]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/block/rbd.c
c07cb1dbc1c5d4e134ca0a94da7886d31b676523
[linux-beck.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46
47 #include "rbd_types.h"
48
49 #define RBD_DEBUG       /* Activate rbd_assert() calls */
50
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define SECTOR_SHIFT    9
58 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
59
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68         unsigned int counter;
69
70         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71         if (counter <= (unsigned int)INT_MAX)
72                 return (int)counter;
73
74         atomic_dec(v);
75
76         return -EINVAL;
77 }
78
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82         int counter;
83
84         counter = atomic_dec_return(v);
85         if (counter >= 0)
86                 return counter;
87
88         atomic_inc(v);
89
90         return -EINVAL;
91 }
92
93 #define RBD_DRV_NAME "rbd"
94
95 #define RBD_MINORS_PER_MAJOR            256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
97
98 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN   \
100                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101
102 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
103
104 #define RBD_SNAP_HEAD_NAME      "-"
105
106 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
107
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX    64
111
112 #define RBD_OBJ_PREFIX_LEN_MAX  64
113
114 /* Feature bits */
115
116 #define RBD_FEATURE_LAYERING    (1<<0)
117 #define RBD_FEATURE_STRIPINGV2  (1<<1)
118 #define RBD_FEATURES_ALL \
119             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120
121 /* Features supported by this (client software) implementation. */
122
123 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
124
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN            32
132 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
133
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138         /* These six fields never change for a given rbd image */
139         char *object_prefix;
140         __u8 obj_order;
141         __u8 crypt_type;
142         __u8 comp_type;
143         u64 stripe_unit;
144         u64 stripe_count;
145         u64 features;           /* Might be changeable someday? */
146
147         /* The remaining fields need to be updated occasionally */
148         u64 image_size;
149         struct ceph_snap_context *snapc;
150         char *snap_names;       /* format 1 only */
151         u64 *snap_sizes;        /* format 1 only */
152 };
153
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180         u64             pool_id;
181         const char      *pool_name;
182
183         const char      *image_id;
184         const char      *image_name;
185
186         u64             snap_id;
187         const char      *snap_name;
188
189         struct kref     kref;
190 };
191
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196         struct ceph_client      *client;
197         struct kref             kref;
198         struct list_head        node;
199 };
200
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203
204 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
205
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208
209 enum obj_request_type {
210         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212
213 enum obj_operation_type {
214         OBJ_OP_WRITE,
215         OBJ_OP_READ,
216         OBJ_OP_DISCARD,
217 };
218
219 enum obj_req_flags {
220         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
221         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
222         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
223         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
224 };
225
226 struct rbd_obj_request {
227         const char              *object_name;
228         u64                     offset;         /* object start byte */
229         u64                     length;         /* bytes from offset */
230         unsigned long           flags;
231
232         /*
233          * An object request associated with an image will have its
234          * img_data flag set; a standalone object request will not.
235          *
236          * A standalone object request will have which == BAD_WHICH
237          * and a null obj_request pointer.
238          *
239          * An object request initiated in support of a layered image
240          * object (to check for its existence before a write) will
241          * have which == BAD_WHICH and a non-null obj_request pointer.
242          *
243          * Finally, an object request for rbd image data will have
244          * which != BAD_WHICH, and will have a non-null img_request
245          * pointer.  The value of which will be in the range
246          * 0..(img_request->obj_request_count-1).
247          */
248         union {
249                 struct rbd_obj_request  *obj_request;   /* STAT op */
250                 struct {
251                         struct rbd_img_request  *img_request;
252                         u64                     img_offset;
253                         /* links for img_request->obj_requests list */
254                         struct list_head        links;
255                 };
256         };
257         u32                     which;          /* posn image request list */
258
259         enum obj_request_type   type;
260         union {
261                 struct bio      *bio_list;
262                 struct {
263                         struct page     **pages;
264                         u32             page_count;
265                 };
266         };
267         struct page             **copyup_pages;
268         u32                     copyup_page_count;
269
270         struct ceph_osd_request *osd_req;
271
272         u64                     xferred;        /* bytes transferred */
273         int                     result;
274
275         rbd_obj_callback_t      callback;
276         struct completion       completion;
277
278         struct kref             kref;
279 };
280
281 enum img_req_flags {
282         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
283         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
284         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
285         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
286 };
287
288 struct rbd_img_request {
289         struct rbd_device       *rbd_dev;
290         u64                     offset; /* starting image byte offset */
291         u64                     length; /* byte count from offset */
292         unsigned long           flags;
293         union {
294                 u64                     snap_id;        /* for reads */
295                 struct ceph_snap_context *snapc;        /* for writes */
296         };
297         union {
298                 struct request          *rq;            /* block request */
299                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
300         };
301         struct page             **copyup_pages;
302         u32                     copyup_page_count;
303         spinlock_t              completion_lock;/* protects next_completion */
304         u32                     next_completion;
305         rbd_img_callback_t      callback;
306         u64                     xferred;/* aggregate bytes transferred */
307         int                     result; /* first nonzero obj_request result */
308
309         u32                     obj_request_count;
310         struct list_head        obj_requests;   /* rbd_obj_request structs */
311
312         struct kref             kref;
313 };
314
315 #define for_each_obj_request(ireq, oreq) \
316         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321
322 struct rbd_mapping {
323         u64                     size;
324         u64                     features;
325         bool                    read_only;
326 };
327
328 /*
329  * a single device
330  */
331 struct rbd_device {
332         int                     dev_id;         /* blkdev unique id */
333
334         int                     major;          /* blkdev assigned major */
335         int                     minor;
336         struct gendisk          *disk;          /* blkdev's gendisk and rq */
337
338         u32                     image_format;   /* Either 1 or 2 */
339         struct rbd_client       *rbd_client;
340
341         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343         struct list_head        rq_queue;       /* incoming rq queue */
344         spinlock_t              lock;           /* queue, flags, open_count */
345         struct workqueue_struct *rq_wq;
346         struct work_struct      rq_work;
347
348         struct rbd_image_header header;
349         unsigned long           flags;          /* possibly lock protected */
350         struct rbd_spec         *spec;
351
352         char                    *header_name;
353
354         struct ceph_file_layout layout;
355
356         struct ceph_osd_event   *watch_event;
357         struct rbd_obj_request  *watch_request;
358
359         struct rbd_spec         *parent_spec;
360         u64                     parent_overlap;
361         atomic_t                parent_ref;
362         struct rbd_device       *parent;
363
364         /* protects updating the header */
365         struct rw_semaphore     header_rwsem;
366
367         struct rbd_mapping      mapping;
368
369         struct list_head        node;
370
371         /* sysfs related */
372         struct device           dev;
373         unsigned long           open_count;     /* protected by lock */
374 };
375
376 /*
377  * Flag bits for rbd_dev->flags.  If atomicity is required,
378  * rbd_dev->lock is used to protect access.
379  *
380  * Currently, only the "removing" flag (which is coupled with the
381  * "open_count" field) requires atomic access.
382  */
383 enum rbd_dev_flags {
384         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
385         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
386 };
387
388 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
389
390 static LIST_HEAD(rbd_dev_list);    /* devices */
391 static DEFINE_SPINLOCK(rbd_dev_list_lock);
392
393 static LIST_HEAD(rbd_client_list);              /* clients */
394 static DEFINE_SPINLOCK(rbd_client_list_lock);
395
396 /* Slab caches for frequently-allocated structures */
397
398 static struct kmem_cache        *rbd_img_request_cache;
399 static struct kmem_cache        *rbd_obj_request_cache;
400 static struct kmem_cache        *rbd_segment_name_cache;
401
402 static int rbd_major;
403 static DEFINE_IDA(rbd_dev_id_ida);
404
405 /*
406  * Default to false for now, as single-major requires >= 0.75 version of
407  * userspace rbd utility.
408  */
409 static bool single_major = false;
410 module_param(single_major, bool, S_IRUGO);
411 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
412
413 static int rbd_img_request_submit(struct rbd_img_request *img_request);
414
415 static void rbd_dev_device_release(struct device *dev);
416
417 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
418                        size_t count);
419 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
420                           size_t count);
421 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
422                                     size_t count);
423 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
424                                        size_t count);
425 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
426 static void rbd_spec_put(struct rbd_spec *spec);
427
428 static int rbd_dev_id_to_minor(int dev_id)
429 {
430         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
431 }
432
433 static int minor_to_rbd_dev_id(int minor)
434 {
435         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
436 }
437
438 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
439 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
440 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
441 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
442
443 static struct attribute *rbd_bus_attrs[] = {
444         &bus_attr_add.attr,
445         &bus_attr_remove.attr,
446         &bus_attr_add_single_major.attr,
447         &bus_attr_remove_single_major.attr,
448         NULL,
449 };
450
451 static umode_t rbd_bus_is_visible(struct kobject *kobj,
452                                   struct attribute *attr, int index)
453 {
454         if (!single_major &&
455             (attr == &bus_attr_add_single_major.attr ||
456              attr == &bus_attr_remove_single_major.attr))
457                 return 0;
458
459         return attr->mode;
460 }
461
462 static const struct attribute_group rbd_bus_group = {
463         .attrs = rbd_bus_attrs,
464         .is_visible = rbd_bus_is_visible,
465 };
466 __ATTRIBUTE_GROUPS(rbd_bus);
467
468 static struct bus_type rbd_bus_type = {
469         .name           = "rbd",
470         .bus_groups     = rbd_bus_groups,
471 };
472
473 static void rbd_root_dev_release(struct device *dev)
474 {
475 }
476
477 static struct device rbd_root_dev = {
478         .init_name =    "rbd",
479         .release =      rbd_root_dev_release,
480 };
481
482 static __printf(2, 3)
483 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
484 {
485         struct va_format vaf;
486         va_list args;
487
488         va_start(args, fmt);
489         vaf.fmt = fmt;
490         vaf.va = &args;
491
492         if (!rbd_dev)
493                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
494         else if (rbd_dev->disk)
495                 printk(KERN_WARNING "%s: %s: %pV\n",
496                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
497         else if (rbd_dev->spec && rbd_dev->spec->image_name)
498                 printk(KERN_WARNING "%s: image %s: %pV\n",
499                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
500         else if (rbd_dev->spec && rbd_dev->spec->image_id)
501                 printk(KERN_WARNING "%s: id %s: %pV\n",
502                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
503         else    /* punt */
504                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
505                         RBD_DRV_NAME, rbd_dev, &vaf);
506         va_end(args);
507 }
508
509 #ifdef RBD_DEBUG
510 #define rbd_assert(expr)                                                \
511                 if (unlikely(!(expr))) {                                \
512                         printk(KERN_ERR "\nAssertion failure in %s() "  \
513                                                 "at line %d:\n\n"       \
514                                         "\trbd_assert(%s);\n\n",        \
515                                         __func__, __LINE__, #expr);     \
516                         BUG();                                          \
517                 }
518 #else /* !RBD_DEBUG */
519 #  define rbd_assert(expr)      ((void) 0)
520 #endif /* !RBD_DEBUG */
521
522 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
523 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
524 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
525
526 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
527 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
528 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
529 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
530 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
531                                         u64 snap_id);
532 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
533                                 u8 *order, u64 *snap_size);
534 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
535                 u64 *snap_features);
536 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
537
538 static int rbd_open(struct block_device *bdev, fmode_t mode)
539 {
540         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
541         bool removing = false;
542
543         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
544                 return -EROFS;
545
546         spin_lock_irq(&rbd_dev->lock);
547         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
548                 removing = true;
549         else
550                 rbd_dev->open_count++;
551         spin_unlock_irq(&rbd_dev->lock);
552         if (removing)
553                 return -ENOENT;
554
555         (void) get_device(&rbd_dev->dev);
556
557         return 0;
558 }
559
560 static void rbd_release(struct gendisk *disk, fmode_t mode)
561 {
562         struct rbd_device *rbd_dev = disk->private_data;
563         unsigned long open_count_before;
564
565         spin_lock_irq(&rbd_dev->lock);
566         open_count_before = rbd_dev->open_count--;
567         spin_unlock_irq(&rbd_dev->lock);
568         rbd_assert(open_count_before > 0);
569
570         put_device(&rbd_dev->dev);
571 }
572
573 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
574 {
575         int ret = 0;
576         int val;
577         bool ro;
578         bool ro_changed = false;
579
580         /* get_user() may sleep, so call it before taking rbd_dev->lock */
581         if (get_user(val, (int __user *)(arg)))
582                 return -EFAULT;
583
584         ro = val ? true : false;
585         /* Snapshot doesn't allow to write*/
586         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
587                 return -EROFS;
588
589         spin_lock_irq(&rbd_dev->lock);
590         /* prevent others open this device */
591         if (rbd_dev->open_count > 1) {
592                 ret = -EBUSY;
593                 goto out;
594         }
595
596         if (rbd_dev->mapping.read_only != ro) {
597                 rbd_dev->mapping.read_only = ro;
598                 ro_changed = true;
599         }
600
601 out:
602         spin_unlock_irq(&rbd_dev->lock);
603         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
604         if (ret == 0 && ro_changed)
605                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
606
607         return ret;
608 }
609
610 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
611                         unsigned int cmd, unsigned long arg)
612 {
613         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
614         int ret = 0;
615
616         switch (cmd) {
617         case BLKROSET:
618                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
619                 break;
620         default:
621                 ret = -ENOTTY;
622         }
623
624         return ret;
625 }
626
627 #ifdef CONFIG_COMPAT
628 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
629                                 unsigned int cmd, unsigned long arg)
630 {
631         return rbd_ioctl(bdev, mode, cmd, arg);
632 }
633 #endif /* CONFIG_COMPAT */
634
635 static const struct block_device_operations rbd_bd_ops = {
636         .owner                  = THIS_MODULE,
637         .open                   = rbd_open,
638         .release                = rbd_release,
639         .ioctl                  = rbd_ioctl,
640 #ifdef CONFIG_COMPAT
641         .compat_ioctl           = rbd_compat_ioctl,
642 #endif
643 };
644
645 /*
646  * Initialize an rbd client instance.  Success or not, this function
647  * consumes ceph_opts.  Caller holds client_mutex.
648  */
649 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
650 {
651         struct rbd_client *rbdc;
652         int ret = -ENOMEM;
653
654         dout("%s:\n", __func__);
655         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
656         if (!rbdc)
657                 goto out_opt;
658
659         kref_init(&rbdc->kref);
660         INIT_LIST_HEAD(&rbdc->node);
661
662         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
663         if (IS_ERR(rbdc->client))
664                 goto out_rbdc;
665         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
666
667         ret = ceph_open_session(rbdc->client);
668         if (ret < 0)
669                 goto out_client;
670
671         spin_lock(&rbd_client_list_lock);
672         list_add_tail(&rbdc->node, &rbd_client_list);
673         spin_unlock(&rbd_client_list_lock);
674
675         dout("%s: rbdc %p\n", __func__, rbdc);
676
677         return rbdc;
678 out_client:
679         ceph_destroy_client(rbdc->client);
680 out_rbdc:
681         kfree(rbdc);
682 out_opt:
683         if (ceph_opts)
684                 ceph_destroy_options(ceph_opts);
685         dout("%s: error %d\n", __func__, ret);
686
687         return ERR_PTR(ret);
688 }
689
690 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
691 {
692         kref_get(&rbdc->kref);
693
694         return rbdc;
695 }
696
697 /*
698  * Find a ceph client with specific addr and configuration.  If
699  * found, bump its reference count.
700  */
701 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
702 {
703         struct rbd_client *client_node;
704         bool found = false;
705
706         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
707                 return NULL;
708
709         spin_lock(&rbd_client_list_lock);
710         list_for_each_entry(client_node, &rbd_client_list, node) {
711                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
712                         __rbd_get_client(client_node);
713
714                         found = true;
715                         break;
716                 }
717         }
718         spin_unlock(&rbd_client_list_lock);
719
720         return found ? client_node : NULL;
721 }
722
723 /*
724  * mount options
725  */
726 enum {
727         Opt_last_int,
728         /* int args above */
729         Opt_last_string,
730         /* string args above */
731         Opt_read_only,
732         Opt_read_write,
733         /* Boolean args above */
734         Opt_last_bool,
735 };
736
737 static match_table_t rbd_opts_tokens = {
738         /* int args above */
739         /* string args above */
740         {Opt_read_only, "read_only"},
741         {Opt_read_only, "ro"},          /* Alternate spelling */
742         {Opt_read_write, "read_write"},
743         {Opt_read_write, "rw"},         /* Alternate spelling */
744         /* Boolean args above */
745         {-1, NULL}
746 };
747
748 struct rbd_options {
749         bool    read_only;
750 };
751
752 #define RBD_READ_ONLY_DEFAULT   false
753
754 static int parse_rbd_opts_token(char *c, void *private)
755 {
756         struct rbd_options *rbd_opts = private;
757         substring_t argstr[MAX_OPT_ARGS];
758         int token, intval, ret;
759
760         token = match_token(c, rbd_opts_tokens, argstr);
761         if (token < 0)
762                 return -EINVAL;
763
764         if (token < Opt_last_int) {
765                 ret = match_int(&argstr[0], &intval);
766                 if (ret < 0) {
767                         pr_err("bad mount option arg (not int) "
768                                "at '%s'\n", c);
769                         return ret;
770                 }
771                 dout("got int token %d val %d\n", token, intval);
772         } else if (token > Opt_last_int && token < Opt_last_string) {
773                 dout("got string token %d val %s\n", token,
774                      argstr[0].from);
775         } else if (token > Opt_last_string && token < Opt_last_bool) {
776                 dout("got Boolean token %d\n", token);
777         } else {
778                 dout("got token %d\n", token);
779         }
780
781         switch (token) {
782         case Opt_read_only:
783                 rbd_opts->read_only = true;
784                 break;
785         case Opt_read_write:
786                 rbd_opts->read_only = false;
787                 break;
788         default:
789                 rbd_assert(false);
790                 break;
791         }
792         return 0;
793 }
794
795 static char* obj_op_name(enum obj_operation_type op_type)
796 {
797         switch (op_type) {
798         case OBJ_OP_READ:
799                 return "read";
800         case OBJ_OP_WRITE:
801                 return "write";
802         case OBJ_OP_DISCARD:
803                 return "discard";
804         default:
805                 return "???";
806         }
807 }
808
809 /*
810  * Get a ceph client with specific addr and configuration, if one does
811  * not exist create it.  Either way, ceph_opts is consumed by this
812  * function.
813  */
814 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
815 {
816         struct rbd_client *rbdc;
817
818         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
819         rbdc = rbd_client_find(ceph_opts);
820         if (rbdc)       /* using an existing client */
821                 ceph_destroy_options(ceph_opts);
822         else
823                 rbdc = rbd_client_create(ceph_opts);
824         mutex_unlock(&client_mutex);
825
826         return rbdc;
827 }
828
829 /*
830  * Destroy ceph client
831  *
832  * Caller must hold rbd_client_list_lock.
833  */
834 static void rbd_client_release(struct kref *kref)
835 {
836         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
837
838         dout("%s: rbdc %p\n", __func__, rbdc);
839         spin_lock(&rbd_client_list_lock);
840         list_del(&rbdc->node);
841         spin_unlock(&rbd_client_list_lock);
842
843         ceph_destroy_client(rbdc->client);
844         kfree(rbdc);
845 }
846
847 /*
848  * Drop reference to ceph client node. If it's not referenced anymore, release
849  * it.
850  */
851 static void rbd_put_client(struct rbd_client *rbdc)
852 {
853         if (rbdc)
854                 kref_put(&rbdc->kref, rbd_client_release);
855 }
856
857 static bool rbd_image_format_valid(u32 image_format)
858 {
859         return image_format == 1 || image_format == 2;
860 }
861
862 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
863 {
864         size_t size;
865         u32 snap_count;
866
867         /* The header has to start with the magic rbd header text */
868         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
869                 return false;
870
871         /* The bio layer requires at least sector-sized I/O */
872
873         if (ondisk->options.order < SECTOR_SHIFT)
874                 return false;
875
876         /* If we use u64 in a few spots we may be able to loosen this */
877
878         if (ondisk->options.order > 8 * sizeof (int) - 1)
879                 return false;
880
881         /*
882          * The size of a snapshot header has to fit in a size_t, and
883          * that limits the number of snapshots.
884          */
885         snap_count = le32_to_cpu(ondisk->snap_count);
886         size = SIZE_MAX - sizeof (struct ceph_snap_context);
887         if (snap_count > size / sizeof (__le64))
888                 return false;
889
890         /*
891          * Not only that, but the size of the entire the snapshot
892          * header must also be representable in a size_t.
893          */
894         size -= snap_count * sizeof (__le64);
895         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
896                 return false;
897
898         return true;
899 }
900
901 /*
902  * Fill an rbd image header with information from the given format 1
903  * on-disk header.
904  */
905 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
906                                  struct rbd_image_header_ondisk *ondisk)
907 {
908         struct rbd_image_header *header = &rbd_dev->header;
909         bool first_time = header->object_prefix == NULL;
910         struct ceph_snap_context *snapc;
911         char *object_prefix = NULL;
912         char *snap_names = NULL;
913         u64 *snap_sizes = NULL;
914         u32 snap_count;
915         size_t size;
916         int ret = -ENOMEM;
917         u32 i;
918
919         /* Allocate this now to avoid having to handle failure below */
920
921         if (first_time) {
922                 size_t len;
923
924                 len = strnlen(ondisk->object_prefix,
925                                 sizeof (ondisk->object_prefix));
926                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
927                 if (!object_prefix)
928                         return -ENOMEM;
929                 memcpy(object_prefix, ondisk->object_prefix, len);
930                 object_prefix[len] = '\0';
931         }
932
933         /* Allocate the snapshot context and fill it in */
934
935         snap_count = le32_to_cpu(ondisk->snap_count);
936         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
937         if (!snapc)
938                 goto out_err;
939         snapc->seq = le64_to_cpu(ondisk->snap_seq);
940         if (snap_count) {
941                 struct rbd_image_snap_ondisk *snaps;
942                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
943
944                 /* We'll keep a copy of the snapshot names... */
945
946                 if (snap_names_len > (u64)SIZE_MAX)
947                         goto out_2big;
948                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
949                 if (!snap_names)
950                         goto out_err;
951
952                 /* ...as well as the array of their sizes. */
953
954                 size = snap_count * sizeof (*header->snap_sizes);
955                 snap_sizes = kmalloc(size, GFP_KERNEL);
956                 if (!snap_sizes)
957                         goto out_err;
958
959                 /*
960                  * Copy the names, and fill in each snapshot's id
961                  * and size.
962                  *
963                  * Note that rbd_dev_v1_header_info() guarantees the
964                  * ondisk buffer we're working with has
965                  * snap_names_len bytes beyond the end of the
966                  * snapshot id array, this memcpy() is safe.
967                  */
968                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
969                 snaps = ondisk->snaps;
970                 for (i = 0; i < snap_count; i++) {
971                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
972                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
973                 }
974         }
975
976         /* We won't fail any more, fill in the header */
977
978         if (first_time) {
979                 header->object_prefix = object_prefix;
980                 header->obj_order = ondisk->options.order;
981                 header->crypt_type = ondisk->options.crypt_type;
982                 header->comp_type = ondisk->options.comp_type;
983                 /* The rest aren't used for format 1 images */
984                 header->stripe_unit = 0;
985                 header->stripe_count = 0;
986                 header->features = 0;
987         } else {
988                 ceph_put_snap_context(header->snapc);
989                 kfree(header->snap_names);
990                 kfree(header->snap_sizes);
991         }
992
993         /* The remaining fields always get updated (when we refresh) */
994
995         header->image_size = le64_to_cpu(ondisk->image_size);
996         header->snapc = snapc;
997         header->snap_names = snap_names;
998         header->snap_sizes = snap_sizes;
999
1000         return 0;
1001 out_2big:
1002         ret = -EIO;
1003 out_err:
1004         kfree(snap_sizes);
1005         kfree(snap_names);
1006         ceph_put_snap_context(snapc);
1007         kfree(object_prefix);
1008
1009         return ret;
1010 }
1011
1012 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1013 {
1014         const char *snap_name;
1015
1016         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1017
1018         /* Skip over names until we find the one we are looking for */
1019
1020         snap_name = rbd_dev->header.snap_names;
1021         while (which--)
1022                 snap_name += strlen(snap_name) + 1;
1023
1024         return kstrdup(snap_name, GFP_KERNEL);
1025 }
1026
1027 /*
1028  * Snapshot id comparison function for use with qsort()/bsearch().
1029  * Note that result is for snapshots in *descending* order.
1030  */
1031 static int snapid_compare_reverse(const void *s1, const void *s2)
1032 {
1033         u64 snap_id1 = *(u64 *)s1;
1034         u64 snap_id2 = *(u64 *)s2;
1035
1036         if (snap_id1 < snap_id2)
1037                 return 1;
1038         return snap_id1 == snap_id2 ? 0 : -1;
1039 }
1040
1041 /*
1042  * Search a snapshot context to see if the given snapshot id is
1043  * present.
1044  *
1045  * Returns the position of the snapshot id in the array if it's found,
1046  * or BAD_SNAP_INDEX otherwise.
1047  *
1048  * Note: The snapshot array is in kept sorted (by the osd) in
1049  * reverse order, highest snapshot id first.
1050  */
1051 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1052 {
1053         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1054         u64 *found;
1055
1056         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1057                                 sizeof (snap_id), snapid_compare_reverse);
1058
1059         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1060 }
1061
1062 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1063                                         u64 snap_id)
1064 {
1065         u32 which;
1066         const char *snap_name;
1067
1068         which = rbd_dev_snap_index(rbd_dev, snap_id);
1069         if (which == BAD_SNAP_INDEX)
1070                 return ERR_PTR(-ENOENT);
1071
1072         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1073         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1074 }
1075
1076 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1077 {
1078         if (snap_id == CEPH_NOSNAP)
1079                 return RBD_SNAP_HEAD_NAME;
1080
1081         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1082         if (rbd_dev->image_format == 1)
1083                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1084
1085         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1086 }
1087
1088 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1089                                 u64 *snap_size)
1090 {
1091         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1092         if (snap_id == CEPH_NOSNAP) {
1093                 *snap_size = rbd_dev->header.image_size;
1094         } else if (rbd_dev->image_format == 1) {
1095                 u32 which;
1096
1097                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1098                 if (which == BAD_SNAP_INDEX)
1099                         return -ENOENT;
1100
1101                 *snap_size = rbd_dev->header.snap_sizes[which];
1102         } else {
1103                 u64 size = 0;
1104                 int ret;
1105
1106                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1107                 if (ret)
1108                         return ret;
1109
1110                 *snap_size = size;
1111         }
1112         return 0;
1113 }
1114
1115 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1116                         u64 *snap_features)
1117 {
1118         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1119         if (snap_id == CEPH_NOSNAP) {
1120                 *snap_features = rbd_dev->header.features;
1121         } else if (rbd_dev->image_format == 1) {
1122                 *snap_features = 0;     /* No features for format 1 */
1123         } else {
1124                 u64 features = 0;
1125                 int ret;
1126
1127                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1128                 if (ret)
1129                         return ret;
1130
1131                 *snap_features = features;
1132         }
1133         return 0;
1134 }
1135
1136 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1137 {
1138         u64 snap_id = rbd_dev->spec->snap_id;
1139         u64 size = 0;
1140         u64 features = 0;
1141         int ret;
1142
1143         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1144         if (ret)
1145                 return ret;
1146         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1147         if (ret)
1148                 return ret;
1149
1150         rbd_dev->mapping.size = size;
1151         rbd_dev->mapping.features = features;
1152
1153         return 0;
1154 }
1155
1156 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1157 {
1158         rbd_dev->mapping.size = 0;
1159         rbd_dev->mapping.features = 0;
1160 }
1161
1162 static void rbd_segment_name_free(const char *name)
1163 {
1164         /* The explicit cast here is needed to drop the const qualifier */
1165
1166         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1167 }
1168
1169 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1170 {
1171         char *name;
1172         u64 segment;
1173         int ret;
1174         char *name_format;
1175
1176         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1177         if (!name)
1178                 return NULL;
1179         segment = offset >> rbd_dev->header.obj_order;
1180         name_format = "%s.%012llx";
1181         if (rbd_dev->image_format == 2)
1182                 name_format = "%s.%016llx";
1183         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1184                         rbd_dev->header.object_prefix, segment);
1185         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1186                 pr_err("error formatting segment name for #%llu (%d)\n",
1187                         segment, ret);
1188                 rbd_segment_name_free(name);
1189                 name = NULL;
1190         }
1191
1192         return name;
1193 }
1194
1195 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1196 {
1197         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1198
1199         return offset & (segment_size - 1);
1200 }
1201
1202 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1203                                 u64 offset, u64 length)
1204 {
1205         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206
1207         offset &= segment_size - 1;
1208
1209         rbd_assert(length <= U64_MAX - offset);
1210         if (offset + length > segment_size)
1211                 length = segment_size - offset;
1212
1213         return length;
1214 }
1215
1216 /*
1217  * returns the size of an object in the image
1218  */
1219 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1220 {
1221         return 1 << header->obj_order;
1222 }
1223
1224 /*
1225  * bio helpers
1226  */
1227
1228 static void bio_chain_put(struct bio *chain)
1229 {
1230         struct bio *tmp;
1231
1232         while (chain) {
1233                 tmp = chain;
1234                 chain = chain->bi_next;
1235                 bio_put(tmp);
1236         }
1237 }
1238
1239 /*
1240  * zeros a bio chain, starting at specific offset
1241  */
1242 static void zero_bio_chain(struct bio *chain, int start_ofs)
1243 {
1244         struct bio_vec bv;
1245         struct bvec_iter iter;
1246         unsigned long flags;
1247         void *buf;
1248         int pos = 0;
1249
1250         while (chain) {
1251                 bio_for_each_segment(bv, chain, iter) {
1252                         if (pos + bv.bv_len > start_ofs) {
1253                                 int remainder = max(start_ofs - pos, 0);
1254                                 buf = bvec_kmap_irq(&bv, &flags);
1255                                 memset(buf + remainder, 0,
1256                                        bv.bv_len - remainder);
1257                                 flush_dcache_page(bv.bv_page);
1258                                 bvec_kunmap_irq(buf, &flags);
1259                         }
1260                         pos += bv.bv_len;
1261                 }
1262
1263                 chain = chain->bi_next;
1264         }
1265 }
1266
1267 /*
1268  * similar to zero_bio_chain(), zeros data defined by a page array,
1269  * starting at the given byte offset from the start of the array and
1270  * continuing up to the given end offset.  The pages array is
1271  * assumed to be big enough to hold all bytes up to the end.
1272  */
1273 static void zero_pages(struct page **pages, u64 offset, u64 end)
1274 {
1275         struct page **page = &pages[offset >> PAGE_SHIFT];
1276
1277         rbd_assert(end > offset);
1278         rbd_assert(end - offset <= (u64)SIZE_MAX);
1279         while (offset < end) {
1280                 size_t page_offset;
1281                 size_t length;
1282                 unsigned long flags;
1283                 void *kaddr;
1284
1285                 page_offset = offset & ~PAGE_MASK;
1286                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1287                 local_irq_save(flags);
1288                 kaddr = kmap_atomic(*page);
1289                 memset(kaddr + page_offset, 0, length);
1290                 flush_dcache_page(*page);
1291                 kunmap_atomic(kaddr);
1292                 local_irq_restore(flags);
1293
1294                 offset += length;
1295                 page++;
1296         }
1297 }
1298
1299 /*
1300  * Clone a portion of a bio, starting at the given byte offset
1301  * and continuing for the number of bytes indicated.
1302  */
1303 static struct bio *bio_clone_range(struct bio *bio_src,
1304                                         unsigned int offset,
1305                                         unsigned int len,
1306                                         gfp_t gfpmask)
1307 {
1308         struct bio *bio;
1309
1310         bio = bio_clone(bio_src, gfpmask);
1311         if (!bio)
1312                 return NULL;    /* ENOMEM */
1313
1314         bio_advance(bio, offset);
1315         bio->bi_iter.bi_size = len;
1316
1317         return bio;
1318 }
1319
1320 /*
1321  * Clone a portion of a bio chain, starting at the given byte offset
1322  * into the first bio in the source chain and continuing for the
1323  * number of bytes indicated.  The result is another bio chain of
1324  * exactly the given length, or a null pointer on error.
1325  *
1326  * The bio_src and offset parameters are both in-out.  On entry they
1327  * refer to the first source bio and the offset into that bio where
1328  * the start of data to be cloned is located.
1329  *
1330  * On return, bio_src is updated to refer to the bio in the source
1331  * chain that contains first un-cloned byte, and *offset will
1332  * contain the offset of that byte within that bio.
1333  */
1334 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1335                                         unsigned int *offset,
1336                                         unsigned int len,
1337                                         gfp_t gfpmask)
1338 {
1339         struct bio *bi = *bio_src;
1340         unsigned int off = *offset;
1341         struct bio *chain = NULL;
1342         struct bio **end;
1343
1344         /* Build up a chain of clone bios up to the limit */
1345
1346         if (!bi || off >= bi->bi_iter.bi_size || !len)
1347                 return NULL;            /* Nothing to clone */
1348
1349         end = &chain;
1350         while (len) {
1351                 unsigned int bi_size;
1352                 struct bio *bio;
1353
1354                 if (!bi) {
1355                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1356                         goto out_err;   /* EINVAL; ran out of bio's */
1357                 }
1358                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1359                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1360                 if (!bio)
1361                         goto out_err;   /* ENOMEM */
1362
1363                 *end = bio;
1364                 end = &bio->bi_next;
1365
1366                 off += bi_size;
1367                 if (off == bi->bi_iter.bi_size) {
1368                         bi = bi->bi_next;
1369                         off = 0;
1370                 }
1371                 len -= bi_size;
1372         }
1373         *bio_src = bi;
1374         *offset = off;
1375
1376         return chain;
1377 out_err:
1378         bio_chain_put(chain);
1379
1380         return NULL;
1381 }
1382
1383 /*
1384  * The default/initial value for all object request flags is 0.  For
1385  * each flag, once its value is set to 1 it is never reset to 0
1386  * again.
1387  */
1388 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1389 {
1390         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1391                 struct rbd_device *rbd_dev;
1392
1393                 rbd_dev = obj_request->img_request->rbd_dev;
1394                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1395                         obj_request);
1396         }
1397 }
1398
1399 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1400 {
1401         smp_mb();
1402         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1403 }
1404
1405 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1406 {
1407         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1408                 struct rbd_device *rbd_dev = NULL;
1409
1410                 if (obj_request_img_data_test(obj_request))
1411                         rbd_dev = obj_request->img_request->rbd_dev;
1412                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1413                         obj_request);
1414         }
1415 }
1416
1417 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1418 {
1419         smp_mb();
1420         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1421 }
1422
1423 /*
1424  * This sets the KNOWN flag after (possibly) setting the EXISTS
1425  * flag.  The latter is set based on the "exists" value provided.
1426  *
1427  * Note that for our purposes once an object exists it never goes
1428  * away again.  It's possible that the response from two existence
1429  * checks are separated by the creation of the target object, and
1430  * the first ("doesn't exist") response arrives *after* the second
1431  * ("does exist").  In that case we ignore the second one.
1432  */
1433 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1434                                 bool exists)
1435 {
1436         if (exists)
1437                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1438         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1439         smp_mb();
1440 }
1441
1442 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1443 {
1444         smp_mb();
1445         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1446 }
1447
1448 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1449 {
1450         smp_mb();
1451         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1452 }
1453
1454 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1455 {
1456         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1457
1458         return obj_request->img_offset <
1459             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1460 }
1461
1462 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1463 {
1464         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1465                 atomic_read(&obj_request->kref.refcount));
1466         kref_get(&obj_request->kref);
1467 }
1468
1469 static void rbd_obj_request_destroy(struct kref *kref);
1470 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1471 {
1472         rbd_assert(obj_request != NULL);
1473         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1474                 atomic_read(&obj_request->kref.refcount));
1475         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1476 }
1477
1478 static void rbd_img_request_get(struct rbd_img_request *img_request)
1479 {
1480         dout("%s: img %p (was %d)\n", __func__, img_request,
1481              atomic_read(&img_request->kref.refcount));
1482         kref_get(&img_request->kref);
1483 }
1484
1485 static bool img_request_child_test(struct rbd_img_request *img_request);
1486 static void rbd_parent_request_destroy(struct kref *kref);
1487 static void rbd_img_request_destroy(struct kref *kref);
1488 static void rbd_img_request_put(struct rbd_img_request *img_request)
1489 {
1490         rbd_assert(img_request != NULL);
1491         dout("%s: img %p (was %d)\n", __func__, img_request,
1492                 atomic_read(&img_request->kref.refcount));
1493         if (img_request_child_test(img_request))
1494                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1495         else
1496                 kref_put(&img_request->kref, rbd_img_request_destroy);
1497 }
1498
1499 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1500                                         struct rbd_obj_request *obj_request)
1501 {
1502         rbd_assert(obj_request->img_request == NULL);
1503
1504         /* Image request now owns object's original reference */
1505         obj_request->img_request = img_request;
1506         obj_request->which = img_request->obj_request_count;
1507         rbd_assert(!obj_request_img_data_test(obj_request));
1508         obj_request_img_data_set(obj_request);
1509         rbd_assert(obj_request->which != BAD_WHICH);
1510         img_request->obj_request_count++;
1511         list_add_tail(&obj_request->links, &img_request->obj_requests);
1512         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1513                 obj_request->which);
1514 }
1515
1516 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1517                                         struct rbd_obj_request *obj_request)
1518 {
1519         rbd_assert(obj_request->which != BAD_WHICH);
1520
1521         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1522                 obj_request->which);
1523         list_del(&obj_request->links);
1524         rbd_assert(img_request->obj_request_count > 0);
1525         img_request->obj_request_count--;
1526         rbd_assert(obj_request->which == img_request->obj_request_count);
1527         obj_request->which = BAD_WHICH;
1528         rbd_assert(obj_request_img_data_test(obj_request));
1529         rbd_assert(obj_request->img_request == img_request);
1530         obj_request->img_request = NULL;
1531         obj_request->callback = NULL;
1532         rbd_obj_request_put(obj_request);
1533 }
1534
1535 static bool obj_request_type_valid(enum obj_request_type type)
1536 {
1537         switch (type) {
1538         case OBJ_REQUEST_NODATA:
1539         case OBJ_REQUEST_BIO:
1540         case OBJ_REQUEST_PAGES:
1541                 return true;
1542         default:
1543                 return false;
1544         }
1545 }
1546
1547 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1548                                 struct rbd_obj_request *obj_request)
1549 {
1550         dout("%s %p\n", __func__, obj_request);
1551         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1552 }
1553
1554 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1555 {
1556         dout("%s %p\n", __func__, obj_request);
1557         ceph_osdc_cancel_request(obj_request->osd_req);
1558 }
1559
1560 /*
1561  * Wait for an object request to complete.  If interrupted, cancel the
1562  * underlying osd request.
1563  */
1564 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1565 {
1566         int ret;
1567
1568         dout("%s %p\n", __func__, obj_request);
1569
1570         ret = wait_for_completion_interruptible(&obj_request->completion);
1571         if (ret < 0) {
1572                 dout("%s %p interrupted\n", __func__, obj_request);
1573                 rbd_obj_request_end(obj_request);
1574                 return ret;
1575         }
1576
1577         dout("%s %p done\n", __func__, obj_request);
1578         return 0;
1579 }
1580
1581 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1582 {
1583
1584         dout("%s: img %p\n", __func__, img_request);
1585
1586         /*
1587          * If no error occurred, compute the aggregate transfer
1588          * count for the image request.  We could instead use
1589          * atomic64_cmpxchg() to update it as each object request
1590          * completes; not clear which way is better off hand.
1591          */
1592         if (!img_request->result) {
1593                 struct rbd_obj_request *obj_request;
1594                 u64 xferred = 0;
1595
1596                 for_each_obj_request(img_request, obj_request)
1597                         xferred += obj_request->xferred;
1598                 img_request->xferred = xferred;
1599         }
1600
1601         if (img_request->callback)
1602                 img_request->callback(img_request);
1603         else
1604                 rbd_img_request_put(img_request);
1605 }
1606
1607 /*
1608  * The default/initial value for all image request flags is 0.  Each
1609  * is conditionally set to 1 at image request initialization time
1610  * and currently never change thereafter.
1611  */
1612 static void img_request_write_set(struct rbd_img_request *img_request)
1613 {
1614         set_bit(IMG_REQ_WRITE, &img_request->flags);
1615         smp_mb();
1616 }
1617
1618 static bool img_request_write_test(struct rbd_img_request *img_request)
1619 {
1620         smp_mb();
1621         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1622 }
1623
1624 /*
1625  * Set the discard flag when the img_request is an discard request
1626  */
1627 static void img_request_discard_set(struct rbd_img_request *img_request)
1628 {
1629         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1630         smp_mb();
1631 }
1632
1633 static bool img_request_discard_test(struct rbd_img_request *img_request)
1634 {
1635         smp_mb();
1636         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1637 }
1638
1639 static void img_request_child_set(struct rbd_img_request *img_request)
1640 {
1641         set_bit(IMG_REQ_CHILD, &img_request->flags);
1642         smp_mb();
1643 }
1644
1645 static void img_request_child_clear(struct rbd_img_request *img_request)
1646 {
1647         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1648         smp_mb();
1649 }
1650
1651 static bool img_request_child_test(struct rbd_img_request *img_request)
1652 {
1653         smp_mb();
1654         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1655 }
1656
1657 static void img_request_layered_set(struct rbd_img_request *img_request)
1658 {
1659         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1660         smp_mb();
1661 }
1662
1663 static void img_request_layered_clear(struct rbd_img_request *img_request)
1664 {
1665         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1666         smp_mb();
1667 }
1668
1669 static bool img_request_layered_test(struct rbd_img_request *img_request)
1670 {
1671         smp_mb();
1672         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1673 }
1674
1675 static enum obj_operation_type
1676 rbd_img_request_op_type(struct rbd_img_request *img_request)
1677 {
1678         if (img_request_write_test(img_request))
1679                 return OBJ_OP_WRITE;
1680         else if (img_request_discard_test(img_request))
1681                 return OBJ_OP_DISCARD;
1682         else
1683                 return OBJ_OP_READ;
1684 }
1685
1686 static void
1687 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1688 {
1689         u64 xferred = obj_request->xferred;
1690         u64 length = obj_request->length;
1691
1692         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1693                 obj_request, obj_request->img_request, obj_request->result,
1694                 xferred, length);
1695         /*
1696          * ENOENT means a hole in the image.  We zero-fill the entire
1697          * length of the request.  A short read also implies zero-fill
1698          * to the end of the request.  An error requires the whole
1699          * length of the request to be reported finished with an error
1700          * to the block layer.  In each case we update the xferred
1701          * count to indicate the whole request was satisfied.
1702          */
1703         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1704         if (obj_request->result == -ENOENT) {
1705                 if (obj_request->type == OBJ_REQUEST_BIO)
1706                         zero_bio_chain(obj_request->bio_list, 0);
1707                 else
1708                         zero_pages(obj_request->pages, 0, length);
1709                 obj_request->result = 0;
1710         } else if (xferred < length && !obj_request->result) {
1711                 if (obj_request->type == OBJ_REQUEST_BIO)
1712                         zero_bio_chain(obj_request->bio_list, xferred);
1713                 else
1714                         zero_pages(obj_request->pages, xferred, length);
1715         }
1716         obj_request->xferred = length;
1717         obj_request_done_set(obj_request);
1718 }
1719
1720 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1721 {
1722         dout("%s: obj %p cb %p\n", __func__, obj_request,
1723                 obj_request->callback);
1724         if (obj_request->callback)
1725                 obj_request->callback(obj_request);
1726         else
1727                 complete_all(&obj_request->completion);
1728 }
1729
1730 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1731 {
1732         dout("%s: obj %p\n", __func__, obj_request);
1733         obj_request_done_set(obj_request);
1734 }
1735
1736 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1737 {
1738         struct rbd_img_request *img_request = NULL;
1739         struct rbd_device *rbd_dev = NULL;
1740         bool layered = false;
1741
1742         if (obj_request_img_data_test(obj_request)) {
1743                 img_request = obj_request->img_request;
1744                 layered = img_request && img_request_layered_test(img_request);
1745                 rbd_dev = img_request->rbd_dev;
1746         }
1747
1748         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1749                 obj_request, img_request, obj_request->result,
1750                 obj_request->xferred, obj_request->length);
1751         if (layered && obj_request->result == -ENOENT &&
1752                         obj_request->img_offset < rbd_dev->parent_overlap)
1753                 rbd_img_parent_read(obj_request);
1754         else if (img_request)
1755                 rbd_img_obj_request_read_callback(obj_request);
1756         else
1757                 obj_request_done_set(obj_request);
1758 }
1759
1760 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1761 {
1762         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1763                 obj_request->result, obj_request->length);
1764         /*
1765          * There is no such thing as a successful short write.  Set
1766          * it to our originally-requested length.
1767          */
1768         obj_request->xferred = obj_request->length;
1769         obj_request_done_set(obj_request);
1770 }
1771
1772 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1773 {
1774         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1775                 obj_request->result, obj_request->length);
1776         /*
1777          * There is no such thing as a successful short discard.  Set
1778          * it to our originally-requested length.
1779          */
1780         obj_request->xferred = obj_request->length;
1781         /* discarding a non-existent object is not a problem */
1782         if (obj_request->result == -ENOENT)
1783                 obj_request->result = 0;
1784         obj_request_done_set(obj_request);
1785 }
1786
1787 /*
1788  * For a simple stat call there's nothing to do.  We'll do more if
1789  * this is part of a write sequence for a layered image.
1790  */
1791 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1792 {
1793         dout("%s: obj %p\n", __func__, obj_request);
1794         obj_request_done_set(obj_request);
1795 }
1796
1797 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1798                                 struct ceph_msg *msg)
1799 {
1800         struct rbd_obj_request *obj_request = osd_req->r_priv;
1801         u16 opcode;
1802
1803         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1804         rbd_assert(osd_req == obj_request->osd_req);
1805         if (obj_request_img_data_test(obj_request)) {
1806                 rbd_assert(obj_request->img_request);
1807                 rbd_assert(obj_request->which != BAD_WHICH);
1808         } else {
1809                 rbd_assert(obj_request->which == BAD_WHICH);
1810         }
1811
1812         if (osd_req->r_result < 0)
1813                 obj_request->result = osd_req->r_result;
1814
1815         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1816
1817         /*
1818          * We support a 64-bit length, but ultimately it has to be
1819          * passed to blk_end_request(), which takes an unsigned int.
1820          */
1821         obj_request->xferred = osd_req->r_reply_op_len[0];
1822         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1823
1824         opcode = osd_req->r_ops[0].op;
1825         switch (opcode) {
1826         case CEPH_OSD_OP_READ:
1827                 rbd_osd_read_callback(obj_request);
1828                 break;
1829         case CEPH_OSD_OP_SETALLOCHINT:
1830                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1831                 /* fall through */
1832         case CEPH_OSD_OP_WRITE:
1833                 rbd_osd_write_callback(obj_request);
1834                 break;
1835         case CEPH_OSD_OP_STAT:
1836                 rbd_osd_stat_callback(obj_request);
1837                 break;
1838         case CEPH_OSD_OP_DELETE:
1839         case CEPH_OSD_OP_TRUNCATE:
1840         case CEPH_OSD_OP_ZERO:
1841                 rbd_osd_discard_callback(obj_request);
1842                 break;
1843         case CEPH_OSD_OP_CALL:
1844         case CEPH_OSD_OP_NOTIFY_ACK:
1845         case CEPH_OSD_OP_WATCH:
1846                 rbd_osd_trivial_callback(obj_request);
1847                 break;
1848         default:
1849                 rbd_warn(NULL, "%s: unsupported op %hu",
1850                         obj_request->object_name, (unsigned short) opcode);
1851                 break;
1852         }
1853
1854         if (obj_request_done_test(obj_request))
1855                 rbd_obj_request_complete(obj_request);
1856 }
1857
1858 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1859 {
1860         struct rbd_img_request *img_request = obj_request->img_request;
1861         struct ceph_osd_request *osd_req = obj_request->osd_req;
1862         u64 snap_id;
1863
1864         rbd_assert(osd_req != NULL);
1865
1866         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1867         ceph_osdc_build_request(osd_req, obj_request->offset,
1868                         NULL, snap_id, NULL);
1869 }
1870
1871 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1872 {
1873         struct rbd_img_request *img_request = obj_request->img_request;
1874         struct ceph_osd_request *osd_req = obj_request->osd_req;
1875         struct ceph_snap_context *snapc;
1876         struct timespec mtime = CURRENT_TIME;
1877
1878         rbd_assert(osd_req != NULL);
1879
1880         snapc = img_request ? img_request->snapc : NULL;
1881         ceph_osdc_build_request(osd_req, obj_request->offset,
1882                         snapc, CEPH_NOSNAP, &mtime);
1883 }
1884
1885 /*
1886  * Create an osd request.  A read request has one osd op (read).
1887  * A write request has either one (watch) or two (hint+write) osd ops.
1888  * (All rbd data writes are prefixed with an allocation hint op, but
1889  * technically osd watch is a write request, hence this distinction.)
1890  */
1891 static struct ceph_osd_request *rbd_osd_req_create(
1892                                         struct rbd_device *rbd_dev,
1893                                         enum obj_operation_type op_type,
1894                                         unsigned int num_ops,
1895                                         struct rbd_obj_request *obj_request)
1896 {
1897         struct ceph_snap_context *snapc = NULL;
1898         struct ceph_osd_client *osdc;
1899         struct ceph_osd_request *osd_req;
1900
1901         if (obj_request_img_data_test(obj_request) &&
1902                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1903                 struct rbd_img_request *img_request = obj_request->img_request;
1904                 if (op_type == OBJ_OP_WRITE) {
1905                         rbd_assert(img_request_write_test(img_request));
1906                 } else {
1907                         rbd_assert(img_request_discard_test(img_request));
1908                 }
1909                 snapc = img_request->snapc;
1910         }
1911
1912         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1913
1914         /* Allocate and initialize the request, for the num_ops ops */
1915
1916         osdc = &rbd_dev->rbd_client->client->osdc;
1917         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1918                                           GFP_ATOMIC);
1919         if (!osd_req)
1920                 return NULL;    /* ENOMEM */
1921
1922         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1923                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1924         else
1925                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1926
1927         osd_req->r_callback = rbd_osd_req_callback;
1928         osd_req->r_priv = obj_request;
1929
1930         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1931         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1932
1933         return osd_req;
1934 }
1935
1936 /*
1937  * Create a copyup osd request based on the information in the
1938  * object request supplied.  A copyup request has three osd ops,
1939  * a copyup method call, a hint op, and a write op.
1940  */
1941 static struct ceph_osd_request *
1942 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1943 {
1944         struct rbd_img_request *img_request;
1945         struct ceph_snap_context *snapc;
1946         struct rbd_device *rbd_dev;
1947         struct ceph_osd_client *osdc;
1948         struct ceph_osd_request *osd_req;
1949
1950         rbd_assert(obj_request_img_data_test(obj_request));
1951         img_request = obj_request->img_request;
1952         rbd_assert(img_request);
1953         rbd_assert(img_request_write_test(img_request));
1954
1955         /* Allocate and initialize the request, for the three ops */
1956
1957         snapc = img_request->snapc;
1958         rbd_dev = img_request->rbd_dev;
1959         osdc = &rbd_dev->rbd_client->client->osdc;
1960         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1961         if (!osd_req)
1962                 return NULL;    /* ENOMEM */
1963
1964         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1965         osd_req->r_callback = rbd_osd_req_callback;
1966         osd_req->r_priv = obj_request;
1967
1968         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1969         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1970
1971         return osd_req;
1972 }
1973
1974
1975 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1976 {
1977         ceph_osdc_put_request(osd_req);
1978 }
1979
1980 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1981
1982 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1983                                                 u64 offset, u64 length,
1984                                                 enum obj_request_type type)
1985 {
1986         struct rbd_obj_request *obj_request;
1987         size_t size;
1988         char *name;
1989
1990         rbd_assert(obj_request_type_valid(type));
1991
1992         size = strlen(object_name) + 1;
1993         name = kmalloc(size, GFP_KERNEL);
1994         if (!name)
1995                 return NULL;
1996
1997         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1998         if (!obj_request) {
1999                 kfree(name);
2000                 return NULL;
2001         }
2002
2003         obj_request->object_name = memcpy(name, object_name, size);
2004         obj_request->offset = offset;
2005         obj_request->length = length;
2006         obj_request->flags = 0;
2007         obj_request->which = BAD_WHICH;
2008         obj_request->type = type;
2009         INIT_LIST_HEAD(&obj_request->links);
2010         init_completion(&obj_request->completion);
2011         kref_init(&obj_request->kref);
2012
2013         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2014                 offset, length, (int)type, obj_request);
2015
2016         return obj_request;
2017 }
2018
2019 static void rbd_obj_request_destroy(struct kref *kref)
2020 {
2021         struct rbd_obj_request *obj_request;
2022
2023         obj_request = container_of(kref, struct rbd_obj_request, kref);
2024
2025         dout("%s: obj %p\n", __func__, obj_request);
2026
2027         rbd_assert(obj_request->img_request == NULL);
2028         rbd_assert(obj_request->which == BAD_WHICH);
2029
2030         if (obj_request->osd_req)
2031                 rbd_osd_req_destroy(obj_request->osd_req);
2032
2033         rbd_assert(obj_request_type_valid(obj_request->type));
2034         switch (obj_request->type) {
2035         case OBJ_REQUEST_NODATA:
2036                 break;          /* Nothing to do */
2037         case OBJ_REQUEST_BIO:
2038                 if (obj_request->bio_list)
2039                         bio_chain_put(obj_request->bio_list);
2040                 break;
2041         case OBJ_REQUEST_PAGES:
2042                 if (obj_request->pages)
2043                         ceph_release_page_vector(obj_request->pages,
2044                                                 obj_request->page_count);
2045                 break;
2046         }
2047
2048         kfree(obj_request->object_name);
2049         obj_request->object_name = NULL;
2050         kmem_cache_free(rbd_obj_request_cache, obj_request);
2051 }
2052
2053 /* It's OK to call this for a device with no parent */
2054
2055 static void rbd_spec_put(struct rbd_spec *spec);
2056 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2057 {
2058         rbd_dev_remove_parent(rbd_dev);
2059         rbd_spec_put(rbd_dev->parent_spec);
2060         rbd_dev->parent_spec = NULL;
2061         rbd_dev->parent_overlap = 0;
2062 }
2063
2064 /*
2065  * Parent image reference counting is used to determine when an
2066  * image's parent fields can be safely torn down--after there are no
2067  * more in-flight requests to the parent image.  When the last
2068  * reference is dropped, cleaning them up is safe.
2069  */
2070 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2071 {
2072         int counter;
2073
2074         if (!rbd_dev->parent_spec)
2075                 return;
2076
2077         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2078         if (counter > 0)
2079                 return;
2080
2081         /* Last reference; clean up parent data structures */
2082
2083         if (!counter)
2084                 rbd_dev_unparent(rbd_dev);
2085         else
2086                 rbd_warn(rbd_dev, "parent reference underflow");
2087 }
2088
2089 /*
2090  * If an image has a non-zero parent overlap, get a reference to its
2091  * parent.
2092  *
2093  * We must get the reference before checking for the overlap to
2094  * coordinate properly with zeroing the parent overlap in
2095  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2096  * drop it again if there is no overlap.
2097  *
2098  * Returns true if the rbd device has a parent with a non-zero
2099  * overlap and a reference for it was successfully taken, or
2100  * false otherwise.
2101  */
2102 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2103 {
2104         int counter;
2105
2106         if (!rbd_dev->parent_spec)
2107                 return false;
2108
2109         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2110         if (counter > 0 && rbd_dev->parent_overlap)
2111                 return true;
2112
2113         /* Image was flattened, but parent is not yet torn down */
2114
2115         if (counter < 0)
2116                 rbd_warn(rbd_dev, "parent reference overflow");
2117
2118         return false;
2119 }
2120
2121 /*
2122  * Caller is responsible for filling in the list of object requests
2123  * that comprises the image request, and the Linux request pointer
2124  * (if there is one).
2125  */
2126 static struct rbd_img_request *rbd_img_request_create(
2127                                         struct rbd_device *rbd_dev,
2128                                         u64 offset, u64 length,
2129                                         enum obj_operation_type op_type,
2130                                         struct ceph_snap_context *snapc)
2131 {
2132         struct rbd_img_request *img_request;
2133
2134         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2135         if (!img_request)
2136                 return NULL;
2137
2138         img_request->rq = NULL;
2139         img_request->rbd_dev = rbd_dev;
2140         img_request->offset = offset;
2141         img_request->length = length;
2142         img_request->flags = 0;
2143         if (op_type == OBJ_OP_DISCARD) {
2144                 img_request_discard_set(img_request);
2145                 img_request->snapc = snapc;
2146         } else if (op_type == OBJ_OP_WRITE) {
2147                 img_request_write_set(img_request);
2148                 img_request->snapc = snapc;
2149         } else {
2150                 img_request->snap_id = rbd_dev->spec->snap_id;
2151         }
2152         if (rbd_dev_parent_get(rbd_dev))
2153                 img_request_layered_set(img_request);
2154         spin_lock_init(&img_request->completion_lock);
2155         img_request->next_completion = 0;
2156         img_request->callback = NULL;
2157         img_request->result = 0;
2158         img_request->obj_request_count = 0;
2159         INIT_LIST_HEAD(&img_request->obj_requests);
2160         kref_init(&img_request->kref);
2161
2162         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2163                 obj_op_name(op_type), offset, length, img_request);
2164
2165         return img_request;
2166 }
2167
2168 static void rbd_img_request_destroy(struct kref *kref)
2169 {
2170         struct rbd_img_request *img_request;
2171         struct rbd_obj_request *obj_request;
2172         struct rbd_obj_request *next_obj_request;
2173
2174         img_request = container_of(kref, struct rbd_img_request, kref);
2175
2176         dout("%s: img %p\n", __func__, img_request);
2177
2178         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2179                 rbd_img_obj_request_del(img_request, obj_request);
2180         rbd_assert(img_request->obj_request_count == 0);
2181
2182         if (img_request_layered_test(img_request)) {
2183                 img_request_layered_clear(img_request);
2184                 rbd_dev_parent_put(img_request->rbd_dev);
2185         }
2186
2187         if (img_request_write_test(img_request) ||
2188                 img_request_discard_test(img_request))
2189                 ceph_put_snap_context(img_request->snapc);
2190
2191         kmem_cache_free(rbd_img_request_cache, img_request);
2192 }
2193
2194 static struct rbd_img_request *rbd_parent_request_create(
2195                                         struct rbd_obj_request *obj_request,
2196                                         u64 img_offset, u64 length)
2197 {
2198         struct rbd_img_request *parent_request;
2199         struct rbd_device *rbd_dev;
2200
2201         rbd_assert(obj_request->img_request);
2202         rbd_dev = obj_request->img_request->rbd_dev;
2203
2204         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2205                                                 length, OBJ_OP_READ, NULL);
2206         if (!parent_request)
2207                 return NULL;
2208
2209         img_request_child_set(parent_request);
2210         rbd_obj_request_get(obj_request);
2211         parent_request->obj_request = obj_request;
2212
2213         return parent_request;
2214 }
2215
2216 static void rbd_parent_request_destroy(struct kref *kref)
2217 {
2218         struct rbd_img_request *parent_request;
2219         struct rbd_obj_request *orig_request;
2220
2221         parent_request = container_of(kref, struct rbd_img_request, kref);
2222         orig_request = parent_request->obj_request;
2223
2224         parent_request->obj_request = NULL;
2225         rbd_obj_request_put(orig_request);
2226         img_request_child_clear(parent_request);
2227
2228         rbd_img_request_destroy(kref);
2229 }
2230
2231 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2232 {
2233         struct rbd_img_request *img_request;
2234         unsigned int xferred;
2235         int result;
2236         bool more;
2237
2238         rbd_assert(obj_request_img_data_test(obj_request));
2239         img_request = obj_request->img_request;
2240
2241         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2242         xferred = (unsigned int)obj_request->xferred;
2243         result = obj_request->result;
2244         if (result) {
2245                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2246                 enum obj_operation_type op_type;
2247
2248                 if (img_request_discard_test(img_request))
2249                         op_type = OBJ_OP_DISCARD;
2250                 else if (img_request_write_test(img_request))
2251                         op_type = OBJ_OP_WRITE;
2252                 else
2253                         op_type = OBJ_OP_READ;
2254
2255                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2256                         obj_op_name(op_type), obj_request->length,
2257                         obj_request->img_offset, obj_request->offset);
2258                 rbd_warn(rbd_dev, "  result %d xferred %x",
2259                         result, xferred);
2260                 if (!img_request->result)
2261                         img_request->result = result;
2262         }
2263
2264         /* Image object requests don't own their page array */
2265
2266         if (obj_request->type == OBJ_REQUEST_PAGES) {
2267                 obj_request->pages = NULL;
2268                 obj_request->page_count = 0;
2269         }
2270
2271         if (img_request_child_test(img_request)) {
2272                 rbd_assert(img_request->obj_request != NULL);
2273                 more = obj_request->which < img_request->obj_request_count - 1;
2274         } else {
2275                 rbd_assert(img_request->rq != NULL);
2276                 more = blk_end_request(img_request->rq, result, xferred);
2277         }
2278
2279         return more;
2280 }
2281
2282 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2283 {
2284         struct rbd_img_request *img_request;
2285         u32 which = obj_request->which;
2286         bool more = true;
2287
2288         rbd_assert(obj_request_img_data_test(obj_request));
2289         img_request = obj_request->img_request;
2290
2291         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2292         rbd_assert(img_request != NULL);
2293         rbd_assert(img_request->obj_request_count > 0);
2294         rbd_assert(which != BAD_WHICH);
2295         rbd_assert(which < img_request->obj_request_count);
2296
2297         spin_lock_irq(&img_request->completion_lock);
2298         if (which != img_request->next_completion)
2299                 goto out;
2300
2301         for_each_obj_request_from(img_request, obj_request) {
2302                 rbd_assert(more);
2303                 rbd_assert(which < img_request->obj_request_count);
2304
2305                 if (!obj_request_done_test(obj_request))
2306                         break;
2307                 more = rbd_img_obj_end_request(obj_request);
2308                 which++;
2309         }
2310
2311         rbd_assert(more ^ (which == img_request->obj_request_count));
2312         img_request->next_completion = which;
2313 out:
2314         spin_unlock_irq(&img_request->completion_lock);
2315         rbd_img_request_put(img_request);
2316
2317         if (!more)
2318                 rbd_img_request_complete(img_request);
2319 }
2320
2321 /*
2322  * Add individual osd ops to the given ceph_osd_request and prepare
2323  * them for submission. num_ops is the current number of
2324  * osd operations already to the object request.
2325  */
2326 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2327                                 struct ceph_osd_request *osd_request,
2328                                 enum obj_operation_type op_type,
2329                                 unsigned int num_ops)
2330 {
2331         struct rbd_img_request *img_request = obj_request->img_request;
2332         struct rbd_device *rbd_dev = img_request->rbd_dev;
2333         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2334         u64 offset = obj_request->offset;
2335         u64 length = obj_request->length;
2336         u64 img_end;
2337         u16 opcode;
2338
2339         if (op_type == OBJ_OP_DISCARD) {
2340                 if (!offset && (length == object_size)
2341                         && (!img_request_layered_test(img_request) ||
2342                                 (rbd_dev->parent_overlap <=
2343                                         obj_request->img_offset))) {
2344                         opcode = CEPH_OSD_OP_DELETE;
2345                 } else if ((offset + length == object_size)) {
2346                         opcode = CEPH_OSD_OP_TRUNCATE;
2347                 } else {
2348                         down_read(&rbd_dev->header_rwsem);
2349                         img_end = rbd_dev->header.image_size;
2350                         up_read(&rbd_dev->header_rwsem);
2351
2352                         if (obj_request->img_offset + length == img_end)
2353                                 opcode = CEPH_OSD_OP_TRUNCATE;
2354                         else
2355                                 opcode = CEPH_OSD_OP_ZERO;
2356                 }
2357         } else if (op_type == OBJ_OP_WRITE) {
2358                 opcode = CEPH_OSD_OP_WRITE;
2359                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2360                                         object_size, object_size);
2361                 num_ops++;
2362         } else {
2363                 opcode = CEPH_OSD_OP_READ;
2364         }
2365
2366         osd_req_op_extent_init(osd_request, num_ops, opcode, offset, length,
2367                                 0, 0);
2368         if (obj_request->type == OBJ_REQUEST_BIO)
2369                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2370                                         obj_request->bio_list, length);
2371         else if (obj_request->type == OBJ_REQUEST_PAGES)
2372                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2373                                         obj_request->pages, length,
2374                                         offset & ~PAGE_MASK, false, false);
2375
2376         /* Discards are also writes */
2377         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2378                 rbd_osd_req_format_write(obj_request);
2379         else
2380                 rbd_osd_req_format_read(obj_request);
2381 }
2382
2383 /*
2384  * Split up an image request into one or more object requests, each
2385  * to a different object.  The "type" parameter indicates whether
2386  * "data_desc" is the pointer to the head of a list of bio
2387  * structures, or the base of a page array.  In either case this
2388  * function assumes data_desc describes memory sufficient to hold
2389  * all data described by the image request.
2390  */
2391 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2392                                         enum obj_request_type type,
2393                                         void *data_desc)
2394 {
2395         struct rbd_device *rbd_dev = img_request->rbd_dev;
2396         struct rbd_obj_request *obj_request = NULL;
2397         struct rbd_obj_request *next_obj_request;
2398         struct bio *bio_list = NULL;
2399         unsigned int bio_offset = 0;
2400         struct page **pages = NULL;
2401         enum obj_operation_type op_type;
2402         u64 img_offset;
2403         u64 resid;
2404
2405         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2406                 (int)type, data_desc);
2407
2408         img_offset = img_request->offset;
2409         resid = img_request->length;
2410         rbd_assert(resid > 0);
2411         op_type = rbd_img_request_op_type(img_request);
2412
2413         if (type == OBJ_REQUEST_BIO) {
2414                 bio_list = data_desc;
2415                 rbd_assert(img_offset ==
2416                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2417         } else if (type == OBJ_REQUEST_PAGES) {
2418                 pages = data_desc;
2419         }
2420
2421         while (resid) {
2422                 struct ceph_osd_request *osd_req;
2423                 const char *object_name;
2424                 u64 offset;
2425                 u64 length;
2426
2427                 object_name = rbd_segment_name(rbd_dev, img_offset);
2428                 if (!object_name)
2429                         goto out_unwind;
2430                 offset = rbd_segment_offset(rbd_dev, img_offset);
2431                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2432                 obj_request = rbd_obj_request_create(object_name,
2433                                                 offset, length, type);
2434                 /* object request has its own copy of the object name */
2435                 rbd_segment_name_free(object_name);
2436                 if (!obj_request)
2437                         goto out_unwind;
2438
2439                 /*
2440                  * set obj_request->img_request before creating the
2441                  * osd_request so that it gets the right snapc
2442                  */
2443                 rbd_img_obj_request_add(img_request, obj_request);
2444
2445                 if (type == OBJ_REQUEST_BIO) {
2446                         unsigned int clone_size;
2447
2448                         rbd_assert(length <= (u64)UINT_MAX);
2449                         clone_size = (unsigned int)length;
2450                         obj_request->bio_list =
2451                                         bio_chain_clone_range(&bio_list,
2452                                                                 &bio_offset,
2453                                                                 clone_size,
2454                                                                 GFP_ATOMIC);
2455                         if (!obj_request->bio_list)
2456                                 goto out_unwind;
2457                 } else if (type == OBJ_REQUEST_PAGES) {
2458                         unsigned int page_count;
2459
2460                         obj_request->pages = pages;
2461                         page_count = (u32)calc_pages_for(offset, length);
2462                         obj_request->page_count = page_count;
2463                         if ((offset + length) & ~PAGE_MASK)
2464                                 page_count--;   /* more on last page */
2465                         pages += page_count;
2466                 }
2467
2468                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2469                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2470                                         obj_request);
2471                 if (!osd_req)
2472                         goto out_unwind;
2473
2474                 obj_request->osd_req = osd_req;
2475                 obj_request->callback = rbd_img_obj_callback;
2476                 obj_request->img_offset = img_offset;
2477
2478                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2479
2480                 rbd_img_request_get(img_request);
2481
2482                 img_offset += length;
2483                 resid -= length;
2484         }
2485
2486         return 0;
2487
2488 out_unwind:
2489         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2490                 rbd_img_obj_request_del(img_request, obj_request);
2491
2492         return -ENOMEM;
2493 }
2494
2495 static void
2496 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2497 {
2498         struct rbd_img_request *img_request;
2499         struct rbd_device *rbd_dev;
2500         struct page **pages;
2501         u32 page_count;
2502
2503         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2504         rbd_assert(obj_request_img_data_test(obj_request));
2505         img_request = obj_request->img_request;
2506         rbd_assert(img_request);
2507
2508         rbd_dev = img_request->rbd_dev;
2509         rbd_assert(rbd_dev);
2510
2511         pages = obj_request->copyup_pages;
2512         rbd_assert(pages != NULL);
2513         obj_request->copyup_pages = NULL;
2514         page_count = obj_request->copyup_page_count;
2515         rbd_assert(page_count);
2516         obj_request->copyup_page_count = 0;
2517         ceph_release_page_vector(pages, page_count);
2518
2519         /*
2520          * We want the transfer count to reflect the size of the
2521          * original write request.  There is no such thing as a
2522          * successful short write, so if the request was successful
2523          * we can just set it to the originally-requested length.
2524          */
2525         if (!obj_request->result)
2526                 obj_request->xferred = obj_request->length;
2527
2528         /* Finish up with the normal image object callback */
2529
2530         rbd_img_obj_callback(obj_request);
2531 }
2532
2533 static void
2534 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2535 {
2536         struct rbd_obj_request *orig_request;
2537         struct ceph_osd_request *osd_req;
2538         struct ceph_osd_client *osdc;
2539         struct rbd_device *rbd_dev;
2540         struct page **pages;
2541         u32 page_count;
2542         int img_result;
2543         u64 parent_length;
2544         u64 offset;
2545         u64 length;
2546
2547         rbd_assert(img_request_child_test(img_request));
2548
2549         /* First get what we need from the image request */
2550
2551         pages = img_request->copyup_pages;
2552         rbd_assert(pages != NULL);
2553         img_request->copyup_pages = NULL;
2554         page_count = img_request->copyup_page_count;
2555         rbd_assert(page_count);
2556         img_request->copyup_page_count = 0;
2557
2558         orig_request = img_request->obj_request;
2559         rbd_assert(orig_request != NULL);
2560         rbd_assert(obj_request_type_valid(orig_request->type));
2561         img_result = img_request->result;
2562         parent_length = img_request->length;
2563         rbd_assert(parent_length == img_request->xferred);
2564         rbd_img_request_put(img_request);
2565
2566         rbd_assert(orig_request->img_request);
2567         rbd_dev = orig_request->img_request->rbd_dev;
2568         rbd_assert(rbd_dev);
2569
2570         /*
2571          * If the overlap has become 0 (most likely because the
2572          * image has been flattened) we need to free the pages
2573          * and re-submit the original write request.
2574          */
2575         if (!rbd_dev->parent_overlap) {
2576                 struct ceph_osd_client *osdc;
2577
2578                 ceph_release_page_vector(pages, page_count);
2579                 osdc = &rbd_dev->rbd_client->client->osdc;
2580                 img_result = rbd_obj_request_submit(osdc, orig_request);
2581                 if (!img_result)
2582                         return;
2583         }
2584
2585         if (img_result)
2586                 goto out_err;
2587
2588         /*
2589          * The original osd request is of no use to use any more.
2590          * We need a new one that can hold the three ops in a copyup
2591          * request.  Allocate the new copyup osd request for the
2592          * original request, and release the old one.
2593          */
2594         img_result = -ENOMEM;
2595         osd_req = rbd_osd_req_create_copyup(orig_request);
2596         if (!osd_req)
2597                 goto out_err;
2598         rbd_osd_req_destroy(orig_request->osd_req);
2599         orig_request->osd_req = osd_req;
2600         orig_request->copyup_pages = pages;
2601         orig_request->copyup_page_count = page_count;
2602
2603         /* Initialize the copyup op */
2604
2605         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2606         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2607                                                 false, false);
2608
2609         /* Then the hint op */
2610
2611         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2612                                    rbd_obj_bytes(&rbd_dev->header));
2613
2614         /* And the original write request op */
2615
2616         offset = orig_request->offset;
2617         length = orig_request->length;
2618         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2619                                         offset, length, 0, 0);
2620         if (orig_request->type == OBJ_REQUEST_BIO)
2621                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2622                                         orig_request->bio_list, length);
2623         else
2624                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2625                                         orig_request->pages, length,
2626                                         offset & ~PAGE_MASK, false, false);
2627
2628         rbd_osd_req_format_write(orig_request);
2629
2630         /* All set, send it off. */
2631
2632         orig_request->callback = rbd_img_obj_copyup_callback;
2633         osdc = &rbd_dev->rbd_client->client->osdc;
2634         img_result = rbd_obj_request_submit(osdc, orig_request);
2635         if (!img_result)
2636                 return;
2637 out_err:
2638         /* Record the error code and complete the request */
2639
2640         orig_request->result = img_result;
2641         orig_request->xferred = 0;
2642         obj_request_done_set(orig_request);
2643         rbd_obj_request_complete(orig_request);
2644 }
2645
2646 /*
2647  * Read from the parent image the range of data that covers the
2648  * entire target of the given object request.  This is used for
2649  * satisfying a layered image write request when the target of an
2650  * object request from the image request does not exist.
2651  *
2652  * A page array big enough to hold the returned data is allocated
2653  * and supplied to rbd_img_request_fill() as the "data descriptor."
2654  * When the read completes, this page array will be transferred to
2655  * the original object request for the copyup operation.
2656  *
2657  * If an error occurs, record it as the result of the original
2658  * object request and mark it done so it gets completed.
2659  */
2660 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2661 {
2662         struct rbd_img_request *img_request = NULL;
2663         struct rbd_img_request *parent_request = NULL;
2664         struct rbd_device *rbd_dev;
2665         u64 img_offset;
2666         u64 length;
2667         struct page **pages = NULL;
2668         u32 page_count;
2669         int result;
2670
2671         rbd_assert(obj_request_img_data_test(obj_request));
2672         rbd_assert(obj_request_type_valid(obj_request->type));
2673
2674         img_request = obj_request->img_request;
2675         rbd_assert(img_request != NULL);
2676         rbd_dev = img_request->rbd_dev;
2677         rbd_assert(rbd_dev->parent != NULL);
2678
2679         /*
2680          * Determine the byte range covered by the object in the
2681          * child image to which the original request was to be sent.
2682          */
2683         img_offset = obj_request->img_offset - obj_request->offset;
2684         length = (u64)1 << rbd_dev->header.obj_order;
2685
2686         /*
2687          * There is no defined parent data beyond the parent
2688          * overlap, so limit what we read at that boundary if
2689          * necessary.
2690          */
2691         if (img_offset + length > rbd_dev->parent_overlap) {
2692                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2693                 length = rbd_dev->parent_overlap - img_offset;
2694         }
2695
2696         /*
2697          * Allocate a page array big enough to receive the data read
2698          * from the parent.
2699          */
2700         page_count = (u32)calc_pages_for(0, length);
2701         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2702         if (IS_ERR(pages)) {
2703                 result = PTR_ERR(pages);
2704                 pages = NULL;
2705                 goto out_err;
2706         }
2707
2708         result = -ENOMEM;
2709         parent_request = rbd_parent_request_create(obj_request,
2710                                                 img_offset, length);
2711         if (!parent_request)
2712                 goto out_err;
2713
2714         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2715         if (result)
2716                 goto out_err;
2717         parent_request->copyup_pages = pages;
2718         parent_request->copyup_page_count = page_count;
2719
2720         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2721         result = rbd_img_request_submit(parent_request);
2722         if (!result)
2723                 return 0;
2724
2725         parent_request->copyup_pages = NULL;
2726         parent_request->copyup_page_count = 0;
2727         parent_request->obj_request = NULL;
2728         rbd_obj_request_put(obj_request);
2729 out_err:
2730         if (pages)
2731                 ceph_release_page_vector(pages, page_count);
2732         if (parent_request)
2733                 rbd_img_request_put(parent_request);
2734         obj_request->result = result;
2735         obj_request->xferred = 0;
2736         obj_request_done_set(obj_request);
2737
2738         return result;
2739 }
2740
2741 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2742 {
2743         struct rbd_obj_request *orig_request;
2744         struct rbd_device *rbd_dev;
2745         int result;
2746
2747         rbd_assert(!obj_request_img_data_test(obj_request));
2748
2749         /*
2750          * All we need from the object request is the original
2751          * request and the result of the STAT op.  Grab those, then
2752          * we're done with the request.
2753          */
2754         orig_request = obj_request->obj_request;
2755         obj_request->obj_request = NULL;
2756         rbd_obj_request_put(orig_request);
2757         rbd_assert(orig_request);
2758         rbd_assert(orig_request->img_request);
2759
2760         result = obj_request->result;
2761         obj_request->result = 0;
2762
2763         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2764                 obj_request, orig_request, result,
2765                 obj_request->xferred, obj_request->length);
2766         rbd_obj_request_put(obj_request);
2767
2768         /*
2769          * If the overlap has become 0 (most likely because the
2770          * image has been flattened) we need to free the pages
2771          * and re-submit the original write request.
2772          */
2773         rbd_dev = orig_request->img_request->rbd_dev;
2774         if (!rbd_dev->parent_overlap) {
2775                 struct ceph_osd_client *osdc;
2776
2777                 osdc = &rbd_dev->rbd_client->client->osdc;
2778                 result = rbd_obj_request_submit(osdc, orig_request);
2779                 if (!result)
2780                         return;
2781         }
2782
2783         /*
2784          * Our only purpose here is to determine whether the object
2785          * exists, and we don't want to treat the non-existence as
2786          * an error.  If something else comes back, transfer the
2787          * error to the original request and complete it now.
2788          */
2789         if (!result) {
2790                 obj_request_existence_set(orig_request, true);
2791         } else if (result == -ENOENT) {
2792                 obj_request_existence_set(orig_request, false);
2793         } else if (result) {
2794                 orig_request->result = result;
2795                 goto out;
2796         }
2797
2798         /*
2799          * Resubmit the original request now that we have recorded
2800          * whether the target object exists.
2801          */
2802         orig_request->result = rbd_img_obj_request_submit(orig_request);
2803 out:
2804         if (orig_request->result)
2805                 rbd_obj_request_complete(orig_request);
2806 }
2807
2808 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2809 {
2810         struct rbd_obj_request *stat_request;
2811         struct rbd_device *rbd_dev;
2812         struct ceph_osd_client *osdc;
2813         struct page **pages = NULL;
2814         u32 page_count;
2815         size_t size;
2816         int ret;
2817
2818         /*
2819          * The response data for a STAT call consists of:
2820          *     le64 length;
2821          *     struct {
2822          *         le32 tv_sec;
2823          *         le32 tv_nsec;
2824          *     } mtime;
2825          */
2826         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2827         page_count = (u32)calc_pages_for(0, size);
2828         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2829         if (IS_ERR(pages))
2830                 return PTR_ERR(pages);
2831
2832         ret = -ENOMEM;
2833         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2834                                                         OBJ_REQUEST_PAGES);
2835         if (!stat_request)
2836                 goto out;
2837
2838         rbd_obj_request_get(obj_request);
2839         stat_request->obj_request = obj_request;
2840         stat_request->pages = pages;
2841         stat_request->page_count = page_count;
2842
2843         rbd_assert(obj_request->img_request);
2844         rbd_dev = obj_request->img_request->rbd_dev;
2845         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2846                                                    stat_request);
2847         if (!stat_request->osd_req)
2848                 goto out;
2849         stat_request->callback = rbd_img_obj_exists_callback;
2850
2851         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2852         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2853                                         false, false);
2854         rbd_osd_req_format_read(stat_request);
2855
2856         osdc = &rbd_dev->rbd_client->client->osdc;
2857         ret = rbd_obj_request_submit(osdc, stat_request);
2858 out:
2859         if (ret)
2860                 rbd_obj_request_put(obj_request);
2861
2862         return ret;
2863 }
2864
2865 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2866 {
2867         struct rbd_img_request *img_request;
2868         struct rbd_device *rbd_dev;
2869
2870         rbd_assert(obj_request_img_data_test(obj_request));
2871
2872         img_request = obj_request->img_request;
2873         rbd_assert(img_request);
2874         rbd_dev = img_request->rbd_dev;
2875
2876         /* Reads */
2877         if (!img_request_write_test(img_request) &&
2878             !img_request_discard_test(img_request))
2879                 return true;
2880
2881         /* Non-layered writes */
2882         if (!img_request_layered_test(img_request))
2883                 return true;
2884
2885         /*
2886          * Layered writes outside of the parent overlap range don't
2887          * share any data with the parent.
2888          */
2889         if (!obj_request_overlaps_parent(obj_request))
2890                 return true;
2891
2892         /*
2893          * Entire-object layered writes - we will overwrite whatever
2894          * parent data there is anyway.
2895          */
2896         if (!obj_request->offset &&
2897             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2898                 return true;
2899
2900         /*
2901          * If the object is known to already exist, its parent data has
2902          * already been copied.
2903          */
2904         if (obj_request_known_test(obj_request) &&
2905             obj_request_exists_test(obj_request))
2906                 return true;
2907
2908         return false;
2909 }
2910
2911 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2912 {
2913         if (img_obj_request_simple(obj_request)) {
2914                 struct rbd_device *rbd_dev;
2915                 struct ceph_osd_client *osdc;
2916
2917                 rbd_dev = obj_request->img_request->rbd_dev;
2918                 osdc = &rbd_dev->rbd_client->client->osdc;
2919
2920                 return rbd_obj_request_submit(osdc, obj_request);
2921         }
2922
2923         /*
2924          * It's a layered write.  The target object might exist but
2925          * we may not know that yet.  If we know it doesn't exist,
2926          * start by reading the data for the full target object from
2927          * the parent so we can use it for a copyup to the target.
2928          */
2929         if (obj_request_known_test(obj_request))
2930                 return rbd_img_obj_parent_read_full(obj_request);
2931
2932         /* We don't know whether the target exists.  Go find out. */
2933
2934         return rbd_img_obj_exists_submit(obj_request);
2935 }
2936
2937 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2938 {
2939         struct rbd_obj_request *obj_request;
2940         struct rbd_obj_request *next_obj_request;
2941
2942         dout("%s: img %p\n", __func__, img_request);
2943         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2944                 int ret;
2945
2946                 ret = rbd_img_obj_request_submit(obj_request);
2947                 if (ret)
2948                         return ret;
2949         }
2950
2951         return 0;
2952 }
2953
2954 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2955 {
2956         struct rbd_obj_request *obj_request;
2957         struct rbd_device *rbd_dev;
2958         u64 obj_end;
2959         u64 img_xferred;
2960         int img_result;
2961
2962         rbd_assert(img_request_child_test(img_request));
2963
2964         /* First get what we need from the image request and release it */
2965
2966         obj_request = img_request->obj_request;
2967         img_xferred = img_request->xferred;
2968         img_result = img_request->result;
2969         rbd_img_request_put(img_request);
2970
2971         /*
2972          * If the overlap has become 0 (most likely because the
2973          * image has been flattened) we need to re-submit the
2974          * original request.
2975          */
2976         rbd_assert(obj_request);
2977         rbd_assert(obj_request->img_request);
2978         rbd_dev = obj_request->img_request->rbd_dev;
2979         if (!rbd_dev->parent_overlap) {
2980                 struct ceph_osd_client *osdc;
2981
2982                 osdc = &rbd_dev->rbd_client->client->osdc;
2983                 img_result = rbd_obj_request_submit(osdc, obj_request);
2984                 if (!img_result)
2985                         return;
2986         }
2987
2988         obj_request->result = img_result;
2989         if (obj_request->result)
2990                 goto out;
2991
2992         /*
2993          * We need to zero anything beyond the parent overlap
2994          * boundary.  Since rbd_img_obj_request_read_callback()
2995          * will zero anything beyond the end of a short read, an
2996          * easy way to do this is to pretend the data from the
2997          * parent came up short--ending at the overlap boundary.
2998          */
2999         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3000         obj_end = obj_request->img_offset + obj_request->length;
3001         if (obj_end > rbd_dev->parent_overlap) {
3002                 u64 xferred = 0;
3003
3004                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3005                         xferred = rbd_dev->parent_overlap -
3006                                         obj_request->img_offset;
3007
3008                 obj_request->xferred = min(img_xferred, xferred);
3009         } else {
3010                 obj_request->xferred = img_xferred;
3011         }
3012 out:
3013         rbd_img_obj_request_read_callback(obj_request);
3014         rbd_obj_request_complete(obj_request);
3015 }
3016
3017 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3018 {
3019         struct rbd_img_request *img_request;
3020         int result;
3021
3022         rbd_assert(obj_request_img_data_test(obj_request));
3023         rbd_assert(obj_request->img_request != NULL);
3024         rbd_assert(obj_request->result == (s32) -ENOENT);
3025         rbd_assert(obj_request_type_valid(obj_request->type));
3026
3027         /* rbd_read_finish(obj_request, obj_request->length); */
3028         img_request = rbd_parent_request_create(obj_request,
3029                                                 obj_request->img_offset,
3030                                                 obj_request->length);
3031         result = -ENOMEM;
3032         if (!img_request)
3033                 goto out_err;
3034
3035         if (obj_request->type == OBJ_REQUEST_BIO)
3036                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3037                                                 obj_request->bio_list);
3038         else
3039                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3040                                                 obj_request->pages);
3041         if (result)
3042                 goto out_err;
3043
3044         img_request->callback = rbd_img_parent_read_callback;
3045         result = rbd_img_request_submit(img_request);
3046         if (result)
3047                 goto out_err;
3048
3049         return;
3050 out_err:
3051         if (img_request)
3052                 rbd_img_request_put(img_request);
3053         obj_request->result = result;
3054         obj_request->xferred = 0;
3055         obj_request_done_set(obj_request);
3056 }
3057
3058 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3059 {
3060         struct rbd_obj_request *obj_request;
3061         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3062         int ret;
3063
3064         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3065                                                         OBJ_REQUEST_NODATA);
3066         if (!obj_request)
3067                 return -ENOMEM;
3068
3069         ret = -ENOMEM;
3070         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3071                                                   obj_request);
3072         if (!obj_request->osd_req)
3073                 goto out;
3074
3075         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3076                                         notify_id, 0, 0);
3077         rbd_osd_req_format_read(obj_request);
3078
3079         ret = rbd_obj_request_submit(osdc, obj_request);
3080         if (ret)
3081                 goto out;
3082         ret = rbd_obj_request_wait(obj_request);
3083 out:
3084         rbd_obj_request_put(obj_request);
3085
3086         return ret;
3087 }
3088
3089 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3090 {
3091         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3092         int ret;
3093
3094         if (!rbd_dev)
3095                 return;
3096
3097         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3098                 rbd_dev->header_name, (unsigned long long)notify_id,
3099                 (unsigned int)opcode);
3100
3101         /*
3102          * Until adequate refresh error handling is in place, there is
3103          * not much we can do here, except warn.
3104          *
3105          * See http://tracker.ceph.com/issues/5040
3106          */
3107         ret = rbd_dev_refresh(rbd_dev);
3108         if (ret)
3109                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3110
3111         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3112         if (ret)
3113                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3114 }
3115
3116 /*
3117  * Send a (un)watch request and wait for the ack.  Return a request
3118  * with a ref held on success or error.
3119  */
3120 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3121                                                 struct rbd_device *rbd_dev,
3122                                                 bool watch)
3123 {
3124         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3125         struct rbd_obj_request *obj_request;
3126         int ret;
3127
3128         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3129                                              OBJ_REQUEST_NODATA);
3130         if (!obj_request)
3131                 return ERR_PTR(-ENOMEM);
3132
3133         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3134                                                   obj_request);
3135         if (!obj_request->osd_req) {
3136                 ret = -ENOMEM;
3137                 goto out;
3138         }
3139
3140         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3141                               rbd_dev->watch_event->cookie, 0, watch);
3142         rbd_osd_req_format_write(obj_request);
3143
3144         if (watch)
3145                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3146
3147         ret = rbd_obj_request_submit(osdc, obj_request);
3148         if (ret)
3149                 goto out;
3150
3151         ret = rbd_obj_request_wait(obj_request);
3152         if (ret)
3153                 goto out;
3154
3155         ret = obj_request->result;
3156         if (ret) {
3157                 if (watch)
3158                         rbd_obj_request_end(obj_request);
3159                 goto out;
3160         }
3161
3162         return obj_request;
3163
3164 out:
3165         rbd_obj_request_put(obj_request);
3166         return ERR_PTR(ret);
3167 }
3168
3169 /*
3170  * Initiate a watch request, synchronously.
3171  */
3172 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3173 {
3174         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3175         struct rbd_obj_request *obj_request;
3176         int ret;
3177
3178         rbd_assert(!rbd_dev->watch_event);
3179         rbd_assert(!rbd_dev->watch_request);
3180
3181         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3182                                      &rbd_dev->watch_event);
3183         if (ret < 0)
3184                 return ret;
3185
3186         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3187         if (IS_ERR(obj_request)) {
3188                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3189                 rbd_dev->watch_event = NULL;
3190                 return PTR_ERR(obj_request);
3191         }
3192
3193         /*
3194          * A watch request is set to linger, so the underlying osd
3195          * request won't go away until we unregister it.  We retain
3196          * a pointer to the object request during that time (in
3197          * rbd_dev->watch_request), so we'll keep a reference to it.
3198          * We'll drop that reference after we've unregistered it in
3199          * rbd_dev_header_unwatch_sync().
3200          */
3201         rbd_dev->watch_request = obj_request;
3202
3203         return 0;
3204 }
3205
3206 /*
3207  * Tear down a watch request, synchronously.
3208  */
3209 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3210 {
3211         struct rbd_obj_request *obj_request;
3212
3213         rbd_assert(rbd_dev->watch_event);
3214         rbd_assert(rbd_dev->watch_request);
3215
3216         rbd_obj_request_end(rbd_dev->watch_request);
3217         rbd_obj_request_put(rbd_dev->watch_request);
3218         rbd_dev->watch_request = NULL;
3219
3220         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3221         if (!IS_ERR(obj_request))
3222                 rbd_obj_request_put(obj_request);
3223         else
3224                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3225                          PTR_ERR(obj_request));
3226
3227         ceph_osdc_cancel_event(rbd_dev->watch_event);
3228         rbd_dev->watch_event = NULL;
3229 }
3230
3231 /*
3232  * Synchronous osd object method call.  Returns the number of bytes
3233  * returned in the outbound buffer, or a negative error code.
3234  */
3235 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3236                              const char *object_name,
3237                              const char *class_name,
3238                              const char *method_name,
3239                              const void *outbound,
3240                              size_t outbound_size,
3241                              void *inbound,
3242                              size_t inbound_size)
3243 {
3244         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3245         struct rbd_obj_request *obj_request;
3246         struct page **pages;
3247         u32 page_count;
3248         int ret;
3249
3250         /*
3251          * Method calls are ultimately read operations.  The result
3252          * should placed into the inbound buffer provided.  They
3253          * also supply outbound data--parameters for the object
3254          * method.  Currently if this is present it will be a
3255          * snapshot id.
3256          */
3257         page_count = (u32)calc_pages_for(0, inbound_size);
3258         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3259         if (IS_ERR(pages))
3260                 return PTR_ERR(pages);
3261
3262         ret = -ENOMEM;
3263         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3264                                                         OBJ_REQUEST_PAGES);
3265         if (!obj_request)
3266                 goto out;
3267
3268         obj_request->pages = pages;
3269         obj_request->page_count = page_count;
3270
3271         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3272                                                   obj_request);
3273         if (!obj_request->osd_req)
3274                 goto out;
3275
3276         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3277                                         class_name, method_name);
3278         if (outbound_size) {
3279                 struct ceph_pagelist *pagelist;
3280
3281                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3282                 if (!pagelist)
3283                         goto out;
3284
3285                 ceph_pagelist_init(pagelist);
3286                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3287                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3288                                                 pagelist);
3289         }
3290         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3291                                         obj_request->pages, inbound_size,
3292                                         0, false, false);
3293         rbd_osd_req_format_read(obj_request);
3294
3295         ret = rbd_obj_request_submit(osdc, obj_request);
3296         if (ret)
3297                 goto out;
3298         ret = rbd_obj_request_wait(obj_request);
3299         if (ret)
3300                 goto out;
3301
3302         ret = obj_request->result;
3303         if (ret < 0)
3304                 goto out;
3305
3306         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3307         ret = (int)obj_request->xferred;
3308         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3309 out:
3310         if (obj_request)
3311                 rbd_obj_request_put(obj_request);
3312         else
3313                 ceph_release_page_vector(pages, page_count);
3314
3315         return ret;
3316 }
3317
3318 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3319 {
3320         struct rbd_img_request *img_request;
3321         struct ceph_snap_context *snapc = NULL;
3322         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3323         u64 length = blk_rq_bytes(rq);
3324         enum obj_operation_type op_type;
3325         u64 mapping_size;
3326         int result;
3327
3328         if (rq->cmd_flags & REQ_DISCARD)
3329                 op_type = OBJ_OP_DISCARD;
3330         else if (rq->cmd_flags & REQ_WRITE)
3331                 op_type = OBJ_OP_WRITE;
3332         else
3333                 op_type = OBJ_OP_READ;
3334
3335         /* Ignore/skip any zero-length requests */
3336
3337         if (!length) {
3338                 dout("%s: zero-length request\n", __func__);
3339                 result = 0;
3340                 goto err_rq;
3341         }
3342
3343         /* Only reads are allowed to a read-only device */
3344
3345         if (op_type != OBJ_OP_READ) {
3346                 if (rbd_dev->mapping.read_only) {
3347                         result = -EROFS;
3348                         goto err_rq;
3349                 }
3350                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3351         }
3352
3353         /*
3354          * Quit early if the mapped snapshot no longer exists.  It's
3355          * still possible the snapshot will have disappeared by the
3356          * time our request arrives at the osd, but there's no sense in
3357          * sending it if we already know.
3358          */
3359         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3360                 dout("request for non-existent snapshot");
3361                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3362                 result = -ENXIO;
3363                 goto err_rq;
3364         }
3365
3366         if (offset && length > U64_MAX - offset + 1) {
3367                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3368                          length);
3369                 result = -EINVAL;
3370                 goto err_rq;    /* Shouldn't happen */
3371         }
3372
3373         down_read(&rbd_dev->header_rwsem);
3374         mapping_size = rbd_dev->mapping.size;
3375         if (op_type != OBJ_OP_READ) {
3376                 snapc = rbd_dev->header.snapc;
3377                 ceph_get_snap_context(snapc);
3378         }
3379         up_read(&rbd_dev->header_rwsem);
3380
3381         if (offset + length > mapping_size) {
3382                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3383                          length, mapping_size);
3384                 result = -EIO;
3385                 goto err_rq;
3386         }
3387
3388         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3389                                              snapc);
3390         if (!img_request) {
3391                 result = -ENOMEM;
3392                 goto err_rq;
3393         }
3394         img_request->rq = rq;
3395
3396         if (op_type == OBJ_OP_DISCARD)
3397                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3398                                               NULL);
3399         else
3400                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3401                                               rq->bio);
3402         if (result)
3403                 goto err_img_request;
3404
3405         result = rbd_img_request_submit(img_request);
3406         if (result)
3407                 goto err_img_request;
3408
3409         return;
3410
3411 err_img_request:
3412         rbd_img_request_put(img_request);
3413 err_rq:
3414         if (result)
3415                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3416                          obj_op_name(op_type), length, offset, result);
3417         if (snapc)
3418                 ceph_put_snap_context(snapc);
3419         blk_end_request_all(rq, result);
3420 }
3421
3422 static void rbd_request_workfn(struct work_struct *work)
3423 {
3424         struct rbd_device *rbd_dev =
3425             container_of(work, struct rbd_device, rq_work);
3426         struct request *rq, *next;
3427         LIST_HEAD(requests);
3428
3429         spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3430         list_splice_init(&rbd_dev->rq_queue, &requests);
3431         spin_unlock_irq(&rbd_dev->lock);
3432
3433         list_for_each_entry_safe(rq, next, &requests, queuelist) {
3434                 list_del_init(&rq->queuelist);
3435                 rbd_handle_request(rbd_dev, rq);
3436         }
3437 }
3438
3439 /*
3440  * Called with q->queue_lock held and interrupts disabled, possibly on
3441  * the way to schedule().  Do not sleep here!
3442  */
3443 static void rbd_request_fn(struct request_queue *q)
3444 {
3445         struct rbd_device *rbd_dev = q->queuedata;
3446         struct request *rq;
3447         int queued = 0;
3448
3449         rbd_assert(rbd_dev);
3450
3451         while ((rq = blk_fetch_request(q))) {
3452                 /* Ignore any non-FS requests that filter through. */
3453                 if (rq->cmd_type != REQ_TYPE_FS) {
3454                         dout("%s: non-fs request type %d\n", __func__,
3455                                 (int) rq->cmd_type);
3456                         __blk_end_request_all(rq, 0);
3457                         continue;
3458                 }
3459
3460                 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3461                 queued++;
3462         }
3463
3464         if (queued)
3465                 queue_work(rbd_dev->rq_wq, &rbd_dev->rq_work);
3466 }
3467
3468 /*
3469  * a queue callback. Makes sure that we don't create a bio that spans across
3470  * multiple osd objects. One exception would be with a single page bios,
3471  * which we handle later at bio_chain_clone_range()
3472  */
3473 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3474                           struct bio_vec *bvec)
3475 {
3476         struct rbd_device *rbd_dev = q->queuedata;
3477         sector_t sector_offset;
3478         sector_t sectors_per_obj;
3479         sector_t obj_sector_offset;
3480         int ret;
3481
3482         /*
3483          * Find how far into its rbd object the partition-relative
3484          * bio start sector is to offset relative to the enclosing
3485          * device.
3486          */
3487         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3488         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3489         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3490
3491         /*
3492          * Compute the number of bytes from that offset to the end
3493          * of the object.  Account for what's already used by the bio.
3494          */
3495         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3496         if (ret > bmd->bi_size)
3497                 ret -= bmd->bi_size;
3498         else
3499                 ret = 0;
3500
3501         /*
3502          * Don't send back more than was asked for.  And if the bio
3503          * was empty, let the whole thing through because:  "Note
3504          * that a block device *must* allow a single page to be
3505          * added to an empty bio."
3506          */
3507         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3508         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3509                 ret = (int) bvec->bv_len;
3510
3511         return ret;
3512 }
3513
3514 static void rbd_free_disk(struct rbd_device *rbd_dev)
3515 {
3516         struct gendisk *disk = rbd_dev->disk;
3517
3518         if (!disk)
3519                 return;
3520
3521         rbd_dev->disk = NULL;
3522         if (disk->flags & GENHD_FL_UP) {
3523                 del_gendisk(disk);
3524                 if (disk->queue)
3525                         blk_cleanup_queue(disk->queue);
3526         }
3527         put_disk(disk);
3528 }
3529
3530 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3531                                 const char *object_name,
3532                                 u64 offset, u64 length, void *buf)
3533
3534 {
3535         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3536         struct rbd_obj_request *obj_request;
3537         struct page **pages = NULL;
3538         u32 page_count;
3539         size_t size;
3540         int ret;
3541
3542         page_count = (u32) calc_pages_for(offset, length);
3543         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3544         if (IS_ERR(pages))
3545                 ret = PTR_ERR(pages);
3546
3547         ret = -ENOMEM;
3548         obj_request = rbd_obj_request_create(object_name, offset, length,
3549                                                         OBJ_REQUEST_PAGES);
3550         if (!obj_request)
3551                 goto out;
3552
3553         obj_request->pages = pages;
3554         obj_request->page_count = page_count;
3555
3556         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3557                                                   obj_request);
3558         if (!obj_request->osd_req)
3559                 goto out;
3560
3561         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3562                                         offset, length, 0, 0);
3563         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3564                                         obj_request->pages,
3565                                         obj_request->length,
3566                                         obj_request->offset & ~PAGE_MASK,
3567                                         false, false);
3568         rbd_osd_req_format_read(obj_request);
3569
3570         ret = rbd_obj_request_submit(osdc, obj_request);
3571         if (ret)
3572                 goto out;
3573         ret = rbd_obj_request_wait(obj_request);
3574         if (ret)
3575                 goto out;
3576
3577         ret = obj_request->result;
3578         if (ret < 0)
3579                 goto out;
3580
3581         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3582         size = (size_t) obj_request->xferred;
3583         ceph_copy_from_page_vector(pages, buf, 0, size);
3584         rbd_assert(size <= (size_t)INT_MAX);
3585         ret = (int)size;
3586 out:
3587         if (obj_request)
3588                 rbd_obj_request_put(obj_request);
3589         else
3590                 ceph_release_page_vector(pages, page_count);
3591
3592         return ret;
3593 }
3594
3595 /*
3596  * Read the complete header for the given rbd device.  On successful
3597  * return, the rbd_dev->header field will contain up-to-date
3598  * information about the image.
3599  */
3600 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3601 {
3602         struct rbd_image_header_ondisk *ondisk = NULL;
3603         u32 snap_count = 0;
3604         u64 names_size = 0;
3605         u32 want_count;
3606         int ret;
3607
3608         /*
3609          * The complete header will include an array of its 64-bit
3610          * snapshot ids, followed by the names of those snapshots as
3611          * a contiguous block of NUL-terminated strings.  Note that
3612          * the number of snapshots could change by the time we read
3613          * it in, in which case we re-read it.
3614          */
3615         do {
3616                 size_t size;
3617
3618                 kfree(ondisk);
3619
3620                 size = sizeof (*ondisk);
3621                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3622                 size += names_size;
3623                 ondisk = kmalloc(size, GFP_KERNEL);
3624                 if (!ondisk)
3625                         return -ENOMEM;
3626
3627                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3628                                        0, size, ondisk);
3629                 if (ret < 0)
3630                         goto out;
3631                 if ((size_t)ret < size) {
3632                         ret = -ENXIO;
3633                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3634                                 size, ret);
3635                         goto out;
3636                 }
3637                 if (!rbd_dev_ondisk_valid(ondisk)) {
3638                         ret = -ENXIO;
3639                         rbd_warn(rbd_dev, "invalid header");
3640                         goto out;
3641                 }
3642
3643                 names_size = le64_to_cpu(ondisk->snap_names_len);
3644                 want_count = snap_count;
3645                 snap_count = le32_to_cpu(ondisk->snap_count);
3646         } while (snap_count != want_count);
3647
3648         ret = rbd_header_from_disk(rbd_dev, ondisk);
3649 out:
3650         kfree(ondisk);
3651
3652         return ret;
3653 }
3654
3655 /*
3656  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3657  * has disappeared from the (just updated) snapshot context.
3658  */
3659 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3660 {
3661         u64 snap_id;
3662
3663         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3664                 return;
3665
3666         snap_id = rbd_dev->spec->snap_id;
3667         if (snap_id == CEPH_NOSNAP)
3668                 return;
3669
3670         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3671                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3672 }
3673
3674 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3675 {
3676         sector_t size;
3677         bool removing;
3678
3679         /*
3680          * Don't hold the lock while doing disk operations,
3681          * or lock ordering will conflict with the bdev mutex via:
3682          * rbd_add() -> blkdev_get() -> rbd_open()
3683          */
3684         spin_lock_irq(&rbd_dev->lock);
3685         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3686         spin_unlock_irq(&rbd_dev->lock);
3687         /*
3688          * If the device is being removed, rbd_dev->disk has
3689          * been destroyed, so don't try to update its size
3690          */
3691         if (!removing) {
3692                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3693                 dout("setting size to %llu sectors", (unsigned long long)size);
3694                 set_capacity(rbd_dev->disk, size);
3695                 revalidate_disk(rbd_dev->disk);
3696         }
3697 }
3698
3699 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3700 {
3701         u64 mapping_size;
3702         int ret;
3703
3704         down_write(&rbd_dev->header_rwsem);
3705         mapping_size = rbd_dev->mapping.size;
3706
3707         ret = rbd_dev_header_info(rbd_dev);
3708         if (ret)
3709                 return ret;
3710
3711         /*
3712          * If there is a parent, see if it has disappeared due to the
3713          * mapped image getting flattened.
3714          */
3715         if (rbd_dev->parent) {
3716                 ret = rbd_dev_v2_parent_info(rbd_dev);
3717                 if (ret)
3718                         return ret;
3719         }
3720
3721         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3722                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3723                         rbd_dev->mapping.size = rbd_dev->header.image_size;
3724         } else {
3725                 /* validate mapped snapshot's EXISTS flag */
3726                 rbd_exists_validate(rbd_dev);
3727         }
3728
3729         up_write(&rbd_dev->header_rwsem);
3730
3731         if (mapping_size != rbd_dev->mapping.size)
3732                 rbd_dev_update_size(rbd_dev);
3733
3734         return 0;
3735 }
3736
3737 static int rbd_init_disk(struct rbd_device *rbd_dev)
3738 {
3739         struct gendisk *disk;
3740         struct request_queue *q;
3741         u64 segment_size;
3742
3743         /* create gendisk info */
3744         disk = alloc_disk(single_major ?
3745                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3746                           RBD_MINORS_PER_MAJOR);
3747         if (!disk)
3748                 return -ENOMEM;
3749
3750         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3751                  rbd_dev->dev_id);
3752         disk->major = rbd_dev->major;
3753         disk->first_minor = rbd_dev->minor;
3754         if (single_major)
3755                 disk->flags |= GENHD_FL_EXT_DEVT;
3756         disk->fops = &rbd_bd_ops;
3757         disk->private_data = rbd_dev;
3758
3759         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3760         if (!q)
3761                 goto out_disk;
3762
3763         /* We use the default size, but let's be explicit about it. */
3764         blk_queue_physical_block_size(q, SECTOR_SIZE);
3765
3766         /* set io sizes to object size */
3767         segment_size = rbd_obj_bytes(&rbd_dev->header);
3768         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3769         blk_queue_max_segment_size(q, segment_size);
3770         blk_queue_io_min(q, segment_size);
3771         blk_queue_io_opt(q, segment_size);
3772
3773         /* enable the discard support */
3774         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3775         q->limits.discard_granularity = segment_size;
3776         q->limits.discard_alignment = segment_size;
3777
3778         blk_queue_merge_bvec(q, rbd_merge_bvec);
3779         disk->queue = q;
3780
3781         q->queuedata = rbd_dev;
3782
3783         rbd_dev->disk = disk;
3784
3785         return 0;
3786 out_disk:
3787         put_disk(disk);
3788
3789         return -ENOMEM;
3790 }
3791
3792 /*
3793   sysfs
3794 */
3795
3796 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3797 {
3798         return container_of(dev, struct rbd_device, dev);
3799 }
3800
3801 static ssize_t rbd_size_show(struct device *dev,
3802                              struct device_attribute *attr, char *buf)
3803 {
3804         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3805
3806         return sprintf(buf, "%llu\n",
3807                 (unsigned long long)rbd_dev->mapping.size);
3808 }
3809
3810 /*
3811  * Note this shows the features for whatever's mapped, which is not
3812  * necessarily the base image.
3813  */
3814 static ssize_t rbd_features_show(struct device *dev,
3815                              struct device_attribute *attr, char *buf)
3816 {
3817         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3818
3819         return sprintf(buf, "0x%016llx\n",
3820                         (unsigned long long)rbd_dev->mapping.features);
3821 }
3822
3823 static ssize_t rbd_major_show(struct device *dev,
3824                               struct device_attribute *attr, char *buf)
3825 {
3826         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3827
3828         if (rbd_dev->major)
3829                 return sprintf(buf, "%d\n", rbd_dev->major);
3830
3831         return sprintf(buf, "(none)\n");
3832 }
3833
3834 static ssize_t rbd_minor_show(struct device *dev,
3835                               struct device_attribute *attr, char *buf)
3836 {
3837         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3838
3839         return sprintf(buf, "%d\n", rbd_dev->minor);
3840 }
3841
3842 static ssize_t rbd_client_id_show(struct device *dev,
3843                                   struct device_attribute *attr, char *buf)
3844 {
3845         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3846
3847         return sprintf(buf, "client%lld\n",
3848                         ceph_client_id(rbd_dev->rbd_client->client));
3849 }
3850
3851 static ssize_t rbd_pool_show(struct device *dev,
3852                              struct device_attribute *attr, char *buf)
3853 {
3854         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3855
3856         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3857 }
3858
3859 static ssize_t rbd_pool_id_show(struct device *dev,
3860                              struct device_attribute *attr, char *buf)
3861 {
3862         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3863
3864         return sprintf(buf, "%llu\n",
3865                         (unsigned long long) rbd_dev->spec->pool_id);
3866 }
3867
3868 static ssize_t rbd_name_show(struct device *dev,
3869                              struct device_attribute *attr, char *buf)
3870 {
3871         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3872
3873         if (rbd_dev->spec->image_name)
3874                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3875
3876         return sprintf(buf, "(unknown)\n");
3877 }
3878
3879 static ssize_t rbd_image_id_show(struct device *dev,
3880                              struct device_attribute *attr, char *buf)
3881 {
3882         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3883
3884         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3885 }
3886
3887 /*
3888  * Shows the name of the currently-mapped snapshot (or
3889  * RBD_SNAP_HEAD_NAME for the base image).
3890  */
3891 static ssize_t rbd_snap_show(struct device *dev,
3892                              struct device_attribute *attr,
3893                              char *buf)
3894 {
3895         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3896
3897         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3898 }
3899
3900 /*
3901  * For a v2 image, shows the chain of parent images, separated by empty
3902  * lines.  For v1 images or if there is no parent, shows "(no parent
3903  * image)".
3904  */
3905 static ssize_t rbd_parent_show(struct device *dev,
3906                                struct device_attribute *attr,
3907                                char *buf)
3908 {
3909         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3910         ssize_t count = 0;
3911
3912         if (!rbd_dev->parent)
3913                 return sprintf(buf, "(no parent image)\n");
3914
3915         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3916                 struct rbd_spec *spec = rbd_dev->parent_spec;
3917
3918                 count += sprintf(&buf[count], "%s"
3919                             "pool_id %llu\npool_name %s\n"
3920                             "image_id %s\nimage_name %s\n"
3921                             "snap_id %llu\nsnap_name %s\n"
3922                             "overlap %llu\n",
3923                             !count ? "" : "\n", /* first? */
3924                             spec->pool_id, spec->pool_name,
3925                             spec->image_id, spec->image_name ?: "(unknown)",
3926                             spec->snap_id, spec->snap_name,
3927                             rbd_dev->parent_overlap);
3928         }
3929
3930         return count;
3931 }
3932
3933 static ssize_t rbd_image_refresh(struct device *dev,
3934                                  struct device_attribute *attr,
3935                                  const char *buf,
3936                                  size_t size)
3937 {
3938         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3939         int ret;
3940
3941         ret = rbd_dev_refresh(rbd_dev);
3942         if (ret)
3943                 return ret;
3944
3945         return size;
3946 }
3947
3948 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3949 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3950 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3951 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3952 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3953 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3954 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3955 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3956 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3957 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3958 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3959 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3960
3961 static struct attribute *rbd_attrs[] = {
3962         &dev_attr_size.attr,
3963         &dev_attr_features.attr,
3964         &dev_attr_major.attr,
3965         &dev_attr_minor.attr,
3966         &dev_attr_client_id.attr,
3967         &dev_attr_pool.attr,
3968         &dev_attr_pool_id.attr,
3969         &dev_attr_name.attr,
3970         &dev_attr_image_id.attr,
3971         &dev_attr_current_snap.attr,
3972         &dev_attr_parent.attr,
3973         &dev_attr_refresh.attr,
3974         NULL
3975 };
3976
3977 static struct attribute_group rbd_attr_group = {
3978         .attrs = rbd_attrs,
3979 };
3980
3981 static const struct attribute_group *rbd_attr_groups[] = {
3982         &rbd_attr_group,
3983         NULL
3984 };
3985
3986 static void rbd_sysfs_dev_release(struct device *dev)
3987 {
3988 }
3989
3990 static struct device_type rbd_device_type = {
3991         .name           = "rbd",
3992         .groups         = rbd_attr_groups,
3993         .release        = rbd_sysfs_dev_release,
3994 };
3995
3996 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3997 {
3998         kref_get(&spec->kref);
3999
4000         return spec;
4001 }
4002
4003 static void rbd_spec_free(struct kref *kref);
4004 static void rbd_spec_put(struct rbd_spec *spec)
4005 {
4006         if (spec)
4007                 kref_put(&spec->kref, rbd_spec_free);
4008 }
4009
4010 static struct rbd_spec *rbd_spec_alloc(void)
4011 {
4012         struct rbd_spec *spec;
4013
4014         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4015         if (!spec)
4016                 return NULL;
4017
4018         spec->pool_id = CEPH_NOPOOL;
4019         spec->snap_id = CEPH_NOSNAP;
4020         kref_init(&spec->kref);
4021
4022         return spec;
4023 }
4024
4025 static void rbd_spec_free(struct kref *kref)
4026 {
4027         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4028
4029         kfree(spec->pool_name);
4030         kfree(spec->image_id);
4031         kfree(spec->image_name);
4032         kfree(spec->snap_name);
4033         kfree(spec);
4034 }
4035
4036 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4037                                 struct rbd_spec *spec)
4038 {
4039         struct rbd_device *rbd_dev;
4040
4041         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4042         if (!rbd_dev)
4043                 return NULL;
4044
4045         spin_lock_init(&rbd_dev->lock);
4046         INIT_LIST_HEAD(&rbd_dev->rq_queue);
4047         INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4048         rbd_dev->flags = 0;
4049         atomic_set(&rbd_dev->parent_ref, 0);
4050         INIT_LIST_HEAD(&rbd_dev->node);
4051         init_rwsem(&rbd_dev->header_rwsem);
4052
4053         rbd_dev->spec = spec;
4054         rbd_dev->rbd_client = rbdc;
4055
4056         /* Initialize the layout used for all rbd requests */
4057
4058         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4059         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4060         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4061         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4062
4063         return rbd_dev;
4064 }
4065
4066 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4067 {
4068         rbd_put_client(rbd_dev->rbd_client);
4069         rbd_spec_put(rbd_dev->spec);
4070         kfree(rbd_dev);
4071 }
4072
4073 /*
4074  * Get the size and object order for an image snapshot, or if
4075  * snap_id is CEPH_NOSNAP, gets this information for the base
4076  * image.
4077  */
4078 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4079                                 u8 *order, u64 *snap_size)
4080 {
4081         __le64 snapid = cpu_to_le64(snap_id);
4082         int ret;
4083         struct {
4084                 u8 order;
4085                 __le64 size;
4086         } __attribute__ ((packed)) size_buf = { 0 };
4087
4088         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4089                                 "rbd", "get_size",
4090                                 &snapid, sizeof (snapid),
4091                                 &size_buf, sizeof (size_buf));
4092         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4093         if (ret < 0)
4094                 return ret;
4095         if (ret < sizeof (size_buf))
4096                 return -ERANGE;
4097
4098         if (order) {
4099                 *order = size_buf.order;
4100                 dout("  order %u", (unsigned int)*order);
4101         }
4102         *snap_size = le64_to_cpu(size_buf.size);
4103
4104         dout("  snap_id 0x%016llx snap_size = %llu\n",
4105                 (unsigned long long)snap_id,
4106                 (unsigned long long)*snap_size);
4107
4108         return 0;
4109 }
4110
4111 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4112 {
4113         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4114                                         &rbd_dev->header.obj_order,
4115                                         &rbd_dev->header.image_size);
4116 }
4117
4118 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4119 {
4120         void *reply_buf;
4121         int ret;
4122         void *p;
4123
4124         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4125         if (!reply_buf)
4126                 return -ENOMEM;
4127
4128         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4129                                 "rbd", "get_object_prefix", NULL, 0,
4130                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4131         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4132         if (ret < 0)
4133                 goto out;
4134
4135         p = reply_buf;
4136         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4137                                                 p + ret, NULL, GFP_NOIO);
4138         ret = 0;
4139
4140         if (IS_ERR(rbd_dev->header.object_prefix)) {
4141                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4142                 rbd_dev->header.object_prefix = NULL;
4143         } else {
4144                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4145         }
4146 out:
4147         kfree(reply_buf);
4148
4149         return ret;
4150 }
4151
4152 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4153                 u64 *snap_features)
4154 {
4155         __le64 snapid = cpu_to_le64(snap_id);
4156         struct {
4157                 __le64 features;
4158                 __le64 incompat;
4159         } __attribute__ ((packed)) features_buf = { 0 };
4160         u64 incompat;
4161         int ret;
4162
4163         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4164                                 "rbd", "get_features",
4165                                 &snapid, sizeof (snapid),
4166                                 &features_buf, sizeof (features_buf));
4167         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4168         if (ret < 0)
4169                 return ret;
4170         if (ret < sizeof (features_buf))
4171                 return -ERANGE;
4172
4173         incompat = le64_to_cpu(features_buf.incompat);
4174         if (incompat & ~RBD_FEATURES_SUPPORTED)
4175                 return -ENXIO;
4176
4177         *snap_features = le64_to_cpu(features_buf.features);
4178
4179         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4180                 (unsigned long long)snap_id,
4181                 (unsigned long long)*snap_features,
4182                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4183
4184         return 0;
4185 }
4186
4187 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4188 {
4189         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4190                                                 &rbd_dev->header.features);
4191 }
4192
4193 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4194 {
4195         struct rbd_spec *parent_spec;
4196         size_t size;
4197         void *reply_buf = NULL;
4198         __le64 snapid;
4199         void *p;
4200         void *end;
4201         u64 pool_id;
4202         char *image_id;
4203         u64 snap_id;
4204         u64 overlap;
4205         int ret;
4206
4207         parent_spec = rbd_spec_alloc();
4208         if (!parent_spec)
4209                 return -ENOMEM;
4210
4211         size = sizeof (__le64) +                                /* pool_id */
4212                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4213                 sizeof (__le64) +                               /* snap_id */
4214                 sizeof (__le64);                                /* overlap */
4215         reply_buf = kmalloc(size, GFP_KERNEL);
4216         if (!reply_buf) {
4217                 ret = -ENOMEM;
4218                 goto out_err;
4219         }
4220
4221         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4222         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4223                                 "rbd", "get_parent",
4224                                 &snapid, sizeof (snapid),
4225                                 reply_buf, size);
4226         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4227         if (ret < 0)
4228                 goto out_err;
4229
4230         p = reply_buf;
4231         end = reply_buf + ret;
4232         ret = -ERANGE;
4233         ceph_decode_64_safe(&p, end, pool_id, out_err);
4234         if (pool_id == CEPH_NOPOOL) {
4235                 /*
4236                  * Either the parent never existed, or we have
4237                  * record of it but the image got flattened so it no
4238                  * longer has a parent.  When the parent of a
4239                  * layered image disappears we immediately set the
4240                  * overlap to 0.  The effect of this is that all new
4241                  * requests will be treated as if the image had no
4242                  * parent.
4243                  */
4244                 if (rbd_dev->parent_overlap) {
4245                         rbd_dev->parent_overlap = 0;
4246                         smp_mb();
4247                         rbd_dev_parent_put(rbd_dev);
4248                         pr_info("%s: clone image has been flattened\n",
4249                                 rbd_dev->disk->disk_name);
4250                 }
4251
4252                 goto out;       /* No parent?  No problem. */
4253         }
4254
4255         /* The ceph file layout needs to fit pool id in 32 bits */
4256
4257         ret = -EIO;
4258         if (pool_id > (u64)U32_MAX) {
4259                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4260                         (unsigned long long)pool_id, U32_MAX);
4261                 goto out_err;
4262         }
4263
4264         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4265         if (IS_ERR(image_id)) {
4266                 ret = PTR_ERR(image_id);
4267                 goto out_err;
4268         }
4269         ceph_decode_64_safe(&p, end, snap_id, out_err);
4270         ceph_decode_64_safe(&p, end, overlap, out_err);
4271
4272         /*
4273          * The parent won't change (except when the clone is
4274          * flattened, already handled that).  So we only need to
4275          * record the parent spec we have not already done so.
4276          */
4277         if (!rbd_dev->parent_spec) {
4278                 parent_spec->pool_id = pool_id;
4279                 parent_spec->image_id = image_id;
4280                 parent_spec->snap_id = snap_id;
4281                 rbd_dev->parent_spec = parent_spec;
4282                 parent_spec = NULL;     /* rbd_dev now owns this */
4283         } else {
4284                 kfree(image_id);
4285         }
4286
4287         /*
4288          * We always update the parent overlap.  If it's zero we
4289          * treat it specially.
4290          */
4291         rbd_dev->parent_overlap = overlap;
4292         smp_mb();
4293         if (!overlap) {
4294
4295                 /* A null parent_spec indicates it's the initial probe */
4296
4297                 if (parent_spec) {
4298                         /*
4299                          * The overlap has become zero, so the clone
4300                          * must have been resized down to 0 at some
4301                          * point.  Treat this the same as a flatten.
4302                          */
4303                         rbd_dev_parent_put(rbd_dev);
4304                         pr_info("%s: clone image now standalone\n",
4305                                 rbd_dev->disk->disk_name);
4306                 } else {
4307                         /*
4308                          * For the initial probe, if we find the
4309                          * overlap is zero we just pretend there was
4310                          * no parent image.
4311                          */
4312                         rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4313                 }
4314         }
4315 out:
4316         ret = 0;
4317 out_err:
4318         kfree(reply_buf);
4319         rbd_spec_put(parent_spec);
4320
4321         return ret;
4322 }
4323
4324 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4325 {
4326         struct {
4327                 __le64 stripe_unit;
4328                 __le64 stripe_count;
4329         } __attribute__ ((packed)) striping_info_buf = { 0 };
4330         size_t size = sizeof (striping_info_buf);
4331         void *p;
4332         u64 obj_size;
4333         u64 stripe_unit;
4334         u64 stripe_count;
4335         int ret;
4336
4337         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4338                                 "rbd", "get_stripe_unit_count", NULL, 0,
4339                                 (char *)&striping_info_buf, size);
4340         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4341         if (ret < 0)
4342                 return ret;
4343         if (ret < size)
4344                 return -ERANGE;
4345
4346         /*
4347          * We don't actually support the "fancy striping" feature
4348          * (STRIPINGV2) yet, but if the striping sizes are the
4349          * defaults the behavior is the same as before.  So find
4350          * out, and only fail if the image has non-default values.
4351          */
4352         ret = -EINVAL;
4353         obj_size = (u64)1 << rbd_dev->header.obj_order;
4354         p = &striping_info_buf;
4355         stripe_unit = ceph_decode_64(&p);
4356         if (stripe_unit != obj_size) {
4357                 rbd_warn(rbd_dev, "unsupported stripe unit "
4358                                 "(got %llu want %llu)",
4359                                 stripe_unit, obj_size);
4360                 return -EINVAL;
4361         }
4362         stripe_count = ceph_decode_64(&p);
4363         if (stripe_count != 1) {
4364                 rbd_warn(rbd_dev, "unsupported stripe count "
4365                                 "(got %llu want 1)", stripe_count);
4366                 return -EINVAL;
4367         }
4368         rbd_dev->header.stripe_unit = stripe_unit;
4369         rbd_dev->header.stripe_count = stripe_count;
4370
4371         return 0;
4372 }
4373
4374 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4375 {
4376         size_t image_id_size;
4377         char *image_id;
4378         void *p;
4379         void *end;
4380         size_t size;
4381         void *reply_buf = NULL;
4382         size_t len = 0;
4383         char *image_name = NULL;
4384         int ret;
4385
4386         rbd_assert(!rbd_dev->spec->image_name);
4387
4388         len = strlen(rbd_dev->spec->image_id);
4389         image_id_size = sizeof (__le32) + len;
4390         image_id = kmalloc(image_id_size, GFP_KERNEL);
4391         if (!image_id)
4392                 return NULL;
4393
4394         p = image_id;
4395         end = image_id + image_id_size;
4396         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4397
4398         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4399         reply_buf = kmalloc(size, GFP_KERNEL);
4400         if (!reply_buf)
4401                 goto out;
4402
4403         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4404                                 "rbd", "dir_get_name",
4405                                 image_id, image_id_size,
4406                                 reply_buf, size);
4407         if (ret < 0)
4408                 goto out;
4409         p = reply_buf;
4410         end = reply_buf + ret;
4411
4412         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4413         if (IS_ERR(image_name))
4414                 image_name = NULL;
4415         else
4416                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4417 out:
4418         kfree(reply_buf);
4419         kfree(image_id);
4420
4421         return image_name;
4422 }
4423
4424 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4425 {
4426         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4427         const char *snap_name;
4428         u32 which = 0;
4429
4430         /* Skip over names until we find the one we are looking for */
4431
4432         snap_name = rbd_dev->header.snap_names;
4433         while (which < snapc->num_snaps) {
4434                 if (!strcmp(name, snap_name))
4435                         return snapc->snaps[which];
4436                 snap_name += strlen(snap_name) + 1;
4437                 which++;
4438         }
4439         return CEPH_NOSNAP;
4440 }
4441
4442 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4443 {
4444         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4445         u32 which;
4446         bool found = false;
4447         u64 snap_id;
4448
4449         for (which = 0; !found && which < snapc->num_snaps; which++) {
4450                 const char *snap_name;
4451
4452                 snap_id = snapc->snaps[which];
4453                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4454                 if (IS_ERR(snap_name)) {
4455                         /* ignore no-longer existing snapshots */
4456                         if (PTR_ERR(snap_name) == -ENOENT)
4457                                 continue;
4458                         else
4459                                 break;
4460                 }
4461                 found = !strcmp(name, snap_name);
4462                 kfree(snap_name);
4463         }
4464         return found ? snap_id : CEPH_NOSNAP;
4465 }
4466
4467 /*
4468  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4469  * no snapshot by that name is found, or if an error occurs.
4470  */
4471 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4472 {
4473         if (rbd_dev->image_format == 1)
4474                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4475
4476         return rbd_v2_snap_id_by_name(rbd_dev, name);
4477 }
4478
4479 /*
4480  * An image being mapped will have everything but the snap id.
4481  */
4482 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4483 {
4484         struct rbd_spec *spec = rbd_dev->spec;
4485
4486         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4487         rbd_assert(spec->image_id && spec->image_name);
4488         rbd_assert(spec->snap_name);
4489
4490         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4491                 u64 snap_id;
4492
4493                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4494                 if (snap_id == CEPH_NOSNAP)
4495                         return -ENOENT;
4496
4497                 spec->snap_id = snap_id;
4498         } else {
4499                 spec->snap_id = CEPH_NOSNAP;
4500         }
4501
4502         return 0;
4503 }
4504
4505 /*
4506  * A parent image will have all ids but none of the names.
4507  *
4508  * All names in an rbd spec are dynamically allocated.  It's OK if we
4509  * can't figure out the name for an image id.
4510  */
4511 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4512 {
4513         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4514         struct rbd_spec *spec = rbd_dev->spec;
4515         const char *pool_name;
4516         const char *image_name;
4517         const char *snap_name;
4518         int ret;
4519
4520         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4521         rbd_assert(spec->image_id);
4522         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4523
4524         /* Get the pool name; we have to make our own copy of this */
4525
4526         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4527         if (!pool_name) {
4528                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4529                 return -EIO;
4530         }
4531         pool_name = kstrdup(pool_name, GFP_KERNEL);
4532         if (!pool_name)
4533                 return -ENOMEM;
4534
4535         /* Fetch the image name; tolerate failure here */
4536
4537         image_name = rbd_dev_image_name(rbd_dev);
4538         if (!image_name)
4539                 rbd_warn(rbd_dev, "unable to get image name");
4540
4541         /* Fetch the snapshot name */
4542
4543         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4544         if (IS_ERR(snap_name)) {
4545                 ret = PTR_ERR(snap_name);
4546                 goto out_err;
4547         }
4548
4549         spec->pool_name = pool_name;
4550         spec->image_name = image_name;
4551         spec->snap_name = snap_name;
4552
4553         return 0;
4554
4555 out_err:
4556         kfree(image_name);
4557         kfree(pool_name);
4558         return ret;
4559 }
4560
4561 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4562 {
4563         size_t size;
4564         int ret;
4565         void *reply_buf;
4566         void *p;
4567         void *end;
4568         u64 seq;
4569         u32 snap_count;
4570         struct ceph_snap_context *snapc;
4571         u32 i;
4572
4573         /*
4574          * We'll need room for the seq value (maximum snapshot id),
4575          * snapshot count, and array of that many snapshot ids.
4576          * For now we have a fixed upper limit on the number we're
4577          * prepared to receive.
4578          */
4579         size = sizeof (__le64) + sizeof (__le32) +
4580                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4581         reply_buf = kzalloc(size, GFP_KERNEL);
4582         if (!reply_buf)
4583                 return -ENOMEM;
4584
4585         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4586                                 "rbd", "get_snapcontext", NULL, 0,
4587                                 reply_buf, size);
4588         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4589         if (ret < 0)
4590                 goto out;
4591
4592         p = reply_buf;
4593         end = reply_buf + ret;
4594         ret = -ERANGE;
4595         ceph_decode_64_safe(&p, end, seq, out);
4596         ceph_decode_32_safe(&p, end, snap_count, out);
4597
4598         /*
4599          * Make sure the reported number of snapshot ids wouldn't go
4600          * beyond the end of our buffer.  But before checking that,
4601          * make sure the computed size of the snapshot context we
4602          * allocate is representable in a size_t.
4603          */
4604         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4605                                  / sizeof (u64)) {
4606                 ret = -EINVAL;
4607                 goto out;
4608         }
4609         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4610                 goto out;
4611         ret = 0;
4612
4613         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4614         if (!snapc) {
4615                 ret = -ENOMEM;
4616                 goto out;
4617         }
4618         snapc->seq = seq;
4619         for (i = 0; i < snap_count; i++)
4620                 snapc->snaps[i] = ceph_decode_64(&p);
4621
4622         ceph_put_snap_context(rbd_dev->header.snapc);
4623         rbd_dev->header.snapc = snapc;
4624
4625         dout("  snap context seq = %llu, snap_count = %u\n",
4626                 (unsigned long long)seq, (unsigned int)snap_count);
4627 out:
4628         kfree(reply_buf);
4629
4630         return ret;
4631 }
4632
4633 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4634                                         u64 snap_id)
4635 {
4636         size_t size;
4637         void *reply_buf;
4638         __le64 snapid;
4639         int ret;
4640         void *p;
4641         void *end;
4642         char *snap_name;
4643
4644         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4645         reply_buf = kmalloc(size, GFP_KERNEL);
4646         if (!reply_buf)
4647                 return ERR_PTR(-ENOMEM);
4648
4649         snapid = cpu_to_le64(snap_id);
4650         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4651                                 "rbd", "get_snapshot_name",
4652                                 &snapid, sizeof (snapid),
4653                                 reply_buf, size);
4654         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4655         if (ret < 0) {
4656                 snap_name = ERR_PTR(ret);
4657                 goto out;
4658         }
4659
4660         p = reply_buf;
4661         end = reply_buf + ret;
4662         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4663         if (IS_ERR(snap_name))
4664                 goto out;
4665
4666         dout("  snap_id 0x%016llx snap_name = %s\n",
4667                 (unsigned long long)snap_id, snap_name);
4668 out:
4669         kfree(reply_buf);
4670
4671         return snap_name;
4672 }
4673
4674 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4675 {
4676         bool first_time = rbd_dev->header.object_prefix == NULL;
4677         int ret;
4678
4679         ret = rbd_dev_v2_image_size(rbd_dev);
4680         if (ret)
4681                 return ret;
4682
4683         if (first_time) {
4684                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4685                 if (ret)
4686                         return ret;
4687         }
4688
4689         ret = rbd_dev_v2_snap_context(rbd_dev);
4690         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4691
4692         return ret;
4693 }
4694
4695 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4696 {
4697         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4698
4699         if (rbd_dev->image_format == 1)
4700                 return rbd_dev_v1_header_info(rbd_dev);
4701
4702         return rbd_dev_v2_header_info(rbd_dev);
4703 }
4704
4705 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4706 {
4707         struct device *dev;
4708         int ret;
4709
4710         dev = &rbd_dev->dev;
4711         dev->bus = &rbd_bus_type;
4712         dev->type = &rbd_device_type;
4713         dev->parent = &rbd_root_dev;
4714         dev->release = rbd_dev_device_release;
4715         dev_set_name(dev, "%d", rbd_dev->dev_id);
4716         ret = device_register(dev);
4717
4718         return ret;
4719 }
4720
4721 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4722 {
4723         device_unregister(&rbd_dev->dev);
4724 }
4725
4726 /*
4727  * Get a unique rbd identifier for the given new rbd_dev, and add
4728  * the rbd_dev to the global list.
4729  */
4730 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4731 {
4732         int new_dev_id;
4733
4734         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4735                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4736                                     GFP_KERNEL);
4737         if (new_dev_id < 0)
4738                 return new_dev_id;
4739
4740         rbd_dev->dev_id = new_dev_id;
4741
4742         spin_lock(&rbd_dev_list_lock);
4743         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4744         spin_unlock(&rbd_dev_list_lock);
4745
4746         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4747
4748         return 0;
4749 }
4750
4751 /*
4752  * Remove an rbd_dev from the global list, and record that its
4753  * identifier is no longer in use.
4754  */
4755 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4756 {
4757         spin_lock(&rbd_dev_list_lock);
4758         list_del_init(&rbd_dev->node);
4759         spin_unlock(&rbd_dev_list_lock);
4760
4761         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4762
4763         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4764 }
4765
4766 /*
4767  * Skips over white space at *buf, and updates *buf to point to the
4768  * first found non-space character (if any). Returns the length of
4769  * the token (string of non-white space characters) found.  Note
4770  * that *buf must be terminated with '\0'.
4771  */
4772 static inline size_t next_token(const char **buf)
4773 {
4774         /*
4775         * These are the characters that produce nonzero for
4776         * isspace() in the "C" and "POSIX" locales.
4777         */
4778         const char *spaces = " \f\n\r\t\v";
4779
4780         *buf += strspn(*buf, spaces);   /* Find start of token */
4781
4782         return strcspn(*buf, spaces);   /* Return token length */
4783 }
4784
4785 /*
4786  * Finds the next token in *buf, and if the provided token buffer is
4787  * big enough, copies the found token into it.  The result, if
4788  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4789  * must be terminated with '\0' on entry.
4790  *
4791  * Returns the length of the token found (not including the '\0').
4792  * Return value will be 0 if no token is found, and it will be >=
4793  * token_size if the token would not fit.
4794  *
4795  * The *buf pointer will be updated to point beyond the end of the
4796  * found token.  Note that this occurs even if the token buffer is
4797  * too small to hold it.
4798  */
4799 static inline size_t copy_token(const char **buf,
4800                                 char *token,
4801                                 size_t token_size)
4802 {
4803         size_t len;
4804
4805         len = next_token(buf);
4806         if (len < token_size) {
4807                 memcpy(token, *buf, len);
4808                 *(token + len) = '\0';
4809         }
4810         *buf += len;
4811
4812         return len;
4813 }
4814
4815 /*
4816  * Finds the next token in *buf, dynamically allocates a buffer big
4817  * enough to hold a copy of it, and copies the token into the new
4818  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4819  * that a duplicate buffer is created even for a zero-length token.
4820  *
4821  * Returns a pointer to the newly-allocated duplicate, or a null
4822  * pointer if memory for the duplicate was not available.  If
4823  * the lenp argument is a non-null pointer, the length of the token
4824  * (not including the '\0') is returned in *lenp.
4825  *
4826  * If successful, the *buf pointer will be updated to point beyond
4827  * the end of the found token.
4828  *
4829  * Note: uses GFP_KERNEL for allocation.
4830  */
4831 static inline char *dup_token(const char **buf, size_t *lenp)
4832 {
4833         char *dup;
4834         size_t len;
4835
4836         len = next_token(buf);
4837         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4838         if (!dup)
4839                 return NULL;
4840         *(dup + len) = '\0';
4841         *buf += len;
4842
4843         if (lenp)
4844                 *lenp = len;
4845
4846         return dup;
4847 }
4848
4849 /*
4850  * Parse the options provided for an "rbd add" (i.e., rbd image
4851  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4852  * and the data written is passed here via a NUL-terminated buffer.
4853  * Returns 0 if successful or an error code otherwise.
4854  *
4855  * The information extracted from these options is recorded in
4856  * the other parameters which return dynamically-allocated
4857  * structures:
4858  *  ceph_opts
4859  *      The address of a pointer that will refer to a ceph options
4860  *      structure.  Caller must release the returned pointer using
4861  *      ceph_destroy_options() when it is no longer needed.
4862  *  rbd_opts
4863  *      Address of an rbd options pointer.  Fully initialized by
4864  *      this function; caller must release with kfree().
4865  *  spec
4866  *      Address of an rbd image specification pointer.  Fully
4867  *      initialized by this function based on parsed options.
4868  *      Caller must release with rbd_spec_put().
4869  *
4870  * The options passed take this form:
4871  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4872  * where:
4873  *  <mon_addrs>
4874  *      A comma-separated list of one or more monitor addresses.
4875  *      A monitor address is an ip address, optionally followed
4876  *      by a port number (separated by a colon).
4877  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4878  *  <options>
4879  *      A comma-separated list of ceph and/or rbd options.
4880  *  <pool_name>
4881  *      The name of the rados pool containing the rbd image.
4882  *  <image_name>
4883  *      The name of the image in that pool to map.
4884  *  <snap_id>
4885  *      An optional snapshot id.  If provided, the mapping will
4886  *      present data from the image at the time that snapshot was
4887  *      created.  The image head is used if no snapshot id is
4888  *      provided.  Snapshot mappings are always read-only.
4889  */
4890 static int rbd_add_parse_args(const char *buf,
4891                                 struct ceph_options **ceph_opts,
4892                                 struct rbd_options **opts,
4893                                 struct rbd_spec **rbd_spec)
4894 {
4895         size_t len;
4896         char *options;
4897         const char *mon_addrs;
4898         char *snap_name;
4899         size_t mon_addrs_size;
4900         struct rbd_spec *spec = NULL;
4901         struct rbd_options *rbd_opts = NULL;
4902         struct ceph_options *copts;
4903         int ret;
4904
4905         /* The first four tokens are required */
4906
4907         len = next_token(&buf);
4908         if (!len) {
4909                 rbd_warn(NULL, "no monitor address(es) provided");
4910                 return -EINVAL;
4911         }
4912         mon_addrs = buf;
4913         mon_addrs_size = len + 1;
4914         buf += len;
4915
4916         ret = -EINVAL;
4917         options = dup_token(&buf, NULL);
4918         if (!options)
4919                 return -ENOMEM;
4920         if (!*options) {
4921                 rbd_warn(NULL, "no options provided");
4922                 goto out_err;
4923         }
4924
4925         spec = rbd_spec_alloc();
4926         if (!spec)
4927                 goto out_mem;
4928
4929         spec->pool_name = dup_token(&buf, NULL);
4930         if (!spec->pool_name)
4931                 goto out_mem;
4932         if (!*spec->pool_name) {
4933                 rbd_warn(NULL, "no pool name provided");
4934                 goto out_err;
4935         }
4936
4937         spec->image_name = dup_token(&buf, NULL);
4938         if (!spec->image_name)
4939                 goto out_mem;
4940         if (!*spec->image_name) {
4941                 rbd_warn(NULL, "no image name provided");
4942                 goto out_err;
4943         }
4944
4945         /*
4946          * Snapshot name is optional; default is to use "-"
4947          * (indicating the head/no snapshot).
4948          */
4949         len = next_token(&buf);
4950         if (!len) {
4951                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4952                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4953         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4954                 ret = -ENAMETOOLONG;
4955                 goto out_err;
4956         }
4957         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4958         if (!snap_name)
4959                 goto out_mem;
4960         *(snap_name + len) = '\0';
4961         spec->snap_name = snap_name;
4962
4963         /* Initialize all rbd options to the defaults */
4964
4965         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4966         if (!rbd_opts)
4967                 goto out_mem;
4968
4969         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4970
4971         copts = ceph_parse_options(options, mon_addrs,
4972                                         mon_addrs + mon_addrs_size - 1,
4973                                         parse_rbd_opts_token, rbd_opts);
4974         if (IS_ERR(copts)) {
4975                 ret = PTR_ERR(copts);
4976                 goto out_err;
4977         }
4978         kfree(options);
4979
4980         *ceph_opts = copts;
4981         *opts = rbd_opts;
4982         *rbd_spec = spec;
4983
4984         return 0;
4985 out_mem:
4986         ret = -ENOMEM;
4987 out_err:
4988         kfree(rbd_opts);
4989         rbd_spec_put(spec);
4990         kfree(options);
4991
4992         return ret;
4993 }
4994
4995 /*
4996  * Return pool id (>= 0) or a negative error code.
4997  */
4998 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4999 {
5000         u64 newest_epoch;
5001         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
5002         int tries = 0;
5003         int ret;
5004
5005 again:
5006         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5007         if (ret == -ENOENT && tries++ < 1) {
5008                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
5009                                                &newest_epoch);
5010                 if (ret < 0)
5011                         return ret;
5012
5013                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5014                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
5015                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5016                                                      newest_epoch, timeout);
5017                         goto again;
5018                 } else {
5019                         /* the osdmap we have is new enough */
5020                         return -ENOENT;
5021                 }
5022         }
5023
5024         return ret;
5025 }
5026
5027 /*
5028  * An rbd format 2 image has a unique identifier, distinct from the
5029  * name given to it by the user.  Internally, that identifier is
5030  * what's used to specify the names of objects related to the image.
5031  *
5032  * A special "rbd id" object is used to map an rbd image name to its
5033  * id.  If that object doesn't exist, then there is no v2 rbd image
5034  * with the supplied name.
5035  *
5036  * This function will record the given rbd_dev's image_id field if
5037  * it can be determined, and in that case will return 0.  If any
5038  * errors occur a negative errno will be returned and the rbd_dev's
5039  * image_id field will be unchanged (and should be NULL).
5040  */
5041 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5042 {
5043         int ret;
5044         size_t size;
5045         char *object_name;
5046         void *response;
5047         char *image_id;
5048
5049         /*
5050          * When probing a parent image, the image id is already
5051          * known (and the image name likely is not).  There's no
5052          * need to fetch the image id again in this case.  We
5053          * do still need to set the image format though.
5054          */
5055         if (rbd_dev->spec->image_id) {
5056                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5057
5058                 return 0;
5059         }
5060
5061         /*
5062          * First, see if the format 2 image id file exists, and if
5063          * so, get the image's persistent id from it.
5064          */
5065         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5066         object_name = kmalloc(size, GFP_NOIO);
5067         if (!object_name)
5068                 return -ENOMEM;
5069         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5070         dout("rbd id object name is %s\n", object_name);
5071
5072         /* Response will be an encoded string, which includes a length */
5073
5074         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5075         response = kzalloc(size, GFP_NOIO);
5076         if (!response) {
5077                 ret = -ENOMEM;
5078                 goto out;
5079         }
5080
5081         /* If it doesn't exist we'll assume it's a format 1 image */
5082
5083         ret = rbd_obj_method_sync(rbd_dev, object_name,
5084                                 "rbd", "get_id", NULL, 0,
5085                                 response, RBD_IMAGE_ID_LEN_MAX);
5086         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5087         if (ret == -ENOENT) {
5088                 image_id = kstrdup("", GFP_KERNEL);
5089                 ret = image_id ? 0 : -ENOMEM;
5090                 if (!ret)
5091                         rbd_dev->image_format = 1;
5092         } else if (ret >= 0) {
5093                 void *p = response;
5094
5095                 image_id = ceph_extract_encoded_string(&p, p + ret,
5096                                                 NULL, GFP_NOIO);
5097                 ret = PTR_ERR_OR_ZERO(image_id);
5098                 if (!ret)
5099                         rbd_dev->image_format = 2;
5100         }
5101
5102         if (!ret) {
5103                 rbd_dev->spec->image_id = image_id;
5104                 dout("image_id is %s\n", image_id);
5105         }
5106 out:
5107         kfree(response);
5108         kfree(object_name);
5109
5110         return ret;
5111 }
5112
5113 /*
5114  * Undo whatever state changes are made by v1 or v2 header info
5115  * call.
5116  */
5117 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5118 {
5119         struct rbd_image_header *header;
5120
5121         /* Drop parent reference unless it's already been done (or none) */
5122
5123         if (rbd_dev->parent_overlap)
5124                 rbd_dev_parent_put(rbd_dev);
5125
5126         /* Free dynamic fields from the header, then zero it out */
5127
5128         header = &rbd_dev->header;
5129         ceph_put_snap_context(header->snapc);
5130         kfree(header->snap_sizes);
5131         kfree(header->snap_names);
5132         kfree(header->object_prefix);
5133         memset(header, 0, sizeof (*header));
5134 }
5135
5136 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5137 {
5138         int ret;
5139
5140         ret = rbd_dev_v2_object_prefix(rbd_dev);
5141         if (ret)
5142                 goto out_err;
5143
5144         /*
5145          * Get the and check features for the image.  Currently the
5146          * features are assumed to never change.
5147          */
5148         ret = rbd_dev_v2_features(rbd_dev);
5149         if (ret)
5150                 goto out_err;
5151
5152         /* If the image supports fancy striping, get its parameters */
5153
5154         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5155                 ret = rbd_dev_v2_striping_info(rbd_dev);
5156                 if (ret < 0)
5157                         goto out_err;
5158         }
5159         /* No support for crypto and compression type format 2 images */
5160
5161         return 0;
5162 out_err:
5163         rbd_dev->header.features = 0;
5164         kfree(rbd_dev->header.object_prefix);
5165         rbd_dev->header.object_prefix = NULL;
5166
5167         return ret;
5168 }
5169
5170 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5171 {
5172         struct rbd_device *parent = NULL;
5173         struct rbd_spec *parent_spec;
5174         struct rbd_client *rbdc;
5175         int ret;
5176
5177         if (!rbd_dev->parent_spec)
5178                 return 0;
5179         /*
5180          * We need to pass a reference to the client and the parent
5181          * spec when creating the parent rbd_dev.  Images related by
5182          * parent/child relationships always share both.
5183          */
5184         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5185         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5186
5187         ret = -ENOMEM;
5188         parent = rbd_dev_create(rbdc, parent_spec);
5189         if (!parent)
5190                 goto out_err;
5191
5192         ret = rbd_dev_image_probe(parent, false);
5193         if (ret < 0)
5194                 goto out_err;
5195         rbd_dev->parent = parent;
5196         atomic_set(&rbd_dev->parent_ref, 1);
5197
5198         return 0;
5199 out_err:
5200         if (parent) {
5201                 rbd_dev_unparent(rbd_dev);
5202                 kfree(rbd_dev->header_name);
5203                 rbd_dev_destroy(parent);
5204         } else {
5205                 rbd_put_client(rbdc);
5206                 rbd_spec_put(parent_spec);
5207         }
5208
5209         return ret;
5210 }
5211
5212 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5213 {
5214         int ret;
5215
5216         /* Get an id and fill in device name. */
5217
5218         ret = rbd_dev_id_get(rbd_dev);
5219         if (ret)
5220                 return ret;
5221
5222         BUILD_BUG_ON(DEV_NAME_LEN
5223                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5224         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5225
5226         /* Record our major and minor device numbers. */
5227
5228         if (!single_major) {
5229                 ret = register_blkdev(0, rbd_dev->name);
5230                 if (ret < 0)
5231                         goto err_out_id;
5232
5233                 rbd_dev->major = ret;
5234                 rbd_dev->minor = 0;
5235         } else {
5236                 rbd_dev->major = rbd_major;
5237                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5238         }
5239
5240         /* Set up the blkdev mapping. */
5241
5242         ret = rbd_init_disk(rbd_dev);
5243         if (ret)
5244                 goto err_out_blkdev;
5245
5246         ret = rbd_dev_mapping_set(rbd_dev);
5247         if (ret)
5248                 goto err_out_disk;
5249
5250         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5251         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5252
5253         rbd_dev->rq_wq = alloc_workqueue("%s", 0, 0, rbd_dev->disk->disk_name);
5254         if (!rbd_dev->rq_wq) {
5255                 ret = -ENOMEM;
5256                 goto err_out_mapping;
5257         }
5258
5259         ret = rbd_bus_add_dev(rbd_dev);
5260         if (ret)
5261                 goto err_out_workqueue;
5262
5263         /* Everything's ready.  Announce the disk to the world. */
5264
5265         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5266         add_disk(rbd_dev->disk);
5267
5268         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5269                 (unsigned long long) rbd_dev->mapping.size);
5270
5271         return ret;
5272
5273 err_out_workqueue:
5274         destroy_workqueue(rbd_dev->rq_wq);
5275         rbd_dev->rq_wq = NULL;
5276 err_out_mapping:
5277         rbd_dev_mapping_clear(rbd_dev);
5278 err_out_disk:
5279         rbd_free_disk(rbd_dev);
5280 err_out_blkdev:
5281         if (!single_major)
5282                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5283 err_out_id:
5284         rbd_dev_id_put(rbd_dev);
5285         rbd_dev_mapping_clear(rbd_dev);
5286
5287         return ret;
5288 }
5289
5290 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5291 {
5292         struct rbd_spec *spec = rbd_dev->spec;
5293         size_t size;
5294
5295         /* Record the header object name for this rbd image. */
5296
5297         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5298
5299         if (rbd_dev->image_format == 1)
5300                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5301         else
5302                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5303
5304         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5305         if (!rbd_dev->header_name)
5306                 return -ENOMEM;
5307
5308         if (rbd_dev->image_format == 1)
5309                 sprintf(rbd_dev->header_name, "%s%s",
5310                         spec->image_name, RBD_SUFFIX);
5311         else
5312                 sprintf(rbd_dev->header_name, "%s%s",
5313                         RBD_HEADER_PREFIX, spec->image_id);
5314         return 0;
5315 }
5316
5317 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5318 {
5319         rbd_dev_unprobe(rbd_dev);
5320         kfree(rbd_dev->header_name);
5321         rbd_dev->header_name = NULL;
5322         rbd_dev->image_format = 0;
5323         kfree(rbd_dev->spec->image_id);
5324         rbd_dev->spec->image_id = NULL;
5325
5326         rbd_dev_destroy(rbd_dev);
5327 }
5328
5329 /*
5330  * Probe for the existence of the header object for the given rbd
5331  * device.  If this image is the one being mapped (i.e., not a
5332  * parent), initiate a watch on its header object before using that
5333  * object to get detailed information about the rbd image.
5334  */
5335 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5336 {
5337         int ret;
5338
5339         /*
5340          * Get the id from the image id object.  Unless there's an
5341          * error, rbd_dev->spec->image_id will be filled in with
5342          * a dynamically-allocated string, and rbd_dev->image_format
5343          * will be set to either 1 or 2.
5344          */
5345         ret = rbd_dev_image_id(rbd_dev);
5346         if (ret)
5347                 return ret;
5348
5349         ret = rbd_dev_header_name(rbd_dev);
5350         if (ret)
5351                 goto err_out_format;
5352
5353         if (mapping) {
5354                 ret = rbd_dev_header_watch_sync(rbd_dev);
5355                 if (ret)
5356                         goto out_header_name;
5357         }
5358
5359         ret = rbd_dev_header_info(rbd_dev);
5360         if (ret)
5361                 goto err_out_watch;
5362
5363         /*
5364          * If this image is the one being mapped, we have pool name and
5365          * id, image name and id, and snap name - need to fill snap id.
5366          * Otherwise this is a parent image, identified by pool, image
5367          * and snap ids - need to fill in names for those ids.
5368          */
5369         if (mapping)
5370                 ret = rbd_spec_fill_snap_id(rbd_dev);
5371         else
5372                 ret = rbd_spec_fill_names(rbd_dev);
5373         if (ret)
5374                 goto err_out_probe;
5375
5376         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5377                 ret = rbd_dev_v2_parent_info(rbd_dev);
5378                 if (ret)
5379                         goto err_out_probe;
5380
5381                 /*
5382                  * Need to warn users if this image is the one being
5383                  * mapped and has a parent.
5384                  */
5385                 if (mapping && rbd_dev->parent_spec)
5386                         rbd_warn(rbd_dev,
5387                                  "WARNING: kernel layering is EXPERIMENTAL!");
5388         }
5389
5390         ret = rbd_dev_probe_parent(rbd_dev);
5391         if (ret)
5392                 goto err_out_probe;
5393
5394         dout("discovered format %u image, header name is %s\n",
5395                 rbd_dev->image_format, rbd_dev->header_name);
5396         return 0;
5397
5398 err_out_probe:
5399         rbd_dev_unprobe(rbd_dev);
5400 err_out_watch:
5401         if (mapping)
5402                 rbd_dev_header_unwatch_sync(rbd_dev);
5403 out_header_name:
5404         kfree(rbd_dev->header_name);
5405         rbd_dev->header_name = NULL;
5406 err_out_format:
5407         rbd_dev->image_format = 0;
5408         kfree(rbd_dev->spec->image_id);
5409         rbd_dev->spec->image_id = NULL;
5410         return ret;
5411 }
5412
5413 static ssize_t do_rbd_add(struct bus_type *bus,
5414                           const char *buf,
5415                           size_t count)
5416 {
5417         struct rbd_device *rbd_dev = NULL;
5418         struct ceph_options *ceph_opts = NULL;
5419         struct rbd_options *rbd_opts = NULL;
5420         struct rbd_spec *spec = NULL;
5421         struct rbd_client *rbdc;
5422         bool read_only;
5423         int rc = -ENOMEM;
5424
5425         if (!try_module_get(THIS_MODULE))
5426                 return -ENODEV;
5427
5428         /* parse add command */
5429         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5430         if (rc < 0)
5431                 goto err_out_module;
5432         read_only = rbd_opts->read_only;
5433         kfree(rbd_opts);
5434         rbd_opts = NULL;        /* done with this */
5435
5436         rbdc = rbd_get_client(ceph_opts);
5437         if (IS_ERR(rbdc)) {
5438                 rc = PTR_ERR(rbdc);
5439                 goto err_out_args;
5440         }
5441
5442         /* pick the pool */
5443         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5444         if (rc < 0)
5445                 goto err_out_client;
5446         spec->pool_id = (u64)rc;
5447
5448         /* The ceph file layout needs to fit pool id in 32 bits */
5449
5450         if (spec->pool_id > (u64)U32_MAX) {
5451                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5452                                 (unsigned long long)spec->pool_id, U32_MAX);
5453                 rc = -EIO;
5454                 goto err_out_client;
5455         }
5456
5457         rbd_dev = rbd_dev_create(rbdc, spec);
5458         if (!rbd_dev)
5459                 goto err_out_client;
5460         rbdc = NULL;            /* rbd_dev now owns this */
5461         spec = NULL;            /* rbd_dev now owns this */
5462
5463         rc = rbd_dev_image_probe(rbd_dev, true);
5464         if (rc < 0)
5465                 goto err_out_rbd_dev;
5466
5467         /* If we are mapping a snapshot it must be marked read-only */
5468
5469         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5470                 read_only = true;
5471         rbd_dev->mapping.read_only = read_only;
5472
5473         rc = rbd_dev_device_setup(rbd_dev);
5474         if (rc) {
5475                 /*
5476                  * rbd_dev_header_unwatch_sync() can't be moved into
5477                  * rbd_dev_image_release() without refactoring, see
5478                  * commit 1f3ef78861ac.
5479                  */
5480                 rbd_dev_header_unwatch_sync(rbd_dev);
5481                 rbd_dev_image_release(rbd_dev);
5482                 goto err_out_module;
5483         }
5484
5485         return count;
5486
5487 err_out_rbd_dev:
5488         rbd_dev_destroy(rbd_dev);
5489 err_out_client:
5490         rbd_put_client(rbdc);
5491 err_out_args:
5492         rbd_spec_put(spec);
5493 err_out_module:
5494         module_put(THIS_MODULE);
5495
5496         dout("Error adding device %s\n", buf);
5497
5498         return (ssize_t)rc;
5499 }
5500
5501 static ssize_t rbd_add(struct bus_type *bus,
5502                        const char *buf,
5503                        size_t count)
5504 {
5505         if (single_major)
5506                 return -EINVAL;
5507
5508         return do_rbd_add(bus, buf, count);
5509 }
5510
5511 static ssize_t rbd_add_single_major(struct bus_type *bus,
5512                                     const char *buf,
5513                                     size_t count)
5514 {
5515         return do_rbd_add(bus, buf, count);
5516 }
5517
5518 static void rbd_dev_device_release(struct device *dev)
5519 {
5520         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5521
5522         destroy_workqueue(rbd_dev->rq_wq);
5523         rbd_free_disk(rbd_dev);
5524         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5525         rbd_dev_mapping_clear(rbd_dev);
5526         if (!single_major)
5527                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5528         rbd_dev_id_put(rbd_dev);
5529         rbd_dev_mapping_clear(rbd_dev);
5530 }
5531
5532 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5533 {
5534         while (rbd_dev->parent) {
5535                 struct rbd_device *first = rbd_dev;
5536                 struct rbd_device *second = first->parent;
5537                 struct rbd_device *third;
5538
5539                 /*
5540                  * Follow to the parent with no grandparent and
5541                  * remove it.
5542                  */
5543                 while (second && (third = second->parent)) {
5544                         first = second;
5545                         second = third;
5546                 }
5547                 rbd_assert(second);
5548                 rbd_dev_image_release(second);
5549                 first->parent = NULL;
5550                 first->parent_overlap = 0;
5551
5552                 rbd_assert(first->parent_spec);
5553                 rbd_spec_put(first->parent_spec);
5554                 first->parent_spec = NULL;
5555         }
5556 }
5557
5558 static ssize_t do_rbd_remove(struct bus_type *bus,
5559                              const char *buf,
5560                              size_t count)
5561 {
5562         struct rbd_device *rbd_dev = NULL;
5563         struct list_head *tmp;
5564         int dev_id;
5565         unsigned long ul;
5566         bool already = false;
5567         int ret;
5568
5569         ret = kstrtoul(buf, 10, &ul);
5570         if (ret)
5571                 return ret;
5572
5573         /* convert to int; abort if we lost anything in the conversion */
5574         dev_id = (int)ul;
5575         if (dev_id != ul)
5576                 return -EINVAL;
5577
5578         ret = -ENOENT;
5579         spin_lock(&rbd_dev_list_lock);
5580         list_for_each(tmp, &rbd_dev_list) {
5581                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5582                 if (rbd_dev->dev_id == dev_id) {
5583                         ret = 0;
5584                         break;
5585                 }
5586         }
5587         if (!ret) {
5588                 spin_lock_irq(&rbd_dev->lock);
5589                 if (rbd_dev->open_count)
5590                         ret = -EBUSY;
5591                 else
5592                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5593                                                         &rbd_dev->flags);
5594                 spin_unlock_irq(&rbd_dev->lock);
5595         }
5596         spin_unlock(&rbd_dev_list_lock);
5597         if (ret < 0 || already)
5598                 return ret;
5599
5600         rbd_dev_header_unwatch_sync(rbd_dev);
5601         /*
5602          * flush remaining watch callbacks - these must be complete
5603          * before the osd_client is shutdown
5604          */
5605         dout("%s: flushing notifies", __func__);
5606         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5607
5608         /*
5609          * Don't free anything from rbd_dev->disk until after all
5610          * notifies are completely processed. Otherwise
5611          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5612          * in a potential use after free of rbd_dev->disk or rbd_dev.
5613          */
5614         rbd_bus_del_dev(rbd_dev);
5615         rbd_dev_image_release(rbd_dev);
5616         module_put(THIS_MODULE);
5617
5618         return count;
5619 }
5620
5621 static ssize_t rbd_remove(struct bus_type *bus,
5622                           const char *buf,
5623                           size_t count)
5624 {
5625         if (single_major)
5626                 return -EINVAL;
5627
5628         return do_rbd_remove(bus, buf, count);
5629 }
5630
5631 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5632                                        const char *buf,
5633                                        size_t count)
5634 {
5635         return do_rbd_remove(bus, buf, count);
5636 }
5637
5638 /*
5639  * create control files in sysfs
5640  * /sys/bus/rbd/...
5641  */
5642 static int rbd_sysfs_init(void)
5643 {
5644         int ret;
5645
5646         ret = device_register(&rbd_root_dev);
5647         if (ret < 0)
5648                 return ret;
5649
5650         ret = bus_register(&rbd_bus_type);
5651         if (ret < 0)
5652                 device_unregister(&rbd_root_dev);
5653
5654         return ret;
5655 }
5656
5657 static void rbd_sysfs_cleanup(void)
5658 {
5659         bus_unregister(&rbd_bus_type);
5660         device_unregister(&rbd_root_dev);
5661 }
5662
5663 static int rbd_slab_init(void)
5664 {
5665         rbd_assert(!rbd_img_request_cache);
5666         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5667                                         sizeof (struct rbd_img_request),
5668                                         __alignof__(struct rbd_img_request),
5669                                         0, NULL);
5670         if (!rbd_img_request_cache)
5671                 return -ENOMEM;
5672
5673         rbd_assert(!rbd_obj_request_cache);
5674         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5675                                         sizeof (struct rbd_obj_request),
5676                                         __alignof__(struct rbd_obj_request),
5677                                         0, NULL);
5678         if (!rbd_obj_request_cache)
5679                 goto out_err;
5680
5681         rbd_assert(!rbd_segment_name_cache);
5682         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5683                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5684         if (rbd_segment_name_cache)
5685                 return 0;
5686 out_err:
5687         if (rbd_obj_request_cache) {
5688                 kmem_cache_destroy(rbd_obj_request_cache);
5689                 rbd_obj_request_cache = NULL;
5690         }
5691
5692         kmem_cache_destroy(rbd_img_request_cache);
5693         rbd_img_request_cache = NULL;
5694
5695         return -ENOMEM;
5696 }
5697
5698 static void rbd_slab_exit(void)
5699 {
5700         rbd_assert(rbd_segment_name_cache);
5701         kmem_cache_destroy(rbd_segment_name_cache);
5702         rbd_segment_name_cache = NULL;
5703
5704         rbd_assert(rbd_obj_request_cache);
5705         kmem_cache_destroy(rbd_obj_request_cache);
5706         rbd_obj_request_cache = NULL;
5707
5708         rbd_assert(rbd_img_request_cache);
5709         kmem_cache_destroy(rbd_img_request_cache);
5710         rbd_img_request_cache = NULL;
5711 }
5712
5713 static int __init rbd_init(void)
5714 {
5715         int rc;
5716
5717         if (!libceph_compatible(NULL)) {
5718                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5719                 return -EINVAL;
5720         }
5721
5722         rc = rbd_slab_init();
5723         if (rc)
5724                 return rc;
5725
5726         if (single_major) {
5727                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5728                 if (rbd_major < 0) {
5729                         rc = rbd_major;
5730                         goto err_out_slab;
5731                 }
5732         }
5733
5734         rc = rbd_sysfs_init();
5735         if (rc)
5736                 goto err_out_blkdev;
5737
5738         if (single_major)
5739                 pr_info("loaded (major %d)\n", rbd_major);
5740         else
5741                 pr_info("loaded\n");
5742
5743         return 0;
5744
5745 err_out_blkdev:
5746         if (single_major)
5747                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5748 err_out_slab:
5749         rbd_slab_exit();
5750         return rc;
5751 }
5752
5753 static void __exit rbd_exit(void)
5754 {
5755         ida_destroy(&rbd_dev_id_ida);
5756         rbd_sysfs_cleanup();
5757         if (single_major)
5758                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5759         rbd_slab_exit();
5760 }
5761
5762 module_init(rbd_init);
5763 module_exit(rbd_exit);
5764
5765 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5766 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5767 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5768 /* following authorship retained from original osdblk.c */
5769 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5770
5771 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5772 MODULE_LICENSE("GPL");