_id2 ? 0 : -1;
954 }
955
956 /*
957  * Search a snapshot context to see if the given snapshot id is
958  * present.
959  *
960  * Returns the position of the snapshot id in the array if it's found,
961  * or BAD_SNAP_INDEX otherwise.
962  *
963  * Note: The snapshot array is in kept sorted (by the osd) in
964  * reverse order, highest snapshot id first.
965  */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969         u64 *found;
970
971         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972                                 sizeof (snap_id), snapid_compare_reverse);
973
974         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978                                         u64 snap_id)
979 {
980         u32 which;
981         const char *snap_name;
982
983         which = rbd_dev_snap_index(rbd_dev, snap_id);
984         if (which == BAD_SNAP_INDEX)
985                 return ERR_PTR(-ENOENT);
986
987         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993         if (snap_id == CEPH_NOSNAP)
994                 return RBD_SNAP_HEAD_NAME;
995
996         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997         if (rbd_dev->image_format == 1)
998                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004                                 u64 *snap_size)
1005 {
1006         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007         if (snap_id == CEPH_NOSNAP) {
1008                 *snap_size = rbd_dev->header.image_size;
1009         } else if (rbd_dev->image_format == 1) {
1010                 u32 which;
1011
1012                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013                 if (which == BAD_SNAP_INDEX)
1014                         return -ENOENT;
1015
1016                 *snap_size = rbd_dev->header.snap_sizes[which];
1017         } else {
1018                 u64 size = 0;
1019                 int ret;
1020
1021                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022                 if (ret)
1023                         return ret;
1024
1025                 *snap_size = size;
1026         }
1027         return 0;
1028 }
1029
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031                         u64 *snap_features)
1032 {
1033         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034         if (snap_id == CEPH_NOSNAP) {
1035                 *snap_features = rbd_dev->header.features;
1036         } else if (rbd_dev->image_format == 1) {
1037                 *snap_features = 0;     /* No features for format 1 */
1038         } else {
1039                 u64 features = 0;
1040                 int ret;
1041
1042                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043                 if (ret)
1044                         return ret;
1045
1046                 *snap_features = features;
1047         }
1048         return 0;
1049 }
1050
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053         u64 snap_id = rbd_dev->spec->snap_id;
1054         u64 size = 0;
1055         u64 features = 0;
1056         int ret;
1057
1058         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059         if (ret)
1060                 return ret;
1061         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062         if (ret)
1063                 return ret;
1064
1065         rbd_dev->mapping.size = size;
1066         rbd_dev->mapping.features = features;
1067
1068         return 0;
1069 }
1070
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073         rbd_dev->mapping.size = 0;
1074         rbd_dev->mapping.features = 0;
1075 }
1076
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079         char *name;
1080         u64 segment;
1081         int ret;
1082         char *name_format;
1083
1084         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085         if (!name)
1086                 return NULL;
1087         segment = offset >> rbd_dev->header.obj_order;
1088         name_format = "%s.%012llx";
1089         if (rbd_dev->image_format == 2)
1090                 name_format = "%s.%016llx";
1091         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092                         rbd_dev->header.object_prefix, segment);
1093         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094                 pr_err("error formatting segment name for #%llu (%d)\n",
1095                         segment, ret);
1096                 kfree(name);
1097                 name = NULL;
1098         }
1099
1100         return name;
1101 }
1102
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105         /* The explicit cast here is needed to drop the const qualifier */
1106
1107         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114         return offset & (segment_size - 1);
1115 }
1116
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118                                 u64 offset, u64 length)
1119 {
1120         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122         offset &= segment_size - 1;
1123
1124         rbd_assert(length <= U64_MAX - offset);
1125         if (offset + length > segment_size)
1126                 length = segment_size - offset;
1127
1128         return length;
1129 }
1130
1131 /*
1132  * returns the size of an object in the image
1133  */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136         return 1 << header->obj_order;
1137 }
1138
1139 /*
1140  * bio helpers
1141  */
1142
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145         struct bio *tmp;
1146
1147         while (chain) {
1148                 tmp = chain;
1149                 chain = chain->bi_next;
1150                 bio_put(tmp);
1151         }
1152 }
1153
1154 /*
1155  * zeros a bio chain, starting at specific offset
1156  */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159         struct bio_vec bv;
1160         struct bvec_iter iter;
1161         unsigned long flags;
1162         void *buf;
1163         int pos = 0;
1164
1165         while (chain) {
1166                 bio_for_each_segment(bv, chain, iter) {
1167                         if (pos + bv.bv_len > start_ofs) {
1168                                 int remainder = max(start_ofs - pos, 0);
1169                                 buf = bvec_kmap_irq(&bv, &flags);
1170                                 memset(buf + remainder, 0,
1171                                        bv.bv_len - remainder);
1172                                 flush_dcache_page(bv.bv_page);
1173                                 bvec_kunmap_irq(buf, &flags);
1174                         }
1175                         pos += bv.bv_len;
1176                 }
1177
1178                 chain = chain->bi_next;
1179         }
1180 }
1181
1182 /*
1183  * similar to zero_bio_chain(), zeros data defined by a page array,
1184  * starting at the given byte offset from the start of the array and
1185  * continuing up to the given end offset.  The pages array is
1186  * assumed to be big enough to hold all bytes up to the end.
1187  */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190         struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192         rbd_assert(end > offset);
1193         rbd_assert(end - offset <= (u64)SIZE_MAX);
1194         while (offset < end) {
1195                 size_t page_offset;
1196                 size_t length;
1197                 unsigned long flags;
1198                 void *kaddr;
1199
1200                 page_offset = offset & ~PAGE_MASK;
1201                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202                 local_irq_save(flags);
1203                 kaddr = kmap_atomic(*page);
1204                 memset(kaddr + page_offset, 0, length);
1205                 flush_dcache_page(*page);
1206                 kunmap_atomic(kaddr);
1207                 local_irq_restore(flags);
1208
1209                 offset += length;
1210                 page++;
1211         }
1212 }
1213
1214 /*
1215  * Clone a portion of a bio, starting at the given byte offset
1216  * and continuing for the number of bytes indicated.
1217  */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219                                         unsigned int offset,
1220                                         unsigned int len,
1221                                         gfp_t gfpmask)
1222 {
1223         struct bio *bio;
1224
1225         bio = bio_clone(bio_src, gfpmask);
1226         if (!bio)
1227                 return NULL;    /* ENOMEM */
1228
1229         bio_advance(bio, offset);
1230         bio->bi_iter.bi_size = len;
1231
1232         return bio;
1233 }
1234
1235 /*
1236  * Clone a portion of a bio chain, starting at the given byte offset
1237  * into the first bio in the source chain and continuing for the
1238  * number of bytes indicated.  The result is another bio chain of
1239  * exactly the given length, or a null pointer on error.
1240  *
1241  * The bio_src and offset parameters are both in-out.  On entry they
1242  * refer to the first source bio and the offset into that bio where
1243  * the start of data to be cloned is located.
1244  *
1245  * On return, bio_src is updated to refer to the bio in the source
1246  * chain that contains first un-cloned byte, and *offset will
1247  * contain the offset of that byte within that bio.
1248  */
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250                                         unsigned int *offset,
1251                                         unsigned int len,
1252                                         gfp_t gfpmask)
1253 {
1254         struct bio *bi = *bio_src;
1255         unsigned int off = *offset;
1256         struct bio *chain = NULL;
1257         struct bio **end;
1258
1259         /* Build up a chain of clone bios up to the limit */
1260
1261         if (!bi || off >= bi->bi_iter.bi_size || !len)
1262                 return NULL;            /* Nothing to clone */
1263
1264         end = &chain;
1265         while (len) {
1266                 unsigned int bi_size;
1267                 struct bio *bio;
1268
1269                 if (!bi) {
1270                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271                         goto out_err;   /* EINVAL; ran out of bio's */
1272                 }
1273                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275                 if (!bio)
1276                         goto out_err;   /* ENOMEM */
1277
1278                 *end = bio;
1279                 end = &bio->bi_next;
1280
1281                 off += bi_size;
1282                 if (off == bi->bi_iter.bi_size) {
1283                         bi = bi->bi_next;
1284                         off = 0;
1285                 }
1286                 len -= bi_size;
1287         }
1288         *bio_src = bi;
1289         *offset = off;
1290
1291         return chain;
1292 out_err:
1293         bio_chain_put(chain);
1294
1295         return NULL;
1296 }
1297
1298 /*
1299  * The default/initial value for all object request flags is 0.  For
1300  * each flag, once its value is set to 1 it is never reset to 0
1301  * again.
1302  */
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1304 {
1305         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306                 struct rbd_device *rbd_dev;
1307
1308                 rbd_dev = obj_request->img_request->rbd_dev;
1309                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310                         obj_request);
1311         }
1312 }
1313
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315 {
1316         smp_mb();
1317         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318 }
1319
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321 {
1322         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323                 struct rbd_device *rbd_dev = NULL;
1324
1325                 if (obj_request_img_data_test(obj_request))
1326                         rbd_dev = obj_request->img_request->rbd_dev;
1327                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328                         obj_request);
1329         }
1330 }
1331
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333 {
1334         smp_mb();
1335         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336 }
1337
1338 /*
1339  * This sets the KNOWN flag after (possibly) setting the EXISTS
1340  * flag.  The latter is set based on the "exists" value provided.
1341  *
1342  * Note that for our purposes once an object exists it never goes
1343  * away again.  It's possible that the response from two existence
1344  * checks are separated by the creation of the target object, and
1345  * the first ("doesn't exist") response arrives *after* the second
1346  * ("does exist").  In that case we ignore the second one.
1347  */
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349                                 bool exists)
1350 {
1351         if (exists)
1352                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354         smp_mb();
1355 }
1356
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358 {
1359         smp_mb();
1360         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361 }
1362
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364 {
1365         smp_mb();
1366         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367 }
1368
1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1370 {
1371         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372                 atomic_read(&obj_request->kref.refcount));
1373         kref_get(&obj_request->kref);
1374 }
1375
1376 static void rbd_obj_request_destroy(struct kref *kref);
1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1378 {
1379         rbd_assert(obj_request != NULL);
1380         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381                 atomic_read(&obj_request->kref.refcount));
1382         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1383 }
1384
1385 static bool img_request_child_test(struct rbd_img_request *img_request);
1386 static void rbd_parent_request_destroy(struct kref *kref);
1387 static void rbd_img_request_destroy(struct kref *kref);
1388 static void rbd_img_request_put(struct rbd_img_request *img_request)
1389 {
1390         rbd_assert(img_request != NULL);
1391         dout("%s: img %p (was %d)\n", __func__, img_request,
1392                 atomic_read(&img_request->kref.refcount));
1393         if (img_request_child_test(img_request))
1394                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1395         else
1396                 kref_put(&img_request->kref, rbd_img_request_destroy);
1397 }
1398
1399 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1400                                         struct rbd_obj_request *obj_request)
1401 {
1402         rbd_assert(obj_request->img_request == NULL);
1403
1404         /* Image request now owns object's original reference */
1405         obj_request->img_request = img_request;
1406         obj_request->which = img_request->obj_request_count;
1407         rbd_assert(!obj_request_img_data_test(obj_request));
1408         obj_request_img_data_set(obj_request);
1409         rbd_assert(obj_request->which != BAD_WHICH);
1410         img_request->obj_request_count++;
1411         list_add_tail(&obj_request->links, &img_request->obj_requests);
1412         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1413                 obj_request->which);
1414 }
1415
1416 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1417                                         struct rbd_obj_request *obj_request)
1418 {
1419         rbd_assert(obj_request->which != BAD_WHICH);
1420
1421         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1422                 obj_request->which);
1423         list_del(&obj_request->links);
1424         rbd_assert(img_request->obj_request_count > 0);
1425         img_request->obj_request_count--;
1426         rbd_assert(obj_request->which == img_request->obj_request_count);
1427         obj_request->which = BAD_WHICH;
1428         rbd_assert(obj_request_img_data_test(obj_request));
1429         rbd_assert(obj_request->img_request == img_request);
1430         obj_request->img_request = NULL;
1431         obj_request->callback = NULL;
1432         rbd_obj_request_put(obj_request);
1433 }
1434
1435 static bool obj_request_type_valid(enum obj_request_type type)
1436 {
1437         switch (type) {
1438         case OBJ_REQUEST_NODATA:
1439         case OBJ_REQUEST_BIO:
1440         case OBJ_REQUEST_PAGES:
1441                 return true;
1442         default:
1443                 return false;
1444         }
1445 }
1446
1447 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1448                                 struct rbd_obj_request *obj_request)
1449 {
1450         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1451
1452         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1453 }
1454
1455 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1456 {
1457
1458         dout("%s: img %p\n", __func__, img_request);
1459
1460         /*
1461          * If no error occurred, compute the aggregate transfer
1462          * count for the image request.  We could instead use
1463          * atomic64_cmpxchg() to update it as each object request
1464          * completes; not clear which way is better off hand.
1465          */
1466         if (!img_request->result) {
1467                 struct rbd_obj_request *obj_request;
1468                 u64 xferred = 0;
1469
1470                 for_each_obj_request(img_request, obj_request)
1471                         xferred += obj_request->xferred;
1472                 img_request->xferred = xferred;
1473         }
1474
1475         if (img_request->callback)
1476                 img_request->callback(img_request);
1477         else
1478                 rbd_img_request_put(img_request);
1479 }
1480
1481 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1482
1483 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1484 {
1485         dout("%s: obj %p\n", __func__, obj_request);
1486
1487         return wait_for_completion_interruptible(&obj_request->completion);
1488 }
1489
1490 /*
1491  * The default/initial value for all image request flags is 0.  Each
1492  * is conditionally set to 1 at image request initialization time
1493  * and currently never change thereafter.
1494  */
1495 static void img_request_write_set(struct rbd_img_request *img_request)
1496 {
1497         set_bit(IMG_REQ_WRITE, &img_request->flags);
1498         smp_mb();
1499 }
1500
1501 static bool img_request_write_test(struct rbd_img_request *img_request)
1502 {
1503         smp_mb();
1504         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1505 }
1506
1507 static void img_request_child_set(struct rbd_img_request *img_request)
1508 {
1509         set_bit(IMG_REQ_CHILD, &img_request->flags);
1510         smp_mb();
1511 }
1512
1513 static void img_request_child_clear(struct rbd_img_request *img_request)
1514 {
1515         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1516         smp_mb();
1517 }
1518
1519 static bool img_request_child_test(struct rbd_img_request *img_request)
1520 {
1521         smp_mb();
1522         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1523 }
1524
1525 static void img_request_layered_set(struct rbd_img_request *img_request)
1526 {
1527         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1528         smp_mb();
1529 }
1530
1531 static void img_request_layered_clear(struct rbd_img_request *img_request)
1532 {
1533         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1534         smp_mb();
1535 }
1536
1537 static bool img_request_layered_test(struct rbd_img_request *img_request)
1538 {
1539         smp_mb();
1540         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1541 }
1542
1543 static void
1544 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1545 {
1546         u64 xferred = obj_request->xferred;
1547         u64 length = obj_request->length;
1548
1549         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1550                 obj_request, obj_request->img_request, obj_request->result,
1551                 xferred, length);
1552         /*
1553          * ENOENT means a hole in the image.  We zero-fill the entire
1554          * length of the request.  A short read also implies zero-fill
1555          * to the end of the request.  An error requires the whole
1556          * length of the request to be reported finished with an error
1557          * to the block layer.  In each case we update the xferred
1558          * count to indicate the whole request was satisfied.
1559          */
1560         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1561         if (obj_request->result == -ENOENT) {
1562                 if (obj_request->type == OBJ_REQUEST_BIO)
1563                         zero_bio_chain(obj_request->bio_list, 0);
1564                 else
1565                         zero_pages(obj_request->pages, 0, length);
1566                 obj_request->result = 0;
1567         } else if (xferred < length && !obj_request->result) {
1568                 if (obj_request->type == OBJ_REQUEST_BIO)
1569                         zero_bio_chain(obj_request->bio_list, xferred);
1570                 else
1571                         zero_pages(obj_request->pages, xferred, length);
1572         }
1573         obj_request->xferred = length;
1574         obj_request_done_set(obj_request);
1575 }
1576
1577 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1578 {
1579         dout("%s: obj %p cb %p\n", __func__, obj_request,
1580                 obj_request->callback);
1581         if (obj_request->callback)
1582                 obj_request->callback(obj_request);
1583         else
1584                 complete_all(&obj_request->completion);
1585 }
1586
1587 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1588 {
1589         dout("%s: obj %p\n", __func__, obj_request);
1590         obj_request_done_set(obj_request);
1591 }
1592
1593 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1594 {
1595         struct rbd_img_request *img_request = NULL;
1596         struct rbd_device *rbd_dev = NULL;
1597         bool layered = false;
1598
1599         if (obj_request_img_data_test(obj_request)) {
1600                 img_request = obj_request->img_request;
1601                 layered = img_request && img_request_layered_test(img_request);
1602                 rbd_dev = img_request->rbd_dev;
1603         }
1604
1605         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1606                 obj_request, img_request, obj_request->result,
1607                 obj_request->xferred, obj_request->length);
1608         if (layered && obj_request->result == -ENOENT &&
1609                         obj_request->img_offset < rbd_dev->parent_overlap)
1610                 rbd_img_parent_read(obj_request);
1611         else if (img_request)
1612                 rbd_img_obj_request_read_callback(obj_request);
1613         else
1614                 obj_request_done_set(obj_request);
1615 }
1616
1617 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1618 {
1619         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1620                 obj_request->result, obj_request->length);
1621         /*
1622          * There is no such thing as a successful short write.  Set
1623          * it to our originally-requested length.
1624          */
1625         obj_request->xferred = obj_request->length;
1626         obj_request_done_set(obj_request);
1627 }
1628
1629 /*
1630  * For a simple stat call there's nothing to do.  We'll do more if
1631  * this is part of a write sequence for a layered image.
1632  */
1633 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1634 {
1635         dout("%s: obj %p\n", __func__, obj_request);
1636         obj_request_done_set(obj_request);
1637 }
1638
1639 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1640                                 struct ceph_msg *msg)
1641 {
1642         struct rbd_obj_request *obj_request = osd_req->r_priv;
1643         u16 opcode;
1644
1645         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1646         rbd_assert(osd_req == obj_request->osd_req);
1647         if (obj_request_img_data_test(obj_request)) {
1648                 rbd_assert(obj_request->img_request);
1649                 rbd_assert(obj_request->which != BAD_WHICH);
1650         } else {
1651                 rbd_assert(obj_request->which == BAD_WHICH);
1652         }
1653
1654         if (osd_req->r_result < 0)
1655                 obj_request->result = osd_req->r_result;
1656
1657         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1658
1659         /*
1660          * We support a 64-bit length, but ultimately it has to be
1661          * passed to blk_end_request(), which takes an unsigned int.
1662          */
1663         obj_request->xferred = osd_req->r_reply_op_len[0];
1664         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1665
1666         opcode = osd_req->r_ops[0].op;
1667         switch (opcode) {
1668         case CEPH_OSD_OP_READ:
1669                 rbd_osd_read_callback(obj_request);
1670                 break;
1671         case CEPH_OSD_OP_SETALLOCHINT:
1672                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1673                 /* fall through */
1674         case CEPH_OSD_OP_WRITE:
1675                 rbd_osd_write_callback(obj_request);
1676                 break;
1677         case CEPH_OSD_OP_STAT:
1678                 rbd_osd_stat_callback(obj_request);
1679                 break;
1680         case CEPH_OSD_OP_CALL:
1681         case CEPH_OSD_OP_NOTIFY_ACK:
1682         case CEPH_OSD_OP_WATCH:
1683                 rbd_osd_trivial_callback(obj_request);
1684                 break;
1685         default:
1686                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1687                         obj_request->object_name, (unsigned short) opcode);
1688                 break;
1689         }
1690
1691         if (obj_request_done_test(obj_request))
1692                 rbd_obj_request_complete(obj_request);
1693 }
1694
1695 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1696 {
1697         struct rbd_img_request *img_request = obj_request->img_request;
1698         struct ceph_osd_request *osd_req = obj_request->osd_req;
1699         u64 snap_id;
1700
1701         rbd_assert(osd_req != NULL);
1702
1703         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1704         ceph_osdc_build_request(osd_req, obj_request->offset,
1705                         NULL, snap_id, NULL);
1706 }
1707
1708 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1709 {
1710         struct rbd_img_request *img_request = obj_request->img_request;
1711         struct ceph_osd_request *osd_req = obj_request->osd_req;
1712         struct ceph_snap_context *snapc;
1713         struct timespec mtime = CURRENT_TIME;
1714
1715         rbd_assert(osd_req != NULL);
1716
1717         snapc = img_request ? img_request->snapc : NULL;
1718         ceph_osdc_build_request(osd_req, obj_request->offset,
1719                         snapc, CEPH_NOSNAP, &mtime);
1720 }
1721
1722 /*
1723  * Create an osd request.  A read request has one osd op (read).
1724  * A write request has either one (watch) or two (hint+write) osd ops.
1725  * (All rbd data writes are prefixed with an allocation hint op, but
1726  * technically osd watch is a write request, hence this distinction.)
1727  */
1728 static struct ceph_osd_request *rbd_osd_req_create(
1729                                         struct rbd_device *rbd_dev,
1730                                         bool write_request,
1731                                         unsigned int num_ops,
1732                                         struct rbd_obj_request *obj_request)
1733 {
1734         struct ceph_snap_context *snapc = NULL;
1735         struct ceph_osd_client *osdc;
1736         struct ceph_osd_request *osd_req;
1737
1738         if (obj_request_img_data_test(obj_request)) {
1739                 struct rbd_img_request *img_request = obj_request->img_request;
1740
1741                 rbd_assert(write_request ==
1742                                 img_request_write_test(img_request));
1743                 if (write_request)
1744                         snapc = img_request->snapc;
1745         }
1746
1747         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1748
1749         /* Allocate and initialize the request, for the num_ops ops */
1750
1751         osdc = &rbd_dev->rbd_client->client->osdc;
1752         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1753                                           GFP_ATOMIC);
1754         if (!osd_req)
1755                 return NULL;    /* ENOMEM */
1756
1757         if (write_request)
1758                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1759         else
1760                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1761
1762         osd_req->r_callback = rbd_osd_req_callback;
1763         osd_req->r_priv = obj_request;
1764
1765         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1766         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1767
1768         return osd_req;
1769 }
1770
1771 /*
1772  * Create a copyup osd request based on the information in the
1773  * object request supplied.  A copyup request has three osd ops,
1774  * a copyup method call, a hint op, and a write op.
1775  */
1776 static struct ceph_osd_request *
1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778 {
1779         struct rbd_img_request *img_request;
1780         struct ceph_snap_context *snapc;
1781         struct rbd_device *rbd_dev;
1782         struct ceph_osd_client *osdc;
1783         struct ceph_osd_request *osd_req;
1784
1785         rbd_assert(obj_request_img_data_test(obj_request));
1786         img_request = obj_request->img_request;
1787         rbd_assert(img_request);
1788         rbd_assert(img_request_write_test(img_request));
1789
1790         /* Allocate and initialize the request, for the three ops */
1791
1792         snapc = img_request->snapc;
1793         rbd_dev = img_request->rbd_dev;
1794         osdc = &rbd_dev->rbd_client->client->osdc;
1795         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1796         if (!osd_req)
1797                 return NULL;    /* ENOMEM */
1798
1799         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800         osd_req->r_callback = rbd_osd_req_callback;
1801         osd_req->r_priv = obj_request;
1802
1803         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1804         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1805
1806         return osd_req;
1807 }
1808
1809
1810 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1811 {
1812         ceph_osdc_put_request(osd_req);
1813 }
1814
1815 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1816
1817 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1818                                                 u64 offset, u64 length,
1819                                                 enum obj_request_type type)
1820 {
1821         struct rbd_obj_request *obj_request;
1822         size_t size;
1823         char *name;
1824
1825         rbd_assert(obj_request_type_valid(type));
1826
1827         size = strlen(object_name) + 1;
1828         name = kmalloc(size, GFP_KERNEL);
1829         if (!name)
1830                 return NULL;
1831
1832         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1833         if (!obj_request) {
1834                 kfree(name);
1835                 return NULL;
1836         }
1837
1838         obj_request->object_name = memcpy(name, object_name, size);
1839         obj_request->offset = offset;
1840         obj_request->length = length;
1841         obj_request->flags = 0;
1842         obj_request->which = BAD_WHICH;
1843         obj_request->type = type;
1844         INIT_LIST_HEAD(&obj_request->links);
1845         init_completion(&obj_request->completion);
1846         kref_init(&obj_request->kref);
1847
1848         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1849                 offset, length, (int)type, obj_request);
1850
1851         return obj_request;
1852 }
1853
1854 static void rbd_obj_request_destroy(struct kref *kref)
1855 {
1856         struct rbd_obj_request *obj_request;
1857
1858         obj_request = container_of(kref, struct rbd_obj_request, kref);
1859
1860         dout("%s: obj %p\n", __func__, obj_request);
1861
1862         rbd_assert(obj_request->img_request == NULL);
1863         rbd_assert(obj_request->which == BAD_WHICH);
1864
1865         if (obj_request->osd_req)
1866                 rbd_osd_req_destroy(obj_request->osd_req);
1867
1868         rbd_assert(obj_request_type_valid(obj_request->type));
1869         switch (obj_request->type) {
1870         case OBJ_REQUEST_NODATA:
1871                 break;          /* Nothing to do */
1872         case OBJ_REQUEST_BIO:
1873                 if (obj_request->bio_list)
1874                         bio_chain_put(obj_request->bio_list);
1875                 break;
1876         case OBJ_REQUEST_PAGES:
1877                 if (obj_request->pages)
1878                         ceph_release_page_vector(obj_request->pages,
1879                                                 obj_request->page_count);
1880                 break;
1881         }
1882
1883         kfree(obj_request->object_name);
1884         obj_request->object_name = NULL;
1885         kmem_cache_free(rbd_obj_request_cache, obj_request);
1886 }
1887
1888 /* It's OK to call this for a device with no parent */
1889
1890 static void rbd_spec_put(struct rbd_spec *spec);
1891 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1892 {
1893         rbd_dev_remove_parent(rbd_dev);
1894         rbd_spec_put(rbd_dev->parent_spec);
1895         rbd_dev->parent_spec = NULL;
1896         rbd_dev->parent_overlap = 0;
1897 }
1898
1899 /*
1900  * Parent image reference counting is used to determine when an
1901  * image's parent fields can be safely torn down--after there are no
1902  * more in-flight requests to the parent image.  When the last
1903  * reference is dropped, cleaning them up is safe.
1904  */
1905 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1906 {
1907         int counter;
1908
1909         if (!rbd_dev->parent_spec)
1910                 return;
1911
1912         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1913         if (counter > 0)
1914                 return;
1915
1916         /* Last reference; clean up parent data structures */
1917
1918         if (!counter)
1919                 rbd_dev_unparent(rbd_dev);
1920         else
1921                 rbd_warn(rbd_dev, "parent reference underflow\n");
1922 }
1923
1924 /*
1925  * If an image has a non-zero parent overlap, get a reference to its
1926  * parent.
1927  *
1928  * We must get the reference before checking for the overlap to
1929  * coordinate properly with zeroing the parent overlap in
1930  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1931  * drop it again if there is no overlap.
1932  *
1933  * Returns true if the rbd device has a parent with a non-zero
1934  * overlap and a reference for it was successfully taken, or
1935  * false otherwise.
1936  */
1937 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1938 {
1939         int counter;
1940
1941         if (!rbd_dev->parent_spec)
1942                 return false;
1943
1944         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1945         if (counter > 0 && rbd_dev->parent_overlap)
1946                 return true;
1947
1948         /* Image was flattened, but parent is not yet torn down */
1949
1950         if (counter < 0)
1951                 rbd_warn(rbd_dev, "parent reference overflow\n");
1952
1953         return false;
1954 }
1955
1956 /*
1957  * Caller is responsible for filling in the list of object requests
1958  * that comprises the image request, and the Linux request pointer
1959  * (if there is one).
1960  */
1961 static struct rbd_img_request *rbd_img_request_create(
1962                                         struct rbd_device *rbd_dev,
1963                                         u64 offset, u64 length,
1964                                         bool write_request)
1965 {
1966         struct rbd_img_request *img_request;
1967
1968         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1969         if (!img_request)
1970                 return NULL;
1971
1972         if (write_request) {
1973                 down_read(&rbd_dev->header_rwsem);
1974                 ceph_get_snap_context(rbd_dev->header.snapc);
1975                 up_read(&rbd_dev->header_rwsem);
1976         }
1977
1978         img_request->rq = NULL;
1979         img_request->rbd_dev = rbd_dev;
1980         img_request->offset = offset;
1981         img_request->length = length;
1982         img_request->flags = 0;
1983         if (write_request) {
1984                 img_request_write_set(img_request);
1985                 img_request->snapc = rbd_dev->header.snapc;
1986         } else {
1987                 img_request->snap_id = rbd_dev->spec->snap_id;
1988         }
1989         if (rbd_dev_parent_get(rbd_dev))
1990                 img_request_layered_set(img_request);
1991         spin_lock_init(&img_request->completion_lock);
1992         img_request->next_completion = 0;
1993         img_request->callback = NULL;
1994         img_request->result = 0;
1995         img_request->obj_request_count = 0;
1996         INIT_LIST_HEAD(&img_request->obj_requests);
1997         kref_init(&img_request->kref);
1998
1999         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2000                 write_request ? "write" : "read", offset, length,
2001                 img_request);
2002
2003         return img_request;
2004 }
2005
2006 static void rbd_img_request_destroy(struct kref *kref)
2007 {
2008         struct rbd_img_request *img_request;
2009         struct rbd_obj_request *obj_request;
2010         struct rbd_obj_request *next_obj_request;
2011
2012         img_request = container_of(kref, struct rbd_img_request, kref);
2013
2014         dout("%s: img %p\n", __func__, img_request);
2015
2016         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2017                 rbd_img_obj_request_del(img_request, obj_request);
2018         rbd_assert(img_request->obj_request_count == 0);
2019
2020         if (img_request_layered_test(img_request)) {
2021                 img_request_layered_clear(img_request);
2022                 rbd_dev_parent_put(img_request->rbd_dev);
2023         }
2024
2025         if (img_request_write_test(img_request))
2026                 ceph_put_snap_context(img_request->snapc);
2027
2028         kmem_cache_free(rbd_img_request_cache, img_request);
2029 }
2030
2031 static struct rbd_img_request *rbd_parent_request_create(
2032                                         struct rbd_obj_request *obj_request,
2033                                         u64 img_offset, u64 length)
2034 {
2035         struct rbd_img_request *parent_request;
2036         struct rbd_device *rbd_dev;
2037
2038         rbd_assert(obj_request->img_request);
2039         rbd_dev = obj_request->img_request->rbd_dev;
2040
2041         parent_request = rbd_img_request_create(rbd_dev->parent,
2042                                                 img_offset, length, false);
2043         if (!parent_request)
2044                 return NULL;
2045
2046         img_request_child_set(parent_request);
2047         rbd_obj_request_get(obj_request);
2048         parent_request->obj_request = obj_request;
2049
2050         return parent_request;
2051 }
2052
2053 static void rbd_parent_request_destroy(struct kref *kref)
2054 {
2055         struct rbd_img_request *parent_request;
2056         struct rbd_obj_request *orig_request;
2057
2058         parent_request = container_of(kref, struct rbd_img_request, kref);
2059         orig_request = parent_request->obj_request;
2060
2061         parent_request->obj_request = NULL;
2062         rbd_obj_request_put(orig_request);
2063         img_request_child_clear(parent_request);
2064
2065         rbd_img_request_destroy(kref);
2066 }
2067
2068 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2069 {
2070         struct rbd_img_request *img_request;
2071         unsigned int xferred;
2072         int result;
2073         bool more;
2074
2075         rbd_assert(obj_request_img_data_test(obj_request));
2076         img_request = obj_request->img_request;
2077
2078         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2079         xferred = (unsigned int)obj_request->xferred;
2080         result = obj_request->result;
2081         if (result) {
2082                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2083
2084                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2085                         img_request_write_test(img_request) ? "write" : "read",
2086                         obj_request->length, obj_request->img_offset,
2087                         obj_request->offset);
2088                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2089                         result, xferred);
2090                 if (!img_request->result)
2091                         img_request->result = result;
2092         }
2093
2094         /* Image object requests don't own their page array */
2095
2096         if (obj_request->type == OBJ_REQUEST_PAGES) {
2097                 obj_request->pages = NULL;
2098                 obj_request->page_count = 0;
2099         }
2100
2101         if (img_request_child_test(img_request)) {
2102                 rbd_assert(img_request->obj_request != NULL);
2103                 more = obj_request->which < img_request->obj_request_count - 1;
2104         } else {
2105                 rbd_assert(img_request->rq != NULL);
2106                 more = blk_end_request(img_request->rq, result, xferred);
2107         }
2108
2109         return more;
2110 }
2111
2112 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2113 {
2114         struct rbd_img_request *img_request;
2115         u32 which = obj_request->which;
2116         bool more = true;
2117
2118         rbd_assert(obj_request_img_data_test(obj_request));
2119         img_request = obj_request->img_request;
2120
2121         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2122         rbd_assert(img_request != NULL);
2123         rbd_assert(img_request->obj_request_count > 0);
2124         rbd_assert(which != BAD_WHICH);
2125         rbd_assert(which < img_request->obj_request_count);
2126
2127         spin_lock_irq(&img_request->completion_lock);
2128         if (which != img_request->next_completion)
2129                 goto out;
2130
2131         for_each_obj_request_from(img_request, obj_request) {
2132                 rbd_assert(more);
2133                 rbd_assert(which < img_request->obj_request_count);
2134
2135                 if (!obj_request_done_test(obj_request))
2136                         break;
2137                 more = rbd_img_obj_end_request(obj_request);
2138                 which++;
2139         }
2140
2141         rbd_assert(more ^ (which == img_request->obj_request_count));
2142         img_request->next_completion = which;
2143 out:
2144         spin_unlock_irq(&img_request->completion_lock);
2145
2146         if (!more)
2147                 rbd_img_request_complete(img_request);
2148 }
2149
2150 /*
2151  * Split up an image request into one or more object requests, each
2152  * to a different object.  The "type" parameter indicates whether
2153  * "data_desc" is the pointer to the head of a list of bio
2154  * structures, or the base of a page array.  In either case this
2155  * function assumes data_desc describes memory sufficient to hold
2156  * all data described by the image request.
2157  */
2158 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2159                                         enum obj_request_type type,
2160                                         void *data_desc)
2161 {
2162         struct rbd_device *rbd_dev = img_request->rbd_dev;
2163         struct rbd_obj_request *obj_request = NULL;
2164         struct rbd_obj_request *next_obj_request;
2165         bool write_request = img_request_write_test(img_request);
2166         struct bio *bio_list = NULL;
2167         unsigned int bio_offset = 0;
2168         struct page **pages = NULL;
2169         u64 img_offset;
2170         u64 resid;
2171         u16 opcode;
2172
2173         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2174                 (int)type, data_desc);
2175
2176         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2177         img_offset = img_request->offset;
2178         resid = img_request->length;
2179         rbd_assert(resid > 0);
2180
2181         if (type == OBJ_REQUEST_BIO) {
2182                 bio_list = data_desc;
2183                 rbd_assert(img_offset ==
2184                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2185         } else {
2186                 rbd_assert(type == OBJ_REQUEST_PAGES);
2187                 pages = data_desc;
2188         }
2189
2190         while (resid) {
2191                 struct ceph_osd_request *osd_req;
2192                 const char *object_name;
2193                 u64 offset;
2194                 u64 length;
2195                 unsigned int which = 0;
2196
2197                 object_name = rbd_segment_name(rbd_dev, img_offset);
2198                 if (!object_name)
2199                         goto out_unwind;
2200                 offset = rbd_segment_offset(rbd_dev, img_offset);
2201                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2202                 obj_request = rbd_obj_request_create(object_name,
2203                                                 offset, length, type);
2204                 /* object request has its own copy of the object name */
2205                 rbd_segment_name_free(object_name);
2206                 if (!obj_request)
2207                         goto out_unwind;
2208
2209                 /*
2210                  * set obj_request->img_request before creating the
2211                  * osd_request so that it gets the right snapc
2212                  */
2213                 rbd_img_obj_request_add(img_request, obj_request);
2214
2215                 if (type == OBJ_REQUEST_BIO) {
2216                         unsigned int clone_size;
2217
2218                         rbd_assert(length <= (u64)UINT_MAX);
2219                         clone_size = (unsigned int)length;
2220                         obj_request->bio_list =
2221                                         bio_chain_clone_range(&bio_list,
2222                                                                 &bio_offset,
2223                                                                 clone_size,
2224                                                                 GFP_ATOMIC);
2225                         if (!obj_request->bio_list)
2226                                 goto out_unwind;
2227                 } else {
2228                         unsigned int page_count;
2229
2230                         obj_request->pages = pages;
2231                         page_count = (u32)calc_pages_for(offset, length);
2232                         obj_request->page_count = page_count;
2233                         if ((offset + length) & ~PAGE_MASK)
2234                                 page_count--;   /* more on last page */
2235                         pages += page_count;
2236                 }
2237
2238                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239                                              (write_request ? 2 : 1),
2240                                              obj_request);
2241                 if (!osd_req)
2242                         goto out_unwind;
2243                 obj_request->osd_req = osd_req;
2244                 obj_request->callback = rbd_img_obj_callback;
2245
2246                 if (write_request) {
2247                         osd_req_op_alloc_hint_init(osd_req, which,
2248                                              rbd_obj_bytes(&rbd_dev->header),
2249                                              rbd_obj_bytes(&rbd_dev->header));
2250                         which++;
2251                 }
2252
2253                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2254                                        0, 0);
2255                 if (type == OBJ_REQUEST_BIO)
2256                         osd_req_op_extent_osd_data_bio(osd_req, which,
2257                                         obj_request->bio_list, length);
2258                 else
2259                         osd_req_op_extent_osd_data_pages(osd_req, which,
2260                                         obj_request->pages, length,
2261                                         offset & ~PAGE_MASK, false, false);
2262
2263                 if (write_request)
2264                         rbd_osd_req_format_write(obj_request);
2265                 else
2266                         rbd_osd_req_format_read(obj_request);
2267
2268                 obj_request->img_offset = img_offset;
2269
2270                 img_offset += length;
2271                 resid -= length;
2272         }
2273
2274         return 0;
2275
2276 out_unwind:
2277         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2278                 rbd_img_obj_request_del(img_request, obj_request);
2279
2280         return -ENOMEM;
2281 }
2282
2283 static void
2284 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2285 {
2286         struct rbd_img_request *img_request;
2287         struct rbd_device *rbd_dev;
2288         struct page **pages;
2289         u32 page_count;
2290
2291         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2292         rbd_assert(obj_request_img_data_test(obj_request));
2293         img_request = obj_request->img_request;
2294         rbd_assert(img_request);
2295
2296         rbd_dev = img_request->rbd_dev;
2297         rbd_assert(rbd_dev);
2298
2299         pages = obj_request->copyup_pages;
2300         rbd_assert(pages != NULL);
2301         obj_request->copyup_pages = NULL;
2302         page_count = obj_request->copyup_page_count;
2303         rbd_assert(page_count);
2304         obj_request->copyup_page_count = 0;
2305         ceph_release_page_vector(pages, page_count);
2306
2307         /*
2308          * We want the transfer count to reflect the size of the
2309          * original write request.  There is no such thing as a
2310          * successful short write, so if the request was successful
2311          * we can just set it to the originally-requested length.
2312          */
2313         if (!obj_request->result)
2314                 obj_request->xferred = obj_request->length;
2315
2316         /* Finish up with the normal image object callback */
2317
2318         rbd_img_obj_callback(obj_request);
2319 }
2320
2321 static void
2322 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2323 {
2324         struct rbd_obj_request *orig_request;
2325         struct ceph_osd_request *osd_req;
2326         struct ceph_osd_client *osdc;
2327         struct rbd_device *rbd_dev;
2328         struct page **pages;
2329         u32 page_count;
2330         int img_result;
2331         u64 parent_length;
2332         u64 offset;
2333         u64 length;
2334
2335         rbd_assert(img_request_child_test(img_request));
2336
2337         /* First get what we need from the image request */
2338
2339         pages = img_request->copyup_pages;
2340         rbd_assert(pages != NULL);
2341         img_request->copyup_pages = NULL;
2342         page_count = img_request->copyup_page_count;
2343         rbd_assert(page_count);
2344         img_request->copyup_page_count = 0;
2345
2346         orig_request = img_request->obj_request;
2347         rbd_assert(orig_request != NULL);
2348         rbd_assert(obj_request_type_valid(orig_request->type));
2349         img_result = img_request->result;
2350         parent_length = img_request->length;
2351         rbd_assert(parent_length == img_request->xferred);
2352         rbd_img_request_put(img_request);
2353
2354         rbd_assert(orig_request->img_request);
2355         rbd_dev = orig_request->img_request->rbd_dev;
2356         rbd_assert(rbd_dev);
2357
2358         /*
2359          * If the overlap has become 0 (most likely because the
2360          * image has been flattened) we need to free the pages
2361          * and re-submit the original write request.
2362          */
2363         if (!rbd_dev->parent_overlap) {
2364                 struct ceph_osd_client *osdc;
2365
2366                 ceph_release_page_vector(pages, page_count);
2367                 osdc = &rbd_dev->rbd_client->client->osdc;
2368                 img_result = rbd_obj_request_submit(osdc, orig_request);
2369                 if (!img_result)
2370                         return;
2371         }
2372
2373         if (img_result)
2374                 goto out_err;
2375
2376         /*
2377          * The original osd request is of no use to use any more.
2378          * We need a new one that can hold the three ops in a copyup
2379          * request.  Allocate the new copyup osd request for the
2380          * original request, and release the old one.
2381          */
2382         img_result = -ENOMEM;
2383         osd_req = rbd_osd_req_create_copyup(orig_request);
2384         if (!osd_req)
2385                 goto out_err;
2386         rbd_osd_req_destroy(orig_request->osd_req);
2387         orig_request->osd_req = osd_req;
2388         orig_request->copyup_pages = pages;
2389         orig_request->copyup_page_count = page_count;
2390
2391         /* Initialize the copyup op */
2392
2393         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2394         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2395                                                 false, false);
2396
2397         /* Then the hint op */
2398
2399         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2400                                    rbd_obj_bytes(&rbd_dev->header));
2401
2402         /* And the original write request op */
2403
2404         offset = orig_request->offset;
2405         length = orig_request->length;
2406         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2407                                         offset, length, 0, 0);
2408         if (orig_request->type == OBJ_REQUEST_BIO)
2409                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2410                                         orig_request->bio_list, length);
2411         else
2412                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2413                                         orig_request->pages, length,
2414                                         offset & ~PAGE_MASK, false, false);
2415
2416         rbd_osd_req_format_write(orig_request);
2417
2418         /* All set, send it off. */
2419
2420         orig_request->callback = rbd_img_obj_copyup_callback;
2421         osdc = &rbd_dev->rbd_client->client->osdc;
2422         img_result = rbd_obj_request_submit(osdc, orig_request);
2423         if (!img_result)
2424                 return;
2425 out_err:
2426         /* Record the error code and complete the request */
2427
2428         orig_request->result = img_result;
2429         orig_request->xferred = 0;
2430         obj_request_done_set(orig_request);
2431         rbd_obj_request_complete(orig_request);
2432 }
2433
2434 /*
2435  * Read from the parent image the range of data that covers the
2436  * entire target of the given object request.  This is used for
2437  * satisfying a layered image write request when the target of an
2438  * object request from the image request does not exist.
2439  *
2440  * A page array big enough to hold the returned data is allocated
2441  * and supplied to rbd_img_request_fill() as the "data descriptor."
2442  * When the read completes, this page array will be transferred to
2443  * the original object request for the copyup operation.
2444  *
2445  * If an error occurs, record it as the result of the original
2446  * object request and mark it done so it gets completed.
2447  */
2448 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2449 {
2450         struct rbd_img_request *img_request = NULL;
2451         struct rbd_img_request *parent_request = NULL;
2452         struct rbd_device *rbd_dev;
2453         u64 img_offset;
2454         u64 length;
2455         struct page **pages = NULL;
2456         u32 page_count;
2457         int result;
2458
2459         rbd_assert(obj_request_img_data_test(obj_request));
2460         rbd_assert(obj_request_type_valid(obj_request->type));
2461
2462         img_request = obj_request->img_request;
2463         rbd_assert(img_request != NULL);
2464         rbd_dev = img_request->rbd_dev;
2465         rbd_assert(rbd_dev->parent != NULL);
2466
2467         /*
2468          * Determine the byte range covered by the object in the
2469          * child image to which the original request was to be sent.
2470          */
2471         img_offset = obj_request->img_offset - obj_request->offset;
2472         length = (u64)1 << rbd_dev->header.obj_order;
2473
2474         /*
2475          * There is no defined parent data beyond the parent
2476          * overlap, so limit what we read at that boundary if
2477          * necessary.
2478          */
2479         if (img_offset + length > rbd_dev->parent_overlap) {
2480                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2481                 length = rbd_dev->parent_overlap - img_offset;
2482         }
2483
2484         /*
2485          * Allocate a page array big enough to receive the data read
2486          * from the parent.
2487          */
2488         page_count = (u32)calc_pages_for(0, length);
2489         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2490         if (IS_ERR(pages)) {
2491                 result = PTR_ERR(pages);
2492                 pages = NULL;
2493                 goto out_err;
2494         }
2495
2496         result = -ENOMEM;
2497         parent_request = rbd_parent_request_create(obj_request,
2498                                                 img_offset, length);
2499         if (!parent_request)
2500                 goto out_err;
2501
2502         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2503         if (result)
2504                 goto out_err;
2505         parent_request->copyup_pages = pages;
2506         parent_request->copyup_page_count = page_count;
2507
2508         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2509         result = rbd_img_request_submit(parent_request);
2510         if (!result)
2511                 return 0;
2512
2513         parent_request->copyup_pages = NULL;
2514         parent_request->copyup_page_count = 0;
2515         parent_request->obj_request = NULL;
2516         rbd_obj_request_put(obj_request);
2517 out_err:
2518         if (pages)
2519                 ceph_release_page_vector(pages, page_count);
2520         if (parent_request)
2521                 rbd_img_request_put(parent_request);
2522         obj_request->result = result;
2523         obj_request->xferred = 0;
2524         obj_request_done_set(obj_request);
2525
2526         return result;
2527 }
2528
2529 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2530 {
2531         struct rbd_obj_request *orig_request;
2532         struct rbd_device *rbd_dev;
2533         int result;
2534
2535         rbd_assert(!obj_request_img_data_test(obj_request));
2536
2537         /*
2538          * All we need from the object request is the original
2539          * request and the result of the STAT op.  Grab those, then
2540          * we're done with the request.
2541          */
2542         orig_request = obj_request->obj_request;
2543         obj_request->obj_request = NULL;
2544         rbd_obj_request_put(orig_request);
2545         rbd_assert(orig_request);
2546         rbd_assert(orig_request->img_request);
2547
2548         result = obj_request->result;
2549         obj_request->result = 0;
2550
2551         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2552                 obj_request, orig_request, result,
2553                 obj_request->xferred, obj_request->length);
2554         rbd_obj_request_put(obj_request);
2555
2556         /*
2557          * If the overlap has become 0 (most likely because the
2558          * image has been flattened) we need to free the pages
2559          * and re-submit the original write request.
2560          */
2561         rbd_dev = orig_request->img_request->rbd_dev;
2562         if (!rbd_dev->parent_overlap) {
2563                 struct ceph_osd_client *osdc;
2564
2565                 osdc = &rbd_dev->rbd_client->client->osdc;
2566                 result = rbd_obj_request_submit(osdc, orig_request);
2567                 if (!result)
2568                         return;
2569         }
2570
2571         /*
2572          * Our only purpose here is to determine whether the object
2573          * exists, and we don't want to treat the non-existence as
2574          * an error.  If something else comes back, transfer the
2575          * error to the original request and complete it now.
2576          */
2577         if (!result) {
2578                 obj_request_existence_set(orig_request, true);
2579         } else if (result == -ENOENT) {
2580                 obj_request_existence_set(orig_request, false);
2581         } else if (result) {
2582                 orig_request->result = result;
2583                 goto out;
2584         }
2585
2586         /*
2587          * Resubmit the original request now that we have recorded
2588          * whether the target object exists.
2589          */
2590         orig_request->result = rbd_img_obj_request_submit(orig_request);
2591 out:
2592         if (orig_request->result)
2593                 rbd_obj_request_complete(orig_request);
2594 }
2595
2596 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2597 {
2598         struct rbd_obj_request *stat_request;
2599         struct rbd_device *rbd_dev;
2600         struct ceph_osd_client *osdc;
2601         struct page **pages = NULL;
2602         u32 page_count;
2603         size_t size;
2604         int ret;
2605
2606         /*
2607          * The response data for a STAT call consists of:
2608          *     le64 length;
2609          *     struct {
2610          *         le32 tv_sec;
2611          *         le32 tv_nsec;
2612          *     } mtime;
2613          */
2614         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2615         page_count = (u32)calc_pages_for(0, size);
2616         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2617         if (IS_ERR(pages))
2618                 return PTR_ERR(pages);
2619
2620         ret = -ENOMEM;
2621         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2622                                                         OBJ_REQUEST_PAGES);
2623         if (!stat_request)
2624                 goto out;
2625
2626         rbd_obj_request_get(obj_request);
2627         stat_request->obj_request = obj_request;
2628         stat_request->pages = pages;
2629         stat_request->page_count = page_count;
2630
2631         rbd_assert(obj_request->img_request);
2632         rbd_dev = obj_request->img_request->rbd_dev;
2633         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2634                                                    stat_request);
2635         if (!stat_request->osd_req)
2636                 goto out;
2637         stat_request->callback = rbd_img_obj_exists_callback;
2638
2639         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2640         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2641                                         false, false);
2642         rbd_osd_req_format_read(stat_request);
2643
2644         osdc = &rbd_dev->rbd_client->client->osdc;
2645         ret = rbd_obj_request_submit(osdc, stat_request);
2646 out:
2647         if (ret)
2648                 rbd_obj_request_put(obj_request);
2649
2650         return ret;
2651 }
2652
2653 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2654 {
2655         struct rbd_img_request *img_request;
2656         struct rbd_device *rbd_dev;
2657         bool known;
2658
2659         rbd_assert(obj_request_img_data_test(obj_request));
2660
2661         img_request = obj_request->img_request;
2662         rbd_assert(img_request);
2663         rbd_dev = img_request->rbd_dev;
2664
2665         /*
2666          * Only writes to layered images need special handling.
2667          * Reads and non-layered writes are simple object requests.
2668          * Layered writes that start beyond the end of the overlap
2669          * with the parent have no parent data, so they too are
2670          * simple object requests.  Finally, if the target object is
2671          * known to already exist, its parent data has already been
2672          * copied, so a write to the object can also be handled as a
2673          * simple object request.
2674          */
2675         if (!img_request_write_test(img_request) ||
2676                 !img_request_layered_test(img_request) ||
2677                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2678                 ((known = obj_request_known_test(obj_request)) &&
2679                         obj_request_exists_test(obj_request))) {
2680
2681                 struct rbd_device *rbd_dev;
2682                 struct ceph_osd_client *osdc;
2683
2684                 rbd_dev = obj_request->img_request->rbd_dev;
2685                 osdc = &rbd_dev->rbd_client->client->osdc;
2686
2687                 return rbd_obj_request_submit(osdc, obj_request);
2688         }
2689
2690         /*
2691          * It's a layered write.  The target object might exist but
2692          * we may not know that yet.  If we know it doesn't exist,
2693          * start by reading the data for the full target object from
2694          * the parent so we can use it for a copyup to the target.
2695          */
2696         if (known)
2697                 return rbd_img_obj_parent_read_full(obj_request);
2698
2699         /* We don't know whether the target exists.  Go find out. */
2700
2701         return rbd_img_obj_exists_submit(obj_request);
2702 }
2703
2704 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2705 {
2706         struct rbd_obj_request *obj_request;
2707         struct rbd_obj_request *next_obj_request;
2708
2709         dout("%s: img %p\n", __func__, img_request);
2710         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2711                 int ret;
2712
2713                 ret = rbd_img_obj_request_submit(obj_request);
2714                 if (ret)
2715                         return ret;
2716         }
2717
2718         return 0;
2719 }
2720
2721 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2722 {
2723         struct rbd_obj_request *obj_request;
2724         struct rbd_device *rbd_dev;
2725         u64 obj_end;
2726         u64 img_xferred;
2727         int img_result;
2728
2729         rbd_assert(img_request_child_test(img_request));
2730
2731         /* First get what we need from the image request and release it */
2732
2733         obj_request = img_request->obj_request;
2734         img_xferred = img_request->xferred;
2735         img_result = img_request->result;
2736         rbd_img_request_put(img_request);
2737
2738         /*
2739          * If the overlap has become 0 (most likely because the
2740          * image has been flattened) we need to re-submit the
2741          * original request.
2742          */
2743         rbd_assert(obj_request);
2744         rbd_assert(obj_request->img_request);
2745         rbd_dev = obj_request->img_request->rbd_dev;
2746         if (!rbd_dev->parent_overlap) {
2747                 struct ceph_osd_client *osdc;
2748
2749                 osdc = &rbd_dev->rbd_client->client->osdc;
2750                 img_result = rbd_obj_request_submit(osdc, obj_request);
2751                 if (!img_result)
2752                         return;
2753         }
2754
2755         obj_request->result = img_result;
2756         if (obj_request->result)
2757                 goto out;
2758
2759         /*
2760          * We need to zero anything beyond the parent overlap
2761          * boundary.  Since rbd_img_obj_request_read_callback()
2762          * will zero anything beyond the end of a short read, an
2763          * easy way to do this is to pretend the data from the
2764          * parent came up short--ending at the overlap boundary.
2765          */
2766         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2767         obj_end = obj_request->img_offset + obj_request->length;
2768         if (obj_end > rbd_dev->parent_overlap) {
2769                 u64 xferred = 0;
2770
2771                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2772                         xferred = rbd_dev->parent_overlap -
2773                                         obj_request->img_offset;
2774
2775                 obj_request->xferred = min(img_xferred, xferred);
2776         } else {
2777                 obj_request->xferred = img_xferred;
2778         }
2779 out:
2780         rbd_img_obj_request_read_callback(obj_request);
2781         rbd_obj_request_complete(obj_request);
2782 }
2783
2784 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2785 {
2786         struct rbd_img_request *img_request;
2787         int result;
2788
2789         rbd_assert(obj_request_img_data_test(obj_request));
2790         rbd_assert(obj_request->img_request != NULL);
2791         rbd_assert(obj_request->result == (s32) -ENOENT);
2792         rbd_assert(obj_request_type_valid(obj_request->type));
2793
2794         /* rbd_read_finish(obj_request, obj_request->length); */
2795         img_request = rbd_parent_request_create(obj_request,
2796                                                 obj_request->img_offset,
2797                                                 obj_request->length);
2798         result = -ENOMEM;
2799         if (!img_request)
2800                 goto out_err;
2801
2802         if (obj_request->type == OBJ_REQUEST_BIO)
2803                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2804                                                 obj_request->bio_list);
2805         else
2806                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2807                                                 obj_request->pages);
2808         if (result)
2809                 goto out_err;
2810
2811         img_request->callback = rbd_img_parent_read_callback;
2812         result = rbd_img_request_submit(img_request);
2813         if (result)
2814                 goto out_err;
2815
2816         return;
2817 out_err:
2818         if (img_request)
2819                 rbd_img_request_put(img_request);
2820         obj_request->result = result;
2821         obj_request->xferred = 0;
2822         obj_request_done_set(obj_request);
2823 }
2824
2825 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2826 {
2827         struct rbd_obj_request *obj_request;
2828         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2829         int ret;
2830
2831         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2832                                                         OBJ_REQUEST_NODATA);
2833         if (!obj_request)
2834                 return -ENOMEM;
2835
2836         ret = -ENOMEM;
2837         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2838                                                   obj_request);
2839         if (!obj_request->osd_req)
2840                 goto out;
2841
2842         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2843                                         notify_id, 0, 0);
2844         rbd_osd_req_format_read(obj_request);
2845
2846         ret = rbd_obj_request_submit(osdc, obj_request);
2847         if (ret)
2848                 goto out;
2849         ret = rbd_obj_request_wait(obj_request);
2850 out:
2851         rbd_obj_request_put(obj_request);
2852
2853         return ret;
2854 }
2855
2856 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2857 {
2858         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2859         int ret;
2860
2861         if (!rbd_dev)
2862                 return;
2863
2864         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2865                 rbd_dev->header_name, (unsigned long long)notify_id,
2866                 (unsigned int)opcode);
2867         ret = rbd_dev_refresh(rbd_dev);
2868         if (ret)
2869                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2870
2871         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2872 }
2873
2874 /*
2875  * Request sync osd watch/unwatch.  The value of "start" determines
2876  * whether a watch request is being initiated or torn down.
2877  */
2878 static int __rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2879 {
2880         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2881         struct rbd_obj_request *obj_request;
2882         int ret;
2883
2884         rbd_assert(start ^ !!rbd_dev->watch_event);
2885         rbd_assert(start ^ !!rbd_dev->watch_request);
2886
2887         if (start) {
2888                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2889                                                 &rbd_dev->watch_event);
2890                 if (ret < 0)
2891                         return ret;
2892                 rbd_assert(rbd_dev->watch_event != NULL);
2893         }
2894
2895         ret = -ENOMEM;
2896         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2897                                                         OBJ_REQUEST_NODATA);
2898         if (!obj_request)
2899                 goto out_cancel;
2900
2901         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2902                                                   obj_request);
2903         if (!obj_request->osd_req)
2904                 goto out_cancel;
2905
2906         if (start)
2907                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2908         else
2909                 ceph_osdc_unregister_linger_request(osdc,
2910                                         rbd_dev->watch_request->osd_req);
2911
2912         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2913                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2914         rbd_osd_req_format_write(obj_request);
2915
2916         ret = rbd_obj_request_submit(osdc, obj_request);
2917         if (ret)
2918                 goto out_cancel;
2919         ret = rbd_obj_request_wait(obj_request);
2920         if (ret)
2921                 goto out_cancel;
2922         ret = obj_request->result;
2923         if (ret)
2924                 goto out_cancel;
2925
2926         /*
2927          * A watch request is set to linger, so the underlying osd
2928          * request won't go away until we unregister it.  We retain
2929          * a pointer to the object request during that time (in
2930          * rbd_dev->watch_request), so we'll keep a reference to
2931          * it.  We'll drop that reference (below) after we've
2932          * unregistered it.
2933          */
2934         if (start) {
2935                 rbd_dev->watch_request = obj_request;
2936
2937                 return 0;
2938         }
2939
2940         /* We have successfully torn down the watch request */
2941
2942         rbd_obj_request_put(rbd_dev->watch_request);
2943         rbd_dev->watch_request = NULL;
2944 out_cancel:
2945         /* Cancel the event if we're tearing down, or on error */
2946         ceph_osdc_cancel_event(rbd_dev->watch_event);
2947         rbd_dev->watch_event = NULL;
2948         if (obj_request)
2949                 rbd_obj_request_put(obj_request);
2950
2951         return ret;
2952 }
2953
2954 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2955 {
2956         return __rbd_dev_header_watch_sync(rbd_dev, true);
2957 }
2958
2959 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2960 {
2961         int ret;
2962
2963         ret = __rbd_dev_header_watch_sync(rbd_dev, false);
2964         if (ret) {
2965                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
2966                          ret);
2967         }
2968 }
2969
2970 /*
2971  * Synchronous osd object method call.  Returns the number of bytes
2972  * returned in the outbound buffer, or a negative error code.
2973  */
2974 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2975                              const char *object_name,
2976                              const char *class_name,
2977                              const char *method_name,
2978                              const void *outbound,
2979                              size_t outbound_size,
2980                              void *inbound,
2981                              size_t inbound_size)
2982 {
2983         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2984         struct rbd_obj_request *obj_request;
2985         struct page **pages;
2986         u32 page_count;
2987         int ret;
2988
2989         /*
2990          * Method calls are ultimately read operations.  The result
2991          * should placed into the inbound buffer provided.  They
2992          * also supply outbound data--parameters for the object
2993          * method.  Currently if this is present it will be a
2994          * snapshot id.
2995          */
2996         page_count = (u32)calc_pages_for(0, inbound_size);
2997         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2998         if (IS_ERR(pages))
2999                 return PTR_ERR(pages);
3000
3001         ret = -ENOMEM;
3002         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3003                                                         OBJ_REQUEST_PAGES);
3004         if (!obj_request)
3005                 goto out;
3006
3007         obj_request->pages = pages;
3008         obj_request->page_count = page_count;
3009
3010         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3011                                                   obj_request);
3012         if (!obj_request->osd_req)
3013                 goto out;
3014
3015         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3016                                         class_name, method_name);
3017         if (outbound_size) {
3018                 struct ceph_pagelist *pagelist;
3019
3020                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3021                 if (!pagelist)
3022                         goto out;
3023
3024                 ceph_pagelist_init(pagelist);
3025                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3026                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3027                                                 pagelist);
3028         }
3029         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3030                                         obj_request->pages, inbound_size,
3031                                         0, false, false);
3032         rbd_osd_req_format_read(obj_request);
3033
3034         ret = rbd_obj_request_submit(osdc, obj_request);
3035         if (ret)
3036                 goto out;
3037         ret = rbd_obj_request_wait(obj_request);
3038         if (ret)
3039                 goto out;
3040
3041         ret = obj_request->result;
3042         if (ret < 0)
3043                 goto out;
3044
3045         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3046         ret = (int)obj_request->xferred;
3047         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3048 out:
3049         if (obj_request)
3050                 rbd_obj_request_put(obj_request);
3051         else
3052                 ceph_release_page_vector(pages, page_count);
3053
3054         return ret;
3055 }
3056
3057 static void rbd_request_fn(struct request_queue *q)
3058                 __releases(q->queue_lock) __acquires(q->queue_lock)
3059 {
3060         struct rbd_device *rbd_dev = q->queuedata;
3061         bool read_only = rbd_dev->mapping.read_only;
3062         struct request *rq;
3063         int result;
3064
3065         while ((rq = blk_fetch_request(q))) {
3066                 bool write_request = rq_data_dir(rq) == WRITE;
3067                 struct rbd_img_request *img_request;
3068                 u64 offset;
3069                 u64 length;
3070
3071                 /* Ignore any non-FS requests that filter through. */
3072
3073                 if (rq->cmd_type != REQ_TYPE_FS) {
3074                         dout("%s: non-fs request type %d\n", __func__,
3075                                 (int) rq->cmd_type);
3076                         __blk_end_request_all(rq, 0);
3077                         continue;
3078                 }
3079
3080                 /* Ignore/skip any zero-length requests */
3081
3082                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3083                 length = (u64) blk_rq_bytes(rq);
3084
3085                 if (!length) {
3086                         dout("%s: zero-length request\n", __func__);
3087                         __blk_end_request_all(rq, 0);
3088                         continue;
3089                 }
3090
3091                 spin_unlock_irq(q->queue_lock);
3092
3093                 /* Disallow writes to a read-only device */
3094
3095                 if (write_request) {
3096                         result = -EROFS;
3097                         if (read_only)
3098                                 goto end_request;
3099                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3100                 }
3101
3102                 /*
3103                  * Quit early if the mapped snapshot no longer
3104                  * exists.  It's still possible the snapshot will
3105                  * have disappeared by the time our request arrives
3106                  * at the osd, but there's no sense in sending it if
3107                  * we already know.
3108                  */
3109                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3110                         dout("request for non-existent snapshot");
3111                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3112                         result = -ENXIO;
3113                         goto end_request;
3114                 }
3115
3116                 result = -EINVAL;
3117                 if (offset && length > U64_MAX - offset + 1) {
3118                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3119                                 offset, length);
3120                         goto end_request;       /* Shouldn't happen */
3121                 }
3122
3123                 result = -EIO;
3124                 if (offset + length > rbd_dev->mapping.size) {
3125                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3126                                 offset, length, rbd_dev->mapping.size);
3127                         goto end_request;
3128                 }
3129
3130                 result = -ENOMEM;
3131                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3132                                                         write_request);
3133                 if (!img_request)
3134                         goto end_request;
3135
3136                 img_request->rq = rq;
3137
3138                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3139                                                 rq->bio);
3140                 if (!result)
3141                         result = rbd_img_request_submit(img_request);
3142                 if (result)
3143                         rbd_img_request_put(img_request);
3144 end_request:
3145                 spin_lock_irq(q->queue_lock);
3146                 if (result < 0) {
3147                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3148                                 write_request ? "write" : "read",
3149                                 length, offset, result);
3150
3151                         __blk_end_request_all(rq, result);
3152                 }
3153         }
3154 }
3155
3156 /*
3157  * a queue callback. Makes sure that we don't create a bio that spans across
3158  * multiple osd objects. One exception would be with a single page bios,
3159  * which we handle later at bio_chain_clone_range()
3160  */
3161 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3162                           struct bio_vec *bvec)
3163 {
3164         struct rbd_device *rbd_dev = q->queuedata;
3165         sector_t sector_offset;
3166         sector_t sectors_per_obj;
3167         sector_t obj_sector_offset;
3168         int ret;
3169
3170         /*
3171          * Find how far into its rbd object the partition-relative
3172          * bio start sector is to offset relative to the enclosing
3173          * device.
3174          */
3175         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3176         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3177         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3178
3179         /*
3180          * Compute the number of bytes from that offset to the end
3181          * of the object.  Account for what's already used by the bio.
3182          */
3183         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3184         if (ret > bmd->bi_size)
3185                 ret -= bmd->bi_size;
3186         else
3187                 ret = 0;
3188
3189         /*
3190          * Don't send back more than was asked for.  And if the bio
3191          * was empty, let the whole thing through because:  "Note
3192          * that a block device *must* allow a single page to be
3193          * added to an empty bio."
3194          */
3195         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3196         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3197                 ret = (int) bvec->bv_len;
3198
3199         return ret;
3200 }
3201
3202 static void rbd_free_disk(struct rbd_device *rbd_dev)
3203 {
3204         struct gendisk *disk = rbd_dev->disk;
3205
3206         if (!disk)
3207                 return;
3208
3209         rbd_dev->disk = NULL;
3210         if (disk->flags & GENHD_FL_UP) {
3211                 del_gendisk(disk);
3212                 if (disk->queue)
3213                         blk_cleanup_queue(disk->queue);
3214         }
3215         put_disk(disk);
3216 }
3217
3218 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3219                                 const char *object_name,
3220                                 u64 offset, u64 length, void *buf)
3221
3222 {
3223         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3224         struct rbd_obj_request *obj_request;
3225         struct page **pages = NULL;
3226         u32 page_count;
3227         size_t size;
3228         int ret;
3229
3230         page_count = (u32) calc_pages_for(offset, length);
3231         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3232         if (IS_ERR(pages))
3233                 ret = PTR_ERR(pages);
3234
3235         ret = -ENOMEM;
3236         obj_request = rbd_obj_request_create(object_name, offset, length,
3237                                                         OBJ_REQUEST_PAGES);
3238         if (!obj_request)
3239                 goto out;
3240
3241         obj_request->pages = pages;
3242         obj_request->page_count = page_count;
3243
3244         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3245                                                   obj_request);
3246         if (!obj_request->osd_req)
3247                 goto out;
3248
3249         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3250                                         offset, length, 0, 0);
3251         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3252                                         obj_request->pages,
3253                                         obj_request->length,
3254                                         obj_request->offset & ~PAGE_MASK,
3255                                         false, false);
3256         rbd_osd_req_format_read(obj_request);
3257
3258         ret = rbd_obj_request_submit(osdc, obj_request);
3259         if (ret)
3260                 goto out;
3261         ret = rbd_obj_request_wait(obj_request);
3262         if (ret)
3263                 goto out;
3264
3265         ret = obj_request->result;
3266         if (ret < 0)
3267                 goto out;
3268
3269         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3270         size = (size_t) obj_request->xferred;
3271         ceph_copy_from_page_vector(pages, buf, 0, size);
3272         rbd_assert(size <= (size_t)INT_MAX);
3273         ret = (int)size;
3274 out:
3275         if (obj_request)
3276                 rbd_obj_request_put(obj_request);
3277         else
3278                 ceph_release_page_vector(pages, page_count);
3279
3280         return ret;
3281 }
3282
3283 /*
3284  * Read the complete header for the given rbd device.  On successful
3285  * return, the rbd_dev->header field will contain up-to-date
3286  * information about the image.
3287  */
3288 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3289 {
3290         struct rbd_image_header_ondisk *ondisk = NULL;
3291         u32 snap_count = 0;
3292         u64 names_size = 0;
3293         u32 want_count;
3294         int ret;
3295
3296         /*
3297          * The complete header will include an array of its 64-bit
3298          * snapshot ids, followed by the names of those snapshots as
3299          * a contiguous block of NUL-terminated strings.  Note that
3300          * the number of snapshots could change by the time we read
3301          * it in, in which case we re-read it.
3302          */
3303         do {
3304                 size_t size;
3305
3306                 kfree(ondisk);
3307
3308                 size = sizeof (*ondisk);
3309                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3310                 size += names_size;
3311                 ondisk = kmalloc(size, GFP_KERNEL);
3312                 if (!ondisk)
3313                         return -ENOMEM;
3314
3315                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3316                                        0, size, ondisk);
3317                 if (ret < 0)
3318                         goto out;
3319                 if ((size_t)ret < size) {
3320                         ret = -ENXIO;
3321                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3322                                 size, ret);
3323                         goto out;
3324                 }
3325                 if (!rbd_dev_ondisk_valid(ondisk)) {
3326                         ret = -ENXIO;
3327                         rbd_warn(rbd_dev, "invalid header");
3328                         goto out;
3329                 }
3330
3331                 names_size = le64_to_cpu(ondisk->snap_names_len);
3332                 want_count = snap_count;
3333                 snap_count = le32_to_cpu(ondisk->snap_count);
3334         } while (snap_count != want_count);
3335
3336         ret = rbd_header_from_disk(rbd_dev, ondisk);
3337 out:
3338         kfree(ondisk);
3339
3340         return ret;
3341 }
3342
3343 /*
3344  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3345  * has disappeared from the (just updated) snapshot context.
3346  */
3347 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3348 {
3349         u64 snap_id;
3350
3351         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3352                 return;
3353
3354         snap_id = rbd_dev->spec->snap_id;
3355         if (snap_id == CEPH_NOSNAP)
3356                 return;
3357
3358         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3359                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3360 }
3361
3362 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3363 {
3364         sector_t size;
3365         bool removing;
3366
3367         /*
3368          * Don't hold the lock while doing disk operations,
3369          * or lock ordering will conflict with the bdev mutex via:
3370          * rbd_add() -> blkdev_get() -> rbd_open()
3371          */
3372         spin_lock_irq(&rbd_dev->lock);
3373         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3374         spin_unlock_irq(&rbd_dev->lock);
3375         /*
3376          * If the device is being removed, rbd_dev->disk has
3377          * been destroyed, so don't try to update its size
3378          */
3379         if (!removing) {
3380                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3381                 dout("setting size to %llu sectors", (unsigned long long)size);
3382                 set_capacity(rbd_dev->disk, size);
3383                 revalidate_disk(rbd_dev->disk);
3384         }
3385 }
3386
3387 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3388 {
3389         u64 mapping_size;
3390         int ret;
3391
3392         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3393         down_write(&rbd_dev->header_rwsem);
3394         mapping_size = rbd_dev->mapping.size;
3395         if (rbd_dev->image_format == 1)
3396                 ret = rbd_dev_v1_header_info(rbd_dev);
3397         else
3398                 ret = rbd_dev_v2_header_info(rbd_dev);
3399
3400         /* If it's a mapped snapshot, validate its EXISTS flag */
3401
3402         rbd_exists_validate(rbd_dev);
3403         up_write(&rbd_dev->header_rwsem);
3404
3405         if (mapping_size != rbd_dev->mapping.size) {
3406                 rbd_dev_update_size(rbd_dev);
3407         }
3408
3409         return ret;
3410 }
3411
3412 static int rbd_init_disk(struct rbd_device *rbd_dev)
3413 {
3414         struct gendisk *disk;
3415         struct request_queue *q;
3416         u64 segment_size;
3417
3418         /* create gendisk info */
3419         disk = alloc_disk(single_major ?
3420                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3421                           RBD_MINORS_PER_MAJOR);
3422         if (!disk)
3423                 return -ENOMEM;
3424
3425         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3426                  rbd_dev->dev_id);
3427         disk->major = rbd_dev->major;
3428         disk->first_minor = rbd_dev->minor;
3429         if (single_major)
3430                 disk->flags |= GENHD_FL_EXT_DEVT;
3431         disk->fops = &rbd_bd_ops;
3432         disk->private_data = rbd_dev;
3433
3434         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3435         if (!q)
3436                 goto out_disk;
3437
3438         /* We use the default size, but let's be explicit about it. */
3439         blk_queue_physical_block_size(q, SECTOR_SIZE);
3440
3441         /* set io sizes to object size */
3442         segment_size = rbd_obj_bytes(&rbd_dev->header);
3443         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3444         blk_queue_max_segment_size(q, segment_size);
3445         blk_queue_io_min(q, segment_size);
3446         blk_queue_io_opt(q, segment_size);
3447
3448         blk_queue_merge_bvec(q, rbd_merge_bvec);
3449         disk->queue = q;
3450
3451         q->queuedata = rbd_dev;
3452
3453         rbd_dev->disk = disk;
3454
3455         return 0;
3456 out_disk:
3457         put_disk(disk);
3458
3459         return -ENOMEM;
3460 }
3461
3462 /*
3463   sysfs
3464 */
3465
3466 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3467 {
3468         return container_of(dev, struct rbd_device, dev);
3469 }
3470
3471 static ssize_t rbd_size_show(struct device *dev,
3472                              struct device_attribute *attr, char *buf)
3473 {
3474         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475
3476         return sprintf(buf, "%llu\n",
3477                 (unsigned long long)rbd_dev->mapping.size);
3478 }
3479
3480 /*
3481  * Note this shows the features for whatever's mapped, which is not
3482  * necessarily the base image.
3483  */
3484 static ssize_t rbd_features_show(struct device *dev,
3485                              struct device_attribute *attr, char *buf)
3486 {
3487         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3488
3489         return sprintf(buf, "0x%016llx\n",
3490                         (unsigned long long)rbd_dev->mapping.features);
3491 }
3492
3493 static ssize_t rbd_major_show(struct device *dev,
3494                               struct device_attribute *attr, char *buf)
3495 {
3496         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3497
3498         if (rbd_dev->major)
3499                 return sprintf(buf, "%d\n", rbd_dev->major);
3500
3501         return sprintf(buf, "(none)\n");
3502 }
3503
3504 static ssize_t rbd_minor_show(struct device *dev,
3505                               struct device_attribute *attr, char *buf)
3506 {
3507         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3508
3509         return sprintf(buf, "%d\n", rbd_dev->minor);
3510 }
3511
3512 static ssize_t rbd_client_id_show(struct device *dev,
3513                                   struct device_attribute *attr, char *buf)
3514 {
3515         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3516
3517         return sprintf(buf, "client%lld\n",
3518                         ceph_client_id(rbd_dev->rbd_client->client));
3519 }
3520
3521 static ssize_t rbd_pool_show(struct device *dev,
3522                              struct device_attribute *attr, char *buf)
3523 {
3524         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3525
3526         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3527 }
3528
3529 static ssize_t rbd_pool_id_show(struct device *dev,
3530                              struct device_attribute *attr, char *buf)
3531 {
3532         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3533
3534         return sprintf(buf, "%llu\n",
3535                         (unsigned long long) rbd_dev->spec->pool_id);
3536 }
3537
3538 static ssize_t rbd_name_show(struct device *dev,
3539                              struct device_attribute *attr, char *buf)
3540 {
3541         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542
3543         if (rbd_dev->spec->image_name)
3544                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3545
3546         return sprintf(buf, "(unknown)\n");
3547 }
3548
3549 static ssize_t rbd_image_id_show(struct device *dev,
3550                              struct device_attribute *attr, char *buf)
3551 {
3552         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553
3554         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3555 }
3556
3557 /*
3558  * Shows the name of the currently-mapped snapshot (or
3559  * RBD_SNAP_HEAD_NAME for the base image).
3560  */
3561 static ssize_t rbd_snap_show(struct device *dev,
3562                              struct device_attribute *attr,
3563                              char *buf)
3564 {
3565         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3566
3567         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3568 }
3569
3570 /*
3571  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3572  * for the parent image.  If there is no parent, simply shows
3573  * "(no parent image)".
3574  */
3575 static ssize_t rbd_parent_show(struct device *dev,
3576                              struct device_attribute *attr,
3577                              char *buf)
3578 {
3579         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580         struct rbd_spec *spec = rbd_dev->parent_spec;
3581         int count;
3582         char *bufp = buf;
3583
3584         if (!spec)
3585                 return sprintf(buf, "(no parent image)\n");
3586
3587         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3588                         (unsigned long long) spec->pool_id, spec->pool_name);
3589         if (count < 0)
3590                 return count;
3591         bufp += count;
3592
3593         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3594                         spec->image_name ? spec->image_name : "(unknown)");
3595         if (count < 0)
3596                 return count;
3597         bufp += count;
3598
3599         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3600                         (unsigned long long) spec->snap_id, spec->snap_name);
3601         if (count < 0)
3602                 return count;
3603         bufp += count;
3604
3605         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3606         if (count < 0)
3607                 return count;
3608         bufp += count;
3609
3610         return (ssize_t) (bufp - buf);
3611 }
3612
3613 static ssize_t rbd_image_refresh(struct device *dev,
3614                                  struct device_attribute *attr,
3615                                  const char *buf,
3616                                  size_t size)
3617 {
3618         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3619         int ret;
3620
3621         ret = rbd_dev_refresh(rbd_dev);
3622         if (ret)
3623                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3624
3625         return ret < 0 ? ret : size;
3626 }
3627
3628 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3629 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3630 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3631 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3632 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3633 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3634 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3635 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3636 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3637 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3638 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3639 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3640
3641 static struct attribute *rbd_attrs[] = {
3642         &dev_attr_size.attr,
3643         &dev_attr_features.attr,
3644         &dev_attr_major.attr,
3645         &dev_attr_minor.attr,
3646         &dev_attr_client_id.attr,
3647         &dev_attr_pool.attr,
3648         &dev_attr_pool_id.attr,
3649         &dev_attr_name.attr,
3650         &dev_attr_image_id.attr,
3651         &dev_attr_current_snap.attr,
3652         &dev_attr_parent.attr,
3653         &dev_attr_refresh.attr,
3654         NULL
3655 };
3656
3657 static struct attribute_group rbd_attr_group = {
3658         .attrs = rbd_attrs,
3659 };
3660
3661 static const struct attribute_group *rbd_attr_groups[] = {
3662         &rbd_attr_group,
3663         NULL
3664 };
3665
3666 static void rbd_sysfs_dev_release(struct device *dev)
3667 {
3668 }
3669
3670 static struct device_type rbd_device_type = {
3671         .name           = "rbd",
3672         .groups         = rbd_attr_groups,
3673         .release        = rbd_sysfs_dev_release,
3674 };
3675
3676 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3677 {
3678         kref_get(&spec->kref);
3679
3680         return spec;
3681 }
3682
3683 static void rbd_spec_free(struct kref *kref);
3684 static void rbd_spec_put(struct rbd_spec *spec)
3685 {
3686         if (spec)
3687                 kref_put(&spec->kref, rbd_spec_free);
3688 }
3689
3690 static struct rbd_spec *rbd_spec_alloc(void)
3691 {
3692         struct rbd_spec *spec;
3693
3694         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3695         if (!spec)
3696                 return NULL;
3697         kref_init(&spec->kref);
3698
3699         return spec;
3700 }
3701
3702 static void rbd_spec_free(struct kref *kref)
3703 {
3704         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3705
3706         kfree(spec->pool_name);
3707         kfree(spec->image_id);
3708         kfree(spec->image_name);
3709         kfree(spec->snap_name);
3710         kfree(spec);
3711 }
3712
3713 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3714                                 struct rbd_spec *spec)
3715 {
3716         struct rbd_device *rbd_dev;
3717
3718         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3719         if (!rbd_dev)
3720                 return NULL;
3721
3722         spin_lock_init(&rbd_dev->lock);
3723         rbd_dev->flags = 0;
3724         atomic_set(&rbd_dev->parent_ref, 0);
3725         INIT_LIST_HEAD(&rbd_dev->node);
3726         init_rwsem(&rbd_dev->header_rwsem);
3727
3728         rbd_dev->spec = spec;
3729         rbd_dev->rbd_client = rbdc;
3730
3731         /* Initialize the layout used for all rbd requests */
3732
3733         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3734         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3735         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3736         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3737
3738         return rbd_dev;
3739 }
3740
3741 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3742 {
3743         rbd_put_client(rbd_dev->rbd_client);
3744         rbd_spec_put(rbd_dev->spec);
3745         kfree(rbd_dev);
3746 }
3747
3748 /*
3749  * Get the size and object order for an image snapshot, or if
3750  * snap_id is CEPH_NOSNAP, gets this information for the base
3751  * image.
3752  */
3753 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3754                                 u8 *order, u64 *snap_size)
3755 {
3756         __le64 snapid = cpu_to_le64(snap_id);
3757         int ret;
3758         struct {
3759                 u8 order;
3760                 __le64 size;
3761         } __attribute__ ((packed)) size_buf = { 0 };
3762
3763         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3764                                 "rbd", "get_size",
3765                                 &snapid, sizeof (snapid),
3766                                 &size_buf, sizeof (size_buf));
3767         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3768         if (ret < 0)
3769                 return ret;
3770         if (ret < sizeof (size_buf))
3771                 return -ERANGE;
3772
3773         if (order) {
3774                 *order = size_buf.order;
3775                 dout("  order %u", (unsigned int)*order);
3776         }
3777         *snap_size = le64_to_cpu(size_buf.size);
3778
3779         dout("  snap_id 0x%016llx snap_size = %llu\n",
3780                 (unsigned long long)snap_id,
3781                 (unsigned long long)*snap_size);
3782
3783         return 0;
3784 }
3785
3786 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3787 {
3788         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3789                                         &rbd_dev->header.obj_order,
3790                                         &rbd_dev->header.image_size);
3791 }
3792
3793 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3794 {
3795         void *reply_buf;
3796         int ret;
3797         void *p;
3798
3799         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3800         if (!reply_buf)
3801                 return -ENOMEM;
3802
3803         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3804                                 "rbd", "get_object_prefix", NULL, 0,
3805                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3806         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3807         if (ret < 0)
3808                 goto out;
3809
3810         p = reply_buf;
3811         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3812                                                 p + ret, NULL, GFP_NOIO);
3813         ret = 0;
3814
3815         if (IS_ERR(rbd_dev->header.object_prefix)) {
3816                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3817                 rbd_dev->header.object_prefix = NULL;
3818         } else {
3819                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3820         }
3821 out:
3822         kfree(reply_buf);
3823
3824         return ret;
3825 }
3826
3827 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3828                 u64 *snap_features)
3829 {
3830         __le64 snapid = cpu_to_le64(snap_id);
3831         struct {
3832                 __le64 features;
3833                 __le64 incompat;
3834         } __attribute__ ((packed)) features_buf = { 0 };
3835         u64 incompat;
3836         int ret;
3837
3838         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3839                                 "rbd", "get_features",
3840                                 &snapid, sizeof (snapid),
3841                                 &features_buf, sizeof (features_buf));
3842         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3843         if (ret < 0)
3844                 return ret;
3845         if (ret < sizeof (features_buf))
3846                 return -ERANGE;
3847
3848         incompat = le64_to_cpu(features_buf.incompat);
3849         if (incompat & ~RBD_FEATURES_SUPPORTED)
3850                 return -ENXIO;
3851
3852         *snap_features = le64_to_cpu(features_buf.features);
3853
3854         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3855                 (unsigned long long)snap_id,
3856                 (unsigned long long)*snap_features,
3857                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3858
3859         return 0;
3860 }
3861
3862 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3863 {
3864         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3865                                                 &rbd_dev->header.features);
3866 }
3867
3868 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3869 {
3870         struct rbd_spec *parent_spec;
3871         size_t size;
3872         void *reply_buf = NULL;
3873         __le64 snapid;
3874         void *p;
3875         void *end;
3876         u64 pool_id;
3877         char *image_id;
3878         u64 snap_id;
3879         u64 overlap;
3880         int ret;
3881
3882         parent_spec = rbd_spec_alloc();
3883         if (!parent_spec)
3884                 return -ENOMEM;
3885
3886         size = sizeof (__le64) +                                /* pool_id */
3887                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3888                 sizeof (__le64) +                               /* snap_id */
3889                 sizeof (__le64);                                /* overlap */
3890         reply_buf = kmalloc(size, GFP_KERNEL);
3891         if (!reply_buf) {
3892                 ret = -ENOMEM;
3893                 goto out_err;
3894         }
3895
3896         snapid = cpu_to_le64(CEPH_NOSNAP);
3897         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3898                                 "rbd", "get_parent",
3899                                 &snapid, sizeof (snapid),
3900                                 reply_buf, size);
3901         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3902         if (ret < 0)
3903                 goto out_err;
3904
3905         p = reply_buf;
3906         end = reply_buf + ret;
3907         ret = -ERANGE;
3908         ceph_decode_64_safe(&p, end, pool_id, out_err);
3909         if (pool_id == CEPH_NOPOOL) {
3910                 /*
3911                  * Either the parent never existed, or we have
3912                  * record of it but the image got flattened so it no
3913                  * longer has a parent.  When the parent of a
3914                  * layered image disappears we immediately set the
3915                  * overlap to 0.  The effect of this is that all new
3916                  * requests will be treated as if the image had no
3917                  * parent.
3918                  */
3919                 if (rbd_dev->parent_overlap) {
3920                         rbd_dev->parent_overlap = 0;
3921                         smp_mb();
3922                         rbd_dev_parent_put(rbd_dev);
3923                         pr_info("%s: clone image has been flattened\n",
3924                                 rbd_dev->disk->disk_name);
3925                 }
3926
3927                 goto out;       /* No parent?  No problem. */
3928         }
3929
3930         /* The ceph file layout needs to fit pool id in 32 bits */
3931
3932         ret = -EIO;
3933         if (pool_id > (u64)U32_MAX) {
3934                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3935                         (unsigned long long)pool_id, U32_MAX);
3936                 goto out_err;
3937         }
3938
3939         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3940         if (IS_ERR(image_id)) {
3941                 ret = PTR_ERR(image_id);
3942                 goto out_err;
3943         }
3944         ceph_decode_64_safe(&p, end, snap_id, out_err);
3945         ceph_decode_64_safe(&p, end, overlap, out_err);
3946
3947         /*
3948          * The parent won't change (except when the clone is
3949          * flattened, already handled that).  So we only need to
3950          * record the parent spec we have not already done so.
3951          */
3952         if (!rbd_dev->parent_spec) {
3953                 parent_spec->pool_id = pool_id;
3954                 parent_spec->image_id = image_id;
3955                 parent_spec->snap_id = snap_id;
3956                 rbd_dev->parent_spec = parent_spec;
3957                 parent_spec = NULL;     /* rbd_dev now owns this */
3958         }
3959
3960         /*
3961          * We always update the parent overlap.  If it's zero we
3962          * treat it specially.
3963          */
3964         rbd_dev->parent_overlap = overlap;
3965         smp_mb();
3966         if (!overlap) {
3967
3968                 /* A null parent_spec indicates it's the initial probe */
3969
3970                 if (parent_spec) {
3971                         /*
3972                          * The overlap has become zero, so the clone
3973                          * must have been resized down to 0 at some
3974                          * point.  Treat this the same as a flatten.
3975                          */
3976                         rbd_dev_parent_put(rbd_dev);
3977                         pr_info("%s: clone image now standalone\n",
3978                                 rbd_dev->disk->disk_name);
3979                 } else {
3980                         /*
3981                          * For the initial probe, if we find the
3982                          * overlap is zero we just pretend there was
3983                          * no parent image.
3984                          */
3985                         rbd_warn(rbd_dev, "ignoring parent of "
3986                                                 "clone with overlap 0\n");
3987                 }
3988         }
3989 out:
3990         ret = 0;
3991 out_err:
3992         kfree(reply_buf);
3993         rbd_spec_put(parent_spec);
3994
3995         return ret;
3996 }
3997
3998 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3999 {
4000         struct {
4001                 __le64 stripe_unit;
4002                 __le64 stripe_count;
4003         } __attribute__ ((packed)) striping_info_buf = { 0 };
4004         size_t size = sizeof (striping_info_buf);
4005         void *p;
4006         u64 obj_size;
4007         u64 stripe_unit;
4008         u64 stripe_count;
4009         int ret;
4010
4011         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4012                                 "rbd", "get_stripe_unit_count", NULL, 0,
4013                                 (char *)&striping_info_buf, size);
4014         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4015         if (ret < 0)
4016                 return ret;
4017         if (ret < size)
4018                 return -ERANGE;
4019
4020         /*
4021          * We don't actually support the "fancy striping" feature
4022          * (STRIPINGV2) yet, but if the striping sizes are the
4023          * defaults the behavior is the same as before.  So find
4024          * out, and only fail if the image has non-default values.
4025          */
4026         ret = -EINVAL;
4027         obj_size = (u64)1 << rbd_dev->header.obj_order;
4028         p = &striping_info_buf;
4029         stripe_unit = ceph_decode_64(&p);
4030         if (stripe_unit != obj_size) {
4031                 rbd_warn(rbd_dev, "unsupported stripe unit "
4032                                 "(got %llu want %llu)",
4033                                 stripe_unit, obj_size);
4034                 return -EINVAL;
4035         }
4036         stripe_count = ceph_decode_64(&p);
4037         if (stripe_count != 1) {
4038                 rbd_warn(rbd_dev, "unsupported stripe count "
4039                                 "(got %llu want 1)", stripe_count);
4040                 return -EINVAL;
4041         }
4042         rbd_dev->header.stripe_unit = stripe_unit;
4043         rbd_dev->header.stripe_count = stripe_count;
4044
4045         return 0;
4046 }
4047
4048 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4049 {
4050         size_t image_id_size;
4051         char *image_id;
4052         void *p;
4053         void *end;
4054         size_t size;
4055         void *reply_buf = NULL;
4056         size_t len = 0;
4057         char *image_name = NULL;
4058         int ret;
4059
4060         rbd_assert(!rbd_dev->spec->image_name);
4061
4062         len = strlen(rbd_dev->spec->image_id);
4063         image_id_size = sizeof (__le32) + len;
4064         image_id = kmalloc(image_id_size, GFP_KERNEL);
4065         if (!image_id)
4066                 return NULL;
4067
4068         p = image_id;
4069         end = image_id + image_id_size;
4070         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4071
4072         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4073         reply_buf = kmalloc(size, GFP_KERNEL);
4074         if (!reply_buf)
4075                 goto out;
4076
4077         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4078                                 "rbd", "dir_get_name",
4079                                 image_id, image_id_size,
4080                                 reply_buf, size);
4081         if (ret < 0)
4082                 goto out;
4083         p = reply_buf;
4084         end = reply_buf + ret;
4085
4086         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4087         if (IS_ERR(image_name))
4088                 image_name = NULL;
4089         else
4090                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4091 out:
4092         kfree(reply_buf);
4093         kfree(image_id);
4094
4095         return image_name;
4096 }
4097
4098 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4099 {
4100         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4101         const char *snap_name;
4102         u32 which = 0;
4103
4104         /* Skip over names until we find the one we are looking for */
4105
4106         snap_name = rbd_dev->header.snap_names;
4107         while (which < snapc->num_snaps) {
4108                 if (!strcmp(name, snap_name))
4109                         return snapc->snaps[which];
4110                 snap_name += strlen(snap_name) + 1;
4111                 which++;
4112         }
4113         return CEPH_NOSNAP;
4114 }
4115
4116 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4117 {
4118         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4119         u32 which;
4120         bool found = false;
4121         u64 snap_id;
4122
4123         for (which = 0; !found && which < snapc->num_snaps; which++) {
4124                 const char *snap_name;
4125
4126                 snap_id = snapc->snaps[which];
4127                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4128                 if (IS_ERR(snap_name)) {
4129                         /* ignore no-longer existing snapshots */
4130                         if (PTR_ERR(snap_name) == -ENOENT)
4131                                 continue;
4132                         else
4133                                 break;
4134                 }
4135                 found = !strcmp(name, snap_name);
4136                 kfree(snap_name);
4137         }
4138         return found ? snap_id : CEPH_NOSNAP;
4139 }
4140
4141 /*
4142  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4143  * no snapshot by that name is found, or if an error occurs.
4144  */
4145 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4146 {
4147         if (rbd_dev->image_format == 1)
4148                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4149
4150         return rbd_v2_snap_id_by_name(rbd_dev, name);
4151 }
4152
4153 /*
4154  * When an rbd image has a parent image, it is identified by the
4155  * pool, image, and snapshot ids (not names).  This function fills
4156  * in the names for those ids.  (It's OK if we can't figure out the
4157  * name for an image id, but the pool and snapshot ids should always
4158  * exist and have names.)  All names in an rbd spec are dynamically
4159  * allocated.
4160  *
4161  * When an image being mapped (not a parent) is probed, we have the
4162  * pool name and pool id, image name and image id, and the snapshot
4163  * name.  The only thing we're missing is the snapshot id.
4164  */
4165 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4166 {
4167         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4168         struct rbd_spec *spec = rbd_dev->spec;
4169         const char *pool_name;
4170         const char *image_name;
4171         const char *snap_name;
4172         int ret;
4173
4174         /*
4175          * An image being mapped will have the pool name (etc.), but
4176          * we need to look up the snapshot id.
4177          */
4178         if (spec->pool_name) {
4179                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4180                         u64 snap_id;
4181
4182                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4183                         if (snap_id == CEPH_NOSNAP)
4184                                 return -ENOENT;
4185                         spec->snap_id = snap_id;
4186                 } else {
4187                         spec->snap_id = CEPH_NOSNAP;
4188                 }
4189
4190                 return 0;
4191         }
4192
4193         /* Get the pool name; we have to make our own copy of this */
4194
4195         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4196         if (!pool_name) {
4197                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4198                 return -EIO;
4199         }
4200         pool_name = kstrdup(pool_name, GFP_KERNEL);
4201         if (!pool_name)
4202                 return -ENOMEM;
4203
4204         /* Fetch the image name; tolerate failure here */
4205
4206         image_name = rbd_dev_image_name(rbd_dev);
4207         if (!image_name)
4208                 rbd_warn(rbd_dev, "unable to get image name");
4209
4210         /* Look up the snapshot name, and make a copy */
4211
4212         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4213         if (IS_ERR(snap_name)) {
4214                 ret = PTR_ERR(snap_name);
4215                 goto out_err;
4216         }
4217
4218         spec->pool_name = pool_name;
4219         spec->image_name = image_name;
4220         spec->snap_name = snap_name;
4221
4222         return 0;
4223 out_err:
4224         kfree(image_name);
4225         kfree(pool_name);
4226
4227         return ret;
4228 }
4229
4230 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4231 {
4232         size_t size;
4233         int ret;
4234         void *reply_buf;
4235         void *p;
4236         void *end;
4237         u64 seq;
4238         u32 snap_count;
4239         struct ceph_snap_context *snapc;
4240         u32 i;
4241
4242         /*
4243          * We'll need room for the seq value (maximum snapshot id),
4244          * snapshot count, and array of that many snapshot ids.
4245          * For now we have a fixed upper limit on the number we're
4246          * prepared to receive.
4247          */
4248         size = sizeof (__le64) + sizeof (__le32) +
4249                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4250         reply_buf = kzalloc(size, GFP_KERNEL);
4251         if (!reply_buf)
4252                 return -ENOMEM;
4253
4254         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4255                                 "rbd", "get_snapcontext", NULL, 0,
4256                                 reply_buf, size);
4257         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4258         if (ret < 0)
4259                 goto out;
4260
4261         p = reply_buf;
4262         end = reply_buf + ret;
4263         ret = -ERANGE;
4264         ceph_decode_64_safe(&p, end, seq, out);
4265         ceph_decode_32_safe(&p, end, snap_count, out);
4266
4267         /*
4268          * Make sure the reported number of snapshot ids wouldn't go
4269          * beyond the end of our buffer.  But before checking that,
4270          * make sure the computed size of the snapshot context we
4271          * allocate is representable in a size_t.
4272          */
4273         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4274                                  / sizeof (u64)) {
4275                 ret = -EINVAL;
4276                 goto out;
4277         }
4278         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4279                 goto out;
4280         ret = 0;
4281
4282         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4283         if (!snapc) {
4284                 ret = -ENOMEM;
4285                 goto out;
4286         }
4287         snapc->seq = seq;
4288         for (i = 0; i < snap_count; i++)
4289                 snapc->snaps[i] = ceph_decode_64(&p);
4290
4291         ceph_put_snap_context(rbd_dev->header.snapc);
4292         rbd_dev->header.snapc = snapc;
4293
4294         dout("  snap context seq = %llu, snap_count = %u\n",
4295                 (unsigned long long)seq, (unsigned int)snap_count);
4296 out:
4297         kfree(reply_buf);
4298
4299         return ret;
4300 }
4301
4302 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4303                                         u64 snap_id)
4304 {
4305         size_t size;
4306         void *reply_buf;
4307         __le64 snapid;
4308         int ret;
4309         void *p;
4310         void *end;
4311         char *snap_name;
4312
4313         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4314         reply_buf = kmalloc(size, GFP_KERNEL);
4315         if (!reply_buf)
4316                 return ERR_PTR(-ENOMEM);
4317
4318         snapid = cpu_to_le64(snap_id);
4319         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4320                                 "rbd", "get_snapshot_name",
4321                                 &snapid, sizeof (snapid),
4322                                 reply_buf, size);
4323         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4324         if (ret < 0) {
4325                 snap_name = ERR_PTR(ret);
4326                 goto out;
4327         }
4328
4329         p = reply_buf;
4330         end = reply_buf + ret;
4331         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4332         if (IS_ERR(snap_name))
4333                 goto out;
4334
4335         dout("  snap_id 0x%016llx snap_name = %s\n",
4336                 (unsigned long long)snap_id, snap_name);
4337 out:
4338         kfree(reply_buf);
4339
4340         return snap_name;
4341 }
4342
4343 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4344 {
4345         bool first_time = rbd_dev->header.object_prefix == NULL;
4346         int ret;
4347
4348         ret = rbd_dev_v2_image_size(rbd_dev);
4349         if (ret)
4350                 return ret;
4351
4352         if (first_time) {
4353                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4354                 if (ret)
4355                         return ret;
4356         }
4357
4358         /*
4359          * If the image supports layering, get the parent info.  We
4360          * need to probe the first time regardless.  Thereafter we
4361          * only need to if there's a parent, to see if it has
4362          * disappeared due to the mapped image getting flattened.
4363          */
4364         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4365                         (first_time || rbd_dev->parent_spec)) {
4366                 bool warn;
4367
4368                 ret = rbd_dev_v2_parent_info(rbd_dev);
4369                 if (ret)
4370                         return ret;
4371
4372                 /*
4373                  * Print a warning if this is the initial probe and
4374                  * the image has a parent.  Don't print it if the
4375                  * image now being probed is itself a parent.  We
4376                  * can tell at this point because we won't know its
4377                  * pool name yet (just its pool id).
4378                  */
4379                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4380                 if (first_time && warn)
4381                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4382                                         "is EXPERIMENTAL!");
4383         }
4384
4385         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4386                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4387                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4388
4389         ret = rbd_dev_v2_snap_context(rbd_dev);
4390         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4391
4392         return ret;
4393 }
4394
4395 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4396 {
4397         struct device *dev;
4398         int ret;
4399
4400         dev = &rbd_dev->dev;
4401         dev->bus = &rbd_bus_type;
4402         dev->type = &rbd_device_type;
4403         dev->parent = &rbd_root_dev;
4404         dev->release = rbd_dev_device_release;
4405         dev_set_name(dev, "%d", rbd_dev->dev_id);
4406         ret = device_register(dev);
4407
4408         return ret;
4409 }
4410
4411 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4412 {
4413         device_unregister(&rbd_dev->dev);
4414 }
4415
4416 /*
4417  * Get a unique rbd identifier for the given new rbd_dev, and add
4418  * the rbd_dev to the global list.
4419  */
4420 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4421 {
4422         int new_dev_id;
4423
4424         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4425                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4426                                     GFP_KERNEL);
4427         if (new_dev_id < 0)
4428                 return new_dev_id;
4429
4430         rbd_dev->dev_id = new_dev_id;
4431
4432         spin_lock(&rbd_dev_list_lock);
4433         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4434         spin_unlock(&rbd_dev_list_lock);
4435
4436         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4437
4438         return 0;
4439 }
4440
4441 /*
4442  * Remove an rbd_dev from the global list, and record that its
4443  * identifier is no longer in use.
4444  */
4445 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4446 {
4447         spin_lock(&rbd_dev_list_lock);
4448         list_del_init(&rbd_dev->node);
4449         spin_unlock(&rbd_dev_list_lock);
4450
4451         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4452
4453         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4454 }
4455
4456 /*
4457  * Skips over white space at *buf, and updates *buf to point to the
4458  * first found non-space character (if any). Returns the length of
4459  * the token (string of non-white space characters) found.  Note
4460  * that *buf must be terminated with '\0'.
4461  */
4462 static inline size_t next_token(const char **buf)
4463 {
4464         /*
4465         * These are the characters that produce nonzero for
4466         * isspace() in the "C" and "POSIX" locales.
4467         */
4468         const char *spaces = " \f\n\r\t\v";
4469
4470         *buf += strspn(*buf, spaces);   /* Find start of token */
4471
4472         return strcspn(*buf, spaces);   /* Return token length */
4473 }
4474
4475 /*
4476  * Finds the next token in *buf, and if the provided token buffer is
4477  * big enough, copies the found token into it.  The result, if
4478  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4479  * must be terminated with '\0' on entry.
4480  *
4481  * Returns the length of the token found (not including the '\0').
4482  * Return value will be 0 if no token is found, and it will be >=
4483  * token_size if the token would not fit.
4484  *
4485  * The *buf pointer will be updated to point beyond the end of the
4486  * found token.  Note that this occurs even if the token buffer is
4487  * too small to hold it.
4488  */
4489 static inline size_t copy_token(const char **buf,
4490                                 char *token,
4491                                 size_t token_size)
4492 {
4493         size_t len;
4494
4495         len = next_token(buf);
4496         if (len < token_size) {
4497                 memcpy(token, *buf, len);
4498                 *(token + len) = '\0';
4499         }
4500         *buf += len;
4501
4502         return len;
4503 }
4504
4505 /*
4506  * Finds the next token in *buf, dynamically allocates a buffer big
4507  * enough to hold a copy of it, and copies the token into the new
4508  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4509  * that a duplicate buffer is created even for a zero-length token.
4510  *
4511  * Returns a pointer to the newly-allocated duplicate, or a null
4512  * pointer if memory for the duplicate was not available.  If
4513  * the lenp argument is a non-null pointer, the length of the token
4514  * (not including the '\0') is returned in *lenp.
4515  *
4516  * If successful, the *buf pointer will be updated to point beyond
4517  * the end of the found token.
4518  *
4519  * Note: uses GFP_KERNEL for allocation.
4520  */
4521 static inline char *dup_token(const char **buf, size_t *lenp)
4522 {
4523         char *dup;
4524         size_t len;
4525
4526         len = next_token(buf);
4527         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4528         if (!dup)
4529                 return NULL;
4530         *(dup + len) = '\0';
4531         *buf += len;
4532
4533         if (lenp)
4534                 *lenp = len;
4535
4536         return dup;
4537 }
4538
4539 /*
4540  * Parse the options provided for an "rbd add" (i.e., rbd image
4541  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4542  * and the data written is passed here via a NUL-terminated buffer.
4543  * Returns 0 if successful or an error code otherwise.
4544  *
4545  * The information extracted from these options is recorded in
4546  * the other parameters which return dynamically-allocated
4547  * structures:
4548  *  ceph_opts
4549  *      The address of a pointer that will refer to a ceph options
4550  *      structure.  Caller must release the returned pointer using
4551  *      ceph_destroy_options() when it is no longer needed.
4552  *  rbd_opts
4553  *      Address of an rbd options pointer.  Fully initialized by
4554  *      this function; caller must release with kfree().
4555  *  spec
4556  *      Address of an rbd image specification pointer.  Fully
4557  *      initialized by this function based on parsed options.
4558  *      Caller must release with rbd_spec_put().
4559  *
4560  * The options passed take this form:
4561  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4562  * where:
4563  *  <mon_addrs>
4564  *      A comma-separated list of one or more monitor addresses.
4565  *      A monitor address is an ip address, optionally followed
4566  *      by a port number (separated by a colon).
4567  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4568  *  <options>
4569  *      A comma-separated list of ceph and/or rbd options.
4570  *  <pool_name>
4571  *      The name of the rados pool containing the rbd image.
4572  *  <image_name>
4573  *      The name of the image in that pool to map.
4574  *  <snap_id>
4575  *      An optional snapshot id.  If provided, the mapping will
4576  *      present data from the image at the time that snapshot was
4577  *      created.  The image head is used if no snapshot id is
4578  *      provided.  Snapshot mappings are always read-only.
4579  */
4580 static int rbd_add_parse_args(const char *buf,
4581                                 struct ceph_options **ceph_opts,
4582                                 struct rbd_options **opts,
4583                                 struct rbd_spec **rbd_spec)
4584 {
4585         size_t len;
4586         char *options;
4587         const char *mon_addrs;
4588         char *snap_name;
4589         size_t mon_addrs_size;
4590         struct rbd_spec *spec = NULL;
4591         struct rbd_options *rbd_opts = NULL;
4592         struct ceph_options *copts;
4593         int ret;
4594
4595         /* The first four tokens are required */
4596
4597         len = next_token(&buf);
4598         if (!len) {
4599                 rbd_warn(NULL, "no monitor address(es) provided");
4600                 return -EINVAL;
4601         }
4602         mon_addrs = buf;
4603         mon_addrs_size = len + 1;
4604         buf += len;
4605
4606         ret = -EINVAL;
4607         options = dup_token(&buf, NULL);
4608         if (!options)
4609                 return -ENOMEM;
4610         if (!*options) {
4611                 rbd_warn(NULL, "no options provided");
4612                 goto out_err;
4613         }
4614
4615         spec = rbd_spec_alloc();
4616         if (!spec)
4617                 goto out_mem;
4618
4619         spec->pool_name = dup_token(&buf, NULL);
4620         if (!spec->pool_name)
4621                 goto out_mem;
4622         if (!*spec->pool_name) {
4623                 rbd_warn(NULL, "no pool name provided");
4624                 goto out_err;
4625         }
4626
4627         spec->image_name = dup_token(&buf, NULL);
4628         if (!spec->image_name)
4629                 goto out_mem;
4630         if (!*spec->image_name) {
4631                 rbd_warn(NULL, "no image name provided");
4632                 goto out_err;
4633         }
4634
4635         /*
4636          * Snapshot name is optional; default is to use "-"
4637          * (indicating the head/no snapshot).
4638          */
4639         len = next_token(&buf);
4640         if (!len) {
4641                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4642                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4643         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4644                 ret = -ENAMETOOLONG;
4645                 goto out_err;
4646         }
4647         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4648         if (!snap_name)
4649                 goto out_mem;
4650         *(snap_name + len) = '\0';
4651         spec->snap_name = snap_name;
4652
4653         /* Initialize all rbd options to the defaults */
4654
4655         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4656         if (!rbd_opts)
4657                 goto out_mem;
4658
4659         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4660
4661         copts = ceph_parse_options(options, mon_addrs,
4662                                         mon_addrs + mon_addrs_size - 1,
4663                                         parse_rbd_opts_token, rbd_opts);
4664         if (IS_ERR(copts)) {
4665                 ret = PTR_ERR(copts);
4666                 goto out_err;
4667         }
4668         kfree(options);
4669
4670         *ceph_opts = copts;
4671         *opts = rbd_opts;
4672         *rbd_spec = spec;
4673
4674         return 0;
4675 out_mem:
4676         ret = -ENOMEM;
4677 out_err:
4678         kfree(rbd_opts);
4679         rbd_spec_put(spec);
4680         kfree(options);
4681
4682         return ret;
4683 }
4684
4685 /*
4686  * An rbd format 2 image has a unique identifier, distinct from the
4687  * name given to it by the user.  Internally, that identifier is
4688  * what's used to specify the names of objects related to the image.
4689  *
4690  * A special "rbd id" object is used to map an rbd image name to its
4691  * id.  If that object doesn't exist, then there is no v2 rbd image
4692  * with the supplied name.
4693  *
4694  * This function will record the given rbd_dev's image_id field if
4695  * it can be determined, and in that case will return 0.  If any
4696  * errors occur a negative errno will be returned and the rbd_dev's
4697  * image_id field will be unchanged (and should be NULL).
4698  */
4699 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4700 {
4701         int ret;
4702         size_t size;
4703         char *object_name;
4704         void *response;
4705         char *image_id;
4706
4707         /*
4708          * When probing a parent image, the image id is already
4709          * known (and the image name likely is not).  There's no
4710          * need to fetch the image id again in this case.  We
4711          * do still need to set the image format though.
4712          */
4713         if (rbd_dev->spec->image_id) {
4714                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4715
4716                 return 0;
4717         }
4718
4719         /*
4720          * First, see if the format 2 image id file exists, and if
4721          * so, get the image's persistent id from it.
4722          */
4723         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4724         object_name = kmalloc(size, GFP_NOIO);
4725         if (!object_name)
4726                 return -ENOMEM;
4727         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4728         dout("rbd id object name is %s\n", object_name);
4729
4730         /* Response will be an encoded string, which includes a length */
4731
4732         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4733         response = kzalloc(size, GFP_NOIO);
4734         if (!response) {
4735                 ret = -ENOMEM;
4736                 goto out;
4737         }
4738
4739         /* If it doesn't exist we'll assume it's a format 1 image */
4740
4741         ret = rbd_obj_method_sync(rbd_dev, object_name,
4742                                 "rbd", "get_id", NULL, 0,
4743                                 response, RBD_IMAGE_ID_LEN_MAX);
4744         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4745         if (ret == -ENOENT) {
4746                 image_id = kstrdup("", GFP_KERNEL);
4747                 ret = image_id ? 0 : -ENOMEM;
4748                 if (!ret)
4749                         rbd_dev->image_format = 1;
4750         } else if (ret > sizeof (__le32)) {
4751                 void *p = response;
4752
4753                 image_id = ceph_extract_encoded_string(&p, p + ret,
4754                                                 NULL, GFP_NOIO);
4755                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4756                 if (!ret)
4757                         rbd_dev->image_format = 2;
4758         } else {
4759                 ret = -EINVAL;
4760         }
4761
4762         if (!ret) {
4763                 rbd_dev->spec->image_id = image_id;
4764                 dout("image_id is %s\n", image_id);
4765         }
4766 out:
4767         kfree(response);
4768         kfree(object_name);
4769
4770         return ret;
4771 }
4772
4773 /*
4774  * Undo whatever state changes are made by v1 or v2 header info
4775  * call.
4776  */
4777 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4778 {
4779         struct rbd_image_header *header;
4780
4781         /* Drop parent reference unless it's already been done (or none) */
4782
4783         if (rbd_dev->parent_overlap)
4784                 rbd_dev_parent_put(rbd_dev);
4785
4786         /* Free dynamic fields from the header, then zero it out */
4787
4788         header = &rbd_dev->header;
4789         ceph_put_snap_context(header->snapc);
4790         kfree(header->snap_sizes);
4791         kfree(header->snap_names);
4792         kfree(header->object_prefix);
4793         memset(header, 0, sizeof (*header));
4794 }
4795
4796 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4797 {
4798         int ret;
4799
4800         ret = rbd_dev_v2_object_prefix(rbd_dev);
4801         if (ret)
4802                 goto out_err;
4803
4804         /*
4805          * Get the and check features for the image.  Currently the
4806          * features are assumed to never change.
4807          */
4808         ret = rbd_dev_v2_features(rbd_dev);
4809         if (ret)
4810                 goto out_err;
4811
4812         /* If the image supports fancy striping, get its parameters */
4813
4814         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4815                 ret = rbd_dev_v2_striping_info(rbd_dev);
4816                 if (ret < 0)
4817                         goto out_err;
4818         }
4819         /* No support for crypto and compression type format 2 images */
4820
4821         return 0;
4822 out_err:
4823         rbd_dev->header.features = 0;
4824         kfree(rbd_dev->header.object_prefix);
4825         rbd_dev->header.object_prefix = NULL;
4826
4827         return ret;
4828 }
4829
4830 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4831 {
4832         struct rbd_device *parent = NULL;
4833         struct rbd_spec *parent_spec;
4834         struct rbd_client *rbdc;
4835         int ret;
4836
4837         if (!rbd_dev->parent_spec)
4838                 return 0;
4839         /*
4840          * We need to pass a reference to the client and the parent
4841          * spec when creating the parent rbd_dev.  Images related by
4842          * parent/child relationships always share both.
4843          */
4844         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4845         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4846
4847         ret = -ENOMEM;
4848         parent = rbd_dev_create(rbdc, parent_spec);
4849         if (!parent)
4850                 goto out_err;
4851
4852         ret = rbd_dev_image_probe(parent, false);
4853         if (ret < 0)
4854                 goto out_err;
4855         rbd_dev->parent = parent;
4856         atomic_set(&rbd_dev->parent_ref, 1);
4857
4858         return 0;
4859 out_err:
4860         if (parent) {
4861                 rbd_dev_unparent(rbd_dev);
4862                 kfree(rbd_dev->header_name);
4863                 rbd_dev_destroy(parent);
4864         } else {
4865                 rbd_put_client(rbdc);
4866                 rbd_spec_put(parent_spec);
4867         }
4868
4869         return ret;
4870 }
4871
4872 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4873 {
4874         int ret;
4875
4876         /* Get an id and fill in device name. */
4877
4878         ret = rbd_dev_id_get(rbd_dev);
4879         if (ret)
4880                 return ret;
4881
4882         BUILD_BUG_ON(DEV_NAME_LEN
4883                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4884         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4885
4886         /* Record our major and minor device numbers. */
4887
4888         if (!single_major) {
4889                 ret = register_blkdev(0, rbd_dev->name);
4890                 if (ret < 0)
4891                         goto err_out_id;
4892
4893                 rbd_dev->major = ret;
4894                 rbd_dev->minor = 0;
4895         } else {
4896                 rbd_dev->major = rbd_major;
4897                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4898         }
4899
4900         /* Set up the blkdev mapping. */
4901
4902         ret = rbd_init_disk(rbd_dev);
4903         if (ret)
4904                 goto err_out_blkdev;
4905
4906         ret = rbd_dev_mapping_set(rbd_dev);
4907         if (ret)
4908                 goto err_out_disk;
4909         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4910
4911         ret = rbd_bus_add_dev(rbd_dev);
4912         if (ret)
4913                 goto err_out_mapping;
4914
4915         /* Everything's ready.  Announce the disk to the world. */
4916
4917         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4918         add_disk(rbd_dev->disk);
4919
4920         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4921                 (unsigned long long) rbd_dev->mapping.size);
4922
4923         return ret;
4924
4925 err_out_mapping:
4926         rbd_dev_mapping_clear(rbd_dev);
4927 err_out_disk:
4928         rbd_free_disk(rbd_dev);
4929 err_out_blkdev:
4930         if (!single_major)
4931                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4932 err_out_id:
4933         rbd_dev_id_put(rbd_dev);
4934         rbd_dev_mapping_clear(rbd_dev);
4935
4936         return ret;
4937 }
4938
4939 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4940 {
4941         struct rbd_spec *spec = rbd_dev->spec;
4942         size_t size;
4943
4944         /* Record the header object name for this rbd image. */
4945
4946         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4947
4948         if (rbd_dev->image_format == 1)
4949                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4950         else
4951                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4952
4953         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4954         if (!rbd_dev->header_name)
4955                 return -ENOMEM;
4956
4957         if (rbd_dev->image_format == 1)
4958                 sprintf(rbd_dev->header_name, "%s%s",
4959                         spec->image_name, RBD_SUFFIX);
4960         else
4961                 sprintf(rbd_dev->header_name, "%s%s",
4962                         RBD_HEADER_PREFIX, spec->image_id);
4963         return 0;
4964 }
4965
4966 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4967 {
4968         rbd_dev_unprobe(rbd_dev);
4969         kfree(rbd_dev->header_name);
4970         rbd_dev->header_name = NULL;
4971         rbd_dev->image_format = 0;
4972         kfree(rbd_dev->spec->image_id);
4973         rbd_dev->spec->image_id = NULL;
4974
4975         rbd_dev_destroy(rbd_dev);
4976 }
4977
4978 /*
4979  * Probe for the existence of the header object for the given rbd
4980  * device.  If this image is the one being mapped (i.e., not a
4981  * parent), initiate a watch on its header object before using that
4982  * object to get detailed information about the rbd image.
4983  */
4984 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4985 {
4986         int ret;
4987
4988         /*
4989          * Get the id from the image id object.  Unless there's an
4990          * error, rbd_dev->spec->image_id will be filled in with
4991          * a dynamically-allocated string, and rbd_dev->image_format
4992          * will be set to either 1 or 2.
4993          */
4994         ret = rbd_dev_image_id(rbd_dev);
4995         if (ret)
4996                 return ret;
4997         rbd_assert(rbd_dev->spec->image_id);
4998         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4999
5000         ret = rbd_dev_header_name(rbd_dev);
5001         if (ret)
5002                 goto err_out_format;
5003
5004         if (mapping) {
5005                 ret = rbd_dev_header_watch_sync(rbd_dev);
5006                 if (ret)
5007                         goto out_header_name;
5008         }
5009
5010         if (rbd_dev->image_format == 1)
5011                 ret = rbd_dev_v1_header_info(rbd_dev);
5012         else
5013                 ret = rbd_dev_v2_header_info(rbd_dev);
5014         if (ret)
5015                 goto err_out_watch;
5016
5017         ret = rbd_dev_spec_update(rbd_dev);
5018         if (ret)
5019                 goto err_out_probe;
5020
5021         ret = rbd_dev_probe_parent(rbd_dev);
5022         if (ret)
5023                 goto err_out_probe;
5024
5025         dout("discovered format %u image, header name is %s\n",
5026                 rbd_dev->image_format, rbd_dev->header_name);
5027
5028         return 0;
5029 err_out_probe:
5030         rbd_dev_unprobe(rbd_dev);
5031 err_out_watch:
5032         if (mapping)
5033                 rbd_dev_header_unwatch_sync(rbd_dev);
5034 out_header_name:
5035         kfree(rbd_dev->header_name);
5036         rbd_dev->header_name = NULL;
5037 err_out_format:
5038         rbd_dev->image_format = 0;
5039         kfree(rbd_dev->spec->image_id);
5040         rbd_dev->spec->image_id = NULL;
5041
5042         dout("probe failed, returning %d\n", ret);
5043
5044         return ret;
5045 }
5046
5047 static ssize_t do_rbd_add(struct bus_type *bus,
5048                           const char *buf,
5049                           size_t count)
5050 {
5051         struct rbd_device *rbd_dev = NULL;
5052         struct ceph_options *ceph_opts = NULL;
5053         struct rbd_options *rbd_opts = NULL;
5054         struct rbd_spec *spec = NULL;
5055         struct rbd_client *rbdc;
5056         struct ceph_osd_client *osdc;
5057         bool read_only;
5058         int rc = -ENOMEM;
5059
5060         if (!try_module_get(THIS_MODULE))
5061                 return -ENODEV;
5062
5063         /* parse add command */
5064         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5065         if (rc < 0)
5066                 goto err_out_module;
5067         read_only = rbd_opts->read_only;
5068         kfree(rbd_opts);
5069         rbd_opts = NULL;        /* done with this */
5070
5071         rbdc = rbd_get_client(ceph_opts);
5072         if (IS_ERR(rbdc)) {
5073                 rc = PTR_ERR(rbdc);
5074                 goto err_out_args;
5075         }
5076
5077         /* pick the pool */
5078         osdc = &rbdc->client->osdc;
5079         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5080         if (rc < 0)
5081                 goto err_out_client;
5082         spec->pool_id = (u64)rc;
5083
5084         /* The ceph file layout needs to fit pool id in 32 bits */
5085
5086         if (spec->pool_id > (u64)U32_MAX) {
5087                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5088                                 (unsigned long long)spec->pool_id, U32_MAX);
5089                 rc = -EIO;
5090                 goto err_out_client;
5091         }
5092
5093         rbd_dev = rbd_dev_create(rbdc, spec);
5094         if (!rbd_dev)
5095                 goto err_out_client;
5096         rbdc = NULL;            /* rbd_dev now owns this */
5097         spec = NULL;            /* rbd_dev now owns this */
5098
5099         rc = rbd_dev_image_probe(rbd_dev, true);
5100         if (rc < 0)
5101                 goto err_out_rbd_dev;
5102
5103         /* If we are mapping a snapshot it must be marked read-only */
5104
5105         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5106                 read_only = true;
5107         rbd_dev->mapping.read_only = read_only;
5108
5109         rc = rbd_dev_device_setup(rbd_dev);
5110         if (rc) {
5111                 /*
5112                  * rbd_dev_header_unwatch_sync() can't be moved into
5113                  * rbd_dev_image_release() without refactoring, see
5114                  * commit 1f3ef78861ac.
5115                  */
5116                 rbd_dev_header_unwatch_sync(rbd_dev);
5117                 rbd_dev_image_release(rbd_dev);
5118                 goto err_out_module;
5119         }
5120
5121         return count;
5122
5123 err_out_rbd_dev:
5124         rbd_dev_destroy(rbd_dev);
5125 err_out_client:
5126         rbd_put_client(rbdc);
5127 err_out_args:
5128         rbd_spec_put(spec);
5129 err_out_module:
5130         module_put(THIS_MODULE);
5131
5132         dout("Error adding device %s\n", buf);
5133
5134         return (ssize_t)rc;
5135 }
5136
5137 static ssize_t rbd_add(struct bus_type *bus,
5138                        const char *buf,
5139                        size_t count)
5140 {
5141         if (single_major)
5142                 return -EINVAL;
5143
5144         return do_rbd_add(bus, buf, count);
5145 }
5146
5147 static ssize_t rbd_add_single_major(struct bus_type *bus,
5148                                     const char *buf,
5149                                     size_t count)
5150 {
5151         return do_rbd_add(bus, buf, count);
5152 }
5153
5154 static void rbd_dev_device_release(struct device *dev)
5155 {
5156         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5157
5158         rbd_free_disk(rbd_dev);
5159         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5160         rbd_dev_mapping_clear(rbd_dev);
5161         if (!single_major)
5162                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5163         rbd_dev_id_put(rbd_dev);
5164         rbd_dev_mapping_clear(rbd_dev);
5165 }
5166
5167 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5168 {
5169         while (rbd_dev->parent) {
5170                 struct rbd_device *first = rbd_dev;
5171                 struct rbd_device *second = first->parent;
5172                 struct rbd_device *third;
5173
5174                 /*
5175                  * Follow to the parent with no grandparent and
5176                  * remove it.
5177                  */
5178                 while (second && (third = second->parent)) {
5179                         first = second;
5180                         second = third;
5181                 }
5182                 rbd_assert(second);
5183                 rbd_dev_image_release(second);
5184                 first->parent = NULL;
5185                 first->parent_overlap = 0;
5186
5187                 rbd_assert(first->parent_spec);
5188                 rbd_spec_put(first->parent_spec);
5189                 first->parent_spec = NULL;
5190         }
5191 }
5192
5193 static ssize_t do_rbd_remove(struct bus_type *bus,
5194                              const char *buf,
5195                              size_t count)
5196 {
5197         struct rbd_device *rbd_dev = NULL;
5198         struct list_head *tmp;
5199         int dev_id;
5200         unsigned long ul;
5201         bool already = false;
5202         int ret;
5203
5204         ret = kstrtoul(buf, 10, &ul);
5205         if (ret)
5206                 return ret;
5207
5208         /* convert to int; abort if we lost anything in the conversion */
5209         dev_id = (int)ul;
5210         if (dev_id != ul)
5211                 return -EINVAL;
5212
5213         ret = -ENOENT;
5214         spin_lock(&rbd_dev_list_lock);
5215         list_for_each(tmp, &rbd_dev_list) {
5216                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5217                 if (rbd_dev->dev_id == dev_id) {
5218                         ret = 0;
5219                         break;
5220                 }
5221         }
5222         if (!ret) {
5223                 spin_lock_irq(&rbd_dev->lock);
5224                 if (rbd_dev->open_count)
5225                         ret = -EBUSY;
5226                 else
5227                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5228                                                         &rbd_dev->flags);
5229                 spin_unlock_irq(&rbd_dev->lock);
5230         }
5231         spin_unlock(&rbd_dev_list_lock);
5232         if (ret < 0 || already)
5233                 return ret;
5234
5235         rbd_dev_header_unwatch_sync(rbd_dev);
5236         /*
5237          * flush remaining watch callbacks - these must be complete
5238          * before the osd_client is shutdown
5239          */
5240         dout("%s: flushing notifies", __func__);
5241         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5242
5243         /*
5244          * Don't free anything from rbd_dev->disk until after all
5245          * notifies are completely processed. Otherwise
5246          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5247          * in a potential use after free of rbd_dev->disk or rbd_dev.
5248          */
5249         rbd_bus_del_dev(rbd_dev);
5250         rbd_dev_image_release(rbd_dev);
5251         module_put(THIS_MODULE);
5252
5253         return count;
5254 }
5255
5256 static ssize_t rbd_remove(struct bus_type *bus,
5257                           const char *buf,
5258                           size_t count)
5259 {
5260         if (single_major)
5261                 return -EINVAL;
5262
5263         return do_rbd_remove(bus, buf, count);
5264 }
5265
5266 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5267                                        const char *buf,
5268                                        size_t count)
5269 {
5270         return do_rbd_remove(bus, buf, count);
5271 }
5272
5273 /*
5274  * create control files in sysfs
5275  * /sys/bus/rbd/...
5276  */
5277 static int rbd_sysfs_init(void)
5278 {
5279         int ret;
5280
5281         ret = device_register(&rbd_root_dev);
5282         if (ret < 0)
5283                 return ret;
5284
5285         ret = bus_register(&rbd_bus_type);
5286         if (ret < 0)
5287                 device_unregister(&rbd_root_dev);
5288
5289         return ret;
5290 }
5291
5292 static void rbd_sysfs_cleanup(void)
5293 {
5294         bus_unregister(&rbd_bus_type);
5295         device_unregister(&rbd_root_dev);
5296 }
5297
5298 static int rbd_slab_init(void)
5299 {
5300         rbd_assert(!rbd_img_request_cache);
5301         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5302                                         sizeof (struct rbd_img_request),
5303                                         __alignof__(struct rbd_img_request),
5304                                         0, NULL);
5305         if (!rbd_img_request_cache)
5306                 return -ENOMEM;
5307
5308         rbd_assert(!rbd_obj_request_cache);
5309         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5310                                         sizeof (struct rbd_obj_request),
5311                                         __alignof__(struct rbd_obj_request),
5312                                         0, NULL);
5313         if (!rbd_obj_request_cache)
5314                 goto out_err;
5315
5316         rbd_assert(!rbd_segment_name_cache);
5317         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5318                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5319         if (rbd_segment_name_cache)
5320                 return 0;
5321 out_err:
5322         if (rbd_obj_request_cache) {
5323                 kmem_cache_destroy(rbd_obj_request_cache);
5324                 rbd_obj_request_cache = NULL;
5325         }
5326
5327         kmem_cache_destroy(rbd_img_request_cache);
5328         rbd_img_request_cache = NULL;
5329
5330         return -ENOMEM;
5331 }
5332
5333 static void rbd_slab_exit(void)
5334 {
5335         rbd_assert(rbd_segment_name_cache);
5336         kmem_cache_destroy(rbd_segment_name_cache);
5337         rbd_segment_name_cache = NULL;
5338
5339         rbd_assert(rbd_obj_request_cache);
5340         kmem_cache_destroy(rbd_obj_request_cache);
5341         rbd_obj_request_cache = NULL;
5342
5343         rbd_assert(rbd_img_request_cache);
5344         kmem_cache_destroy(rbd_img_request_cache);
5345         rbd_img_request_cache = NULL;
5346 }
5347
5348 static int __init rbd_init(void)
5349 {
5350         int rc;
5351
5352         if (!libceph_compatible(NULL)) {
5353                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5354                 return -EINVAL;
5355         }
5356
5357         rc = rbd_slab_init();
5358         if (rc)
5359                 return rc;
5360
5361         if (single_major) {
5362                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5363                 if (rbd_major < 0) {
5364                         rc = rbd_major;
5365                         goto err_out_slab;
5366                 }
5367         }
5368
5369         rc = rbd_sysfs_init();
5370         if (rc)
5371                 goto err_out_blkdev;
5372
5373         if (single_major)
5374                 pr_info("loaded (major %d)\n", rbd_major);
5375         else
5376                 pr_info("loaded\n");
5377
5378         return 0;
5379
5380 err_out_blkdev:
5381         if (single_major)
5382                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5383 err_out_slab:
5384         rbd_slab_exit();
5385         return rc;
5386 }
5387
5388 static void __exit rbd_exit(void)
5389 {
5390         rbd_sysfs_cleanup();
5391         if (single_major)
5392                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5393         rbd_slab_exit();
5394 }
5395
5396 module_init(rbd_init);
5397 module_exit(rbd_exit);
5398
5399 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5400 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5401 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5402 /* following authorship retained from original osdblk.c */
5403 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5404
5405 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5406 MODULE_LICENSE("GPL");