]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/block/rbd.c
rbd: make discard trigger copy-on-write
[linux-beck.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46
47 #include "rbd_types.h"
48
49 #define RBD_DEBUG       /* Activate rbd_assert() calls */
50
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define SECTOR_SHIFT    9
58 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
59
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68         unsigned int counter;
69
70         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71         if (counter <= (unsigned int)INT_MAX)
72                 return (int)counter;
73
74         atomic_dec(v);
75
76         return -EINVAL;
77 }
78
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82         int counter;
83
84         counter = atomic_dec_return(v);
85         if (counter >= 0)
86                 return counter;
87
88         atomic_inc(v);
89
90         return -EINVAL;
91 }
92
93 #define RBD_DRV_NAME "rbd"
94
95 #define RBD_MINORS_PER_MAJOR            256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
97
98 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN   \
100                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101
102 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
103
104 #define RBD_SNAP_HEAD_NAME      "-"
105
106 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
107
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX    64
111
112 #define RBD_OBJ_PREFIX_LEN_MAX  64
113
114 /* Feature bits */
115
116 #define RBD_FEATURE_LAYERING    (1<<0)
117 #define RBD_FEATURE_STRIPINGV2  (1<<1)
118 #define RBD_FEATURES_ALL \
119             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120
121 /* Features supported by this (client software) implementation. */
122
123 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
124
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN            32
132 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
133
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138         /* These six fields never change for a given rbd image */
139         char *object_prefix;
140         __u8 obj_order;
141         __u8 crypt_type;
142         __u8 comp_type;
143         u64 stripe_unit;
144         u64 stripe_count;
145         u64 features;           /* Might be changeable someday? */
146
147         /* The remaining fields need to be updated occasionally */
148         u64 image_size;
149         struct ceph_snap_context *snapc;
150         char *snap_names;       /* format 1 only */
151         u64 *snap_sizes;        /* format 1 only */
152 };
153
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180         u64             pool_id;
181         const char      *pool_name;
182
183         const char      *image_id;
184         const char      *image_name;
185
186         u64             snap_id;
187         const char      *snap_name;
188
189         struct kref     kref;
190 };
191
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196         struct ceph_client      *client;
197         struct kref             kref;
198         struct list_head        node;
199 };
200
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203
204 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
205
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208
209 enum obj_request_type {
210         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212
213 enum obj_operation_type {
214         OBJ_OP_WRITE,
215         OBJ_OP_READ,
216         OBJ_OP_DISCARD,
217 };
218
219 enum obj_req_flags {
220         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
221         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
222         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
223         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
224 };
225
226 struct rbd_obj_request {
227         const char              *object_name;
228         u64                     offset;         /* object start byte */
229         u64                     length;         /* bytes from offset */
230         unsigned long           flags;
231
232         /*
233          * An object request associated with an image will have its
234          * img_data flag set; a standalone object request will not.
235          *
236          * A standalone object request will have which == BAD_WHICH
237          * and a null obj_request pointer.
238          *
239          * An object request initiated in support of a layered image
240          * object (to check for its existence before a write) will
241          * have which == BAD_WHICH and a non-null obj_request pointer.
242          *
243          * Finally, an object request for rbd image data will have
244          * which != BAD_WHICH, and will have a non-null img_request
245          * pointer.  The value of which will be in the range
246          * 0..(img_request->obj_request_count-1).
247          */
248         union {
249                 struct rbd_obj_request  *obj_request;   /* STAT op */
250                 struct {
251                         struct rbd_img_request  *img_request;
252                         u64                     img_offset;
253                         /* links for img_request->obj_requests list */
254                         struct list_head        links;
255                 };
256         };
257         u32                     which;          /* posn image request list */
258
259         enum obj_request_type   type;
260         union {
261                 struct bio      *bio_list;
262                 struct {
263                         struct page     **pages;
264                         u32             page_count;
265                 };
266         };
267         struct page             **copyup_pages;
268         u32                     copyup_page_count;
269
270         struct ceph_osd_request *osd_req;
271
272         u64                     xferred;        /* bytes transferred */
273         int                     result;
274
275         rbd_obj_callback_t      callback;
276         struct completion       completion;
277
278         struct kref             kref;
279 };
280
281 enum img_req_flags {
282         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
283         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
284         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
285         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
286 };
287
288 struct rbd_img_request {
289         struct rbd_device       *rbd_dev;
290         u64                     offset; /* starting image byte offset */
291         u64                     length; /* byte count from offset */
292         unsigned long           flags;
293         union {
294                 u64                     snap_id;        /* for reads */
295                 struct ceph_snap_context *snapc;        /* for writes */
296         };
297         union {
298                 struct request          *rq;            /* block request */
299                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
300         };
301         struct page             **copyup_pages;
302         u32                     copyup_page_count;
303         spinlock_t              completion_lock;/* protects next_completion */
304         u32                     next_completion;
305         rbd_img_callback_t      callback;
306         u64                     xferred;/* aggregate bytes transferred */
307         int                     result; /* first nonzero obj_request result */
308
309         u32                     obj_request_count;
310         struct list_head        obj_requests;   /* rbd_obj_request structs */
311
312         struct kref             kref;
313 };
314
315 #define for_each_obj_request(ireq, oreq) \
316         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321
322 struct rbd_mapping {
323         u64                     size;
324         u64                     features;
325         bool                    read_only;
326 };
327
328 /*
329  * a single device
330  */
331 struct rbd_device {
332         int                     dev_id;         /* blkdev unique id */
333
334         int                     major;          /* blkdev assigned major */
335         int                     minor;
336         struct gendisk          *disk;          /* blkdev's gendisk and rq */
337
338         u32                     image_format;   /* Either 1 or 2 */
339         struct rbd_client       *rbd_client;
340
341         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343         struct list_head        rq_queue;       /* incoming rq queue */
344         spinlock_t              lock;           /* queue, flags, open_count */
345         struct workqueue_struct *rq_wq;
346         struct work_struct      rq_work;
347
348         struct rbd_image_header header;
349         unsigned long           flags;          /* possibly lock protected */
350         struct rbd_spec         *spec;
351
352         char                    *header_name;
353
354         struct ceph_file_layout layout;
355
356         struct ceph_osd_event   *watch_event;
357         struct rbd_obj_request  *watch_request;
358
359         struct rbd_spec         *parent_spec;
360         u64                     parent_overlap;
361         atomic_t                parent_ref;
362         struct rbd_device       *parent;
363
364         /* protects updating the header */
365         struct rw_semaphore     header_rwsem;
366
367         struct rbd_mapping      mapping;
368
369         struct list_head        node;
370
371         /* sysfs related */
372         struct device           dev;
373         unsigned long           open_count;     /* protected by lock */
374 };
375
376 /*
377  * Flag bits for rbd_dev->flags.  If atomicity is required,
378  * rbd_dev->lock is used to protect access.
379  *
380  * Currently, only the "removing" flag (which is coupled with the
381  * "open_count" field) requires atomic access.
382  */
383 enum rbd_dev_flags {
384         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
385         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
386 };
387
388 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
389
390 static LIST_HEAD(rbd_dev_list);    /* devices */
391 static DEFINE_SPINLOCK(rbd_dev_list_lock);
392
393 static LIST_HEAD(rbd_client_list);              /* clients */
394 static DEFINE_SPINLOCK(rbd_client_list_lock);
395
396 /* Slab caches for frequently-allocated structures */
397
398 static struct kmem_cache        *rbd_img_request_cache;
399 static struct kmem_cache        *rbd_obj_request_cache;
400 static struct kmem_cache        *rbd_segment_name_cache;
401
402 static int rbd_major;
403 static DEFINE_IDA(rbd_dev_id_ida);
404
405 /*
406  * Default to false for now, as single-major requires >= 0.75 version of
407  * userspace rbd utility.
408  */
409 static bool single_major = false;
410 module_param(single_major, bool, S_IRUGO);
411 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
412
413 static int rbd_img_request_submit(struct rbd_img_request *img_request);
414
415 static void rbd_dev_device_release(struct device *dev);
416
417 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
418                        size_t count);
419 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
420                           size_t count);
421 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
422                                     size_t count);
423 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
424                                        size_t count);
425 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
426 static void rbd_spec_put(struct rbd_spec *spec);
427
428 static int rbd_dev_id_to_minor(int dev_id)
429 {
430         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
431 }
432
433 static int minor_to_rbd_dev_id(int minor)
434 {
435         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
436 }
437
438 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
439 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
440 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
441 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
442
443 static struct attribute *rbd_bus_attrs[] = {
444         &bus_attr_add.attr,
445         &bus_attr_remove.attr,
446         &bus_attr_add_single_major.attr,
447         &bus_attr_remove_single_major.attr,
448         NULL,
449 };
450
451 static umode_t rbd_bus_is_visible(struct kobject *kobj,
452                                   struct attribute *attr, int index)
453 {
454         if (!single_major &&
455             (attr == &bus_attr_add_single_major.attr ||
456              attr == &bus_attr_remove_single_major.attr))
457                 return 0;
458
459         return attr->mode;
460 }
461
462 static const struct attribute_group rbd_bus_group = {
463         .attrs = rbd_bus_attrs,
464         .is_visible = rbd_bus_is_visible,
465 };
466 __ATTRIBUTE_GROUPS(rbd_bus);
467
468 static struct bus_type rbd_bus_type = {
469         .name           = "rbd",
470         .bus_groups     = rbd_bus_groups,
471 };
472
473 static void rbd_root_dev_release(struct device *dev)
474 {
475 }
476
477 static struct device rbd_root_dev = {
478         .init_name =    "rbd",
479         .release =      rbd_root_dev_release,
480 };
481
482 static __printf(2, 3)
483 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
484 {
485         struct va_format vaf;
486         va_list args;
487
488         va_start(args, fmt);
489         vaf.fmt = fmt;
490         vaf.va = &args;
491
492         if (!rbd_dev)
493                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
494         else if (rbd_dev->disk)
495                 printk(KERN_WARNING "%s: %s: %pV\n",
496                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
497         else if (rbd_dev->spec && rbd_dev->spec->image_name)
498                 printk(KERN_WARNING "%s: image %s: %pV\n",
499                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
500         else if (rbd_dev->spec && rbd_dev->spec->image_id)
501                 printk(KERN_WARNING "%s: id %s: %pV\n",
502                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
503         else    /* punt */
504                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
505                         RBD_DRV_NAME, rbd_dev, &vaf);
506         va_end(args);
507 }
508
509 #ifdef RBD_DEBUG
510 #define rbd_assert(expr)                                                \
511                 if (unlikely(!(expr))) {                                \
512                         printk(KERN_ERR "\nAssertion failure in %s() "  \
513                                                 "at line %d:\n\n"       \
514                                         "\trbd_assert(%s);\n\n",        \
515                                         __func__, __LINE__, #expr);     \
516                         BUG();                                          \
517                 }
518 #else /* !RBD_DEBUG */
519 #  define rbd_assert(expr)      ((void) 0)
520 #endif /* !RBD_DEBUG */
521
522 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
523 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
524 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
525
526 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
527 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
528 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
529 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
530 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
531                                         u64 snap_id);
532 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
533                                 u8 *order, u64 *snap_size);
534 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
535                 u64 *snap_features);
536 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
537
538 static int rbd_open(struct block_device *bdev, fmode_t mode)
539 {
540         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
541         bool removing = false;
542
543         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
544                 return -EROFS;
545
546         spin_lock_irq(&rbd_dev->lock);
547         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
548                 removing = true;
549         else
550                 rbd_dev->open_count++;
551         spin_unlock_irq(&rbd_dev->lock);
552         if (removing)
553                 return -ENOENT;
554
555         (void) get_device(&rbd_dev->dev);
556
557         return 0;
558 }
559
560 static void rbd_release(struct gendisk *disk, fmode_t mode)
561 {
562         struct rbd_device *rbd_dev = disk->private_data;
563         unsigned long open_count_before;
564
565         spin_lock_irq(&rbd_dev->lock);
566         open_count_before = rbd_dev->open_count--;
567         spin_unlock_irq(&rbd_dev->lock);
568         rbd_assert(open_count_before > 0);
569
570         put_device(&rbd_dev->dev);
571 }
572
573 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
574 {
575         int ret = 0;
576         int val;
577         bool ro;
578         bool ro_changed = false;
579
580         /* get_user() may sleep, so call it before taking rbd_dev->lock */
581         if (get_user(val, (int __user *)(arg)))
582                 return -EFAULT;
583
584         ro = val ? true : false;
585         /* Snapshot doesn't allow to write*/
586         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
587                 return -EROFS;
588
589         spin_lock_irq(&rbd_dev->lock);
590         /* prevent others open this device */
591         if (rbd_dev->open_count > 1) {
592                 ret = -EBUSY;
593                 goto out;
594         }
595
596         if (rbd_dev->mapping.read_only != ro) {
597                 rbd_dev->mapping.read_only = ro;
598                 ro_changed = true;
599         }
600
601 out:
602         spin_unlock_irq(&rbd_dev->lock);
603         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
604         if (ret == 0 && ro_changed)
605                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
606
607         return ret;
608 }
609
610 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
611                         unsigned int cmd, unsigned long arg)
612 {
613         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
614         int ret = 0;
615
616         switch (cmd) {
617         case BLKROSET:
618                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
619                 break;
620         default:
621                 ret = -ENOTTY;
622         }
623
624         return ret;
625 }
626
627 #ifdef CONFIG_COMPAT
628 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
629                                 unsigned int cmd, unsigned long arg)
630 {
631         return rbd_ioctl(bdev, mode, cmd, arg);
632 }
633 #endif /* CONFIG_COMPAT */
634
635 static const struct block_device_operations rbd_bd_ops = {
636         .owner                  = THIS_MODULE,
637         .open                   = rbd_open,
638         .release                = rbd_release,
639         .ioctl                  = rbd_ioctl,
640 #ifdef CONFIG_COMPAT
641         .compat_ioctl           = rbd_compat_ioctl,
642 #endif
643 };
644
645 /*
646  * Initialize an rbd client instance.  Success or not, this function
647  * consumes ceph_opts.  Caller holds client_mutex.
648  */
649 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
650 {
651         struct rbd_client *rbdc;
652         int ret = -ENOMEM;
653
654         dout("%s:\n", __func__);
655         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
656         if (!rbdc)
657                 goto out_opt;
658
659         kref_init(&rbdc->kref);
660         INIT_LIST_HEAD(&rbdc->node);
661
662         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
663         if (IS_ERR(rbdc->client))
664                 goto out_rbdc;
665         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
666
667         ret = ceph_open_session(rbdc->client);
668         if (ret < 0)
669                 goto out_client;
670
671         spin_lock(&rbd_client_list_lock);
672         list_add_tail(&rbdc->node, &rbd_client_list);
673         spin_unlock(&rbd_client_list_lock);
674
675         dout("%s: rbdc %p\n", __func__, rbdc);
676
677         return rbdc;
678 out_client:
679         ceph_destroy_client(rbdc->client);
680 out_rbdc:
681         kfree(rbdc);
682 out_opt:
683         if (ceph_opts)
684                 ceph_destroy_options(ceph_opts);
685         dout("%s: error %d\n", __func__, ret);
686
687         return ERR_PTR(ret);
688 }
689
690 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
691 {
692         kref_get(&rbdc->kref);
693
694         return rbdc;
695 }
696
697 /*
698  * Find a ceph client with specific addr and configuration.  If
699  * found, bump its reference count.
700  */
701 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
702 {
703         struct rbd_client *client_node;
704         bool found = false;
705
706         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
707                 return NULL;
708
709         spin_lock(&rbd_client_list_lock);
710         list_for_each_entry(client_node, &rbd_client_list, node) {
711                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
712                         __rbd_get_client(client_node);
713
714                         found = true;
715                         break;
716                 }
717         }
718         spin_unlock(&rbd_client_list_lock);
719
720         return found ? client_node : NULL;
721 }
722
723 /*
724  * mount options
725  */
726 enum {
727         Opt_last_int,
728         /* int args above */
729         Opt_last_string,
730         /* string args above */
731         Opt_read_only,
732         Opt_read_write,
733         /* Boolean args above */
734         Opt_last_bool,
735 };
736
737 static match_table_t rbd_opts_tokens = {
738         /* int args above */
739         /* string args above */
740         {Opt_read_only, "read_only"},
741         {Opt_read_only, "ro"},          /* Alternate spelling */
742         {Opt_read_write, "read_write"},
743         {Opt_read_write, "rw"},         /* Alternate spelling */
744         /* Boolean args above */
745         {-1, NULL}
746 };
747
748 struct rbd_options {
749         bool    read_only;
750 };
751
752 #define RBD_READ_ONLY_DEFAULT   false
753
754 static int parse_rbd_opts_token(char *c, void *private)
755 {
756         struct rbd_options *rbd_opts = private;
757         substring_t argstr[MAX_OPT_ARGS];
758         int token, intval, ret;
759
760         token = match_token(c, rbd_opts_tokens, argstr);
761         if (token < 0)
762                 return -EINVAL;
763
764         if (token < Opt_last_int) {
765                 ret = match_int(&argstr[0], &intval);
766                 if (ret < 0) {
767                         pr_err("bad mount option arg (not int) "
768                                "at '%s'\n", c);
769                         return ret;
770                 }
771                 dout("got int token %d val %d\n", token, intval);
772         } else if (token > Opt_last_int && token < Opt_last_string) {
773                 dout("got string token %d val %s\n", token,
774                      argstr[0].from);
775         } else if (token > Opt_last_string && token < Opt_last_bool) {
776                 dout("got Boolean token %d\n", token);
777         } else {
778                 dout("got token %d\n", token);
779         }
780
781         switch (token) {
782         case Opt_read_only:
783                 rbd_opts->read_only = true;
784                 break;
785         case Opt_read_write:
786                 rbd_opts->read_only = false;
787                 break;
788         default:
789                 rbd_assert(false);
790                 break;
791         }
792         return 0;
793 }
794
795 static char* obj_op_name(enum obj_operation_type op_type)
796 {
797         switch (op_type) {
798         case OBJ_OP_READ:
799                 return "read";
800         case OBJ_OP_WRITE:
801                 return "write";
802         case OBJ_OP_DISCARD:
803                 return "discard";
804         default:
805                 return "???";
806         }
807 }
808
809 /*
810  * Get a ceph client with specific addr and configuration, if one does
811  * not exist create it.  Either way, ceph_opts is consumed by this
812  * function.
813  */
814 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
815 {
816         struct rbd_client *rbdc;
817
818         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
819         rbdc = rbd_client_find(ceph_opts);
820         if (rbdc)       /* using an existing client */
821                 ceph_destroy_options(ceph_opts);
822         else
823                 rbdc = rbd_client_create(ceph_opts);
824         mutex_unlock(&client_mutex);
825
826         return rbdc;
827 }
828
829 /*
830  * Destroy ceph client
831  *
832  * Caller must hold rbd_client_list_lock.
833  */
834 static void rbd_client_release(struct kref *kref)
835 {
836         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
837
838         dout("%s: rbdc %p\n", __func__, rbdc);
839         spin_lock(&rbd_client_list_lock);
840         list_del(&rbdc->node);
841         spin_unlock(&rbd_client_list_lock);
842
843         ceph_destroy_client(rbdc->client);
844         kfree(rbdc);
845 }
846
847 /*
848  * Drop reference to ceph client node. If it's not referenced anymore, release
849  * it.
850  */
851 static void rbd_put_client(struct rbd_client *rbdc)
852 {
853         if (rbdc)
854                 kref_put(&rbdc->kref, rbd_client_release);
855 }
856
857 static bool rbd_image_format_valid(u32 image_format)
858 {
859         return image_format == 1 || image_format == 2;
860 }
861
862 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
863 {
864         size_t size;
865         u32 snap_count;
866
867         /* The header has to start with the magic rbd header text */
868         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
869                 return false;
870
871         /* The bio layer requires at least sector-sized I/O */
872
873         if (ondisk->options.order < SECTOR_SHIFT)
874                 return false;
875
876         /* If we use u64 in a few spots we may be able to loosen this */
877
878         if (ondisk->options.order > 8 * sizeof (int) - 1)
879                 return false;
880
881         /*
882          * The size of a snapshot header has to fit in a size_t, and
883          * that limits the number of snapshots.
884          */
885         snap_count = le32_to_cpu(ondisk->snap_count);
886         size = SIZE_MAX - sizeof (struct ceph_snap_context);
887         if (snap_count > size / sizeof (__le64))
888                 return false;
889
890         /*
891          * Not only that, but the size of the entire the snapshot
892          * header must also be representable in a size_t.
893          */
894         size -= snap_count * sizeof (__le64);
895         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
896                 return false;
897
898         return true;
899 }
900
901 /*
902  * Fill an rbd image header with information from the given format 1
903  * on-disk header.
904  */
905 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
906                                  struct rbd_image_header_ondisk *ondisk)
907 {
908         struct rbd_image_header *header = &rbd_dev->header;
909         bool first_time = header->object_prefix == NULL;
910         struct ceph_snap_context *snapc;
911         char *object_prefix = NULL;
912         char *snap_names = NULL;
913         u64 *snap_sizes = NULL;
914         u32 snap_count;
915         size_t size;
916         int ret = -ENOMEM;
917         u32 i;
918
919         /* Allocate this now to avoid having to handle failure below */
920
921         if (first_time) {
922                 size_t len;
923
924                 len = strnlen(ondisk->object_prefix,
925                                 sizeof (ondisk->object_prefix));
926                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
927                 if (!object_prefix)
928                         return -ENOMEM;
929                 memcpy(object_prefix, ondisk->object_prefix, len);
930                 object_prefix[len] = '\0';
931         }
932
933         /* Allocate the snapshot context and fill it in */
934
935         snap_count = le32_to_cpu(ondisk->snap_count);
936         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
937         if (!snapc)
938                 goto out_err;
939         snapc->seq = le64_to_cpu(ondisk->snap_seq);
940         if (snap_count) {
941                 struct rbd_image_snap_ondisk *snaps;
942                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
943
944                 /* We'll keep a copy of the snapshot names... */
945
946                 if (snap_names_len > (u64)SIZE_MAX)
947                         goto out_2big;
948                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
949                 if (!snap_names)
950                         goto out_err;
951
952                 /* ...as well as the array of their sizes. */
953
954                 size = snap_count * sizeof (*header->snap_sizes);
955                 snap_sizes = kmalloc(size, GFP_KERNEL);
956                 if (!snap_sizes)
957                         goto out_err;
958
959                 /*
960                  * Copy the names, and fill in each snapshot's id
961                  * and size.
962                  *
963                  * Note that rbd_dev_v1_header_info() guarantees the
964                  * ondisk buffer we're working with has
965                  * snap_names_len bytes beyond the end of the
966                  * snapshot id array, this memcpy() is safe.
967                  */
968                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
969                 snaps = ondisk->snaps;
970                 for (i = 0; i < snap_count; i++) {
971                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
972                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
973                 }
974         }
975
976         /* We won't fail any more, fill in the header */
977
978         if (first_time) {
979                 header->object_prefix = object_prefix;
980                 header->obj_order = ondisk->options.order;
981                 header->crypt_type = ondisk->options.crypt_type;
982                 header->comp_type = ondisk->options.comp_type;
983                 /* The rest aren't used for format 1 images */
984                 header->stripe_unit = 0;
985                 header->stripe_count = 0;
986                 header->features = 0;
987         } else {
988                 ceph_put_snap_context(header->snapc);
989                 kfree(header->snap_names);
990                 kfree(header->snap_sizes);
991         }
992
993         /* The remaining fields always get updated (when we refresh) */
994
995         header->image_size = le64_to_cpu(ondisk->image_size);
996         header->snapc = snapc;
997         header->snap_names = snap_names;
998         header->snap_sizes = snap_sizes;
999
1000         return 0;
1001 out_2big:
1002         ret = -EIO;
1003 out_err:
1004         kfree(snap_sizes);
1005         kfree(snap_names);
1006         ceph_put_snap_context(snapc);
1007         kfree(object_prefix);
1008
1009         return ret;
1010 }
1011
1012 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1013 {
1014         const char *snap_name;
1015
1016         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1017
1018         /* Skip over names until we find the one we are looking for */
1019
1020         snap_name = rbd_dev->header.snap_names;
1021         while (which--)
1022                 snap_name += strlen(snap_name) + 1;
1023
1024         return kstrdup(snap_name, GFP_KERNEL);
1025 }
1026
1027 /*
1028  * Snapshot id comparison function for use with qsort()/bsearch().
1029  * Note that result is for snapshots in *descending* order.
1030  */
1031 static int snapid_compare_reverse(const void *s1, const void *s2)
1032 {
1033         u64 snap_id1 = *(u64 *)s1;
1034         u64 snap_id2 = *(u64 *)s2;
1035
1036         if (snap_id1 < snap_id2)
1037                 return 1;
1038         return snap_id1 == snap_id2 ? 0 : -1;
1039 }
1040
1041 /*
1042  * Search a snapshot context to see if the given snapshot id is
1043  * present.
1044  *
1045  * Returns the position of the snapshot id in the array if it's found,
1046  * or BAD_SNAP_INDEX otherwise.
1047  *
1048  * Note: The snapshot array is in kept sorted (by the osd) in
1049  * reverse order, highest snapshot id first.
1050  */
1051 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1052 {
1053         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1054         u64 *found;
1055
1056         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1057                                 sizeof (snap_id), snapid_compare_reverse);
1058
1059         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1060 }
1061
1062 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1063                                         u64 snap_id)
1064 {
1065         u32 which;
1066         const char *snap_name;
1067
1068         which = rbd_dev_snap_index(rbd_dev, snap_id);
1069         if (which == BAD_SNAP_INDEX)
1070                 return ERR_PTR(-ENOENT);
1071
1072         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1073         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1074 }
1075
1076 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1077 {
1078         if (snap_id == CEPH_NOSNAP)
1079                 return RBD_SNAP_HEAD_NAME;
1080
1081         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1082         if (rbd_dev->image_format == 1)
1083                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1084
1085         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1086 }
1087
1088 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1089                                 u64 *snap_size)
1090 {
1091         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1092         if (snap_id == CEPH_NOSNAP) {
1093                 *snap_size = rbd_dev->header.image_size;
1094         } else if (rbd_dev->image_format == 1) {
1095                 u32 which;
1096
1097                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1098                 if (which == BAD_SNAP_INDEX)
1099                         return -ENOENT;
1100
1101                 *snap_size = rbd_dev->header.snap_sizes[which];
1102         } else {
1103                 u64 size = 0;
1104                 int ret;
1105
1106                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1107                 if (ret)
1108                         return ret;
1109
1110                 *snap_size = size;
1111         }
1112         return 0;
1113 }
1114
1115 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1116                         u64 *snap_features)
1117 {
1118         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1119         if (snap_id == CEPH_NOSNAP) {
1120                 *snap_features = rbd_dev->header.features;
1121         } else if (rbd_dev->image_format == 1) {
1122                 *snap_features = 0;     /* No features for format 1 */
1123         } else {
1124                 u64 features = 0;
1125                 int ret;
1126
1127                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1128                 if (ret)
1129                         return ret;
1130
1131                 *snap_features = features;
1132         }
1133         return 0;
1134 }
1135
1136 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1137 {
1138         u64 snap_id = rbd_dev->spec->snap_id;
1139         u64 size = 0;
1140         u64 features = 0;
1141         int ret;
1142
1143         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1144         if (ret)
1145                 return ret;
1146         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1147         if (ret)
1148                 return ret;
1149
1150         rbd_dev->mapping.size = size;
1151         rbd_dev->mapping.features = features;
1152
1153         return 0;
1154 }
1155
1156 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1157 {
1158         rbd_dev->mapping.size = 0;
1159         rbd_dev->mapping.features = 0;
1160 }
1161
1162 static void rbd_segment_name_free(const char *name)
1163 {
1164         /* The explicit cast here is needed to drop the const qualifier */
1165
1166         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1167 }
1168
1169 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1170 {
1171         char *name;
1172         u64 segment;
1173         int ret;
1174         char *name_format;
1175
1176         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1177         if (!name)
1178                 return NULL;
1179         segment = offset >> rbd_dev->header.obj_order;
1180         name_format = "%s.%012llx";
1181         if (rbd_dev->image_format == 2)
1182                 name_format = "%s.%016llx";
1183         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1184                         rbd_dev->header.object_prefix, segment);
1185         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1186                 pr_err("error formatting segment name for #%llu (%d)\n",
1187                         segment, ret);
1188                 rbd_segment_name_free(name);
1189                 name = NULL;
1190         }
1191
1192         return name;
1193 }
1194
1195 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1196 {
1197         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1198
1199         return offset & (segment_size - 1);
1200 }
1201
1202 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1203                                 u64 offset, u64 length)
1204 {
1205         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206
1207         offset &= segment_size - 1;
1208
1209         rbd_assert(length <= U64_MAX - offset);
1210         if (offset + length > segment_size)
1211                 length = segment_size - offset;
1212
1213         return length;
1214 }
1215
1216 /*
1217  * returns the size of an object in the image
1218  */
1219 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1220 {
1221         return 1 << header->obj_order;
1222 }
1223
1224 /*
1225  * bio helpers
1226  */
1227
1228 static void bio_chain_put(struct bio *chain)
1229 {
1230         struct bio *tmp;
1231
1232         while (chain) {
1233                 tmp = chain;
1234                 chain = chain->bi_next;
1235                 bio_put(tmp);
1236         }
1237 }
1238
1239 /*
1240  * zeros a bio chain, starting at specific offset
1241  */
1242 static void zero_bio_chain(struct bio *chain, int start_ofs)
1243 {
1244         struct bio_vec bv;
1245         struct bvec_iter iter;
1246         unsigned long flags;
1247         void *buf;
1248         int pos = 0;
1249
1250         while (chain) {
1251                 bio_for_each_segment(bv, chain, iter) {
1252                         if (pos + bv.bv_len > start_ofs) {
1253                                 int remainder = max(start_ofs - pos, 0);
1254                                 buf = bvec_kmap_irq(&bv, &flags);
1255                                 memset(buf + remainder, 0,
1256                                        bv.bv_len - remainder);
1257                                 flush_dcache_page(bv.bv_page);
1258                                 bvec_kunmap_irq(buf, &flags);
1259                         }
1260                         pos += bv.bv_len;
1261                 }
1262
1263                 chain = chain->bi_next;
1264         }
1265 }
1266
1267 /*
1268  * similar to zero_bio_chain(), zeros data defined by a page array,
1269  * starting at the given byte offset from the start of the array and
1270  * continuing up to the given end offset.  The pages array is
1271  * assumed to be big enough to hold all bytes up to the end.
1272  */
1273 static void zero_pages(struct page **pages, u64 offset, u64 end)
1274 {
1275         struct page **page = &pages[offset >> PAGE_SHIFT];
1276
1277         rbd_assert(end > offset);
1278         rbd_assert(end - offset <= (u64)SIZE_MAX);
1279         while (offset < end) {
1280                 size_t page_offset;
1281                 size_t length;
1282                 unsigned long flags;
1283                 void *kaddr;
1284
1285                 page_offset = offset & ~PAGE_MASK;
1286                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1287                 local_irq_save(flags);
1288                 kaddr = kmap_atomic(*page);
1289                 memset(kaddr + page_offset, 0, length);
1290                 flush_dcache_page(*page);
1291                 kunmap_atomic(kaddr);
1292                 local_irq_restore(flags);
1293
1294                 offset += length;
1295                 page++;
1296         }
1297 }
1298
1299 /*
1300  * Clone a portion of a bio, starting at the given byte offset
1301  * and continuing for the number of bytes indicated.
1302  */
1303 static struct bio *bio_clone_range(struct bio *bio_src,
1304                                         unsigned int offset,
1305                                         unsigned int len,
1306                                         gfp_t gfpmask)
1307 {
1308         struct bio *bio;
1309
1310         bio = bio_clone(bio_src, gfpmask);
1311         if (!bio)
1312                 return NULL;    /* ENOMEM */
1313
1314         bio_advance(bio, offset);
1315         bio->bi_iter.bi_size = len;
1316
1317         return bio;
1318 }
1319
1320 /*
1321  * Clone a portion of a bio chain, starting at the given byte offset
1322  * into the first bio in the source chain and continuing for the
1323  * number of bytes indicated.  The result is another bio chain of
1324  * exactly the given length, or a null pointer on error.
1325  *
1326  * The bio_src and offset parameters are both in-out.  On entry they
1327  * refer to the first source bio and the offset into that bio where
1328  * the start of data to be cloned is located.
1329  *
1330  * On return, bio_src is updated to refer to the bio in the source
1331  * chain that contains first un-cloned byte, and *offset will
1332  * contain the offset of that byte within that bio.
1333  */
1334 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1335                                         unsigned int *offset,
1336                                         unsigned int len,
1337                                         gfp_t gfpmask)
1338 {
1339         struct bio *bi = *bio_src;
1340         unsigned int off = *offset;
1341         struct bio *chain = NULL;
1342         struct bio **end;
1343
1344         /* Build up a chain of clone bios up to the limit */
1345
1346         if (!bi || off >= bi->bi_iter.bi_size || !len)
1347                 return NULL;            /* Nothing to clone */
1348
1349         end = &chain;
1350         while (len) {
1351                 unsigned int bi_size;
1352                 struct bio *bio;
1353
1354                 if (!bi) {
1355                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1356                         goto out_err;   /* EINVAL; ran out of bio's */
1357                 }
1358                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1359                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1360                 if (!bio)
1361                         goto out_err;   /* ENOMEM */
1362
1363                 *end = bio;
1364                 end = &bio->bi_next;
1365
1366                 off += bi_size;
1367                 if (off == bi->bi_iter.bi_size) {
1368                         bi = bi->bi_next;
1369                         off = 0;
1370                 }
1371                 len -= bi_size;
1372         }
1373         *bio_src = bi;
1374         *offset = off;
1375
1376         return chain;
1377 out_err:
1378         bio_chain_put(chain);
1379
1380         return NULL;
1381 }
1382
1383 /*
1384  * The default/initial value for all object request flags is 0.  For
1385  * each flag, once its value is set to 1 it is never reset to 0
1386  * again.
1387  */
1388 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1389 {
1390         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1391                 struct rbd_device *rbd_dev;
1392
1393                 rbd_dev = obj_request->img_request->rbd_dev;
1394                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1395                         obj_request);
1396         }
1397 }
1398
1399 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1400 {
1401         smp_mb();
1402         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1403 }
1404
1405 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1406 {
1407         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1408                 struct rbd_device *rbd_dev = NULL;
1409
1410                 if (obj_request_img_data_test(obj_request))
1411                         rbd_dev = obj_request->img_request->rbd_dev;
1412                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1413                         obj_request);
1414         }
1415 }
1416
1417 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1418 {
1419         smp_mb();
1420         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1421 }
1422
1423 /*
1424  * This sets the KNOWN flag after (possibly) setting the EXISTS
1425  * flag.  The latter is set based on the "exists" value provided.
1426  *
1427  * Note that for our purposes once an object exists it never goes
1428  * away again.  It's possible that the response from two existence
1429  * checks are separated by the creation of the target object, and
1430  * the first ("doesn't exist") response arrives *after* the second
1431  * ("does exist").  In that case we ignore the second one.
1432  */
1433 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1434                                 bool exists)
1435 {
1436         if (exists)
1437                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1438         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1439         smp_mb();
1440 }
1441
1442 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1443 {
1444         smp_mb();
1445         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1446 }
1447
1448 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1449 {
1450         smp_mb();
1451         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1452 }
1453
1454 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1455 {
1456         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1457
1458         return obj_request->img_offset <
1459             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1460 }
1461
1462 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1463 {
1464         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1465                 atomic_read(&obj_request->kref.refcount));
1466         kref_get(&obj_request->kref);
1467 }
1468
1469 static void rbd_obj_request_destroy(struct kref *kref);
1470 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1471 {
1472         rbd_assert(obj_request != NULL);
1473         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1474                 atomic_read(&obj_request->kref.refcount));
1475         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1476 }
1477
1478 static void rbd_img_request_get(struct rbd_img_request *img_request)
1479 {
1480         dout("%s: img %p (was %d)\n", __func__, img_request,
1481              atomic_read(&img_request->kref.refcount));
1482         kref_get(&img_request->kref);
1483 }
1484
1485 static bool img_request_child_test(struct rbd_img_request *img_request);
1486 static void rbd_parent_request_destroy(struct kref *kref);
1487 static void rbd_img_request_destroy(struct kref *kref);
1488 static void rbd_img_request_put(struct rbd_img_request *img_request)
1489 {
1490         rbd_assert(img_request != NULL);
1491         dout("%s: img %p (was %d)\n", __func__, img_request,
1492                 atomic_read(&img_request->kref.refcount));
1493         if (img_request_child_test(img_request))
1494                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1495         else
1496                 kref_put(&img_request->kref, rbd_img_request_destroy);
1497 }
1498
1499 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1500                                         struct rbd_obj_request *obj_request)
1501 {
1502         rbd_assert(obj_request->img_request == NULL);
1503
1504         /* Image request now owns object's original reference */
1505         obj_request->img_request = img_request;
1506         obj_request->which = img_request->obj_request_count;
1507         rbd_assert(!obj_request_img_data_test(obj_request));
1508         obj_request_img_data_set(obj_request);
1509         rbd_assert(obj_request->which != BAD_WHICH);
1510         img_request->obj_request_count++;
1511         list_add_tail(&obj_request->links, &img_request->obj_requests);
1512         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1513                 obj_request->which);
1514 }
1515
1516 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1517                                         struct rbd_obj_request *obj_request)
1518 {
1519         rbd_assert(obj_request->which != BAD_WHICH);
1520
1521         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1522                 obj_request->which);
1523         list_del(&obj_request->links);
1524         rbd_assert(img_request->obj_request_count > 0);
1525         img_request->obj_request_count--;
1526         rbd_assert(obj_request->which == img_request->obj_request_count);
1527         obj_request->which = BAD_WHICH;
1528         rbd_assert(obj_request_img_data_test(obj_request));
1529         rbd_assert(obj_request->img_request == img_request);
1530         obj_request->img_request = NULL;
1531         obj_request->callback = NULL;
1532         rbd_obj_request_put(obj_request);
1533 }
1534
1535 static bool obj_request_type_valid(enum obj_request_type type)
1536 {
1537         switch (type) {
1538         case OBJ_REQUEST_NODATA:
1539         case OBJ_REQUEST_BIO:
1540         case OBJ_REQUEST_PAGES:
1541                 return true;
1542         default:
1543                 return false;
1544         }
1545 }
1546
1547 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1548                                 struct rbd_obj_request *obj_request)
1549 {
1550         dout("%s %p\n", __func__, obj_request);
1551         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1552 }
1553
1554 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1555 {
1556         dout("%s %p\n", __func__, obj_request);
1557         ceph_osdc_cancel_request(obj_request->osd_req);
1558 }
1559
1560 /*
1561  * Wait for an object request to complete.  If interrupted, cancel the
1562  * underlying osd request.
1563  */
1564 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1565 {
1566         int ret;
1567
1568         dout("%s %p\n", __func__, obj_request);
1569
1570         ret = wait_for_completion_interruptible(&obj_request->completion);
1571         if (ret < 0) {
1572                 dout("%s %p interrupted\n", __func__, obj_request);
1573                 rbd_obj_request_end(obj_request);
1574                 return ret;
1575         }
1576
1577         dout("%s %p done\n", __func__, obj_request);
1578         return 0;
1579 }
1580
1581 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1582 {
1583
1584         dout("%s: img %p\n", __func__, img_request);
1585
1586         /*
1587          * If no error occurred, compute the aggregate transfer
1588          * count for the image request.  We could instead use
1589          * atomic64_cmpxchg() to update it as each object request
1590          * completes; not clear which way is better off hand.
1591          */
1592         if (!img_request->result) {
1593                 struct rbd_obj_request *obj_request;
1594                 u64 xferred = 0;
1595
1596                 for_each_obj_request(img_request, obj_request)
1597                         xferred += obj_request->xferred;
1598                 img_request->xferred = xferred;
1599         }
1600
1601         if (img_request->callback)
1602                 img_request->callback(img_request);
1603         else
1604                 rbd_img_request_put(img_request);
1605 }
1606
1607 /*
1608  * The default/initial value for all image request flags is 0.  Each
1609  * is conditionally set to 1 at image request initialization time
1610  * and currently never change thereafter.
1611  */
1612 static void img_request_write_set(struct rbd_img_request *img_request)
1613 {
1614         set_bit(IMG_REQ_WRITE, &img_request->flags);
1615         smp_mb();
1616 }
1617
1618 static bool img_request_write_test(struct rbd_img_request *img_request)
1619 {
1620         smp_mb();
1621         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1622 }
1623
1624 /*
1625  * Set the discard flag when the img_request is an discard request
1626  */
1627 static void img_request_discard_set(struct rbd_img_request *img_request)
1628 {
1629         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1630         smp_mb();
1631 }
1632
1633 static bool img_request_discard_test(struct rbd_img_request *img_request)
1634 {
1635         smp_mb();
1636         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1637 }
1638
1639 static void img_request_child_set(struct rbd_img_request *img_request)
1640 {
1641         set_bit(IMG_REQ_CHILD, &img_request->flags);
1642         smp_mb();
1643 }
1644
1645 static void img_request_child_clear(struct rbd_img_request *img_request)
1646 {
1647         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1648         smp_mb();
1649 }
1650
1651 static bool img_request_child_test(struct rbd_img_request *img_request)
1652 {
1653         smp_mb();
1654         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1655 }
1656
1657 static void img_request_layered_set(struct rbd_img_request *img_request)
1658 {
1659         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1660         smp_mb();
1661 }
1662
1663 static void img_request_layered_clear(struct rbd_img_request *img_request)
1664 {
1665         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1666         smp_mb();
1667 }
1668
1669 static bool img_request_layered_test(struct rbd_img_request *img_request)
1670 {
1671         smp_mb();
1672         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1673 }
1674
1675 static void
1676 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1677 {
1678         u64 xferred = obj_request->xferred;
1679         u64 length = obj_request->length;
1680
1681         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1682                 obj_request, obj_request->img_request, obj_request->result,
1683                 xferred, length);
1684         /*
1685          * ENOENT means a hole in the image.  We zero-fill the entire
1686          * length of the request.  A short read also implies zero-fill
1687          * to the end of the request.  An error requires the whole
1688          * length of the request to be reported finished with an error
1689          * to the block layer.  In each case we update the xferred
1690          * count to indicate the whole request was satisfied.
1691          */
1692         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1693         if (obj_request->result == -ENOENT) {
1694                 if (obj_request->type == OBJ_REQUEST_BIO)
1695                         zero_bio_chain(obj_request->bio_list, 0);
1696                 else
1697                         zero_pages(obj_request->pages, 0, length);
1698                 obj_request->result = 0;
1699         } else if (xferred < length && !obj_request->result) {
1700                 if (obj_request->type == OBJ_REQUEST_BIO)
1701                         zero_bio_chain(obj_request->bio_list, xferred);
1702                 else
1703                         zero_pages(obj_request->pages, xferred, length);
1704         }
1705         obj_request->xferred = length;
1706         obj_request_done_set(obj_request);
1707 }
1708
1709 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1710 {
1711         dout("%s: obj %p cb %p\n", __func__, obj_request,
1712                 obj_request->callback);
1713         if (obj_request->callback)
1714                 obj_request->callback(obj_request);
1715         else
1716                 complete_all(&obj_request->completion);
1717 }
1718
1719 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1720 {
1721         dout("%s: obj %p\n", __func__, obj_request);
1722         obj_request_done_set(obj_request);
1723 }
1724
1725 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1726 {
1727         struct rbd_img_request *img_request = NULL;
1728         struct rbd_device *rbd_dev = NULL;
1729         bool layered = false;
1730
1731         if (obj_request_img_data_test(obj_request)) {
1732                 img_request = obj_request->img_request;
1733                 layered = img_request && img_request_layered_test(img_request);
1734                 rbd_dev = img_request->rbd_dev;
1735         }
1736
1737         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1738                 obj_request, img_request, obj_request->result,
1739                 obj_request->xferred, obj_request->length);
1740         if (layered && obj_request->result == -ENOENT &&
1741                         obj_request->img_offset < rbd_dev->parent_overlap)
1742                 rbd_img_parent_read(obj_request);
1743         else if (img_request)
1744                 rbd_img_obj_request_read_callback(obj_request);
1745         else
1746                 obj_request_done_set(obj_request);
1747 }
1748
1749 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1750 {
1751         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1752                 obj_request->result, obj_request->length);
1753         /*
1754          * There is no such thing as a successful short write.  Set
1755          * it to our originally-requested length.
1756          */
1757         obj_request->xferred = obj_request->length;
1758         obj_request_done_set(obj_request);
1759 }
1760
1761 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1762 {
1763         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1764                 obj_request->result, obj_request->length);
1765         /*
1766          * There is no such thing as a successful short discard.  Set
1767          * it to our originally-requested length.
1768          */
1769         obj_request->xferred = obj_request->length;
1770         /* discarding a non-existent object is not a problem */
1771         if (obj_request->result == -ENOENT)
1772                 obj_request->result = 0;
1773         obj_request_done_set(obj_request);
1774 }
1775
1776 /*
1777  * For a simple stat call there's nothing to do.  We'll do more if
1778  * this is part of a write sequence for a layered image.
1779  */
1780 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1781 {
1782         dout("%s: obj %p\n", __func__, obj_request);
1783         obj_request_done_set(obj_request);
1784 }
1785
1786 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1787                                 struct ceph_msg *msg)
1788 {
1789         struct rbd_obj_request *obj_request = osd_req->r_priv;
1790         u16 opcode;
1791
1792         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1793         rbd_assert(osd_req == obj_request->osd_req);
1794         if (obj_request_img_data_test(obj_request)) {
1795                 rbd_assert(obj_request->img_request);
1796                 rbd_assert(obj_request->which != BAD_WHICH);
1797         } else {
1798                 rbd_assert(obj_request->which == BAD_WHICH);
1799         }
1800
1801         if (osd_req->r_result < 0)
1802                 obj_request->result = osd_req->r_result;
1803
1804         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1805
1806         /*
1807          * We support a 64-bit length, but ultimately it has to be
1808          * passed to blk_end_request(), which takes an unsigned int.
1809          */
1810         obj_request->xferred = osd_req->r_reply_op_len[0];
1811         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1812
1813         opcode = osd_req->r_ops[0].op;
1814         switch (opcode) {
1815         case CEPH_OSD_OP_READ:
1816                 rbd_osd_read_callback(obj_request);
1817                 break;
1818         case CEPH_OSD_OP_SETALLOCHINT:
1819                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1820                 /* fall through */
1821         case CEPH_OSD_OP_WRITE:
1822                 rbd_osd_write_callback(obj_request);
1823                 break;
1824         case CEPH_OSD_OP_STAT:
1825                 rbd_osd_stat_callback(obj_request);
1826                 break;
1827         case CEPH_OSD_OP_DELETE:
1828         case CEPH_OSD_OP_TRUNCATE:
1829         case CEPH_OSD_OP_ZERO:
1830                 rbd_osd_discard_callback(obj_request);
1831                 break;
1832         case CEPH_OSD_OP_CALL:
1833         case CEPH_OSD_OP_NOTIFY_ACK:
1834         case CEPH_OSD_OP_WATCH:
1835                 rbd_osd_trivial_callback(obj_request);
1836                 break;
1837         default:
1838                 rbd_warn(NULL, "%s: unsupported op %hu",
1839                         obj_request->object_name, (unsigned short) opcode);
1840                 break;
1841         }
1842
1843         if (obj_request_done_test(obj_request))
1844                 rbd_obj_request_complete(obj_request);
1845 }
1846
1847 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1848 {
1849         struct rbd_img_request *img_request = obj_request->img_request;
1850         struct ceph_osd_request *osd_req = obj_request->osd_req;
1851         u64 snap_id;
1852
1853         rbd_assert(osd_req != NULL);
1854
1855         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1856         ceph_osdc_build_request(osd_req, obj_request->offset,
1857                         NULL, snap_id, NULL);
1858 }
1859
1860 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1861 {
1862         struct rbd_img_request *img_request = obj_request->img_request;
1863         struct ceph_osd_request *osd_req = obj_request->osd_req;
1864         struct ceph_snap_context *snapc;
1865         struct timespec mtime = CURRENT_TIME;
1866
1867         rbd_assert(osd_req != NULL);
1868
1869         snapc = img_request ? img_request->snapc : NULL;
1870         ceph_osdc_build_request(osd_req, obj_request->offset,
1871                         snapc, CEPH_NOSNAP, &mtime);
1872 }
1873
1874 /*
1875  * Create an osd request.  A read request has one osd op (read).
1876  * A write request has either one (watch) or two (hint+write) osd ops.
1877  * (All rbd data writes are prefixed with an allocation hint op, but
1878  * technically osd watch is a write request, hence this distinction.)
1879  */
1880 static struct ceph_osd_request *rbd_osd_req_create(
1881                                         struct rbd_device *rbd_dev,
1882                                         enum obj_operation_type op_type,
1883                                         unsigned int num_ops,
1884                                         struct rbd_obj_request *obj_request)
1885 {
1886         struct ceph_snap_context *snapc = NULL;
1887         struct ceph_osd_client *osdc;
1888         struct ceph_osd_request *osd_req;
1889
1890         if (obj_request_img_data_test(obj_request) &&
1891                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1892                 struct rbd_img_request *img_request = obj_request->img_request;
1893                 if (op_type == OBJ_OP_WRITE) {
1894                         rbd_assert(img_request_write_test(img_request));
1895                 } else {
1896                         rbd_assert(img_request_discard_test(img_request));
1897                 }
1898                 snapc = img_request->snapc;
1899         }
1900
1901         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1902
1903         /* Allocate and initialize the request, for the num_ops ops */
1904
1905         osdc = &rbd_dev->rbd_client->client->osdc;
1906         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1907                                           GFP_ATOMIC);
1908         if (!osd_req)
1909                 return NULL;    /* ENOMEM */
1910
1911         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1912                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1913         else
1914                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1915
1916         osd_req->r_callback = rbd_osd_req_callback;
1917         osd_req->r_priv = obj_request;
1918
1919         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1920         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1921
1922         return osd_req;
1923 }
1924
1925 /*
1926  * Create a copyup osd request based on the information in the
1927  * object request supplied.  A copyup request has three osd ops,
1928  * a copyup method call, a hint op, and a write op.
1929  */
1930 static struct ceph_osd_request *
1931 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1932 {
1933         struct rbd_img_request *img_request;
1934         struct ceph_snap_context *snapc;
1935         struct rbd_device *rbd_dev;
1936         struct ceph_osd_client *osdc;
1937         struct ceph_osd_request *osd_req;
1938
1939         rbd_assert(obj_request_img_data_test(obj_request));
1940         img_request = obj_request->img_request;
1941         rbd_assert(img_request);
1942         rbd_assert(img_request_write_test(img_request));
1943
1944         /* Allocate and initialize the request, for the three ops */
1945
1946         snapc = img_request->snapc;
1947         rbd_dev = img_request->rbd_dev;
1948         osdc = &rbd_dev->rbd_client->client->osdc;
1949         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1950         if (!osd_req)
1951                 return NULL;    /* ENOMEM */
1952
1953         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1954         osd_req->r_callback = rbd_osd_req_callback;
1955         osd_req->r_priv = obj_request;
1956
1957         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1958         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1959
1960         return osd_req;
1961 }
1962
1963
1964 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1965 {
1966         ceph_osdc_put_request(osd_req);
1967 }
1968
1969 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1970
1971 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1972                                                 u64 offset, u64 length,
1973                                                 enum obj_request_type type)
1974 {
1975         struct rbd_obj_request *obj_request;
1976         size_t size;
1977         char *name;
1978
1979         rbd_assert(obj_request_type_valid(type));
1980
1981         size = strlen(object_name) + 1;
1982         name = kmalloc(size, GFP_KERNEL);
1983         if (!name)
1984                 return NULL;
1985
1986         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1987         if (!obj_request) {
1988                 kfree(name);
1989                 return NULL;
1990         }
1991
1992         obj_request->object_name = memcpy(name, object_name, size);
1993         obj_request->offset = offset;
1994         obj_request->length = length;
1995         obj_request->flags = 0;
1996         obj_request->which = BAD_WHICH;
1997         obj_request->type = type;
1998         INIT_LIST_HEAD(&obj_request->links);
1999         init_completion(&obj_request->completion);
2000         kref_init(&obj_request->kref);
2001
2002         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2003                 offset, length, (int)type, obj_request);
2004
2005         return obj_request;
2006 }
2007
2008 static void rbd_obj_request_destroy(struct kref *kref)
2009 {
2010         struct rbd_obj_request *obj_request;
2011
2012         obj_request = container_of(kref, struct rbd_obj_request, kref);
2013
2014         dout("%s: obj %p\n", __func__, obj_request);
2015
2016         rbd_assert(obj_request->img_request == NULL);
2017         rbd_assert(obj_request->which == BAD_WHICH);
2018
2019         if (obj_request->osd_req)
2020                 rbd_osd_req_destroy(obj_request->osd_req);
2021
2022         rbd_assert(obj_request_type_valid(obj_request->type));
2023         switch (obj_request->type) {
2024         case OBJ_REQUEST_NODATA:
2025                 break;          /* Nothing to do */
2026         case OBJ_REQUEST_BIO:
2027                 if (obj_request->bio_list)
2028                         bio_chain_put(obj_request->bio_list);
2029                 break;
2030         case OBJ_REQUEST_PAGES:
2031                 if (obj_request->pages)
2032                         ceph_release_page_vector(obj_request->pages,
2033                                                 obj_request->page_count);
2034                 break;
2035         }
2036
2037         kfree(obj_request->object_name);
2038         obj_request->object_name = NULL;
2039         kmem_cache_free(rbd_obj_request_cache, obj_request);
2040 }
2041
2042 /* It's OK to call this for a device with no parent */
2043
2044 static void rbd_spec_put(struct rbd_spec *spec);
2045 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2046 {
2047         rbd_dev_remove_parent(rbd_dev);
2048         rbd_spec_put(rbd_dev->parent_spec);
2049         rbd_dev->parent_spec = NULL;
2050         rbd_dev->parent_overlap = 0;
2051 }
2052
2053 /*
2054  * Parent image reference counting is used to determine when an
2055  * image's parent fields can be safely torn down--after there are no
2056  * more in-flight requests to the parent image.  When the last
2057  * reference is dropped, cleaning them up is safe.
2058  */
2059 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2060 {
2061         int counter;
2062
2063         if (!rbd_dev->parent_spec)
2064                 return;
2065
2066         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2067         if (counter > 0)
2068                 return;
2069
2070         /* Last reference; clean up parent data structures */
2071
2072         if (!counter)
2073                 rbd_dev_unparent(rbd_dev);
2074         else
2075                 rbd_warn(rbd_dev, "parent reference underflow");
2076 }
2077
2078 /*
2079  * If an image has a non-zero parent overlap, get a reference to its
2080  * parent.
2081  *
2082  * We must get the reference before checking for the overlap to
2083  * coordinate properly with zeroing the parent overlap in
2084  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2085  * drop it again if there is no overlap.
2086  *
2087  * Returns true if the rbd device has a parent with a non-zero
2088  * overlap and a reference for it was successfully taken, or
2089  * false otherwise.
2090  */
2091 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2092 {
2093         int counter;
2094
2095         if (!rbd_dev->parent_spec)
2096                 return false;
2097
2098         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2099         if (counter > 0 && rbd_dev->parent_overlap)
2100                 return true;
2101
2102         /* Image was flattened, but parent is not yet torn down */
2103
2104         if (counter < 0)
2105                 rbd_warn(rbd_dev, "parent reference overflow");
2106
2107         return false;
2108 }
2109
2110 /*
2111  * Caller is responsible for filling in the list of object requests
2112  * that comprises the image request, and the Linux request pointer
2113  * (if there is one).
2114  */
2115 static struct rbd_img_request *rbd_img_request_create(
2116                                         struct rbd_device *rbd_dev,
2117                                         u64 offset, u64 length,
2118                                         enum obj_operation_type op_type,
2119                                         struct ceph_snap_context *snapc)
2120 {
2121         struct rbd_img_request *img_request;
2122
2123         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2124         if (!img_request)
2125                 return NULL;
2126
2127         img_request->rq = NULL;
2128         img_request->rbd_dev = rbd_dev;
2129         img_request->offset = offset;
2130         img_request->length = length;
2131         img_request->flags = 0;
2132         if (op_type == OBJ_OP_DISCARD) {
2133                 img_request_discard_set(img_request);
2134                 img_request->snapc = snapc;
2135         } else if (op_type == OBJ_OP_WRITE) {
2136                 img_request_write_set(img_request);
2137                 img_request->snapc = snapc;
2138         } else {
2139                 img_request->snap_id = rbd_dev->spec->snap_id;
2140         }
2141         if (rbd_dev_parent_get(rbd_dev))
2142                 img_request_layered_set(img_request);
2143         spin_lock_init(&img_request->completion_lock);
2144         img_request->next_completion = 0;
2145         img_request->callback = NULL;
2146         img_request->result = 0;
2147         img_request->obj_request_count = 0;
2148         INIT_LIST_HEAD(&img_request->obj_requests);
2149         kref_init(&img_request->kref);
2150
2151         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2152                 obj_op_name(op_type), offset, length, img_request);
2153
2154         return img_request;
2155 }
2156
2157 static void rbd_img_request_destroy(struct kref *kref)
2158 {
2159         struct rbd_img_request *img_request;
2160         struct rbd_obj_request *obj_request;
2161         struct rbd_obj_request *next_obj_request;
2162
2163         img_request = container_of(kref, struct rbd_img_request, kref);
2164
2165         dout("%s: img %p\n", __func__, img_request);
2166
2167         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2168                 rbd_img_obj_request_del(img_request, obj_request);
2169         rbd_assert(img_request->obj_request_count == 0);
2170
2171         if (img_request_layered_test(img_request)) {
2172                 img_request_layered_clear(img_request);
2173                 rbd_dev_parent_put(img_request->rbd_dev);
2174         }
2175
2176         if (img_request_write_test(img_request) ||
2177                 img_request_discard_test(img_request))
2178                 ceph_put_snap_context(img_request->snapc);
2179
2180         kmem_cache_free(rbd_img_request_cache, img_request);
2181 }
2182
2183 static struct rbd_img_request *rbd_parent_request_create(
2184                                         struct rbd_obj_request *obj_request,
2185                                         u64 img_offset, u64 length)
2186 {
2187         struct rbd_img_request *parent_request;
2188         struct rbd_device *rbd_dev;
2189
2190         rbd_assert(obj_request->img_request);
2191         rbd_dev = obj_request->img_request->rbd_dev;
2192
2193         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2194                                                 length, OBJ_OP_READ, NULL);
2195         if (!parent_request)
2196                 return NULL;
2197
2198         img_request_child_set(parent_request);
2199         rbd_obj_request_get(obj_request);
2200         parent_request->obj_request = obj_request;
2201
2202         return parent_request;
2203 }
2204
2205 static void rbd_parent_request_destroy(struct kref *kref)
2206 {
2207         struct rbd_img_request *parent_request;
2208         struct rbd_obj_request *orig_request;
2209
2210         parent_request = container_of(kref, struct rbd_img_request, kref);
2211         orig_request = parent_request->obj_request;
2212
2213         parent_request->obj_request = NULL;
2214         rbd_obj_request_put(orig_request);
2215         img_request_child_clear(parent_request);
2216
2217         rbd_img_request_destroy(kref);
2218 }
2219
2220 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2221 {
2222         struct rbd_img_request *img_request;
2223         unsigned int xferred;
2224         int result;
2225         bool more;
2226
2227         rbd_assert(obj_request_img_data_test(obj_request));
2228         img_request = obj_request->img_request;
2229
2230         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2231         xferred = (unsigned int)obj_request->xferred;
2232         result = obj_request->result;
2233         if (result) {
2234                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2235                 enum obj_operation_type op_type;
2236
2237                 if (img_request_discard_test(img_request))
2238                         op_type = OBJ_OP_DISCARD;
2239                 else if (img_request_write_test(img_request))
2240                         op_type = OBJ_OP_WRITE;
2241                 else
2242                         op_type = OBJ_OP_READ;
2243
2244                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2245                         obj_op_name(op_type), obj_request->length,
2246                         obj_request->img_offset, obj_request->offset);
2247                 rbd_warn(rbd_dev, "  result %d xferred %x",
2248                         result, xferred);
2249                 if (!img_request->result)
2250                         img_request->result = result;
2251         }
2252
2253         /* Image object requests don't own their page array */
2254
2255         if (obj_request->type == OBJ_REQUEST_PAGES) {
2256                 obj_request->pages = NULL;
2257                 obj_request->page_count = 0;
2258         }
2259
2260         if (img_request_child_test(img_request)) {
2261                 rbd_assert(img_request->obj_request != NULL);
2262                 more = obj_request->which < img_request->obj_request_count - 1;
2263         } else {
2264                 rbd_assert(img_request->rq != NULL);
2265                 more = blk_end_request(img_request->rq, result, xferred);
2266         }
2267
2268         return more;
2269 }
2270
2271 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2272 {
2273         struct rbd_img_request *img_request;
2274         u32 which = obj_request->which;
2275         bool more = true;
2276
2277         rbd_assert(obj_request_img_data_test(obj_request));
2278         img_request = obj_request->img_request;
2279
2280         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2281         rbd_assert(img_request != NULL);
2282         rbd_assert(img_request->obj_request_count > 0);
2283         rbd_assert(which != BAD_WHICH);
2284         rbd_assert(which < img_request->obj_request_count);
2285
2286         spin_lock_irq(&img_request->completion_lock);
2287         if (which != img_request->next_completion)
2288                 goto out;
2289
2290         for_each_obj_request_from(img_request, obj_request) {
2291                 rbd_assert(more);
2292                 rbd_assert(which < img_request->obj_request_count);
2293
2294                 if (!obj_request_done_test(obj_request))
2295                         break;
2296                 more = rbd_img_obj_end_request(obj_request);
2297                 which++;
2298         }
2299
2300         rbd_assert(more ^ (which == img_request->obj_request_count));
2301         img_request->next_completion = which;
2302 out:
2303         spin_unlock_irq(&img_request->completion_lock);
2304         rbd_img_request_put(img_request);
2305
2306         if (!more)
2307                 rbd_img_request_complete(img_request);
2308 }
2309
2310 /*
2311  * Split up an image request into one or more object requests, each
2312  * to a different object.  The "type" parameter indicates whether
2313  * "data_desc" is the pointer to the head of a list of bio
2314  * structures, or the base of a page array.  In either case this
2315  * function assumes data_desc describes memory sufficient to hold
2316  * all data described by the image request.
2317  */
2318 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2319                                         enum obj_request_type type,
2320                                         void *data_desc)
2321 {
2322         struct rbd_device *rbd_dev = img_request->rbd_dev;
2323         struct rbd_obj_request *obj_request = NULL;
2324         struct rbd_obj_request *next_obj_request;
2325         struct bio *bio_list = NULL;
2326         unsigned int bio_offset = 0;
2327         struct page **pages = NULL;
2328         enum obj_operation_type op_type;
2329         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2330         u64 img_offset;
2331         u64 img_end;
2332         u64 resid;
2333         u16 opcode;
2334
2335         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2336                 (int)type, data_desc);
2337
2338         img_offset = img_request->offset;
2339         resid = img_request->length;
2340         rbd_assert(resid > 0);
2341
2342         if (type == OBJ_REQUEST_BIO) {
2343                 bio_list = data_desc;
2344                 rbd_assert(img_offset ==
2345                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2346         } else if (type == OBJ_REQUEST_PAGES) {
2347                 pages = data_desc;
2348         }
2349
2350         while (resid) {
2351                 struct ceph_osd_request *osd_req;
2352                 const char *object_name;
2353                 u64 offset;
2354                 u64 length;
2355                 unsigned int which = 0;
2356
2357                 object_name = rbd_segment_name(rbd_dev, img_offset);
2358                 if (!object_name)
2359                         goto out_unwind;
2360                 offset = rbd_segment_offset(rbd_dev, img_offset);
2361                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2362                 obj_request = rbd_obj_request_create(object_name,
2363                                                 offset, length, type);
2364                 /* object request has its own copy of the object name */
2365                 rbd_segment_name_free(object_name);
2366                 if (!obj_request)
2367                         goto out_unwind;
2368
2369                 /*
2370                  * set obj_request->img_request before creating the
2371                  * osd_request so that it gets the right snapc
2372                  */
2373                 rbd_img_obj_request_add(img_request, obj_request);
2374
2375                 if (type == OBJ_REQUEST_BIO) {
2376                         unsigned int clone_size;
2377
2378                         rbd_assert(length <= (u64)UINT_MAX);
2379                         clone_size = (unsigned int)length;
2380                         obj_request->bio_list =
2381                                         bio_chain_clone_range(&bio_list,
2382                                                                 &bio_offset,
2383                                                                 clone_size,
2384                                                                 GFP_ATOMIC);
2385                         if (!obj_request->bio_list)
2386                                 goto out_unwind;
2387                 } else if (type == OBJ_REQUEST_PAGES) {
2388                         unsigned int page_count;
2389
2390                         obj_request->pages = pages;
2391                         page_count = (u32)calc_pages_for(offset, length);
2392                         obj_request->page_count = page_count;
2393                         if ((offset + length) & ~PAGE_MASK)
2394                                 page_count--;   /* more on last page */
2395                         pages += page_count;
2396                 }
2397
2398                 if (img_request_discard_test(img_request)) {
2399                         op_type = OBJ_OP_DISCARD;
2400                         if (!offset && (length == object_size)
2401                                 && (!img_request_layered_test(img_request) ||
2402                                         (rbd_dev->parent_overlap <=
2403                                                 obj_request->img_offset))) {
2404                                 opcode = CEPH_OSD_OP_DELETE;
2405                         } else if ((offset + length == object_size)) {
2406                                 opcode = CEPH_OSD_OP_TRUNCATE;
2407                         } else {
2408                                 down_read(&rbd_dev->header_rwsem);
2409                                 img_end = rbd_dev->header.image_size;
2410                                 up_read(&rbd_dev->header_rwsem);
2411
2412                                 if (obj_request->img_offset + length == img_end)
2413                                         opcode = CEPH_OSD_OP_TRUNCATE;
2414                                 else
2415                                         opcode = CEPH_OSD_OP_ZERO;
2416                         }
2417                 } else if (img_request_write_test(img_request)) {
2418                         op_type = OBJ_OP_WRITE;
2419                         opcode = CEPH_OSD_OP_WRITE;
2420                 } else {
2421                         op_type = OBJ_OP_READ;
2422                         opcode = CEPH_OSD_OP_READ;
2423                 }
2424
2425                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2426                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2427                                         obj_request);
2428                 if (!osd_req)
2429                         goto out_unwind;
2430                 obj_request->osd_req = osd_req;
2431                 obj_request->callback = rbd_img_obj_callback;
2432                 rbd_img_request_get(img_request);
2433
2434                 if (op_type == OBJ_OP_WRITE) {
2435                         osd_req_op_alloc_hint_init(osd_req, which,
2436                                              rbd_obj_bytes(&rbd_dev->header),
2437                                              rbd_obj_bytes(&rbd_dev->header));
2438                         which++;
2439                 }
2440
2441                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2442                                        0, 0);
2443                 if (type == OBJ_REQUEST_BIO)
2444                         osd_req_op_extent_osd_data_bio(osd_req, which,
2445                                         obj_request->bio_list, length);
2446                 else if (type == OBJ_REQUEST_PAGES)
2447                         osd_req_op_extent_osd_data_pages(osd_req, which,
2448                                         obj_request->pages, length,
2449                                         offset & ~PAGE_MASK, false, false);
2450
2451                 /* Discards are also writes */
2452                 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2453                         rbd_osd_req_format_write(obj_request);
2454                 else
2455                         rbd_osd_req_format_read(obj_request);
2456
2457                 obj_request->img_offset = img_offset;
2458
2459                 img_offset += length;
2460                 resid -= length;
2461         }
2462
2463         return 0;
2464
2465 out_unwind:
2466         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2467                 rbd_img_obj_request_del(img_request, obj_request);
2468
2469         return -ENOMEM;
2470 }
2471
2472 static void
2473 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2474 {
2475         struct rbd_img_request *img_request;
2476         struct rbd_device *rbd_dev;
2477         struct page **pages;
2478         u32 page_count;
2479
2480         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2481         rbd_assert(obj_request_img_data_test(obj_request));
2482         img_request = obj_request->img_request;
2483         rbd_assert(img_request);
2484
2485         rbd_dev = img_request->rbd_dev;
2486         rbd_assert(rbd_dev);
2487
2488         pages = obj_request->copyup_pages;
2489         rbd_assert(pages != NULL);
2490         obj_request->copyup_pages = NULL;
2491         page_count = obj_request->copyup_page_count;
2492         rbd_assert(page_count);
2493         obj_request->copyup_page_count = 0;
2494         ceph_release_page_vector(pages, page_count);
2495
2496         /*
2497          * We want the transfer count to reflect the size of the
2498          * original write request.  There is no such thing as a
2499          * successful short write, so if the request was successful
2500          * we can just set it to the originally-requested length.
2501          */
2502         if (!obj_request->result)
2503                 obj_request->xferred = obj_request->length;
2504
2505         /* Finish up with the normal image object callback */
2506
2507         rbd_img_obj_callback(obj_request);
2508 }
2509
2510 static void
2511 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2512 {
2513         struct rbd_obj_request *orig_request;
2514         struct ceph_osd_request *osd_req;
2515         struct ceph_osd_client *osdc;
2516         struct rbd_device *rbd_dev;
2517         struct page **pages;
2518         u32 page_count;
2519         int img_result;
2520         u64 parent_length;
2521         u64 offset;
2522         u64 length;
2523
2524         rbd_assert(img_request_child_test(img_request));
2525
2526         /* First get what we need from the image request */
2527
2528         pages = img_request->copyup_pages;
2529         rbd_assert(pages != NULL);
2530         img_request->copyup_pages = NULL;
2531         page_count = img_request->copyup_page_count;
2532         rbd_assert(page_count);
2533         img_request->copyup_page_count = 0;
2534
2535         orig_request = img_request->obj_request;
2536         rbd_assert(orig_request != NULL);
2537         rbd_assert(obj_request_type_valid(orig_request->type));
2538         img_result = img_request->result;
2539         parent_length = img_request->length;
2540         rbd_assert(parent_length == img_request->xferred);
2541         rbd_img_request_put(img_request);
2542
2543         rbd_assert(orig_request->img_request);
2544         rbd_dev = orig_request->img_request->rbd_dev;
2545         rbd_assert(rbd_dev);
2546
2547         /*
2548          * If the overlap has become 0 (most likely because the
2549          * image has been flattened) we need to free the pages
2550          * and re-submit the original write request.
2551          */
2552         if (!rbd_dev->parent_overlap) {
2553                 struct ceph_osd_client *osdc;
2554
2555                 ceph_release_page_vector(pages, page_count);
2556                 osdc = &rbd_dev->rbd_client->client->osdc;
2557                 img_result = rbd_obj_request_submit(osdc, orig_request);
2558                 if (!img_result)
2559                         return;
2560         }
2561
2562         if (img_result)
2563                 goto out_err;
2564
2565         /*
2566          * The original osd request is of no use to use any more.
2567          * We need a new one that can hold the three ops in a copyup
2568          * request.  Allocate the new copyup osd request for the
2569          * original request, and release the old one.
2570          */
2571         img_result = -ENOMEM;
2572         osd_req = rbd_osd_req_create_copyup(orig_request);
2573         if (!osd_req)
2574                 goto out_err;
2575         rbd_osd_req_destroy(orig_request->osd_req);
2576         orig_request->osd_req = osd_req;
2577         orig_request->copyup_pages = pages;
2578         orig_request->copyup_page_count = page_count;
2579
2580         /* Initialize the copyup op */
2581
2582         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2583         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2584                                                 false, false);
2585
2586         /* Then the hint op */
2587
2588         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2589                                    rbd_obj_bytes(&rbd_dev->header));
2590
2591         /* And the original write request op */
2592
2593         offset = orig_request->offset;
2594         length = orig_request->length;
2595         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2596                                         offset, length, 0, 0);
2597         if (orig_request->type == OBJ_REQUEST_BIO)
2598                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2599                                         orig_request->bio_list, length);
2600         else
2601                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2602                                         orig_request->pages, length,
2603                                         offset & ~PAGE_MASK, false, false);
2604
2605         rbd_osd_req_format_write(orig_request);
2606
2607         /* All set, send it off. */
2608
2609         orig_request->callback = rbd_img_obj_copyup_callback;
2610         osdc = &rbd_dev->rbd_client->client->osdc;
2611         img_result = rbd_obj_request_submit(osdc, orig_request);
2612         if (!img_result)
2613                 return;
2614 out_err:
2615         /* Record the error code and complete the request */
2616
2617         orig_request->result = img_result;
2618         orig_request->xferred = 0;
2619         obj_request_done_set(orig_request);
2620         rbd_obj_request_complete(orig_request);
2621 }
2622
2623 /*
2624  * Read from the parent image the range of data that covers the
2625  * entire target of the given object request.  This is used for
2626  * satisfying a layered image write request when the target of an
2627  * object request from the image request does not exist.
2628  *
2629  * A page array big enough to hold the returned data is allocated
2630  * and supplied to rbd_img_request_fill() as the "data descriptor."
2631  * When the read completes, this page array will be transferred to
2632  * the original object request for the copyup operation.
2633  *
2634  * If an error occurs, record it as the result of the original
2635  * object request and mark it done so it gets completed.
2636  */
2637 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2638 {
2639         struct rbd_img_request *img_request = NULL;
2640         struct rbd_img_request *parent_request = NULL;
2641         struct rbd_device *rbd_dev;
2642         u64 img_offset;
2643         u64 length;
2644         struct page **pages = NULL;
2645         u32 page_count;
2646         int result;
2647
2648         rbd_assert(obj_request_img_data_test(obj_request));
2649         rbd_assert(obj_request_type_valid(obj_request->type));
2650
2651         img_request = obj_request->img_request;
2652         rbd_assert(img_request != NULL);
2653         rbd_dev = img_request->rbd_dev;
2654         rbd_assert(rbd_dev->parent != NULL);
2655
2656         /*
2657          * Determine the byte range covered by the object in the
2658          * child image to which the original request was to be sent.
2659          */
2660         img_offset = obj_request->img_offset - obj_request->offset;
2661         length = (u64)1 << rbd_dev->header.obj_order;
2662
2663         /*
2664          * There is no defined parent data beyond the parent
2665          * overlap, so limit what we read at that boundary if
2666          * necessary.
2667          */
2668         if (img_offset + length > rbd_dev->parent_overlap) {
2669                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2670                 length = rbd_dev->parent_overlap - img_offset;
2671         }
2672
2673         /*
2674          * Allocate a page array big enough to receive the data read
2675          * from the parent.
2676          */
2677         page_count = (u32)calc_pages_for(0, length);
2678         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2679         if (IS_ERR(pages)) {
2680                 result = PTR_ERR(pages);
2681                 pages = NULL;
2682                 goto out_err;
2683         }
2684
2685         result = -ENOMEM;
2686         parent_request = rbd_parent_request_create(obj_request,
2687                                                 img_offset, length);
2688         if (!parent_request)
2689                 goto out_err;
2690
2691         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2692         if (result)
2693                 goto out_err;
2694         parent_request->copyup_pages = pages;
2695         parent_request->copyup_page_count = page_count;
2696
2697         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2698         result = rbd_img_request_submit(parent_request);
2699         if (!result)
2700                 return 0;
2701
2702         parent_request->copyup_pages = NULL;
2703         parent_request->copyup_page_count = 0;
2704         parent_request->obj_request = NULL;
2705         rbd_obj_request_put(obj_request);
2706 out_err:
2707         if (pages)
2708                 ceph_release_page_vector(pages, page_count);
2709         if (parent_request)
2710                 rbd_img_request_put(parent_request);
2711         obj_request->result = result;
2712         obj_request->xferred = 0;
2713         obj_request_done_set(obj_request);
2714
2715         return result;
2716 }
2717
2718 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2719 {
2720         struct rbd_obj_request *orig_request;
2721         struct rbd_device *rbd_dev;
2722         int result;
2723
2724         rbd_assert(!obj_request_img_data_test(obj_request));
2725
2726         /*
2727          * All we need from the object request is the original
2728          * request and the result of the STAT op.  Grab those, then
2729          * we're done with the request.
2730          */
2731         orig_request = obj_request->obj_request;
2732         obj_request->obj_request = NULL;
2733         rbd_obj_request_put(orig_request);
2734         rbd_assert(orig_request);
2735         rbd_assert(orig_request->img_request);
2736
2737         result = obj_request->result;
2738         obj_request->result = 0;
2739
2740         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2741                 obj_request, orig_request, result,
2742                 obj_request->xferred, obj_request->length);
2743         rbd_obj_request_put(obj_request);
2744
2745         /*
2746          * If the overlap has become 0 (most likely because the
2747          * image has been flattened) we need to free the pages
2748          * and re-submit the original write request.
2749          */
2750         rbd_dev = orig_request->img_request->rbd_dev;
2751         if (!rbd_dev->parent_overlap) {
2752                 struct ceph_osd_client *osdc;
2753
2754                 osdc = &rbd_dev->rbd_client->client->osdc;
2755                 result = rbd_obj_request_submit(osdc, orig_request);
2756                 if (!result)
2757                         return;
2758         }
2759
2760         /*
2761          * Our only purpose here is to determine whether the object
2762          * exists, and we don't want to treat the non-existence as
2763          * an error.  If something else comes back, transfer the
2764          * error to the original request and complete it now.
2765          */
2766         if (!result) {
2767                 obj_request_existence_set(orig_request, true);
2768         } else if (result == -ENOENT) {
2769                 obj_request_existence_set(orig_request, false);
2770         } else if (result) {
2771                 orig_request->result = result;
2772                 goto out;
2773         }
2774
2775         /*
2776          * Resubmit the original request now that we have recorded
2777          * whether the target object exists.
2778          */
2779         orig_request->result = rbd_img_obj_request_submit(orig_request);
2780 out:
2781         if (orig_request->result)
2782                 rbd_obj_request_complete(orig_request);
2783 }
2784
2785 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2786 {
2787         struct rbd_obj_request *stat_request;
2788         struct rbd_device *rbd_dev;
2789         struct ceph_osd_client *osdc;
2790         struct page **pages = NULL;
2791         u32 page_count;
2792         size_t size;
2793         int ret;
2794
2795         /*
2796          * The response data for a STAT call consists of:
2797          *     le64 length;
2798          *     struct {
2799          *         le32 tv_sec;
2800          *         le32 tv_nsec;
2801          *     } mtime;
2802          */
2803         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2804         page_count = (u32)calc_pages_for(0, size);
2805         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2806         if (IS_ERR(pages))
2807                 return PTR_ERR(pages);
2808
2809         ret = -ENOMEM;
2810         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2811                                                         OBJ_REQUEST_PAGES);
2812         if (!stat_request)
2813                 goto out;
2814
2815         rbd_obj_request_get(obj_request);
2816         stat_request->obj_request = obj_request;
2817         stat_request->pages = pages;
2818         stat_request->page_count = page_count;
2819
2820         rbd_assert(obj_request->img_request);
2821         rbd_dev = obj_request->img_request->rbd_dev;
2822         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2823                                                    stat_request);
2824         if (!stat_request->osd_req)
2825                 goto out;
2826         stat_request->callback = rbd_img_obj_exists_callback;
2827
2828         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2829         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2830                                         false, false);
2831         rbd_osd_req_format_read(stat_request);
2832
2833         osdc = &rbd_dev->rbd_client->client->osdc;
2834         ret = rbd_obj_request_submit(osdc, stat_request);
2835 out:
2836         if (ret)
2837                 rbd_obj_request_put(obj_request);
2838
2839         return ret;
2840 }
2841
2842 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2843 {
2844         struct rbd_img_request *img_request;
2845         struct rbd_device *rbd_dev;
2846
2847         rbd_assert(obj_request_img_data_test(obj_request));
2848
2849         img_request = obj_request->img_request;
2850         rbd_assert(img_request);
2851         rbd_dev = img_request->rbd_dev;
2852
2853         /* Reads */
2854         if (!img_request_write_test(img_request) &&
2855             !img_request_discard_test(img_request))
2856                 return true;
2857
2858         /* Non-layered writes */
2859         if (!img_request_layered_test(img_request))
2860                 return true;
2861
2862         /*
2863          * Layered writes outside of the parent overlap range don't
2864          * share any data with the parent.
2865          */
2866         if (!obj_request_overlaps_parent(obj_request))
2867                 return true;
2868
2869         /*
2870          * Entire-object layered writes - we will overwrite whatever
2871          * parent data there is anyway.
2872          */
2873         if (!obj_request->offset &&
2874             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2875                 return true;
2876
2877         /*
2878          * If the object is known to already exist, its parent data has
2879          * already been copied.
2880          */
2881         if (obj_request_known_test(obj_request) &&
2882             obj_request_exists_test(obj_request))
2883                 return true;
2884
2885         return false;
2886 }
2887
2888 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2889 {
2890         if (img_obj_request_simple(obj_request)) {
2891                 struct rbd_device *rbd_dev;
2892                 struct ceph_osd_client *osdc;
2893
2894                 rbd_dev = obj_request->img_request->rbd_dev;
2895                 osdc = &rbd_dev->rbd_client->client->osdc;
2896
2897                 return rbd_obj_request_submit(osdc, obj_request);
2898         }
2899
2900         /*
2901          * It's a layered write.  The target object might exist but
2902          * we may not know that yet.  If we know it doesn't exist,
2903          * start by reading the data for the full target object from
2904          * the parent so we can use it for a copyup to the target.
2905          */
2906         if (obj_request_known_test(obj_request))
2907                 return rbd_img_obj_parent_read_full(obj_request);
2908
2909         /* We don't know whether the target exists.  Go find out. */
2910
2911         return rbd_img_obj_exists_submit(obj_request);
2912 }
2913
2914 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2915 {
2916         struct rbd_obj_request *obj_request;
2917         struct rbd_obj_request *next_obj_request;
2918
2919         dout("%s: img %p\n", __func__, img_request);
2920         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2921                 int ret;
2922
2923                 ret = rbd_img_obj_request_submit(obj_request);
2924                 if (ret)
2925                         return ret;
2926         }
2927
2928         return 0;
2929 }
2930
2931 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2932 {
2933         struct rbd_obj_request *obj_request;
2934         struct rbd_device *rbd_dev;
2935         u64 obj_end;
2936         u64 img_xferred;
2937         int img_result;
2938
2939         rbd_assert(img_request_child_test(img_request));
2940
2941         /* First get what we need from the image request and release it */
2942
2943         obj_request = img_request->obj_request;
2944         img_xferred = img_request->xferred;
2945         img_result = img_request->result;
2946         rbd_img_request_put(img_request);
2947
2948         /*
2949          * If the overlap has become 0 (most likely because the
2950          * image has been flattened) we need to re-submit the
2951          * original request.
2952          */
2953         rbd_assert(obj_request);
2954         rbd_assert(obj_request->img_request);
2955         rbd_dev = obj_request->img_request->rbd_dev;
2956         if (!rbd_dev->parent_overlap) {
2957                 struct ceph_osd_client *osdc;
2958
2959                 osdc = &rbd_dev->rbd_client->client->osdc;
2960                 img_result = rbd_obj_request_submit(osdc, obj_request);
2961                 if (!img_result)
2962                         return;
2963         }
2964
2965         obj_request->result = img_result;
2966         if (obj_request->result)
2967                 goto out;
2968
2969         /*
2970          * We need to zero anything beyond the parent overlap
2971          * boundary.  Since rbd_img_obj_request_read_callback()
2972          * will zero anything beyond the end of a short read, an
2973          * easy way to do this is to pretend the data from the
2974          * parent came up short--ending at the overlap boundary.
2975          */
2976         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2977         obj_end = obj_request->img_offset + obj_request->length;
2978         if (obj_end > rbd_dev->parent_overlap) {
2979                 u64 xferred = 0;
2980
2981                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2982                         xferred = rbd_dev->parent_overlap -
2983                                         obj_request->img_offset;
2984
2985                 obj_request->xferred = min(img_xferred, xferred);
2986         } else {
2987                 obj_request->xferred = img_xferred;
2988         }
2989 out:
2990         rbd_img_obj_request_read_callback(obj_request);
2991         rbd_obj_request_complete(obj_request);
2992 }
2993
2994 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2995 {
2996         struct rbd_img_request *img_request;
2997         int result;
2998
2999         rbd_assert(obj_request_img_data_test(obj_request));
3000         rbd_assert(obj_request->img_request != NULL);
3001         rbd_assert(obj_request->result == (s32) -ENOENT);
3002         rbd_assert(obj_request_type_valid(obj_request->type));
3003
3004         /* rbd_read_finish(obj_request, obj_request->length); */
3005         img_request = rbd_parent_request_create(obj_request,
3006                                                 obj_request->img_offset,
3007                                                 obj_request->length);
3008         result = -ENOMEM;
3009         if (!img_request)
3010                 goto out_err;
3011
3012         if (obj_request->type == OBJ_REQUEST_BIO)
3013                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3014                                                 obj_request->bio_list);
3015         else
3016                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3017                                                 obj_request->pages);
3018         if (result)
3019                 goto out_err;
3020
3021         img_request->callback = rbd_img_parent_read_callback;
3022         result = rbd_img_request_submit(img_request);
3023         if (result)
3024                 goto out_err;
3025
3026         return;
3027 out_err:
3028         if (img_request)
3029                 rbd_img_request_put(img_request);
3030         obj_request->result = result;
3031         obj_request->xferred = 0;
3032         obj_request_done_set(obj_request);
3033 }
3034
3035 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3036 {
3037         struct rbd_obj_request *obj_request;
3038         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3039         int ret;
3040
3041         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3042                                                         OBJ_REQUEST_NODATA);
3043         if (!obj_request)
3044                 return -ENOMEM;
3045
3046         ret = -ENOMEM;
3047         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3048                                                   obj_request);
3049         if (!obj_request->osd_req)
3050                 goto out;
3051
3052         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3053                                         notify_id, 0, 0);
3054         rbd_osd_req_format_read(obj_request);
3055
3056         ret = rbd_obj_request_submit(osdc, obj_request);
3057         if (ret)
3058                 goto out;
3059         ret = rbd_obj_request_wait(obj_request);
3060 out:
3061         rbd_obj_request_put(obj_request);
3062
3063         return ret;
3064 }
3065
3066 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3067 {
3068         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3069         int ret;
3070
3071         if (!rbd_dev)
3072                 return;
3073
3074         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3075                 rbd_dev->header_name, (unsigned long long)notify_id,
3076                 (unsigned int)opcode);
3077
3078         /*
3079          * Until adequate refresh error handling is in place, there is
3080          * not much we can do here, except warn.
3081          *
3082          * See http://tracker.ceph.com/issues/5040
3083          */
3084         ret = rbd_dev_refresh(rbd_dev);
3085         if (ret)
3086                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3087
3088         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3089         if (ret)
3090                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3091 }
3092
3093 /*
3094  * Send a (un)watch request and wait for the ack.  Return a request
3095  * with a ref held on success or error.
3096  */
3097 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3098                                                 struct rbd_device *rbd_dev,
3099                                                 bool watch)
3100 {
3101         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3102         struct rbd_obj_request *obj_request;
3103         int ret;
3104
3105         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3106                                              OBJ_REQUEST_NODATA);
3107         if (!obj_request)
3108                 return ERR_PTR(-ENOMEM);
3109
3110         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3111                                                   obj_request);
3112         if (!obj_request->osd_req) {
3113                 ret = -ENOMEM;
3114                 goto out;
3115         }
3116
3117         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3118                               rbd_dev->watch_event->cookie, 0, watch);
3119         rbd_osd_req_format_write(obj_request);
3120
3121         if (watch)
3122                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3123
3124         ret = rbd_obj_request_submit(osdc, obj_request);
3125         if (ret)
3126                 goto out;
3127
3128         ret = rbd_obj_request_wait(obj_request);
3129         if (ret)
3130                 goto out;
3131
3132         ret = obj_request->result;
3133         if (ret) {
3134                 if (watch)
3135                         rbd_obj_request_end(obj_request);
3136                 goto out;
3137         }
3138
3139         return obj_request;
3140
3141 out:
3142         rbd_obj_request_put(obj_request);
3143         return ERR_PTR(ret);
3144 }
3145
3146 /*
3147  * Initiate a watch request, synchronously.
3148  */
3149 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3150 {
3151         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3152         struct rbd_obj_request *obj_request;
3153         int ret;
3154
3155         rbd_assert(!rbd_dev->watch_event);
3156         rbd_assert(!rbd_dev->watch_request);
3157
3158         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3159                                      &rbd_dev->watch_event);
3160         if (ret < 0)
3161                 return ret;
3162
3163         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3164         if (IS_ERR(obj_request)) {
3165                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3166                 rbd_dev->watch_event = NULL;
3167                 return PTR_ERR(obj_request);
3168         }
3169
3170         /*
3171          * A watch request is set to linger, so the underlying osd
3172          * request won't go away until we unregister it.  We retain
3173          * a pointer to the object request during that time (in
3174          * rbd_dev->watch_request), so we'll keep a reference to it.
3175          * We'll drop that reference after we've unregistered it in
3176          * rbd_dev_header_unwatch_sync().
3177          */
3178         rbd_dev->watch_request = obj_request;
3179
3180         return 0;
3181 }
3182
3183 /*
3184  * Tear down a watch request, synchronously.
3185  */
3186 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3187 {
3188         struct rbd_obj_request *obj_request;
3189
3190         rbd_assert(rbd_dev->watch_event);
3191         rbd_assert(rbd_dev->watch_request);
3192
3193         rbd_obj_request_end(rbd_dev->watch_request);
3194         rbd_obj_request_put(rbd_dev->watch_request);
3195         rbd_dev->watch_request = NULL;
3196
3197         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3198         if (!IS_ERR(obj_request))
3199                 rbd_obj_request_put(obj_request);
3200         else
3201                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3202                          PTR_ERR(obj_request));
3203
3204         ceph_osdc_cancel_event(rbd_dev->watch_event);
3205         rbd_dev->watch_event = NULL;
3206 }
3207
3208 /*
3209  * Synchronous osd object method call.  Returns the number of bytes
3210  * returned in the outbound buffer, or a negative error code.
3211  */
3212 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3213                              const char *object_name,
3214                              const char *class_name,
3215                              const char *method_name,
3216                              const void *outbound,
3217                              size_t outbound_size,
3218                              void *inbound,
3219                              size_t inbound_size)
3220 {
3221         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3222         struct rbd_obj_request *obj_request;
3223         struct page **pages;
3224         u32 page_count;
3225         int ret;
3226
3227         /*
3228          * Method calls are ultimately read operations.  The result
3229          * should placed into the inbound buffer provided.  They
3230          * also supply outbound data--parameters for the object
3231          * method.  Currently if this is present it will be a
3232          * snapshot id.
3233          */
3234         page_count = (u32)calc_pages_for(0, inbound_size);
3235         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3236         if (IS_ERR(pages))
3237                 return PTR_ERR(pages);
3238
3239         ret = -ENOMEM;
3240         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3241                                                         OBJ_REQUEST_PAGES);
3242         if (!obj_request)
3243                 goto out;
3244
3245         obj_request->pages = pages;
3246         obj_request->page_count = page_count;
3247
3248         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3249                                                   obj_request);
3250         if (!obj_request->osd_req)
3251                 goto out;
3252
3253         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3254                                         class_name, method_name);
3255         if (outbound_size) {
3256                 struct ceph_pagelist *pagelist;
3257
3258                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3259                 if (!pagelist)
3260                         goto out;
3261
3262                 ceph_pagelist_init(pagelist);
3263                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3264                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3265                                                 pagelist);
3266         }
3267         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3268                                         obj_request->pages, inbound_size,
3269                                         0, false, false);
3270         rbd_osd_req_format_read(obj_request);
3271
3272         ret = rbd_obj_request_submit(osdc, obj_request);
3273         if (ret)
3274                 goto out;
3275         ret = rbd_obj_request_wait(obj_request);
3276         if (ret)
3277                 goto out;
3278
3279         ret = obj_request->result;
3280         if (ret < 0)
3281                 goto out;
3282
3283         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3284         ret = (int)obj_request->xferred;
3285         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3286 out:
3287         if (obj_request)
3288                 rbd_obj_request_put(obj_request);
3289         else
3290                 ceph_release_page_vector(pages, page_count);
3291
3292         return ret;
3293 }
3294
3295 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3296 {
3297         struct rbd_img_request *img_request;
3298         struct ceph_snap_context *snapc = NULL;
3299         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3300         u64 length = blk_rq_bytes(rq);
3301         enum obj_operation_type op_type;
3302         u64 mapping_size;
3303         int result;
3304
3305         if (rq->cmd_flags & REQ_DISCARD)
3306                 op_type = OBJ_OP_DISCARD;
3307         else if (rq->cmd_flags & REQ_WRITE)
3308                 op_type = OBJ_OP_WRITE;
3309         else
3310                 op_type = OBJ_OP_READ;
3311
3312         /* Ignore/skip any zero-length requests */
3313
3314         if (!length) {
3315                 dout("%s: zero-length request\n", __func__);
3316                 result = 0;
3317                 goto err_rq;
3318         }
3319
3320         /* Only reads are allowed to a read-only device */
3321
3322         if (op_type != OBJ_OP_READ) {
3323                 if (rbd_dev->mapping.read_only) {
3324                         result = -EROFS;
3325                         goto err_rq;
3326                 }
3327                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3328         }
3329
3330         /*
3331          * Quit early if the mapped snapshot no longer exists.  It's
3332          * still possible the snapshot will have disappeared by the
3333          * time our request arrives at the osd, but there's no sense in
3334          * sending it if we already know.
3335          */
3336         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3337                 dout("request for non-existent snapshot");
3338                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3339                 result = -ENXIO;
3340                 goto err_rq;
3341         }
3342
3343         if (offset && length > U64_MAX - offset + 1) {
3344                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3345                          length);
3346                 result = -EINVAL;
3347                 goto err_rq;    /* Shouldn't happen */
3348         }
3349
3350         down_read(&rbd_dev->header_rwsem);
3351         mapping_size = rbd_dev->mapping.size;
3352         if (op_type != OBJ_OP_READ) {
3353                 snapc = rbd_dev->header.snapc;
3354                 ceph_get_snap_context(snapc);
3355         }
3356         up_read(&rbd_dev->header_rwsem);
3357
3358         if (offset + length > mapping_size) {
3359                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3360                          length, mapping_size);
3361                 result = -EIO;
3362                 goto err_rq;
3363         }
3364
3365         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3366                                              snapc);
3367         if (!img_request) {
3368                 result = -ENOMEM;
3369                 goto err_rq;
3370         }
3371         img_request->rq = rq;
3372
3373         if (op_type == OBJ_OP_DISCARD)
3374                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3375                                               NULL);
3376         else
3377                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3378                                               rq->bio);
3379         if (result)
3380                 goto err_img_request;
3381
3382         result = rbd_img_request_submit(img_request);
3383         if (result)
3384                 goto err_img_request;
3385
3386         return;
3387
3388 err_img_request:
3389         rbd_img_request_put(img_request);
3390 err_rq:
3391         if (result)
3392                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3393                          obj_op_name(op_type), length, offset, result);
3394         if (snapc)
3395                 ceph_put_snap_context(snapc);
3396         blk_end_request_all(rq, result);
3397 }
3398
3399 static void rbd_request_workfn(struct work_struct *work)
3400 {
3401         struct rbd_device *rbd_dev =
3402             container_of(work, struct rbd_device, rq_work);
3403         struct request *rq, *next;
3404         LIST_HEAD(requests);
3405
3406         spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3407         list_splice_init(&rbd_dev->rq_queue, &requests);
3408         spin_unlock_irq(&rbd_dev->lock);
3409
3410         list_for_each_entry_safe(rq, next, &requests, queuelist) {
3411                 list_del_init(&rq->queuelist);
3412                 rbd_handle_request(rbd_dev, rq);
3413         }
3414 }
3415
3416 /*
3417  * Called with q->queue_lock held and interrupts disabled, possibly on
3418  * the way to schedule().  Do not sleep here!
3419  */
3420 static void rbd_request_fn(struct request_queue *q)
3421 {
3422         struct rbd_device *rbd_dev = q->queuedata;
3423         struct request *rq;
3424         int queued = 0;
3425
3426         rbd_assert(rbd_dev);
3427
3428         while ((rq = blk_fetch_request(q))) {
3429                 /* Ignore any non-FS requests that filter through. */
3430                 if (rq->cmd_type != REQ_TYPE_FS) {
3431                         dout("%s: non-fs request type %d\n", __func__,
3432                                 (int) rq->cmd_type);
3433                         __blk_end_request_all(rq, 0);
3434                         continue;
3435                 }
3436
3437                 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3438                 queued++;
3439         }
3440
3441         if (queued)
3442                 queue_work(rbd_dev->rq_wq, &rbd_dev->rq_work);
3443 }
3444
3445 /*
3446  * a queue callback. Makes sure that we don't create a bio that spans across
3447  * multiple osd objects. One exception would be with a single page bios,
3448  * which we handle later at bio_chain_clone_range()
3449  */
3450 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3451                           struct bio_vec *bvec)
3452 {
3453         struct rbd_device *rbd_dev = q->queuedata;
3454         sector_t sector_offset;
3455         sector_t sectors_per_obj;
3456         sector_t obj_sector_offset;
3457         int ret;
3458
3459         /*
3460          * Find how far into its rbd object the partition-relative
3461          * bio start sector is to offset relative to the enclosing
3462          * device.
3463          */
3464         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3465         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3466         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3467
3468         /*
3469          * Compute the number of bytes from that offset to the end
3470          * of the object.  Account for what's already used by the bio.
3471          */
3472         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3473         if (ret > bmd->bi_size)
3474                 ret -= bmd->bi_size;
3475         else
3476                 ret = 0;
3477
3478         /*
3479          * Don't send back more than was asked for.  And if the bio
3480          * was empty, let the whole thing through because:  "Note
3481          * that a block device *must* allow a single page to be
3482          * added to an empty bio."
3483          */
3484         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3485         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3486                 ret = (int) bvec->bv_len;
3487
3488         return ret;
3489 }
3490
3491 static void rbd_free_disk(struct rbd_device *rbd_dev)
3492 {
3493         struct gendisk *disk = rbd_dev->disk;
3494
3495         if (!disk)
3496                 return;
3497
3498         rbd_dev->disk = NULL;
3499         if (disk->flags & GENHD_FL_UP) {
3500                 del_gendisk(disk);
3501                 if (disk->queue)
3502                         blk_cleanup_queue(disk->queue);
3503         }
3504         put_disk(disk);
3505 }
3506
3507 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3508                                 const char *object_name,
3509                                 u64 offset, u64 length, void *buf)
3510
3511 {
3512         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3513         struct rbd_obj_request *obj_request;
3514         struct page **pages = NULL;
3515         u32 page_count;
3516         size_t size;
3517         int ret;
3518
3519         page_count = (u32) calc_pages_for(offset, length);
3520         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3521         if (IS_ERR(pages))
3522                 ret = PTR_ERR(pages);
3523
3524         ret = -ENOMEM;
3525         obj_request = rbd_obj_request_create(object_name, offset, length,
3526                                                         OBJ_REQUEST_PAGES);
3527         if (!obj_request)
3528                 goto out;
3529
3530         obj_request->pages = pages;
3531         obj_request->page_count = page_count;
3532
3533         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3534                                                   obj_request);
3535         if (!obj_request->osd_req)
3536                 goto out;
3537
3538         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3539                                         offset, length, 0, 0);
3540         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3541                                         obj_request->pages,
3542                                         obj_request->length,
3543                                         obj_request->offset & ~PAGE_MASK,
3544                                         false, false);
3545         rbd_osd_req_format_read(obj_request);
3546
3547         ret = rbd_obj_request_submit(osdc, obj_request);
3548         if (ret)
3549                 goto out;
3550         ret = rbd_obj_request_wait(obj_request);
3551         if (ret)
3552                 goto out;
3553
3554         ret = obj_request->result;
3555         if (ret < 0)
3556                 goto out;
3557
3558         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3559         size = (size_t) obj_request->xferred;
3560         ceph_copy_from_page_vector(pages, buf, 0, size);
3561         rbd_assert(size <= (size_t)INT_MAX);
3562         ret = (int)size;
3563 out:
3564         if (obj_request)
3565                 rbd_obj_request_put(obj_request);
3566         else
3567                 ceph_release_page_vector(pages, page_count);
3568
3569         return ret;
3570 }
3571
3572 /*
3573  * Read the complete header for the given rbd device.  On successful
3574  * return, the rbd_dev->header field will contain up-to-date
3575  * information about the image.
3576  */
3577 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3578 {
3579         struct rbd_image_header_ondisk *ondisk = NULL;
3580         u32 snap_count = 0;
3581         u64 names_size = 0;
3582         u32 want_count;
3583         int ret;
3584
3585         /*
3586          * The complete header will include an array of its 64-bit
3587          * snapshot ids, followed by the names of those snapshots as
3588          * a contiguous block of NUL-terminated strings.  Note that
3589          * the number of snapshots could change by the time we read
3590          * it in, in which case we re-read it.
3591          */
3592         do {
3593                 size_t size;
3594
3595                 kfree(ondisk);
3596
3597                 size = sizeof (*ondisk);
3598                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3599                 size += names_size;
3600                 ondisk = kmalloc(size, GFP_KERNEL);
3601                 if (!ondisk)
3602                         return -ENOMEM;
3603
3604                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3605                                        0, size, ondisk);
3606                 if (ret < 0)
3607                         goto out;
3608                 if ((size_t)ret < size) {
3609                         ret = -ENXIO;
3610                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3611                                 size, ret);
3612                         goto out;
3613                 }
3614                 if (!rbd_dev_ondisk_valid(ondisk)) {
3615                         ret = -ENXIO;
3616                         rbd_warn(rbd_dev, "invalid header");
3617                         goto out;
3618                 }
3619
3620                 names_size = le64_to_cpu(ondisk->snap_names_len);
3621                 want_count = snap_count;
3622                 snap_count = le32_to_cpu(ondisk->snap_count);
3623         } while (snap_count != want_count);
3624
3625         ret = rbd_header_from_disk(rbd_dev, ondisk);
3626 out:
3627         kfree(ondisk);
3628
3629         return ret;
3630 }
3631
3632 /*
3633  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3634  * has disappeared from the (just updated) snapshot context.
3635  */
3636 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3637 {
3638         u64 snap_id;
3639
3640         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3641                 return;
3642
3643         snap_id = rbd_dev->spec->snap_id;
3644         if (snap_id == CEPH_NOSNAP)
3645                 return;
3646
3647         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3648                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3649 }
3650
3651 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3652 {
3653         sector_t size;
3654         bool removing;
3655
3656         /*
3657          * Don't hold the lock while doing disk operations,
3658          * or lock ordering will conflict with the bdev mutex via:
3659          * rbd_add() -> blkdev_get() -> rbd_open()
3660          */
3661         spin_lock_irq(&rbd_dev->lock);
3662         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3663         spin_unlock_irq(&rbd_dev->lock);
3664         /*
3665          * If the device is being removed, rbd_dev->disk has
3666          * been destroyed, so don't try to update its size
3667          */
3668         if (!removing) {
3669                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3670                 dout("setting size to %llu sectors", (unsigned long long)size);
3671                 set_capacity(rbd_dev->disk, size);
3672                 revalidate_disk(rbd_dev->disk);
3673         }
3674 }
3675
3676 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3677 {
3678         u64 mapping_size;
3679         int ret;
3680
3681         down_write(&rbd_dev->header_rwsem);
3682         mapping_size = rbd_dev->mapping.size;
3683
3684         ret = rbd_dev_header_info(rbd_dev);
3685         if (ret)
3686                 return ret;
3687
3688         /*
3689          * If there is a parent, see if it has disappeared due to the
3690          * mapped image getting flattened.
3691          */
3692         if (rbd_dev->parent) {
3693                 ret = rbd_dev_v2_parent_info(rbd_dev);
3694                 if (ret)
3695                         return ret;
3696         }
3697
3698         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3699                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3700                         rbd_dev->mapping.size = rbd_dev->header.image_size;
3701         } else {
3702                 /* validate mapped snapshot's EXISTS flag */
3703                 rbd_exists_validate(rbd_dev);
3704         }
3705
3706         up_write(&rbd_dev->header_rwsem);
3707
3708         if (mapping_size != rbd_dev->mapping.size)
3709                 rbd_dev_update_size(rbd_dev);
3710
3711         return 0;
3712 }
3713
3714 static int rbd_init_disk(struct rbd_device *rbd_dev)
3715 {
3716         struct gendisk *disk;
3717         struct request_queue *q;
3718         u64 segment_size;
3719
3720         /* create gendisk info */
3721         disk = alloc_disk(single_major ?
3722                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3723                           RBD_MINORS_PER_MAJOR);
3724         if (!disk)
3725                 return -ENOMEM;
3726
3727         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3728                  rbd_dev->dev_id);
3729         disk->major = rbd_dev->major;
3730         disk->first_minor = rbd_dev->minor;
3731         if (single_major)
3732                 disk->flags |= GENHD_FL_EXT_DEVT;
3733         disk->fops = &rbd_bd_ops;
3734         disk->private_data = rbd_dev;
3735
3736         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3737         if (!q)
3738                 goto out_disk;
3739
3740         /* We use the default size, but let's be explicit about it. */
3741         blk_queue_physical_block_size(q, SECTOR_SIZE);
3742
3743         /* set io sizes to object size */
3744         segment_size = rbd_obj_bytes(&rbd_dev->header);
3745         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3746         blk_queue_max_segment_size(q, segment_size);
3747         blk_queue_io_min(q, segment_size);
3748         blk_queue_io_opt(q, segment_size);
3749
3750         /* enable the discard support */
3751         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3752         q->limits.discard_granularity = segment_size;
3753         q->limits.discard_alignment = segment_size;
3754
3755         blk_queue_merge_bvec(q, rbd_merge_bvec);
3756         disk->queue = q;
3757
3758         q->queuedata = rbd_dev;
3759
3760         rbd_dev->disk = disk;
3761
3762         return 0;
3763 out_disk:
3764         put_disk(disk);
3765
3766         return -ENOMEM;
3767 }
3768
3769 /*
3770   sysfs
3771 */
3772
3773 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3774 {
3775         return container_of(dev, struct rbd_device, dev);
3776 }
3777
3778 static ssize_t rbd_size_show(struct device *dev,
3779                              struct device_attribute *attr, char *buf)
3780 {
3781         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3782
3783         return sprintf(buf, "%llu\n",
3784                 (unsigned long long)rbd_dev->mapping.size);
3785 }
3786
3787 /*
3788  * Note this shows the features for whatever's mapped, which is not
3789  * necessarily the base image.
3790  */
3791 static ssize_t rbd_features_show(struct device *dev,
3792                              struct device_attribute *attr, char *buf)
3793 {
3794         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3795
3796         return sprintf(buf, "0x%016llx\n",
3797                         (unsigned long long)rbd_dev->mapping.features);
3798 }
3799
3800 static ssize_t rbd_major_show(struct device *dev,
3801                               struct device_attribute *attr, char *buf)
3802 {
3803         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3804
3805         if (rbd_dev->major)
3806                 return sprintf(buf, "%d\n", rbd_dev->major);
3807
3808         return sprintf(buf, "(none)\n");
3809 }
3810
3811 static ssize_t rbd_minor_show(struct device *dev,
3812                               struct device_attribute *attr, char *buf)
3813 {
3814         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815
3816         return sprintf(buf, "%d\n", rbd_dev->minor);
3817 }
3818
3819 static ssize_t rbd_client_id_show(struct device *dev,
3820                                   struct device_attribute *attr, char *buf)
3821 {
3822         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823
3824         return sprintf(buf, "client%lld\n",
3825                         ceph_client_id(rbd_dev->rbd_client->client));
3826 }
3827
3828 static ssize_t rbd_pool_show(struct device *dev,
3829                              struct device_attribute *attr, char *buf)
3830 {
3831         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3832
3833         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3834 }
3835
3836 static ssize_t rbd_pool_id_show(struct device *dev,
3837                              struct device_attribute *attr, char *buf)
3838 {
3839         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3840
3841         return sprintf(buf, "%llu\n",
3842                         (unsigned long long) rbd_dev->spec->pool_id);
3843 }
3844
3845 static ssize_t rbd_name_show(struct device *dev,
3846                              struct device_attribute *attr, char *buf)
3847 {
3848         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3849
3850         if (rbd_dev->spec->image_name)
3851                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3852
3853         return sprintf(buf, "(unknown)\n");
3854 }
3855
3856 static ssize_t rbd_image_id_show(struct device *dev,
3857                              struct device_attribute *attr, char *buf)
3858 {
3859         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860
3861         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3862 }
3863
3864 /*
3865  * Shows the name of the currently-mapped snapshot (or
3866  * RBD_SNAP_HEAD_NAME for the base image).
3867  */
3868 static ssize_t rbd_snap_show(struct device *dev,
3869                              struct device_attribute *attr,
3870                              char *buf)
3871 {
3872         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3873
3874         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3875 }
3876
3877 /*
3878  * For a v2 image, shows the chain of parent images, separated by empty
3879  * lines.  For v1 images or if there is no parent, shows "(no parent
3880  * image)".
3881  */
3882 static ssize_t rbd_parent_show(struct device *dev,
3883                                struct device_attribute *attr,
3884                                char *buf)
3885 {
3886         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3887         ssize_t count = 0;
3888
3889         if (!rbd_dev->parent)
3890                 return sprintf(buf, "(no parent image)\n");
3891
3892         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3893                 struct rbd_spec *spec = rbd_dev->parent_spec;
3894
3895                 count += sprintf(&buf[count], "%s"
3896                             "pool_id %llu\npool_name %s\n"
3897                             "image_id %s\nimage_name %s\n"
3898                             "snap_id %llu\nsnap_name %s\n"
3899                             "overlap %llu\n",
3900                             !count ? "" : "\n", /* first? */
3901                             spec->pool_id, spec->pool_name,
3902                             spec->image_id, spec->image_name ?: "(unknown)",
3903                             spec->snap_id, spec->snap_name,
3904                             rbd_dev->parent_overlap);
3905         }
3906
3907         return count;
3908 }
3909
3910 static ssize_t rbd_image_refresh(struct device *dev,
3911                                  struct device_attribute *attr,
3912                                  const char *buf,
3913                                  size_t size)
3914 {
3915         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3916         int ret;
3917
3918         ret = rbd_dev_refresh(rbd_dev);
3919         if (ret)
3920                 return ret;
3921
3922         return size;
3923 }
3924
3925 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3926 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3927 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3928 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3929 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3930 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3931 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3932 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3933 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3934 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3935 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3936 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3937
3938 static struct attribute *rbd_attrs[] = {
3939         &dev_attr_size.attr,
3940         &dev_attr_features.attr,
3941         &dev_attr_major.attr,
3942         &dev_attr_minor.attr,
3943         &dev_attr_client_id.attr,
3944         &dev_attr_pool.attr,
3945         &dev_attr_pool_id.attr,
3946         &dev_attr_name.attr,
3947         &dev_attr_image_id.attr,
3948         &dev_attr_current_snap.attr,
3949         &dev_attr_parent.attr,
3950         &dev_attr_refresh.attr,
3951         NULL
3952 };
3953
3954 static struct attribute_group rbd_attr_group = {
3955         .attrs = rbd_attrs,
3956 };
3957
3958 static const struct attribute_group *rbd_attr_groups[] = {
3959         &rbd_attr_group,
3960         NULL
3961 };
3962
3963 static void rbd_sysfs_dev_release(struct device *dev)
3964 {
3965 }
3966
3967 static struct device_type rbd_device_type = {
3968         .name           = "rbd",
3969         .groups         = rbd_attr_groups,
3970         .release        = rbd_sysfs_dev_release,
3971 };
3972
3973 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3974 {
3975         kref_get(&spec->kref);
3976
3977         return spec;
3978 }
3979
3980 static void rbd_spec_free(struct kref *kref);
3981 static void rbd_spec_put(struct rbd_spec *spec)
3982 {
3983         if (spec)
3984                 kref_put(&spec->kref, rbd_spec_free);
3985 }
3986
3987 static struct rbd_spec *rbd_spec_alloc(void)
3988 {
3989         struct rbd_spec *spec;
3990
3991         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3992         if (!spec)
3993                 return NULL;
3994
3995         spec->pool_id = CEPH_NOPOOL;
3996         spec->snap_id = CEPH_NOSNAP;
3997         kref_init(&spec->kref);
3998
3999         return spec;
4000 }
4001
4002 static void rbd_spec_free(struct kref *kref)
4003 {
4004         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4005
4006         kfree(spec->pool_name);
4007         kfree(spec->image_id);
4008         kfree(spec->image_name);
4009         kfree(spec->snap_name);
4010         kfree(spec);
4011 }
4012
4013 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4014                                 struct rbd_spec *spec)
4015 {
4016         struct rbd_device *rbd_dev;
4017
4018         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4019         if (!rbd_dev)
4020                 return NULL;
4021
4022         spin_lock_init(&rbd_dev->lock);
4023         INIT_LIST_HEAD(&rbd_dev->rq_queue);
4024         INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4025         rbd_dev->flags = 0;
4026         atomic_set(&rbd_dev->parent_ref, 0);
4027         INIT_LIST_HEAD(&rbd_dev->node);
4028         init_rwsem(&rbd_dev->header_rwsem);
4029
4030         rbd_dev->spec = spec;
4031         rbd_dev->rbd_client = rbdc;
4032
4033         /* Initialize the layout used for all rbd requests */
4034
4035         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4036         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4037         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4038         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4039
4040         return rbd_dev;
4041 }
4042
4043 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4044 {
4045         rbd_put_client(rbd_dev->rbd_client);
4046         rbd_spec_put(rbd_dev->spec);
4047         kfree(rbd_dev);
4048 }
4049
4050 /*
4051  * Get the size and object order for an image snapshot, or if
4052  * snap_id is CEPH_NOSNAP, gets this information for the base
4053  * image.
4054  */
4055 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4056                                 u8 *order, u64 *snap_size)
4057 {
4058         __le64 snapid = cpu_to_le64(snap_id);
4059         int ret;
4060         struct {
4061                 u8 order;
4062                 __le64 size;
4063         } __attribute__ ((packed)) size_buf = { 0 };
4064
4065         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4066                                 "rbd", "get_size",
4067                                 &snapid, sizeof (snapid),
4068                                 &size_buf, sizeof (size_buf));
4069         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4070         if (ret < 0)
4071                 return ret;
4072         if (ret < sizeof (size_buf))
4073                 return -ERANGE;
4074
4075         if (order) {
4076                 *order = size_buf.order;
4077                 dout("  order %u", (unsigned int)*order);
4078         }
4079         *snap_size = le64_to_cpu(size_buf.size);
4080
4081         dout("  snap_id 0x%016llx snap_size = %llu\n",
4082                 (unsigned long long)snap_id,
4083                 (unsigned long long)*snap_size);
4084
4085         return 0;
4086 }
4087
4088 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4089 {
4090         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4091                                         &rbd_dev->header.obj_order,
4092                                         &rbd_dev->header.image_size);
4093 }
4094
4095 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4096 {
4097         void *reply_buf;
4098         int ret;
4099         void *p;
4100
4101         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4102         if (!reply_buf)
4103                 return -ENOMEM;
4104
4105         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4106                                 "rbd", "get_object_prefix", NULL, 0,
4107                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4108         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4109         if (ret < 0)
4110                 goto out;
4111
4112         p = reply_buf;
4113         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4114                                                 p + ret, NULL, GFP_NOIO);
4115         ret = 0;
4116
4117         if (IS_ERR(rbd_dev->header.object_prefix)) {
4118                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4119                 rbd_dev->header.object_prefix = NULL;
4120         } else {
4121                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4122         }
4123 out:
4124         kfree(reply_buf);
4125
4126         return ret;
4127 }
4128
4129 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4130                 u64 *snap_features)
4131 {
4132         __le64 snapid = cpu_to_le64(snap_id);
4133         struct {
4134                 __le64 features;
4135                 __le64 incompat;
4136         } __attribute__ ((packed)) features_buf = { 0 };
4137         u64 incompat;
4138         int ret;
4139
4140         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4141                                 "rbd", "get_features",
4142                                 &snapid, sizeof (snapid),
4143                                 &features_buf, sizeof (features_buf));
4144         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4145         if (ret < 0)
4146                 return ret;
4147         if (ret < sizeof (features_buf))
4148                 return -ERANGE;
4149
4150         incompat = le64_to_cpu(features_buf.incompat);
4151         if (incompat & ~RBD_FEATURES_SUPPORTED)
4152                 return -ENXIO;
4153
4154         *snap_features = le64_to_cpu(features_buf.features);
4155
4156         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4157                 (unsigned long long)snap_id,
4158                 (unsigned long long)*snap_features,
4159                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4160
4161         return 0;
4162 }
4163
4164 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4165 {
4166         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4167                                                 &rbd_dev->header.features);
4168 }
4169
4170 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4171 {
4172         struct rbd_spec *parent_spec;
4173         size_t size;
4174         void *reply_buf = NULL;
4175         __le64 snapid;
4176         void *p;
4177         void *end;
4178         u64 pool_id;
4179         char *image_id;
4180         u64 snap_id;
4181         u64 overlap;
4182         int ret;
4183
4184         parent_spec = rbd_spec_alloc();
4185         if (!parent_spec)
4186                 return -ENOMEM;
4187
4188         size = sizeof (__le64) +                                /* pool_id */
4189                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4190                 sizeof (__le64) +                               /* snap_id */
4191                 sizeof (__le64);                                /* overlap */
4192         reply_buf = kmalloc(size, GFP_KERNEL);
4193         if (!reply_buf) {
4194                 ret = -ENOMEM;
4195                 goto out_err;
4196         }
4197
4198         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4199         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4200                                 "rbd", "get_parent",
4201                                 &snapid, sizeof (snapid),
4202                                 reply_buf, size);
4203         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4204         if (ret < 0)
4205                 goto out_err;
4206
4207         p = reply_buf;
4208         end = reply_buf + ret;
4209         ret = -ERANGE;
4210         ceph_decode_64_safe(&p, end, pool_id, out_err);
4211         if (pool_id == CEPH_NOPOOL) {
4212                 /*
4213                  * Either the parent never existed, or we have
4214                  * record of it but the image got flattened so it no
4215                  * longer has a parent.  When the parent of a
4216                  * layered image disappears we immediately set the
4217                  * overlap to 0.  The effect of this is that all new
4218                  * requests will be treated as if the image had no
4219                  * parent.
4220                  */
4221                 if (rbd_dev->parent_overlap) {
4222                         rbd_dev->parent_overlap = 0;
4223                         smp_mb();
4224                         rbd_dev_parent_put(rbd_dev);
4225                         pr_info("%s: clone image has been flattened\n",
4226                                 rbd_dev->disk->disk_name);
4227                 }
4228
4229                 goto out;       /* No parent?  No problem. */
4230         }
4231
4232         /* The ceph file layout needs to fit pool id in 32 bits */
4233
4234         ret = -EIO;
4235         if (pool_id > (u64)U32_MAX) {
4236                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4237                         (unsigned long long)pool_id, U32_MAX);
4238                 goto out_err;
4239         }
4240
4241         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4242         if (IS_ERR(image_id)) {
4243                 ret = PTR_ERR(image_id);
4244                 goto out_err;
4245         }
4246         ceph_decode_64_safe(&p, end, snap_id, out_err);
4247         ceph_decode_64_safe(&p, end, overlap, out_err);
4248
4249         /*
4250          * The parent won't change (except when the clone is
4251          * flattened, already handled that).  So we only need to
4252          * record the parent spec we have not already done so.
4253          */
4254         if (!rbd_dev->parent_spec) {
4255                 parent_spec->pool_id = pool_id;
4256                 parent_spec->image_id = image_id;
4257                 parent_spec->snap_id = snap_id;
4258                 rbd_dev->parent_spec = parent_spec;
4259                 parent_spec = NULL;     /* rbd_dev now owns this */
4260         } else {
4261                 kfree(image_id);
4262         }
4263
4264         /*
4265          * We always update the parent overlap.  If it's zero we
4266          * treat it specially.
4267          */
4268         rbd_dev->parent_overlap = overlap;
4269         smp_mb();
4270         if (!overlap) {
4271
4272                 /* A null parent_spec indicates it's the initial probe */
4273
4274                 if (parent_spec) {
4275                         /*
4276                          * The overlap has become zero, so the clone
4277                          * must have been resized down to 0 at some
4278                          * point.  Treat this the same as a flatten.
4279                          */
4280                         rbd_dev_parent_put(rbd_dev);
4281                         pr_info("%s: clone image now standalone\n",
4282                                 rbd_dev->disk->disk_name);
4283                 } else {
4284                         /*
4285                          * For the initial probe, if we find the
4286                          * overlap is zero we just pretend there was
4287                          * no parent image.
4288                          */
4289                         rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4290                 }
4291         }
4292 out:
4293         ret = 0;
4294 out_err:
4295         kfree(reply_buf);
4296         rbd_spec_put(parent_spec);
4297
4298         return ret;
4299 }
4300
4301 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4302 {
4303         struct {
4304                 __le64 stripe_unit;
4305                 __le64 stripe_count;
4306         } __attribute__ ((packed)) striping_info_buf = { 0 };
4307         size_t size = sizeof (striping_info_buf);
4308         void *p;
4309         u64 obj_size;
4310         u64 stripe_unit;
4311         u64 stripe_count;
4312         int ret;
4313
4314         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4315                                 "rbd", "get_stripe_unit_count", NULL, 0,
4316                                 (char *)&striping_info_buf, size);
4317         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4318         if (ret < 0)
4319                 return ret;
4320         if (ret < size)
4321                 return -ERANGE;
4322
4323         /*
4324          * We don't actually support the "fancy striping" feature
4325          * (STRIPINGV2) yet, but if the striping sizes are the
4326          * defaults the behavior is the same as before.  So find
4327          * out, and only fail if the image has non-default values.
4328          */
4329         ret = -EINVAL;
4330         obj_size = (u64)1 << rbd_dev->header.obj_order;
4331         p = &striping_info_buf;
4332         stripe_unit = ceph_decode_64(&p);
4333         if (stripe_unit != obj_size) {
4334                 rbd_warn(rbd_dev, "unsupported stripe unit "
4335                                 "(got %llu want %llu)",
4336                                 stripe_unit, obj_size);
4337                 return -EINVAL;
4338         }
4339         stripe_count = ceph_decode_64(&p);
4340         if (stripe_count != 1) {
4341                 rbd_warn(rbd_dev, "unsupported stripe count "
4342                                 "(got %llu want 1)", stripe_count);
4343                 return -EINVAL;
4344         }
4345         rbd_dev->header.stripe_unit = stripe_unit;
4346         rbd_dev->header.stripe_count = stripe_count;
4347
4348         return 0;
4349 }
4350
4351 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4352 {
4353         size_t image_id_size;
4354         char *image_id;
4355         void *p;
4356         void *end;
4357         size_t size;
4358         void *reply_buf = NULL;
4359         size_t len = 0;
4360         char *image_name = NULL;
4361         int ret;
4362
4363         rbd_assert(!rbd_dev->spec->image_name);
4364
4365         len = strlen(rbd_dev->spec->image_id);
4366         image_id_size = sizeof (__le32) + len;
4367         image_id = kmalloc(image_id_size, GFP_KERNEL);
4368         if (!image_id)
4369                 return NULL;
4370
4371         p = image_id;
4372         end = image_id + image_id_size;
4373         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4374
4375         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4376         reply_buf = kmalloc(size, GFP_KERNEL);
4377         if (!reply_buf)
4378                 goto out;
4379
4380         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4381                                 "rbd", "dir_get_name",
4382                                 image_id, image_id_size,
4383                                 reply_buf, size);
4384         if (ret < 0)
4385                 goto out;
4386         p = reply_buf;
4387         end = reply_buf + ret;
4388
4389         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4390         if (IS_ERR(image_name))
4391                 image_name = NULL;
4392         else
4393                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4394 out:
4395         kfree(reply_buf);
4396         kfree(image_id);
4397
4398         return image_name;
4399 }
4400
4401 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4402 {
4403         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4404         const char *snap_name;
4405         u32 which = 0;
4406
4407         /* Skip over names until we find the one we are looking for */
4408
4409         snap_name = rbd_dev->header.snap_names;
4410         while (which < snapc->num_snaps) {
4411                 if (!strcmp(name, snap_name))
4412                         return snapc->snaps[which];
4413                 snap_name += strlen(snap_name) + 1;
4414                 which++;
4415         }
4416         return CEPH_NOSNAP;
4417 }
4418
4419 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4420 {
4421         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4422         u32 which;
4423         bool found = false;
4424         u64 snap_id;
4425
4426         for (which = 0; !found && which < snapc->num_snaps; which++) {
4427                 const char *snap_name;
4428
4429                 snap_id = snapc->snaps[which];
4430                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4431                 if (IS_ERR(snap_name)) {
4432                         /* ignore no-longer existing snapshots */
4433                         if (PTR_ERR(snap_name) == -ENOENT)
4434                                 continue;
4435                         else
4436                                 break;
4437                 }
4438                 found = !strcmp(name, snap_name);
4439                 kfree(snap_name);
4440         }
4441         return found ? snap_id : CEPH_NOSNAP;
4442 }
4443
4444 /*
4445  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4446  * no snapshot by that name is found, or if an error occurs.
4447  */
4448 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4449 {
4450         if (rbd_dev->image_format == 1)
4451                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4452
4453         return rbd_v2_snap_id_by_name(rbd_dev, name);
4454 }
4455
4456 /*
4457  * An image being mapped will have everything but the snap id.
4458  */
4459 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4460 {
4461         struct rbd_spec *spec = rbd_dev->spec;
4462
4463         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4464         rbd_assert(spec->image_id && spec->image_name);
4465         rbd_assert(spec->snap_name);
4466
4467         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4468                 u64 snap_id;
4469
4470                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4471                 if (snap_id == CEPH_NOSNAP)
4472                         return -ENOENT;
4473
4474                 spec->snap_id = snap_id;
4475         } else {
4476                 spec->snap_id = CEPH_NOSNAP;
4477         }
4478
4479         return 0;
4480 }
4481
4482 /*
4483  * A parent image will have all ids but none of the names.
4484  *
4485  * All names in an rbd spec are dynamically allocated.  It's OK if we
4486  * can't figure out the name for an image id.
4487  */
4488 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4489 {
4490         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4491         struct rbd_spec *spec = rbd_dev->spec;
4492         const char *pool_name;
4493         const char *image_name;
4494         const char *snap_name;
4495         int ret;
4496
4497         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4498         rbd_assert(spec->image_id);
4499         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4500
4501         /* Get the pool name; we have to make our own copy of this */
4502
4503         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4504         if (!pool_name) {
4505                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4506                 return -EIO;
4507         }
4508         pool_name = kstrdup(pool_name, GFP_KERNEL);
4509         if (!pool_name)
4510                 return -ENOMEM;
4511
4512         /* Fetch the image name; tolerate failure here */
4513
4514         image_name = rbd_dev_image_name(rbd_dev);
4515         if (!image_name)
4516                 rbd_warn(rbd_dev, "unable to get image name");
4517
4518         /* Fetch the snapshot name */
4519
4520         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4521         if (IS_ERR(snap_name)) {
4522                 ret = PTR_ERR(snap_name);
4523                 goto out_err;
4524         }
4525
4526         spec->pool_name = pool_name;
4527         spec->image_name = image_name;
4528         spec->snap_name = snap_name;
4529
4530         return 0;
4531
4532 out_err:
4533         kfree(image_name);
4534         kfree(pool_name);
4535         return ret;
4536 }
4537
4538 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4539 {
4540         size_t size;
4541         int ret;
4542         void *reply_buf;
4543         void *p;
4544         void *end;
4545         u64 seq;
4546         u32 snap_count;
4547         struct ceph_snap_context *snapc;
4548         u32 i;
4549
4550         /*
4551          * We'll need room for the seq value (maximum snapshot id),
4552          * snapshot count, and array of that many snapshot ids.
4553          * For now we have a fixed upper limit on the number we're
4554          * prepared to receive.
4555          */
4556         size = sizeof (__le64) + sizeof (__le32) +
4557                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4558         reply_buf = kzalloc(size, GFP_KERNEL);
4559         if (!reply_buf)
4560                 return -ENOMEM;
4561
4562         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4563                                 "rbd", "get_snapcontext", NULL, 0,
4564                                 reply_buf, size);
4565         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4566         if (ret < 0)
4567                 goto out;
4568
4569         p = reply_buf;
4570         end = reply_buf + ret;
4571         ret = -ERANGE;
4572         ceph_decode_64_safe(&p, end, seq, out);
4573         ceph_decode_32_safe(&p, end, snap_count, out);
4574
4575         /*
4576          * Make sure the reported number of snapshot ids wouldn't go
4577          * beyond the end of our buffer.  But before checking that,
4578          * make sure the computed size of the snapshot context we
4579          * allocate is representable in a size_t.
4580          */
4581         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4582                                  / sizeof (u64)) {
4583                 ret = -EINVAL;
4584                 goto out;
4585         }
4586         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4587                 goto out;
4588         ret = 0;
4589
4590         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4591         if (!snapc) {
4592                 ret = -ENOMEM;
4593                 goto out;
4594         }
4595         snapc->seq = seq;
4596         for (i = 0; i < snap_count; i++)
4597                 snapc->snaps[i] = ceph_decode_64(&p);
4598
4599         ceph_put_snap_context(rbd_dev->header.snapc);
4600         rbd_dev->header.snapc = snapc;
4601
4602         dout("  snap context seq = %llu, snap_count = %u\n",
4603                 (unsigned long long)seq, (unsigned int)snap_count);
4604 out:
4605         kfree(reply_buf);
4606
4607         return ret;
4608 }
4609
4610 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4611                                         u64 snap_id)
4612 {
4613         size_t size;
4614         void *reply_buf;
4615         __le64 snapid;
4616         int ret;
4617         void *p;
4618         void *end;
4619         char *snap_name;
4620
4621         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4622         reply_buf = kmalloc(size, GFP_KERNEL);
4623         if (!reply_buf)
4624                 return ERR_PTR(-ENOMEM);
4625
4626         snapid = cpu_to_le64(snap_id);
4627         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4628                                 "rbd", "get_snapshot_name",
4629                                 &snapid, sizeof (snapid),
4630                                 reply_buf, size);
4631         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4632         if (ret < 0) {
4633                 snap_name = ERR_PTR(ret);
4634                 goto out;
4635         }
4636
4637         p = reply_buf;
4638         end = reply_buf + ret;
4639         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4640         if (IS_ERR(snap_name))
4641                 goto out;
4642
4643         dout("  snap_id 0x%016llx snap_name = %s\n",
4644                 (unsigned long long)snap_id, snap_name);
4645 out:
4646         kfree(reply_buf);
4647
4648         return snap_name;
4649 }
4650
4651 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4652 {
4653         bool first_time = rbd_dev->header.object_prefix == NULL;
4654         int ret;
4655
4656         ret = rbd_dev_v2_image_size(rbd_dev);
4657         if (ret)
4658                 return ret;
4659
4660         if (first_time) {
4661                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4662                 if (ret)
4663                         return ret;
4664         }
4665
4666         ret = rbd_dev_v2_snap_context(rbd_dev);
4667         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4668
4669         return ret;
4670 }
4671
4672 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4673 {
4674         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4675
4676         if (rbd_dev->image_format == 1)
4677                 return rbd_dev_v1_header_info(rbd_dev);
4678
4679         return rbd_dev_v2_header_info(rbd_dev);
4680 }
4681
4682 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4683 {
4684         struct device *dev;
4685         int ret;
4686
4687         dev = &rbd_dev->dev;
4688         dev->bus = &rbd_bus_type;
4689         dev->type = &rbd_device_type;
4690         dev->parent = &rbd_root_dev;
4691         dev->release = rbd_dev_device_release;
4692         dev_set_name(dev, "%d", rbd_dev->dev_id);
4693         ret = device_register(dev);
4694
4695         return ret;
4696 }
4697
4698 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4699 {
4700         device_unregister(&rbd_dev->dev);
4701 }
4702
4703 /*
4704  * Get a unique rbd identifier for the given new rbd_dev, and add
4705  * the rbd_dev to the global list.
4706  */
4707 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4708 {
4709         int new_dev_id;
4710
4711         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4712                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4713                                     GFP_KERNEL);
4714         if (new_dev_id < 0)
4715                 return new_dev_id;
4716
4717         rbd_dev->dev_id = new_dev_id;
4718
4719         spin_lock(&rbd_dev_list_lock);
4720         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4721         spin_unlock(&rbd_dev_list_lock);
4722
4723         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4724
4725         return 0;
4726 }
4727
4728 /*
4729  * Remove an rbd_dev from the global list, and record that its
4730  * identifier is no longer in use.
4731  */
4732 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4733 {
4734         spin_lock(&rbd_dev_list_lock);
4735         list_del_init(&rbd_dev->node);
4736         spin_unlock(&rbd_dev_list_lock);
4737
4738         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4739
4740         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4741 }
4742
4743 /*
4744  * Skips over white space at *buf, and updates *buf to point to the
4745  * first found non-space character (if any). Returns the length of
4746  * the token (string of non-white space characters) found.  Note
4747  * that *buf must be terminated with '\0'.
4748  */
4749 static inline size_t next_token(const char **buf)
4750 {
4751         /*
4752         * These are the characters that produce nonzero for
4753         * isspace() in the "C" and "POSIX" locales.
4754         */
4755         const char *spaces = " \f\n\r\t\v";
4756
4757         *buf += strspn(*buf, spaces);   /* Find start of token */
4758
4759         return strcspn(*buf, spaces);   /* Return token length */
4760 }
4761
4762 /*
4763  * Finds the next token in *buf, and if the provided token buffer is
4764  * big enough, copies the found token into it.  The result, if
4765  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4766  * must be terminated with '\0' on entry.
4767  *
4768  * Returns the length of the token found (not including the '\0').
4769  * Return value will be 0 if no token is found, and it will be >=
4770  * token_size if the token would not fit.
4771  *
4772  * The *buf pointer will be updated to point beyond the end of the
4773  * found token.  Note that this occurs even if the token buffer is
4774  * too small to hold it.
4775  */
4776 static inline size_t copy_token(const char **buf,
4777                                 char *token,
4778                                 size_t token_size)
4779 {
4780         size_t len;
4781
4782         len = next_token(buf);
4783         if (len < token_size) {
4784                 memcpy(token, *buf, len);
4785                 *(token + len) = '\0';
4786         }
4787         *buf += len;
4788
4789         return len;
4790 }
4791
4792 /*
4793  * Finds the next token in *buf, dynamically allocates a buffer big
4794  * enough to hold a copy of it, and copies the token into the new
4795  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4796  * that a duplicate buffer is created even for a zero-length token.
4797  *
4798  * Returns a pointer to the newly-allocated duplicate, or a null
4799  * pointer if memory for the duplicate was not available.  If
4800  * the lenp argument is a non-null pointer, the length of the token
4801  * (not including the '\0') is returned in *lenp.
4802  *
4803  * If successful, the *buf pointer will be updated to point beyond
4804  * the end of the found token.
4805  *
4806  * Note: uses GFP_KERNEL for allocation.
4807  */
4808 static inline char *dup_token(const char **buf, size_t *lenp)
4809 {
4810         char *dup;
4811         size_t len;
4812
4813         len = next_token(buf);
4814         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4815         if (!dup)
4816                 return NULL;
4817         *(dup + len) = '\0';
4818         *buf += len;
4819
4820         if (lenp)
4821                 *lenp = len;
4822
4823         return dup;
4824 }
4825
4826 /*
4827  * Parse the options provided for an "rbd add" (i.e., rbd image
4828  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4829  * and the data written is passed here via a NUL-terminated buffer.
4830  * Returns 0 if successful or an error code otherwise.
4831  *
4832  * The information extracted from these options is recorded in
4833  * the other parameters which return dynamically-allocated
4834  * structures:
4835  *  ceph_opts
4836  *      The address of a pointer that will refer to a ceph options
4837  *      structure.  Caller must release the returned pointer using
4838  *      ceph_destroy_options() when it is no longer needed.
4839  *  rbd_opts
4840  *      Address of an rbd options pointer.  Fully initialized by
4841  *      this function; caller must release with kfree().
4842  *  spec
4843  *      Address of an rbd image specification pointer.  Fully
4844  *      initialized by this function based on parsed options.
4845  *      Caller must release with rbd_spec_put().
4846  *
4847  * The options passed take this form:
4848  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4849  * where:
4850  *  <mon_addrs>
4851  *      A comma-separated list of one or more monitor addresses.
4852  *      A monitor address is an ip address, optionally followed
4853  *      by a port number (separated by a colon).
4854  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4855  *  <options>
4856  *      A comma-separated list of ceph and/or rbd options.
4857  *  <pool_name>
4858  *      The name of the rados pool containing the rbd image.
4859  *  <image_name>
4860  *      The name of the image in that pool to map.
4861  *  <snap_id>
4862  *      An optional snapshot id.  If provided, the mapping will
4863  *      present data from the image at the time that snapshot was
4864  *      created.  The image head is used if no snapshot id is
4865  *      provided.  Snapshot mappings are always read-only.
4866  */
4867 static int rbd_add_parse_args(const char *buf,
4868                                 struct ceph_options **ceph_opts,
4869                                 struct rbd_options **opts,
4870                                 struct rbd_spec **rbd_spec)
4871 {
4872         size_t len;
4873         char *options;
4874         const char *mon_addrs;
4875         char *snap_name;
4876         size_t mon_addrs_size;
4877         struct rbd_spec *spec = NULL;
4878         struct rbd_options *rbd_opts = NULL;
4879         struct ceph_options *copts;
4880         int ret;
4881
4882         /* The first four tokens are required */
4883
4884         len = next_token(&buf);
4885         if (!len) {
4886                 rbd_warn(NULL, "no monitor address(es) provided");
4887                 return -EINVAL;
4888         }
4889         mon_addrs = buf;
4890         mon_addrs_size = len + 1;
4891         buf += len;
4892
4893         ret = -EINVAL;
4894         options = dup_token(&buf, NULL);
4895         if (!options)
4896                 return -ENOMEM;
4897         if (!*options) {
4898                 rbd_warn(NULL, "no options provided");
4899                 goto out_err;
4900         }
4901
4902         spec = rbd_spec_alloc();
4903         if (!spec)
4904                 goto out_mem;
4905
4906         spec->pool_name = dup_token(&buf, NULL);
4907         if (!spec->pool_name)
4908                 goto out_mem;
4909         if (!*spec->pool_name) {
4910                 rbd_warn(NULL, "no pool name provided");
4911                 goto out_err;
4912         }
4913
4914         spec->image_name = dup_token(&buf, NULL);
4915         if (!spec->image_name)
4916                 goto out_mem;
4917         if (!*spec->image_name) {
4918                 rbd_warn(NULL, "no image name provided");
4919                 goto out_err;
4920         }
4921
4922         /*
4923          * Snapshot name is optional; default is to use "-"
4924          * (indicating the head/no snapshot).
4925          */
4926         len = next_token(&buf);
4927         if (!len) {
4928                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4929                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4930         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4931                 ret = -ENAMETOOLONG;
4932                 goto out_err;
4933         }
4934         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4935         if (!snap_name)
4936                 goto out_mem;
4937         *(snap_name + len) = '\0';
4938         spec->snap_name = snap_name;
4939
4940         /* Initialize all rbd options to the defaults */
4941
4942         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4943         if (!rbd_opts)
4944                 goto out_mem;
4945
4946         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4947
4948         copts = ceph_parse_options(options, mon_addrs,
4949                                         mon_addrs + mon_addrs_size - 1,
4950                                         parse_rbd_opts_token, rbd_opts);
4951         if (IS_ERR(copts)) {
4952                 ret = PTR_ERR(copts);
4953                 goto out_err;
4954         }
4955         kfree(options);
4956
4957         *ceph_opts = copts;
4958         *opts = rbd_opts;
4959         *rbd_spec = spec;
4960
4961         return 0;
4962 out_mem:
4963         ret = -ENOMEM;
4964 out_err:
4965         kfree(rbd_opts);
4966         rbd_spec_put(spec);
4967         kfree(options);
4968
4969         return ret;
4970 }
4971
4972 /*
4973  * Return pool id (>= 0) or a negative error code.
4974  */
4975 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4976 {
4977         u64 newest_epoch;
4978         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4979         int tries = 0;
4980         int ret;
4981
4982 again:
4983         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4984         if (ret == -ENOENT && tries++ < 1) {
4985                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4986                                                &newest_epoch);
4987                 if (ret < 0)
4988                         return ret;
4989
4990                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4991                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4992                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4993                                                      newest_epoch, timeout);
4994                         goto again;
4995                 } else {
4996                         /* the osdmap we have is new enough */
4997                         return -ENOENT;
4998                 }
4999         }
5000
5001         return ret;
5002 }
5003
5004 /*
5005  * An rbd format 2 image has a unique identifier, distinct from the
5006  * name given to it by the user.  Internally, that identifier is
5007  * what's used to specify the names of objects related to the image.
5008  *
5009  * A special "rbd id" object is used to map an rbd image name to its
5010  * id.  If that object doesn't exist, then there is no v2 rbd image
5011  * with the supplied name.
5012  *
5013  * This function will record the given rbd_dev's image_id field if
5014  * it can be determined, and in that case will return 0.  If any
5015  * errors occur a negative errno will be returned and the rbd_dev's
5016  * image_id field will be unchanged (and should be NULL).
5017  */
5018 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5019 {
5020         int ret;
5021         size_t size;
5022         char *object_name;
5023         void *response;
5024         char *image_id;
5025
5026         /*
5027          * When probing a parent image, the image id is already
5028          * known (and the image name likely is not).  There's no
5029          * need to fetch the image id again in this case.  We
5030          * do still need to set the image format though.
5031          */
5032         if (rbd_dev->spec->image_id) {
5033                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5034
5035                 return 0;
5036         }
5037
5038         /*
5039          * First, see if the format 2 image id file exists, and if
5040          * so, get the image's persistent id from it.
5041          */
5042         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5043         object_name = kmalloc(size, GFP_NOIO);
5044         if (!object_name)
5045                 return -ENOMEM;
5046         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5047         dout("rbd id object name is %s\n", object_name);
5048
5049         /* Response will be an encoded string, which includes a length */
5050
5051         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5052         response = kzalloc(size, GFP_NOIO);
5053         if (!response) {
5054                 ret = -ENOMEM;
5055                 goto out;
5056         }
5057
5058         /* If it doesn't exist we'll assume it's a format 1 image */
5059
5060         ret = rbd_obj_method_sync(rbd_dev, object_name,
5061                                 "rbd", "get_id", NULL, 0,
5062                                 response, RBD_IMAGE_ID_LEN_MAX);
5063         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5064         if (ret == -ENOENT) {
5065                 image_id = kstrdup("", GFP_KERNEL);
5066                 ret = image_id ? 0 : -ENOMEM;
5067                 if (!ret)
5068                         rbd_dev->image_format = 1;
5069         } else if (ret >= 0) {
5070                 void *p = response;
5071
5072                 image_id = ceph_extract_encoded_string(&p, p + ret,
5073                                                 NULL, GFP_NOIO);
5074                 ret = PTR_ERR_OR_ZERO(image_id);
5075                 if (!ret)
5076                         rbd_dev->image_format = 2;
5077         }
5078
5079         if (!ret) {
5080                 rbd_dev->spec->image_id = image_id;
5081                 dout("image_id is %s\n", image_id);
5082         }
5083 out:
5084         kfree(response);
5085         kfree(object_name);
5086
5087         return ret;
5088 }
5089
5090 /*
5091  * Undo whatever state changes are made by v1 or v2 header info
5092  * call.
5093  */
5094 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5095 {
5096         struct rbd_image_header *header;
5097
5098         /* Drop parent reference unless it's already been done (or none) */
5099
5100         if (rbd_dev->parent_overlap)
5101                 rbd_dev_parent_put(rbd_dev);
5102
5103         /* Free dynamic fields from the header, then zero it out */
5104
5105         header = &rbd_dev->header;
5106         ceph_put_snap_context(header->snapc);
5107         kfree(header->snap_sizes);
5108         kfree(header->snap_names);
5109         kfree(header->object_prefix);
5110         memset(header, 0, sizeof (*header));
5111 }
5112
5113 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5114 {
5115         int ret;
5116
5117         ret = rbd_dev_v2_object_prefix(rbd_dev);
5118         if (ret)
5119                 goto out_err;
5120
5121         /*
5122          * Get the and check features for the image.  Currently the
5123          * features are assumed to never change.
5124          */
5125         ret = rbd_dev_v2_features(rbd_dev);
5126         if (ret)
5127                 goto out_err;
5128
5129         /* If the image supports fancy striping, get its parameters */
5130
5131         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5132                 ret = rbd_dev_v2_striping_info(rbd_dev);
5133                 if (ret < 0)
5134                         goto out_err;
5135         }
5136         /* No support for crypto and compression type format 2 images */
5137
5138         return 0;
5139 out_err:
5140         rbd_dev->header.features = 0;
5141         kfree(rbd_dev->header.object_prefix);
5142         rbd_dev->header.object_prefix = NULL;
5143
5144         return ret;
5145 }
5146
5147 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5148 {
5149         struct rbd_device *parent = NULL;
5150         struct rbd_spec *parent_spec;
5151         struct rbd_client *rbdc;
5152         int ret;
5153
5154         if (!rbd_dev->parent_spec)
5155                 return 0;
5156         /*
5157          * We need to pass a reference to the client and the parent
5158          * spec when creating the parent rbd_dev.  Images related by
5159          * parent/child relationships always share both.
5160          */
5161         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5162         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5163
5164         ret = -ENOMEM;
5165         parent = rbd_dev_create(rbdc, parent_spec);
5166         if (!parent)
5167                 goto out_err;
5168
5169         ret = rbd_dev_image_probe(parent, false);
5170         if (ret < 0)
5171                 goto out_err;
5172         rbd_dev->parent = parent;
5173         atomic_set(&rbd_dev->parent_ref, 1);
5174
5175         return 0;
5176 out_err:
5177         if (parent) {
5178                 rbd_dev_unparent(rbd_dev);
5179                 kfree(rbd_dev->header_name);
5180                 rbd_dev_destroy(parent);
5181         } else {
5182                 rbd_put_client(rbdc);
5183                 rbd_spec_put(parent_spec);
5184         }
5185
5186         return ret;
5187 }
5188
5189 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5190 {
5191         int ret;
5192
5193         /* Get an id and fill in device name. */
5194
5195         ret = rbd_dev_id_get(rbd_dev);
5196         if (ret)
5197                 return ret;
5198
5199         BUILD_BUG_ON(DEV_NAME_LEN
5200                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5201         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5202
5203         /* Record our major and minor device numbers. */
5204
5205         if (!single_major) {
5206                 ret = register_blkdev(0, rbd_dev->name);
5207                 if (ret < 0)
5208                         goto err_out_id;
5209
5210                 rbd_dev->major = ret;
5211                 rbd_dev->minor = 0;
5212         } else {
5213                 rbd_dev->major = rbd_major;
5214                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5215         }
5216
5217         /* Set up the blkdev mapping. */
5218
5219         ret = rbd_init_disk(rbd_dev);
5220         if (ret)
5221                 goto err_out_blkdev;
5222
5223         ret = rbd_dev_mapping_set(rbd_dev);
5224         if (ret)
5225                 goto err_out_disk;
5226
5227         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5228         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5229
5230         rbd_dev->rq_wq = alloc_workqueue("%s", 0, 0, rbd_dev->disk->disk_name);
5231         if (!rbd_dev->rq_wq) {
5232                 ret = -ENOMEM;
5233                 goto err_out_mapping;
5234         }
5235
5236         ret = rbd_bus_add_dev(rbd_dev);
5237         if (ret)
5238                 goto err_out_workqueue;
5239
5240         /* Everything's ready.  Announce the disk to the world. */
5241
5242         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5243         add_disk(rbd_dev->disk);
5244
5245         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5246                 (unsigned long long) rbd_dev->mapping.size);
5247
5248         return ret;
5249
5250 err_out_workqueue:
5251         destroy_workqueue(rbd_dev->rq_wq);
5252         rbd_dev->rq_wq = NULL;
5253 err_out_mapping:
5254         rbd_dev_mapping_clear(rbd_dev);
5255 err_out_disk:
5256         rbd_free_disk(rbd_dev);
5257 err_out_blkdev:
5258         if (!single_major)
5259                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5260 err_out_id:
5261         rbd_dev_id_put(rbd_dev);
5262         rbd_dev_mapping_clear(rbd_dev);
5263
5264         return ret;
5265 }
5266
5267 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5268 {
5269         struct rbd_spec *spec = rbd_dev->spec;
5270         size_t size;
5271
5272         /* Record the header object name for this rbd image. */
5273
5274         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5275
5276         if (rbd_dev->image_format == 1)
5277                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5278         else
5279                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5280
5281         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5282         if (!rbd_dev->header_name)
5283                 return -ENOMEM;
5284
5285         if (rbd_dev->image_format == 1)
5286                 sprintf(rbd_dev->header_name, "%s%s",
5287                         spec->image_name, RBD_SUFFIX);
5288         else
5289                 sprintf(rbd_dev->header_name, "%s%s",
5290                         RBD_HEADER_PREFIX, spec->image_id);
5291         return 0;
5292 }
5293
5294 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5295 {
5296         rbd_dev_unprobe(rbd_dev);
5297         kfree(rbd_dev->header_name);
5298         rbd_dev->header_name = NULL;
5299         rbd_dev->image_format = 0;
5300         kfree(rbd_dev->spec->image_id);
5301         rbd_dev->spec->image_id = NULL;
5302
5303         rbd_dev_destroy(rbd_dev);
5304 }
5305
5306 /*
5307  * Probe for the existence of the header object for the given rbd
5308  * device.  If this image is the one being mapped (i.e., not a
5309  * parent), initiate a watch on its header object before using that
5310  * object to get detailed information about the rbd image.
5311  */
5312 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5313 {
5314         int ret;
5315
5316         /*
5317          * Get the id from the image id object.  Unless there's an
5318          * error, rbd_dev->spec->image_id will be filled in with
5319          * a dynamically-allocated string, and rbd_dev->image_format
5320          * will be set to either 1 or 2.
5321          */
5322         ret = rbd_dev_image_id(rbd_dev);
5323         if (ret)
5324                 return ret;
5325
5326         ret = rbd_dev_header_name(rbd_dev);
5327         if (ret)
5328                 goto err_out_format;
5329
5330         if (mapping) {
5331                 ret = rbd_dev_header_watch_sync(rbd_dev);
5332                 if (ret)
5333                         goto out_header_name;
5334         }
5335
5336         ret = rbd_dev_header_info(rbd_dev);
5337         if (ret)
5338                 goto err_out_watch;
5339
5340         /*
5341          * If this image is the one being mapped, we have pool name and
5342          * id, image name and id, and snap name - need to fill snap id.
5343          * Otherwise this is a parent image, identified by pool, image
5344          * and snap ids - need to fill in names for those ids.
5345          */
5346         if (mapping)
5347                 ret = rbd_spec_fill_snap_id(rbd_dev);
5348         else
5349                 ret = rbd_spec_fill_names(rbd_dev);
5350         if (ret)
5351                 goto err_out_probe;
5352
5353         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5354                 ret = rbd_dev_v2_parent_info(rbd_dev);
5355                 if (ret)
5356                         goto err_out_probe;
5357
5358                 /*
5359                  * Need to warn users if this image is the one being
5360                  * mapped and has a parent.
5361                  */
5362                 if (mapping && rbd_dev->parent_spec)
5363                         rbd_warn(rbd_dev,
5364                                  "WARNING: kernel layering is EXPERIMENTAL!");
5365         }
5366
5367         ret = rbd_dev_probe_parent(rbd_dev);
5368         if (ret)
5369                 goto err_out_probe;
5370
5371         dout("discovered format %u image, header name is %s\n",
5372                 rbd_dev->image_format, rbd_dev->header_name);
5373         return 0;
5374
5375 err_out_probe:
5376         rbd_dev_unprobe(rbd_dev);
5377 err_out_watch:
5378         if (mapping)
5379                 rbd_dev_header_unwatch_sync(rbd_dev);
5380 out_header_name:
5381         kfree(rbd_dev->header_name);
5382         rbd_dev->header_name = NULL;
5383 err_out_format:
5384         rbd_dev->image_format = 0;
5385         kfree(rbd_dev->spec->image_id);
5386         rbd_dev->spec->image_id = NULL;
5387         return ret;
5388 }
5389
5390 static ssize_t do_rbd_add(struct bus_type *bus,
5391                           const char *buf,
5392                           size_t count)
5393 {
5394         struct rbd_device *rbd_dev = NULL;
5395         struct ceph_options *ceph_opts = NULL;
5396         struct rbd_options *rbd_opts = NULL;
5397         struct rbd_spec *spec = NULL;
5398         struct rbd_client *rbdc;
5399         bool read_only;
5400         int rc = -ENOMEM;
5401
5402         if (!try_module_get(THIS_MODULE))
5403                 return -ENODEV;
5404
5405         /* parse add command */
5406         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5407         if (rc < 0)
5408                 goto err_out_module;
5409         read_only = rbd_opts->read_only;
5410         kfree(rbd_opts);
5411         rbd_opts = NULL;        /* done with this */
5412
5413         rbdc = rbd_get_client(ceph_opts);
5414         if (IS_ERR(rbdc)) {
5415                 rc = PTR_ERR(rbdc);
5416                 goto err_out_args;
5417         }
5418
5419         /* pick the pool */
5420         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5421         if (rc < 0)
5422                 goto err_out_client;
5423         spec->pool_id = (u64)rc;
5424
5425         /* The ceph file layout needs to fit pool id in 32 bits */
5426
5427         if (spec->pool_id > (u64)U32_MAX) {
5428                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5429                                 (unsigned long long)spec->pool_id, U32_MAX);
5430                 rc = -EIO;
5431                 goto err_out_client;
5432         }
5433
5434         rbd_dev = rbd_dev_create(rbdc, spec);
5435         if (!rbd_dev)
5436                 goto err_out_client;
5437         rbdc = NULL;            /* rbd_dev now owns this */
5438         spec = NULL;            /* rbd_dev now owns this */
5439
5440         rc = rbd_dev_image_probe(rbd_dev, true);
5441         if (rc < 0)
5442                 goto err_out_rbd_dev;
5443
5444         /* If we are mapping a snapshot it must be marked read-only */
5445
5446         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5447                 read_only = true;
5448         rbd_dev->mapping.read_only = read_only;
5449
5450         rc = rbd_dev_device_setup(rbd_dev);
5451         if (rc) {
5452                 /*
5453                  * rbd_dev_header_unwatch_sync() can't be moved into
5454                  * rbd_dev_image_release() without refactoring, see
5455                  * commit 1f3ef78861ac.
5456                  */
5457                 rbd_dev_header_unwatch_sync(rbd_dev);
5458                 rbd_dev_image_release(rbd_dev);
5459                 goto err_out_module;
5460         }
5461
5462         return count;
5463
5464 err_out_rbd_dev:
5465         rbd_dev_destroy(rbd_dev);
5466 err_out_client:
5467         rbd_put_client(rbdc);
5468 err_out_args:
5469         rbd_spec_put(spec);
5470 err_out_module:
5471         module_put(THIS_MODULE);
5472
5473         dout("Error adding device %s\n", buf);
5474
5475         return (ssize_t)rc;
5476 }
5477
5478 static ssize_t rbd_add(struct bus_type *bus,
5479                        const char *buf,
5480                        size_t count)
5481 {
5482         if (single_major)
5483                 return -EINVAL;
5484
5485         return do_rbd_add(bus, buf, count);
5486 }
5487
5488 static ssize_t rbd_add_single_major(struct bus_type *bus,
5489                                     const char *buf,
5490                                     size_t count)
5491 {
5492         return do_rbd_add(bus, buf, count);
5493 }
5494
5495 static void rbd_dev_device_release(struct device *dev)
5496 {
5497         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5498
5499         destroy_workqueue(rbd_dev->rq_wq);
5500         rbd_free_disk(rbd_dev);
5501         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5502         rbd_dev_mapping_clear(rbd_dev);
5503         if (!single_major)
5504                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5505         rbd_dev_id_put(rbd_dev);
5506         rbd_dev_mapping_clear(rbd_dev);
5507 }
5508
5509 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5510 {
5511         while (rbd_dev->parent) {
5512                 struct rbd_device *first = rbd_dev;
5513                 struct rbd_device *second = first->parent;
5514                 struct rbd_device *third;
5515
5516                 /*
5517                  * Follow to the parent with no grandparent and
5518                  * remove it.
5519                  */
5520                 while (second && (third = second->parent)) {
5521                         first = second;
5522                         second = third;
5523                 }
5524                 rbd_assert(second);
5525                 rbd_dev_image_release(second);
5526                 first->parent = NULL;
5527                 first->parent_overlap = 0;
5528
5529                 rbd_assert(first->parent_spec);
5530                 rbd_spec_put(first->parent_spec);
5531                 first->parent_spec = NULL;
5532         }
5533 }
5534
5535 static ssize_t do_rbd_remove(struct bus_type *bus,
5536                              const char *buf,
5537                              size_t count)
5538 {
5539         struct rbd_device *rbd_dev = NULL;
5540         struct list_head *tmp;
5541         int dev_id;
5542         unsigned long ul;
5543         bool already = false;
5544         int ret;
5545
5546         ret = kstrtoul(buf, 10, &ul);
5547         if (ret)
5548                 return ret;
5549
5550         /* convert to int; abort if we lost anything in the conversion */
5551         dev_id = (int)ul;
5552         if (dev_id != ul)
5553                 return -EINVAL;
5554
5555         ret = -ENOENT;
5556         spin_lock(&rbd_dev_list_lock);
5557         list_for_each(tmp, &rbd_dev_list) {
5558                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5559                 if (rbd_dev->dev_id == dev_id) {
5560                         ret = 0;
5561                         break;
5562                 }
5563         }
5564         if (!ret) {
5565                 spin_lock_irq(&rbd_dev->lock);
5566                 if (rbd_dev->open_count)
5567                         ret = -EBUSY;
5568                 else
5569                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5570                                                         &rbd_dev->flags);
5571                 spin_unlock_irq(&rbd_dev->lock);
5572         }
5573         spin_unlock(&rbd_dev_list_lock);
5574         if (ret < 0 || already)
5575                 return ret;
5576
5577         rbd_dev_header_unwatch_sync(rbd_dev);
5578         /*
5579          * flush remaining watch callbacks - these must be complete
5580          * before the osd_client is shutdown
5581          */
5582         dout("%s: flushing notifies", __func__);
5583         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5584
5585         /*
5586          * Don't free anything from rbd_dev->disk until after all
5587          * notifies are completely processed. Otherwise
5588          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5589          * in a potential use after free of rbd_dev->disk or rbd_dev.
5590          */
5591         rbd_bus_del_dev(rbd_dev);
5592         rbd_dev_image_release(rbd_dev);
5593         module_put(THIS_MODULE);
5594
5595         return count;
5596 }
5597
5598 static ssize_t rbd_remove(struct bus_type *bus,
5599                           const char *buf,
5600                           size_t count)
5601 {
5602         if (single_major)
5603                 return -EINVAL;
5604
5605         return do_rbd_remove(bus, buf, count);
5606 }
5607
5608 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5609                                        const char *buf,
5610                                        size_t count)
5611 {
5612         return do_rbd_remove(bus, buf, count);
5613 }
5614
5615 /*
5616  * create control files in sysfs
5617  * /sys/bus/rbd/...
5618  */
5619 static int rbd_sysfs_init(void)
5620 {
5621         int ret;
5622
5623         ret = device_register(&rbd_root_dev);
5624         if (ret < 0)
5625                 return ret;
5626
5627         ret = bus_register(&rbd_bus_type);
5628         if (ret < 0)
5629                 device_unregister(&rbd_root_dev);
5630
5631         return ret;
5632 }
5633
5634 static void rbd_sysfs_cleanup(void)
5635 {
5636         bus_unregister(&rbd_bus_type);
5637         device_unregister(&rbd_root_dev);
5638 }
5639
5640 static int rbd_slab_init(void)
5641 {
5642         rbd_assert(!rbd_img_request_cache);
5643         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5644                                         sizeof (struct rbd_img_request),
5645                                         __alignof__(struct rbd_img_request),
5646                                         0, NULL);
5647         if (!rbd_img_request_cache)
5648                 return -ENOMEM;
5649
5650         rbd_assert(!rbd_obj_request_cache);
5651         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5652                                         sizeof (struct rbd_obj_request),
5653                                         __alignof__(struct rbd_obj_request),
5654                                         0, NULL);
5655         if (!rbd_obj_request_cache)
5656                 goto out_err;
5657
5658         rbd_assert(!rbd_segment_name_cache);
5659         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5660                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5661         if (rbd_segment_name_cache)
5662                 return 0;
5663 out_err:
5664         if (rbd_obj_request_cache) {
5665                 kmem_cache_destroy(rbd_obj_request_cache);
5666                 rbd_obj_request_cache = NULL;
5667         }
5668
5669         kmem_cache_destroy(rbd_img_request_cache);
5670         rbd_img_request_cache = NULL;
5671
5672         return -ENOMEM;
5673 }
5674
5675 static void rbd_slab_exit(void)
5676 {
5677         rbd_assert(rbd_segment_name_cache);
5678         kmem_cache_destroy(rbd_segment_name_cache);
5679         rbd_segment_name_cache = NULL;
5680
5681         rbd_assert(rbd_obj_request_cache);
5682         kmem_cache_destroy(rbd_obj_request_cache);
5683         rbd_obj_request_cache = NULL;
5684
5685         rbd_assert(rbd_img_request_cache);
5686         kmem_cache_destroy(rbd_img_request_cache);
5687         rbd_img_request_cache = NULL;
5688 }
5689
5690 static int __init rbd_init(void)
5691 {
5692         int rc;
5693
5694         if (!libceph_compatible(NULL)) {
5695                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5696                 return -EINVAL;
5697         }
5698
5699         rc = rbd_slab_init();
5700         if (rc)
5701                 return rc;
5702
5703         if (single_major) {
5704                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5705                 if (rbd_major < 0) {
5706                         rc = rbd_major;
5707                         goto err_out_slab;
5708                 }
5709         }
5710
5711         rc = rbd_sysfs_init();
5712         if (rc)
5713                 goto err_out_blkdev;
5714
5715         if (single_major)
5716                 pr_info("loaded (major %d)\n", rbd_major);
5717         else
5718                 pr_info("loaded\n");
5719
5720         return 0;
5721
5722 err_out_blkdev:
5723         if (single_major)
5724                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5725 err_out_slab:
5726         rbd_slab_exit();
5727         return rc;
5728 }
5729
5730 static void __exit rbd_exit(void)
5731 {
5732         ida_destroy(&rbd_dev_id_ida);
5733         rbd_sysfs_cleanup();
5734         if (single_major)
5735                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5736         rbd_slab_exit();
5737 }
5738
5739 module_init(rbd_init);
5740 module_exit(rbd_exit);
5741
5742 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5743 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5744 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5745 /* following authorship retained from original osdblk.c */
5746 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5747
5748 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5749 MODULE_LICENSE("GPL");