]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/block/rbd.c
rbd: use helpers to handle discard for layered images correctly
[linux-beck.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45 #include <linux/workqueue.h>
46
47 #include "rbd_types.h"
48
49 #define RBD_DEBUG       /* Activate rbd_assert() calls */
50
51 /*
52  * The basic unit of block I/O is a sector.  It is interpreted in a
53  * number of contexts in Linux (blk, bio, genhd), but the default is
54  * universally 512 bytes.  These symbols are just slightly more
55  * meaningful than the bare numbers they represent.
56  */
57 #define SECTOR_SHIFT    9
58 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
59
60 /*
61  * Increment the given counter and return its updated value.
62  * If the counter is already 0 it will not be incremented.
63  * If the counter is already at its maximum value returns
64  * -EINVAL without updating it.
65  */
66 static int atomic_inc_return_safe(atomic_t *v)
67 {
68         unsigned int counter;
69
70         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
71         if (counter <= (unsigned int)INT_MAX)
72                 return (int)counter;
73
74         atomic_dec(v);
75
76         return -EINVAL;
77 }
78
79 /* Decrement the counter.  Return the resulting value, or -EINVAL */
80 static int atomic_dec_return_safe(atomic_t *v)
81 {
82         int counter;
83
84         counter = atomic_dec_return(v);
85         if (counter >= 0)
86                 return counter;
87
88         atomic_inc(v);
89
90         return -EINVAL;
91 }
92
93 #define RBD_DRV_NAME "rbd"
94
95 #define RBD_MINORS_PER_MAJOR            256
96 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
97
98 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
99 #define RBD_MAX_SNAP_NAME_LEN   \
100                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
101
102 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
103
104 #define RBD_SNAP_HEAD_NAME      "-"
105
106 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
107
108 /* This allows a single page to hold an image name sent by OSD */
109 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
110 #define RBD_IMAGE_ID_LEN_MAX    64
111
112 #define RBD_OBJ_PREFIX_LEN_MAX  64
113
114 /* Feature bits */
115
116 #define RBD_FEATURE_LAYERING    (1<<0)
117 #define RBD_FEATURE_STRIPINGV2  (1<<1)
118 #define RBD_FEATURES_ALL \
119             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
120
121 /* Features supported by this (client software) implementation. */
122
123 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
124
125 /*
126  * An RBD device name will be "rbd#", where the "rbd" comes from
127  * RBD_DRV_NAME above, and # is a unique integer identifier.
128  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
129  * enough to hold all possible device names.
130  */
131 #define DEV_NAME_LEN            32
132 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
133
134 /*
135  * block device image metadata (in-memory version)
136  */
137 struct rbd_image_header {
138         /* These six fields never change for a given rbd image */
139         char *object_prefix;
140         __u8 obj_order;
141         __u8 crypt_type;
142         __u8 comp_type;
143         u64 stripe_unit;
144         u64 stripe_count;
145         u64 features;           /* Might be changeable someday? */
146
147         /* The remaining fields need to be updated occasionally */
148         u64 image_size;
149         struct ceph_snap_context *snapc;
150         char *snap_names;       /* format 1 only */
151         u64 *snap_sizes;        /* format 1 only */
152 };
153
154 /*
155  * An rbd image specification.
156  *
157  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
158  * identify an image.  Each rbd_dev structure includes a pointer to
159  * an rbd_spec structure that encapsulates this identity.
160  *
161  * Each of the id's in an rbd_spec has an associated name.  For a
162  * user-mapped image, the names are supplied and the id's associated
163  * with them are looked up.  For a layered image, a parent image is
164  * defined by the tuple, and the names are looked up.
165  *
166  * An rbd_dev structure contains a parent_spec pointer which is
167  * non-null if the image it represents is a child in a layered
168  * image.  This pointer will refer to the rbd_spec structure used
169  * by the parent rbd_dev for its own identity (i.e., the structure
170  * is shared between the parent and child).
171  *
172  * Since these structures are populated once, during the discovery
173  * phase of image construction, they are effectively immutable so
174  * we make no effort to synchronize access to them.
175  *
176  * Note that code herein does not assume the image name is known (it
177  * could be a null pointer).
178  */
179 struct rbd_spec {
180         u64             pool_id;
181         const char      *pool_name;
182
183         const char      *image_id;
184         const char      *image_name;
185
186         u64             snap_id;
187         const char      *snap_name;
188
189         struct kref     kref;
190 };
191
192 /*
193  * an instance of the client.  multiple devices may share an rbd client.
194  */
195 struct rbd_client {
196         struct ceph_client      *client;
197         struct kref             kref;
198         struct list_head        node;
199 };
200
201 struct rbd_img_request;
202 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
203
204 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
205
206 struct rbd_obj_request;
207 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
208
209 enum obj_request_type {
210         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
211 };
212
213 enum obj_operation_type {
214         OBJ_OP_WRITE,
215         OBJ_OP_READ,
216         OBJ_OP_DISCARD,
217 };
218
219 enum obj_req_flags {
220         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
221         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
222         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
223         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
224 };
225
226 struct rbd_obj_request {
227         const char              *object_name;
228         u64                     offset;         /* object start byte */
229         u64                     length;         /* bytes from offset */
230         unsigned long           flags;
231
232         /*
233          * An object request associated with an image will have its
234          * img_data flag set; a standalone object request will not.
235          *
236          * A standalone object request will have which == BAD_WHICH
237          * and a null obj_request pointer.
238          *
239          * An object request initiated in support of a layered image
240          * object (to check for its existence before a write) will
241          * have which == BAD_WHICH and a non-null obj_request pointer.
242          *
243          * Finally, an object request for rbd image data will have
244          * which != BAD_WHICH, and will have a non-null img_request
245          * pointer.  The value of which will be in the range
246          * 0..(img_request->obj_request_count-1).
247          */
248         union {
249                 struct rbd_obj_request  *obj_request;   /* STAT op */
250                 struct {
251                         struct rbd_img_request  *img_request;
252                         u64                     img_offset;
253                         /* links for img_request->obj_requests list */
254                         struct list_head        links;
255                 };
256         };
257         u32                     which;          /* posn image request list */
258
259         enum obj_request_type   type;
260         union {
261                 struct bio      *bio_list;
262                 struct {
263                         struct page     **pages;
264                         u32             page_count;
265                 };
266         };
267         struct page             **copyup_pages;
268         u32                     copyup_page_count;
269
270         struct ceph_osd_request *osd_req;
271
272         u64                     xferred;        /* bytes transferred */
273         int                     result;
274
275         rbd_obj_callback_t      callback;
276         struct completion       completion;
277
278         struct kref             kref;
279 };
280
281 enum img_req_flags {
282         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
283         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
284         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
285         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
286 };
287
288 struct rbd_img_request {
289         struct rbd_device       *rbd_dev;
290         u64                     offset; /* starting image byte offset */
291         u64                     length; /* byte count from offset */
292         unsigned long           flags;
293         union {
294                 u64                     snap_id;        /* for reads */
295                 struct ceph_snap_context *snapc;        /* for writes */
296         };
297         union {
298                 struct request          *rq;            /* block request */
299                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
300         };
301         struct page             **copyup_pages;
302         u32                     copyup_page_count;
303         spinlock_t              completion_lock;/* protects next_completion */
304         u32                     next_completion;
305         rbd_img_callback_t      callback;
306         u64                     xferred;/* aggregate bytes transferred */
307         int                     result; /* first nonzero obj_request result */
308
309         u32                     obj_request_count;
310         struct list_head        obj_requests;   /* rbd_obj_request structs */
311
312         struct kref             kref;
313 };
314
315 #define for_each_obj_request(ireq, oreq) \
316         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
317 #define for_each_obj_request_from(ireq, oreq) \
318         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
319 #define for_each_obj_request_safe(ireq, oreq, n) \
320         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
321
322 struct rbd_mapping {
323         u64                     size;
324         u64                     features;
325         bool                    read_only;
326 };
327
328 /*
329  * a single device
330  */
331 struct rbd_device {
332         int                     dev_id;         /* blkdev unique id */
333
334         int                     major;          /* blkdev assigned major */
335         int                     minor;
336         struct gendisk          *disk;          /* blkdev's gendisk and rq */
337
338         u32                     image_format;   /* Either 1 or 2 */
339         struct rbd_client       *rbd_client;
340
341         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
342
343         struct list_head        rq_queue;       /* incoming rq queue */
344         spinlock_t              lock;           /* queue, flags, open_count */
345         struct workqueue_struct *rq_wq;
346         struct work_struct      rq_work;
347
348         struct rbd_image_header header;
349         unsigned long           flags;          /* possibly lock protected */
350         struct rbd_spec         *spec;
351
352         char                    *header_name;
353
354         struct ceph_file_layout layout;
355
356         struct ceph_osd_event   *watch_event;
357         struct rbd_obj_request  *watch_request;
358
359         struct rbd_spec         *parent_spec;
360         u64                     parent_overlap;
361         atomic_t                parent_ref;
362         struct rbd_device       *parent;
363
364         /* protects updating the header */
365         struct rw_semaphore     header_rwsem;
366
367         struct rbd_mapping      mapping;
368
369         struct list_head        node;
370
371         /* sysfs related */
372         struct device           dev;
373         unsigned long           open_count;     /* protected by lock */
374 };
375
376 /*
377  * Flag bits for rbd_dev->flags.  If atomicity is required,
378  * rbd_dev->lock is used to protect access.
379  *
380  * Currently, only the "removing" flag (which is coupled with the
381  * "open_count" field) requires atomic access.
382  */
383 enum rbd_dev_flags {
384         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
385         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
386 };
387
388 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
389
390 static LIST_HEAD(rbd_dev_list);    /* devices */
391 static DEFINE_SPINLOCK(rbd_dev_list_lock);
392
393 static LIST_HEAD(rbd_client_list);              /* clients */
394 static DEFINE_SPINLOCK(rbd_client_list_lock);
395
396 /* Slab caches for frequently-allocated structures */
397
398 static struct kmem_cache        *rbd_img_request_cache;
399 static struct kmem_cache        *rbd_obj_request_cache;
400 static struct kmem_cache        *rbd_segment_name_cache;
401
402 static int rbd_major;
403 static DEFINE_IDA(rbd_dev_id_ida);
404
405 /*
406  * Default to false for now, as single-major requires >= 0.75 version of
407  * userspace rbd utility.
408  */
409 static bool single_major = false;
410 module_param(single_major, bool, S_IRUGO);
411 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
412
413 static int rbd_img_request_submit(struct rbd_img_request *img_request);
414
415 static void rbd_dev_device_release(struct device *dev);
416
417 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
418                        size_t count);
419 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
420                           size_t count);
421 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
422                                     size_t count);
423 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
424                                        size_t count);
425 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
426 static void rbd_spec_put(struct rbd_spec *spec);
427
428 static int rbd_dev_id_to_minor(int dev_id)
429 {
430         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
431 }
432
433 static int minor_to_rbd_dev_id(int minor)
434 {
435         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
436 }
437
438 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
439 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
440 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
441 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
442
443 static struct attribute *rbd_bus_attrs[] = {
444         &bus_attr_add.attr,
445         &bus_attr_remove.attr,
446         &bus_attr_add_single_major.attr,
447         &bus_attr_remove_single_major.attr,
448         NULL,
449 };
450
451 static umode_t rbd_bus_is_visible(struct kobject *kobj,
452                                   struct attribute *attr, int index)
453 {
454         if (!single_major &&
455             (attr == &bus_attr_add_single_major.attr ||
456              attr == &bus_attr_remove_single_major.attr))
457                 return 0;
458
459         return attr->mode;
460 }
461
462 static const struct attribute_group rbd_bus_group = {
463         .attrs = rbd_bus_attrs,
464         .is_visible = rbd_bus_is_visible,
465 };
466 __ATTRIBUTE_GROUPS(rbd_bus);
467
468 static struct bus_type rbd_bus_type = {
469         .name           = "rbd",
470         .bus_groups     = rbd_bus_groups,
471 };
472
473 static void rbd_root_dev_release(struct device *dev)
474 {
475 }
476
477 static struct device rbd_root_dev = {
478         .init_name =    "rbd",
479         .release =      rbd_root_dev_release,
480 };
481
482 static __printf(2, 3)
483 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
484 {
485         struct va_format vaf;
486         va_list args;
487
488         va_start(args, fmt);
489         vaf.fmt = fmt;
490         vaf.va = &args;
491
492         if (!rbd_dev)
493                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
494         else if (rbd_dev->disk)
495                 printk(KERN_WARNING "%s: %s: %pV\n",
496                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
497         else if (rbd_dev->spec && rbd_dev->spec->image_name)
498                 printk(KERN_WARNING "%s: image %s: %pV\n",
499                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
500         else if (rbd_dev->spec && rbd_dev->spec->image_id)
501                 printk(KERN_WARNING "%s: id %s: %pV\n",
502                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
503         else    /* punt */
504                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
505                         RBD_DRV_NAME, rbd_dev, &vaf);
506         va_end(args);
507 }
508
509 #ifdef RBD_DEBUG
510 #define rbd_assert(expr)                                                \
511                 if (unlikely(!(expr))) {                                \
512                         printk(KERN_ERR "\nAssertion failure in %s() "  \
513                                                 "at line %d:\n\n"       \
514                                         "\trbd_assert(%s);\n\n",        \
515                                         __func__, __LINE__, #expr);     \
516                         BUG();                                          \
517                 }
518 #else /* !RBD_DEBUG */
519 #  define rbd_assert(expr)      ((void) 0)
520 #endif /* !RBD_DEBUG */
521
522 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
523 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
524 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
525
526 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
527 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
528 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
529 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
530 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
531                                         u64 snap_id);
532 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
533                                 u8 *order, u64 *snap_size);
534 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
535                 u64 *snap_features);
536 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
537
538 static int rbd_open(struct block_device *bdev, fmode_t mode)
539 {
540         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
541         bool removing = false;
542
543         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
544                 return -EROFS;
545
546         spin_lock_irq(&rbd_dev->lock);
547         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
548                 removing = true;
549         else
550                 rbd_dev->open_count++;
551         spin_unlock_irq(&rbd_dev->lock);
552         if (removing)
553                 return -ENOENT;
554
555         (void) get_device(&rbd_dev->dev);
556
557         return 0;
558 }
559
560 static void rbd_release(struct gendisk *disk, fmode_t mode)
561 {
562         struct rbd_device *rbd_dev = disk->private_data;
563         unsigned long open_count_before;
564
565         spin_lock_irq(&rbd_dev->lock);
566         open_count_before = rbd_dev->open_count--;
567         spin_unlock_irq(&rbd_dev->lock);
568         rbd_assert(open_count_before > 0);
569
570         put_device(&rbd_dev->dev);
571 }
572
573 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
574 {
575         int ret = 0;
576         int val;
577         bool ro;
578         bool ro_changed = false;
579
580         /* get_user() may sleep, so call it before taking rbd_dev->lock */
581         if (get_user(val, (int __user *)(arg)))
582                 return -EFAULT;
583
584         ro = val ? true : false;
585         /* Snapshot doesn't allow to write*/
586         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
587                 return -EROFS;
588
589         spin_lock_irq(&rbd_dev->lock);
590         /* prevent others open this device */
591         if (rbd_dev->open_count > 1) {
592                 ret = -EBUSY;
593                 goto out;
594         }
595
596         if (rbd_dev->mapping.read_only != ro) {
597                 rbd_dev->mapping.read_only = ro;
598                 ro_changed = true;
599         }
600
601 out:
602         spin_unlock_irq(&rbd_dev->lock);
603         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
604         if (ret == 0 && ro_changed)
605                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
606
607         return ret;
608 }
609
610 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
611                         unsigned int cmd, unsigned long arg)
612 {
613         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
614         int ret = 0;
615
616         switch (cmd) {
617         case BLKROSET:
618                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
619                 break;
620         default:
621                 ret = -ENOTTY;
622         }
623
624         return ret;
625 }
626
627 #ifdef CONFIG_COMPAT
628 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
629                                 unsigned int cmd, unsigned long arg)
630 {
631         return rbd_ioctl(bdev, mode, cmd, arg);
632 }
633 #endif /* CONFIG_COMPAT */
634
635 static const struct block_device_operations rbd_bd_ops = {
636         .owner                  = THIS_MODULE,
637         .open                   = rbd_open,
638         .release                = rbd_release,
639         .ioctl                  = rbd_ioctl,
640 #ifdef CONFIG_COMPAT
641         .compat_ioctl           = rbd_compat_ioctl,
642 #endif
643 };
644
645 /*
646  * Initialize an rbd client instance.  Success or not, this function
647  * consumes ceph_opts.  Caller holds client_mutex.
648  */
649 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
650 {
651         struct rbd_client *rbdc;
652         int ret = -ENOMEM;
653
654         dout("%s:\n", __func__);
655         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
656         if (!rbdc)
657                 goto out_opt;
658
659         kref_init(&rbdc->kref);
660         INIT_LIST_HEAD(&rbdc->node);
661
662         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
663         if (IS_ERR(rbdc->client))
664                 goto out_rbdc;
665         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
666
667         ret = ceph_open_session(rbdc->client);
668         if (ret < 0)
669                 goto out_client;
670
671         spin_lock(&rbd_client_list_lock);
672         list_add_tail(&rbdc->node, &rbd_client_list);
673         spin_unlock(&rbd_client_list_lock);
674
675         dout("%s: rbdc %p\n", __func__, rbdc);
676
677         return rbdc;
678 out_client:
679         ceph_destroy_client(rbdc->client);
680 out_rbdc:
681         kfree(rbdc);
682 out_opt:
683         if (ceph_opts)
684                 ceph_destroy_options(ceph_opts);
685         dout("%s: error %d\n", __func__, ret);
686
687         return ERR_PTR(ret);
688 }
689
690 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
691 {
692         kref_get(&rbdc->kref);
693
694         return rbdc;
695 }
696
697 /*
698  * Find a ceph client with specific addr and configuration.  If
699  * found, bump its reference count.
700  */
701 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
702 {
703         struct rbd_client *client_node;
704         bool found = false;
705
706         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
707                 return NULL;
708
709         spin_lock(&rbd_client_list_lock);
710         list_for_each_entry(client_node, &rbd_client_list, node) {
711                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
712                         __rbd_get_client(client_node);
713
714                         found = true;
715                         break;
716                 }
717         }
718         spin_unlock(&rbd_client_list_lock);
719
720         return found ? client_node : NULL;
721 }
722
723 /*
724  * mount options
725  */
726 enum {
727         Opt_last_int,
728         /* int args above */
729         Opt_last_string,
730         /* string args above */
731         Opt_read_only,
732         Opt_read_write,
733         /* Boolean args above */
734         Opt_last_bool,
735 };
736
737 static match_table_t rbd_opts_tokens = {
738         /* int args above */
739         /* string args above */
740         {Opt_read_only, "read_only"},
741         {Opt_read_only, "ro"},          /* Alternate spelling */
742         {Opt_read_write, "read_write"},
743         {Opt_read_write, "rw"},         /* Alternate spelling */
744         /* Boolean args above */
745         {-1, NULL}
746 };
747
748 struct rbd_options {
749         bool    read_only;
750 };
751
752 #define RBD_READ_ONLY_DEFAULT   false
753
754 static int parse_rbd_opts_token(char *c, void *private)
755 {
756         struct rbd_options *rbd_opts = private;
757         substring_t argstr[MAX_OPT_ARGS];
758         int token, intval, ret;
759
760         token = match_token(c, rbd_opts_tokens, argstr);
761         if (token < 0)
762                 return -EINVAL;
763
764         if (token < Opt_last_int) {
765                 ret = match_int(&argstr[0], &intval);
766                 if (ret < 0) {
767                         pr_err("bad mount option arg (not int) "
768                                "at '%s'\n", c);
769                         return ret;
770                 }
771                 dout("got int token %d val %d\n", token, intval);
772         } else if (token > Opt_last_int && token < Opt_last_string) {
773                 dout("got string token %d val %s\n", token,
774                      argstr[0].from);
775         } else if (token > Opt_last_string && token < Opt_last_bool) {
776                 dout("got Boolean token %d\n", token);
777         } else {
778                 dout("got token %d\n", token);
779         }
780
781         switch (token) {
782         case Opt_read_only:
783                 rbd_opts->read_only = true;
784                 break;
785         case Opt_read_write:
786                 rbd_opts->read_only = false;
787                 break;
788         default:
789                 rbd_assert(false);
790                 break;
791         }
792         return 0;
793 }
794
795 static char* obj_op_name(enum obj_operation_type op_type)
796 {
797         switch (op_type) {
798         case OBJ_OP_READ:
799                 return "read";
800         case OBJ_OP_WRITE:
801                 return "write";
802         case OBJ_OP_DISCARD:
803                 return "discard";
804         default:
805                 return "???";
806         }
807 }
808
809 /*
810  * Get a ceph client with specific addr and configuration, if one does
811  * not exist create it.  Either way, ceph_opts is consumed by this
812  * function.
813  */
814 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
815 {
816         struct rbd_client *rbdc;
817
818         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
819         rbdc = rbd_client_find(ceph_opts);
820         if (rbdc)       /* using an existing client */
821                 ceph_destroy_options(ceph_opts);
822         else
823                 rbdc = rbd_client_create(ceph_opts);
824         mutex_unlock(&client_mutex);
825
826         return rbdc;
827 }
828
829 /*
830  * Destroy ceph client
831  *
832  * Caller must hold rbd_client_list_lock.
833  */
834 static void rbd_client_release(struct kref *kref)
835 {
836         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
837
838         dout("%s: rbdc %p\n", __func__, rbdc);
839         spin_lock(&rbd_client_list_lock);
840         list_del(&rbdc->node);
841         spin_unlock(&rbd_client_list_lock);
842
843         ceph_destroy_client(rbdc->client);
844         kfree(rbdc);
845 }
846
847 /*
848  * Drop reference to ceph client node. If it's not referenced anymore, release
849  * it.
850  */
851 static void rbd_put_client(struct rbd_client *rbdc)
852 {
853         if (rbdc)
854                 kref_put(&rbdc->kref, rbd_client_release);
855 }
856
857 static bool rbd_image_format_valid(u32 image_format)
858 {
859         return image_format == 1 || image_format == 2;
860 }
861
862 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
863 {
864         size_t size;
865         u32 snap_count;
866
867         /* The header has to start with the magic rbd header text */
868         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
869                 return false;
870
871         /* The bio layer requires at least sector-sized I/O */
872
873         if (ondisk->options.order < SECTOR_SHIFT)
874                 return false;
875
876         /* If we use u64 in a few spots we may be able to loosen this */
877
878         if (ondisk->options.order > 8 * sizeof (int) - 1)
879                 return false;
880
881         /*
882          * The size of a snapshot header has to fit in a size_t, and
883          * that limits the number of snapshots.
884          */
885         snap_count = le32_to_cpu(ondisk->snap_count);
886         size = SIZE_MAX - sizeof (struct ceph_snap_context);
887         if (snap_count > size / sizeof (__le64))
888                 return false;
889
890         /*
891          * Not only that, but the size of the entire the snapshot
892          * header must also be representable in a size_t.
893          */
894         size -= snap_count * sizeof (__le64);
895         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
896                 return false;
897
898         return true;
899 }
900
901 /*
902  * Fill an rbd image header with information from the given format 1
903  * on-disk header.
904  */
905 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
906                                  struct rbd_image_header_ondisk *ondisk)
907 {
908         struct rbd_image_header *header = &rbd_dev->header;
909         bool first_time = header->object_prefix == NULL;
910         struct ceph_snap_context *snapc;
911         char *object_prefix = NULL;
912         char *snap_names = NULL;
913         u64 *snap_sizes = NULL;
914         u32 snap_count;
915         size_t size;
916         int ret = -ENOMEM;
917         u32 i;
918
919         /* Allocate this now to avoid having to handle failure below */
920
921         if (first_time) {
922                 size_t len;
923
924                 len = strnlen(ondisk->object_prefix,
925                                 sizeof (ondisk->object_prefix));
926                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
927                 if (!object_prefix)
928                         return -ENOMEM;
929                 memcpy(object_prefix, ondisk->object_prefix, len);
930                 object_prefix[len] = '\0';
931         }
932
933         /* Allocate the snapshot context and fill it in */
934
935         snap_count = le32_to_cpu(ondisk->snap_count);
936         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
937         if (!snapc)
938                 goto out_err;
939         snapc->seq = le64_to_cpu(ondisk->snap_seq);
940         if (snap_count) {
941                 struct rbd_image_snap_ondisk *snaps;
942                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
943
944                 /* We'll keep a copy of the snapshot names... */
945
946                 if (snap_names_len > (u64)SIZE_MAX)
947                         goto out_2big;
948                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
949                 if (!snap_names)
950                         goto out_err;
951
952                 /* ...as well as the array of their sizes. */
953
954                 size = snap_count * sizeof (*header->snap_sizes);
955                 snap_sizes = kmalloc(size, GFP_KERNEL);
956                 if (!snap_sizes)
957                         goto out_err;
958
959                 /*
960                  * Copy the names, and fill in each snapshot's id
961                  * and size.
962                  *
963                  * Note that rbd_dev_v1_header_info() guarantees the
964                  * ondisk buffer we're working with has
965                  * snap_names_len bytes beyond the end of the
966                  * snapshot id array, this memcpy() is safe.
967                  */
968                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
969                 snaps = ondisk->snaps;
970                 for (i = 0; i < snap_count; i++) {
971                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
972                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
973                 }
974         }
975
976         /* We won't fail any more, fill in the header */
977
978         if (first_time) {
979                 header->object_prefix = object_prefix;
980                 header->obj_order = ondisk->options.order;
981                 header->crypt_type = ondisk->options.crypt_type;
982                 header->comp_type = ondisk->options.comp_type;
983                 /* The rest aren't used for format 1 images */
984                 header->stripe_unit = 0;
985                 header->stripe_count = 0;
986                 header->features = 0;
987         } else {
988                 ceph_put_snap_context(header->snapc);
989                 kfree(header->snap_names);
990                 kfree(header->snap_sizes);
991         }
992
993         /* The remaining fields always get updated (when we refresh) */
994
995         header->image_size = le64_to_cpu(ondisk->image_size);
996         header->snapc = snapc;
997         header->snap_names = snap_names;
998         header->snap_sizes = snap_sizes;
999
1000         return 0;
1001 out_2big:
1002         ret = -EIO;
1003 out_err:
1004         kfree(snap_sizes);
1005         kfree(snap_names);
1006         ceph_put_snap_context(snapc);
1007         kfree(object_prefix);
1008
1009         return ret;
1010 }
1011
1012 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1013 {
1014         const char *snap_name;
1015
1016         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1017
1018         /* Skip over names until we find the one we are looking for */
1019
1020         snap_name = rbd_dev->header.snap_names;
1021         while (which--)
1022                 snap_name += strlen(snap_name) + 1;
1023
1024         return kstrdup(snap_name, GFP_KERNEL);
1025 }
1026
1027 /*
1028  * Snapshot id comparison function for use with qsort()/bsearch().
1029  * Note that result is for snapshots in *descending* order.
1030  */
1031 static int snapid_compare_reverse(const void *s1, const void *s2)
1032 {
1033         u64 snap_id1 = *(u64 *)s1;
1034         u64 snap_id2 = *(u64 *)s2;
1035
1036         if (snap_id1 < snap_id2)
1037                 return 1;
1038         return snap_id1 == snap_id2 ? 0 : -1;
1039 }
1040
1041 /*
1042  * Search a snapshot context to see if the given snapshot id is
1043  * present.
1044  *
1045  * Returns the position of the snapshot id in the array if it's found,
1046  * or BAD_SNAP_INDEX otherwise.
1047  *
1048  * Note: The snapshot array is in kept sorted (by the osd) in
1049  * reverse order, highest snapshot id first.
1050  */
1051 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1052 {
1053         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1054         u64 *found;
1055
1056         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1057                                 sizeof (snap_id), snapid_compare_reverse);
1058
1059         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1060 }
1061
1062 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1063                                         u64 snap_id)
1064 {
1065         u32 which;
1066         const char *snap_name;
1067
1068         which = rbd_dev_snap_index(rbd_dev, snap_id);
1069         if (which == BAD_SNAP_INDEX)
1070                 return ERR_PTR(-ENOENT);
1071
1072         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1073         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1074 }
1075
1076 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1077 {
1078         if (snap_id == CEPH_NOSNAP)
1079                 return RBD_SNAP_HEAD_NAME;
1080
1081         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1082         if (rbd_dev->image_format == 1)
1083                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1084
1085         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1086 }
1087
1088 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1089                                 u64 *snap_size)
1090 {
1091         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1092         if (snap_id == CEPH_NOSNAP) {
1093                 *snap_size = rbd_dev->header.image_size;
1094         } else if (rbd_dev->image_format == 1) {
1095                 u32 which;
1096
1097                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1098                 if (which == BAD_SNAP_INDEX)
1099                         return -ENOENT;
1100
1101                 *snap_size = rbd_dev->header.snap_sizes[which];
1102         } else {
1103                 u64 size = 0;
1104                 int ret;
1105
1106                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1107                 if (ret)
1108                         return ret;
1109
1110                 *snap_size = size;
1111         }
1112         return 0;
1113 }
1114
1115 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1116                         u64 *snap_features)
1117 {
1118         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1119         if (snap_id == CEPH_NOSNAP) {
1120                 *snap_features = rbd_dev->header.features;
1121         } else if (rbd_dev->image_format == 1) {
1122                 *snap_features = 0;     /* No features for format 1 */
1123         } else {
1124                 u64 features = 0;
1125                 int ret;
1126
1127                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1128                 if (ret)
1129                         return ret;
1130
1131                 *snap_features = features;
1132         }
1133         return 0;
1134 }
1135
1136 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1137 {
1138         u64 snap_id = rbd_dev->spec->snap_id;
1139         u64 size = 0;
1140         u64 features = 0;
1141         int ret;
1142
1143         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1144         if (ret)
1145                 return ret;
1146         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1147         if (ret)
1148                 return ret;
1149
1150         rbd_dev->mapping.size = size;
1151         rbd_dev->mapping.features = features;
1152
1153         return 0;
1154 }
1155
1156 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1157 {
1158         rbd_dev->mapping.size = 0;
1159         rbd_dev->mapping.features = 0;
1160 }
1161
1162 static void rbd_segment_name_free(const char *name)
1163 {
1164         /* The explicit cast here is needed to drop the const qualifier */
1165
1166         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1167 }
1168
1169 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1170 {
1171         char *name;
1172         u64 segment;
1173         int ret;
1174         char *name_format;
1175
1176         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1177         if (!name)
1178                 return NULL;
1179         segment = offset >> rbd_dev->header.obj_order;
1180         name_format = "%s.%012llx";
1181         if (rbd_dev->image_format == 2)
1182                 name_format = "%s.%016llx";
1183         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1184                         rbd_dev->header.object_prefix, segment);
1185         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1186                 pr_err("error formatting segment name for #%llu (%d)\n",
1187                         segment, ret);
1188                 rbd_segment_name_free(name);
1189                 name = NULL;
1190         }
1191
1192         return name;
1193 }
1194
1195 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1196 {
1197         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1198
1199         return offset & (segment_size - 1);
1200 }
1201
1202 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1203                                 u64 offset, u64 length)
1204 {
1205         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206
1207         offset &= segment_size - 1;
1208
1209         rbd_assert(length <= U64_MAX - offset);
1210         if (offset + length > segment_size)
1211                 length = segment_size - offset;
1212
1213         return length;
1214 }
1215
1216 /*
1217  * returns the size of an object in the image
1218  */
1219 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1220 {
1221         return 1 << header->obj_order;
1222 }
1223
1224 /*
1225  * bio helpers
1226  */
1227
1228 static void bio_chain_put(struct bio *chain)
1229 {
1230         struct bio *tmp;
1231
1232         while (chain) {
1233                 tmp = chain;
1234                 chain = chain->bi_next;
1235                 bio_put(tmp);
1236         }
1237 }
1238
1239 /*
1240  * zeros a bio chain, starting at specific offset
1241  */
1242 static void zero_bio_chain(struct bio *chain, int start_ofs)
1243 {
1244         struct bio_vec bv;
1245         struct bvec_iter iter;
1246         unsigned long flags;
1247         void *buf;
1248         int pos = 0;
1249
1250         while (chain) {
1251                 bio_for_each_segment(bv, chain, iter) {
1252                         if (pos + bv.bv_len > start_ofs) {
1253                                 int remainder = max(start_ofs - pos, 0);
1254                                 buf = bvec_kmap_irq(&bv, &flags);
1255                                 memset(buf + remainder, 0,
1256                                        bv.bv_len - remainder);
1257                                 flush_dcache_page(bv.bv_page);
1258                                 bvec_kunmap_irq(buf, &flags);
1259                         }
1260                         pos += bv.bv_len;
1261                 }
1262
1263                 chain = chain->bi_next;
1264         }
1265 }
1266
1267 /*
1268  * similar to zero_bio_chain(), zeros data defined by a page array,
1269  * starting at the given byte offset from the start of the array and
1270  * continuing up to the given end offset.  The pages array is
1271  * assumed to be big enough to hold all bytes up to the end.
1272  */
1273 static void zero_pages(struct page **pages, u64 offset, u64 end)
1274 {
1275         struct page **page = &pages[offset >> PAGE_SHIFT];
1276
1277         rbd_assert(end > offset);
1278         rbd_assert(end - offset <= (u64)SIZE_MAX);
1279         while (offset < end) {
1280                 size_t page_offset;
1281                 size_t length;
1282                 unsigned long flags;
1283                 void *kaddr;
1284
1285                 page_offset = offset & ~PAGE_MASK;
1286                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1287                 local_irq_save(flags);
1288                 kaddr = kmap_atomic(*page);
1289                 memset(kaddr + page_offset, 0, length);
1290                 flush_dcache_page(*page);
1291                 kunmap_atomic(kaddr);
1292                 local_irq_restore(flags);
1293
1294                 offset += length;
1295                 page++;
1296         }
1297 }
1298
1299 /*
1300  * Clone a portion of a bio, starting at the given byte offset
1301  * and continuing for the number of bytes indicated.
1302  */
1303 static struct bio *bio_clone_range(struct bio *bio_src,
1304                                         unsigned int offset,
1305                                         unsigned int len,
1306                                         gfp_t gfpmask)
1307 {
1308         struct bio *bio;
1309
1310         bio = bio_clone(bio_src, gfpmask);
1311         if (!bio)
1312                 return NULL;    /* ENOMEM */
1313
1314         bio_advance(bio, offset);
1315         bio->bi_iter.bi_size = len;
1316
1317         return bio;
1318 }
1319
1320 /*
1321  * Clone a portion of a bio chain, starting at the given byte offset
1322  * into the first bio in the source chain and continuing for the
1323  * number of bytes indicated.  The result is another bio chain of
1324  * exactly the given length, or a null pointer on error.
1325  *
1326  * The bio_src and offset parameters are both in-out.  On entry they
1327  * refer to the first source bio and the offset into that bio where
1328  * the start of data to be cloned is located.
1329  *
1330  * On return, bio_src is updated to refer to the bio in the source
1331  * chain that contains first un-cloned byte, and *offset will
1332  * contain the offset of that byte within that bio.
1333  */
1334 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1335                                         unsigned int *offset,
1336                                         unsigned int len,
1337                                         gfp_t gfpmask)
1338 {
1339         struct bio *bi = *bio_src;
1340         unsigned int off = *offset;
1341         struct bio *chain = NULL;
1342         struct bio **end;
1343
1344         /* Build up a chain of clone bios up to the limit */
1345
1346         if (!bi || off >= bi->bi_iter.bi_size || !len)
1347                 return NULL;            /* Nothing to clone */
1348
1349         end = &chain;
1350         while (len) {
1351                 unsigned int bi_size;
1352                 struct bio *bio;
1353
1354                 if (!bi) {
1355                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1356                         goto out_err;   /* EINVAL; ran out of bio's */
1357                 }
1358                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1359                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1360                 if (!bio)
1361                         goto out_err;   /* ENOMEM */
1362
1363                 *end = bio;
1364                 end = &bio->bi_next;
1365
1366                 off += bi_size;
1367                 if (off == bi->bi_iter.bi_size) {
1368                         bi = bi->bi_next;
1369                         off = 0;
1370                 }
1371                 len -= bi_size;
1372         }
1373         *bio_src = bi;
1374         *offset = off;
1375
1376         return chain;
1377 out_err:
1378         bio_chain_put(chain);
1379
1380         return NULL;
1381 }
1382
1383 /*
1384  * The default/initial value for all object request flags is 0.  For
1385  * each flag, once its value is set to 1 it is never reset to 0
1386  * again.
1387  */
1388 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1389 {
1390         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1391                 struct rbd_device *rbd_dev;
1392
1393                 rbd_dev = obj_request->img_request->rbd_dev;
1394                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1395                         obj_request);
1396         }
1397 }
1398
1399 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1400 {
1401         smp_mb();
1402         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1403 }
1404
1405 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1406 {
1407         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1408                 struct rbd_device *rbd_dev = NULL;
1409
1410                 if (obj_request_img_data_test(obj_request))
1411                         rbd_dev = obj_request->img_request->rbd_dev;
1412                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1413                         obj_request);
1414         }
1415 }
1416
1417 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1418 {
1419         smp_mb();
1420         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1421 }
1422
1423 /*
1424  * This sets the KNOWN flag after (possibly) setting the EXISTS
1425  * flag.  The latter is set based on the "exists" value provided.
1426  *
1427  * Note that for our purposes once an object exists it never goes
1428  * away again.  It's possible that the response from two existence
1429  * checks are separated by the creation of the target object, and
1430  * the first ("doesn't exist") response arrives *after* the second
1431  * ("does exist").  In that case we ignore the second one.
1432  */
1433 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1434                                 bool exists)
1435 {
1436         if (exists)
1437                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1438         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1439         smp_mb();
1440 }
1441
1442 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1443 {
1444         smp_mb();
1445         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1446 }
1447
1448 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1449 {
1450         smp_mb();
1451         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1452 }
1453
1454 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1455 {
1456         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1457
1458         return obj_request->img_offset <
1459             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1460 }
1461
1462 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1463 {
1464         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1465                 atomic_read(&obj_request->kref.refcount));
1466         kref_get(&obj_request->kref);
1467 }
1468
1469 static void rbd_obj_request_destroy(struct kref *kref);
1470 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1471 {
1472         rbd_assert(obj_request != NULL);
1473         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1474                 atomic_read(&obj_request->kref.refcount));
1475         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1476 }
1477
1478 static void rbd_img_request_get(struct rbd_img_request *img_request)
1479 {
1480         dout("%s: img %p (was %d)\n", __func__, img_request,
1481              atomic_read(&img_request->kref.refcount));
1482         kref_get(&img_request->kref);
1483 }
1484
1485 static bool img_request_child_test(struct rbd_img_request *img_request);
1486 static void rbd_parent_request_destroy(struct kref *kref);
1487 static void rbd_img_request_destroy(struct kref *kref);
1488 static void rbd_img_request_put(struct rbd_img_request *img_request)
1489 {
1490         rbd_assert(img_request != NULL);
1491         dout("%s: img %p (was %d)\n", __func__, img_request,
1492                 atomic_read(&img_request->kref.refcount));
1493         if (img_request_child_test(img_request))
1494                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1495         else
1496                 kref_put(&img_request->kref, rbd_img_request_destroy);
1497 }
1498
1499 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1500                                         struct rbd_obj_request *obj_request)
1501 {
1502         rbd_assert(obj_request->img_request == NULL);
1503
1504         /* Image request now owns object's original reference */
1505         obj_request->img_request = img_request;
1506         obj_request->which = img_request->obj_request_count;
1507         rbd_assert(!obj_request_img_data_test(obj_request));
1508         obj_request_img_data_set(obj_request);
1509         rbd_assert(obj_request->which != BAD_WHICH);
1510         img_request->obj_request_count++;
1511         list_add_tail(&obj_request->links, &img_request->obj_requests);
1512         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1513                 obj_request->which);
1514 }
1515
1516 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1517                                         struct rbd_obj_request *obj_request)
1518 {
1519         rbd_assert(obj_request->which != BAD_WHICH);
1520
1521         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1522                 obj_request->which);
1523         list_del(&obj_request->links);
1524         rbd_assert(img_request->obj_request_count > 0);
1525         img_request->obj_request_count--;
1526         rbd_assert(obj_request->which == img_request->obj_request_count);
1527         obj_request->which = BAD_WHICH;
1528         rbd_assert(obj_request_img_data_test(obj_request));
1529         rbd_assert(obj_request->img_request == img_request);
1530         obj_request->img_request = NULL;
1531         obj_request->callback = NULL;
1532         rbd_obj_request_put(obj_request);
1533 }
1534
1535 static bool obj_request_type_valid(enum obj_request_type type)
1536 {
1537         switch (type) {
1538         case OBJ_REQUEST_NODATA:
1539         case OBJ_REQUEST_BIO:
1540         case OBJ_REQUEST_PAGES:
1541                 return true;
1542         default:
1543                 return false;
1544         }
1545 }
1546
1547 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1548                                 struct rbd_obj_request *obj_request)
1549 {
1550         dout("%s %p\n", __func__, obj_request);
1551         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1552 }
1553
1554 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1555 {
1556         dout("%s %p\n", __func__, obj_request);
1557         ceph_osdc_cancel_request(obj_request->osd_req);
1558 }
1559
1560 /*
1561  * Wait for an object request to complete.  If interrupted, cancel the
1562  * underlying osd request.
1563  */
1564 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1565 {
1566         int ret;
1567
1568         dout("%s %p\n", __func__, obj_request);
1569
1570         ret = wait_for_completion_interruptible(&obj_request->completion);
1571         if (ret < 0) {
1572                 dout("%s %p interrupted\n", __func__, obj_request);
1573                 rbd_obj_request_end(obj_request);
1574                 return ret;
1575         }
1576
1577         dout("%s %p done\n", __func__, obj_request);
1578         return 0;
1579 }
1580
1581 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1582 {
1583
1584         dout("%s: img %p\n", __func__, img_request);
1585
1586         /*
1587          * If no error occurred, compute the aggregate transfer
1588          * count for the image request.  We could instead use
1589          * atomic64_cmpxchg() to update it as each object request
1590          * completes; not clear which way is better off hand.
1591          */
1592         if (!img_request->result) {
1593                 struct rbd_obj_request *obj_request;
1594                 u64 xferred = 0;
1595
1596                 for_each_obj_request(img_request, obj_request)
1597                         xferred += obj_request->xferred;
1598                 img_request->xferred = xferred;
1599         }
1600
1601         if (img_request->callback)
1602                 img_request->callback(img_request);
1603         else
1604                 rbd_img_request_put(img_request);
1605 }
1606
1607 /*
1608  * The default/initial value for all image request flags is 0.  Each
1609  * is conditionally set to 1 at image request initialization time
1610  * and currently never change thereafter.
1611  */
1612 static void img_request_write_set(struct rbd_img_request *img_request)
1613 {
1614         set_bit(IMG_REQ_WRITE, &img_request->flags);
1615         smp_mb();
1616 }
1617
1618 static bool img_request_write_test(struct rbd_img_request *img_request)
1619 {
1620         smp_mb();
1621         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1622 }
1623
1624 /*
1625  * Set the discard flag when the img_request is an discard request
1626  */
1627 static void img_request_discard_set(struct rbd_img_request *img_request)
1628 {
1629         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1630         smp_mb();
1631 }
1632
1633 static bool img_request_discard_test(struct rbd_img_request *img_request)
1634 {
1635         smp_mb();
1636         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1637 }
1638
1639 static void img_request_child_set(struct rbd_img_request *img_request)
1640 {
1641         set_bit(IMG_REQ_CHILD, &img_request->flags);
1642         smp_mb();
1643 }
1644
1645 static void img_request_child_clear(struct rbd_img_request *img_request)
1646 {
1647         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1648         smp_mb();
1649 }
1650
1651 static bool img_request_child_test(struct rbd_img_request *img_request)
1652 {
1653         smp_mb();
1654         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1655 }
1656
1657 static void img_request_layered_set(struct rbd_img_request *img_request)
1658 {
1659         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1660         smp_mb();
1661 }
1662
1663 static void img_request_layered_clear(struct rbd_img_request *img_request)
1664 {
1665         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1666         smp_mb();
1667 }
1668
1669 static bool img_request_layered_test(struct rbd_img_request *img_request)
1670 {
1671         smp_mb();
1672         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1673 }
1674
1675 static enum obj_operation_type
1676 rbd_img_request_op_type(struct rbd_img_request *img_request)
1677 {
1678         if (img_request_write_test(img_request))
1679                 return OBJ_OP_WRITE;
1680         else if (img_request_discard_test(img_request))
1681                 return OBJ_OP_DISCARD;
1682         else
1683                 return OBJ_OP_READ;
1684 }
1685
1686 static void
1687 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1688 {
1689         u64 xferred = obj_request->xferred;
1690         u64 length = obj_request->length;
1691
1692         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1693                 obj_request, obj_request->img_request, obj_request->result,
1694                 xferred, length);
1695         /*
1696          * ENOENT means a hole in the image.  We zero-fill the entire
1697          * length of the request.  A short read also implies zero-fill
1698          * to the end of the request.  An error requires the whole
1699          * length of the request to be reported finished with an error
1700          * to the block layer.  In each case we update the xferred
1701          * count to indicate the whole request was satisfied.
1702          */
1703         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1704         if (obj_request->result == -ENOENT) {
1705                 if (obj_request->type == OBJ_REQUEST_BIO)
1706                         zero_bio_chain(obj_request->bio_list, 0);
1707                 else
1708                         zero_pages(obj_request->pages, 0, length);
1709                 obj_request->result = 0;
1710         } else if (xferred < length && !obj_request->result) {
1711                 if (obj_request->type == OBJ_REQUEST_BIO)
1712                         zero_bio_chain(obj_request->bio_list, xferred);
1713                 else
1714                         zero_pages(obj_request->pages, xferred, length);
1715         }
1716         obj_request->xferred = length;
1717         obj_request_done_set(obj_request);
1718 }
1719
1720 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1721 {
1722         dout("%s: obj %p cb %p\n", __func__, obj_request,
1723                 obj_request->callback);
1724         if (obj_request->callback)
1725                 obj_request->callback(obj_request);
1726         else
1727                 complete_all(&obj_request->completion);
1728 }
1729
1730 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1731 {
1732         dout("%s: obj %p\n", __func__, obj_request);
1733         obj_request_done_set(obj_request);
1734 }
1735
1736 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1737 {
1738         struct rbd_img_request *img_request = NULL;
1739         struct rbd_device *rbd_dev = NULL;
1740         bool layered = false;
1741
1742         if (obj_request_img_data_test(obj_request)) {
1743                 img_request = obj_request->img_request;
1744                 layered = img_request && img_request_layered_test(img_request);
1745                 rbd_dev = img_request->rbd_dev;
1746         }
1747
1748         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1749                 obj_request, img_request, obj_request->result,
1750                 obj_request->xferred, obj_request->length);
1751         if (layered && obj_request->result == -ENOENT &&
1752                         obj_request->img_offset < rbd_dev->parent_overlap)
1753                 rbd_img_parent_read(obj_request);
1754         else if (img_request)
1755                 rbd_img_obj_request_read_callback(obj_request);
1756         else
1757                 obj_request_done_set(obj_request);
1758 }
1759
1760 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1761 {
1762         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1763                 obj_request->result, obj_request->length);
1764         /*
1765          * There is no such thing as a successful short write.  Set
1766          * it to our originally-requested length.
1767          */
1768         obj_request->xferred = obj_request->length;
1769         obj_request_done_set(obj_request);
1770 }
1771
1772 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1773 {
1774         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1775                 obj_request->result, obj_request->length);
1776         /*
1777          * There is no such thing as a successful short discard.  Set
1778          * it to our originally-requested length.
1779          */
1780         obj_request->xferred = obj_request->length;
1781         /* discarding a non-existent object is not a problem */
1782         if (obj_request->result == -ENOENT)
1783                 obj_request->result = 0;
1784         obj_request_done_set(obj_request);
1785 }
1786
1787 /*
1788  * For a simple stat call there's nothing to do.  We'll do more if
1789  * this is part of a write sequence for a layered image.
1790  */
1791 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1792 {
1793         dout("%s: obj %p\n", __func__, obj_request);
1794         obj_request_done_set(obj_request);
1795 }
1796
1797 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1798                                 struct ceph_msg *msg)
1799 {
1800         struct rbd_obj_request *obj_request = osd_req->r_priv;
1801         u16 opcode;
1802
1803         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1804         rbd_assert(osd_req == obj_request->osd_req);
1805         if (obj_request_img_data_test(obj_request)) {
1806                 rbd_assert(obj_request->img_request);
1807                 rbd_assert(obj_request->which != BAD_WHICH);
1808         } else {
1809                 rbd_assert(obj_request->which == BAD_WHICH);
1810         }
1811
1812         if (osd_req->r_result < 0)
1813                 obj_request->result = osd_req->r_result;
1814
1815         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1816
1817         /*
1818          * We support a 64-bit length, but ultimately it has to be
1819          * passed to blk_end_request(), which takes an unsigned int.
1820          */
1821         obj_request->xferred = osd_req->r_reply_op_len[0];
1822         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1823
1824         opcode = osd_req->r_ops[0].op;
1825         switch (opcode) {
1826         case CEPH_OSD_OP_READ:
1827                 rbd_osd_read_callback(obj_request);
1828                 break;
1829         case CEPH_OSD_OP_SETALLOCHINT:
1830                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1831                 /* fall through */
1832         case CEPH_OSD_OP_WRITE:
1833                 rbd_osd_write_callback(obj_request);
1834                 break;
1835         case CEPH_OSD_OP_STAT:
1836                 rbd_osd_stat_callback(obj_request);
1837                 break;
1838         case CEPH_OSD_OP_DELETE:
1839         case CEPH_OSD_OP_TRUNCATE:
1840         case CEPH_OSD_OP_ZERO:
1841                 rbd_osd_discard_callback(obj_request);
1842                 break;
1843         case CEPH_OSD_OP_CALL:
1844         case CEPH_OSD_OP_NOTIFY_ACK:
1845         case CEPH_OSD_OP_WATCH:
1846                 rbd_osd_trivial_callback(obj_request);
1847                 break;
1848         default:
1849                 rbd_warn(NULL, "%s: unsupported op %hu",
1850                         obj_request->object_name, (unsigned short) opcode);
1851                 break;
1852         }
1853
1854         if (obj_request_done_test(obj_request))
1855                 rbd_obj_request_complete(obj_request);
1856 }
1857
1858 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1859 {
1860         struct rbd_img_request *img_request = obj_request->img_request;
1861         struct ceph_osd_request *osd_req = obj_request->osd_req;
1862         u64 snap_id;
1863
1864         rbd_assert(osd_req != NULL);
1865
1866         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1867         ceph_osdc_build_request(osd_req, obj_request->offset,
1868                         NULL, snap_id, NULL);
1869 }
1870
1871 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1872 {
1873         struct rbd_img_request *img_request = obj_request->img_request;
1874         struct ceph_osd_request *osd_req = obj_request->osd_req;
1875         struct ceph_snap_context *snapc;
1876         struct timespec mtime = CURRENT_TIME;
1877
1878         rbd_assert(osd_req != NULL);
1879
1880         snapc = img_request ? img_request->snapc : NULL;
1881         ceph_osdc_build_request(osd_req, obj_request->offset,
1882                         snapc, CEPH_NOSNAP, &mtime);
1883 }
1884
1885 /*
1886  * Create an osd request.  A read request has one osd op (read).
1887  * A write request has either one (watch) or two (hint+write) osd ops.
1888  * (All rbd data writes are prefixed with an allocation hint op, but
1889  * technically osd watch is a write request, hence this distinction.)
1890  */
1891 static struct ceph_osd_request *rbd_osd_req_create(
1892                                         struct rbd_device *rbd_dev,
1893                                         enum obj_operation_type op_type,
1894                                         unsigned int num_ops,
1895                                         struct rbd_obj_request *obj_request)
1896 {
1897         struct ceph_snap_context *snapc = NULL;
1898         struct ceph_osd_client *osdc;
1899         struct ceph_osd_request *osd_req;
1900
1901         if (obj_request_img_data_test(obj_request) &&
1902                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1903                 struct rbd_img_request *img_request = obj_request->img_request;
1904                 if (op_type == OBJ_OP_WRITE) {
1905                         rbd_assert(img_request_write_test(img_request));
1906                 } else {
1907                         rbd_assert(img_request_discard_test(img_request));
1908                 }
1909                 snapc = img_request->snapc;
1910         }
1911
1912         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1913
1914         /* Allocate and initialize the request, for the num_ops ops */
1915
1916         osdc = &rbd_dev->rbd_client->client->osdc;
1917         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1918                                           GFP_ATOMIC);
1919         if (!osd_req)
1920                 return NULL;    /* ENOMEM */
1921
1922         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1923                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1924         else
1925                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1926
1927         osd_req->r_callback = rbd_osd_req_callback;
1928         osd_req->r_priv = obj_request;
1929
1930         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1931         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1932
1933         return osd_req;
1934 }
1935
1936 /*
1937  * Create a copyup osd request based on the information in the object
1938  * request supplied.  A copyup request has two or three osd ops, a
1939  * copyup method call, potentially a hint op, and a write or truncate
1940  * or zero op.
1941  */
1942 static struct ceph_osd_request *
1943 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1944 {
1945         struct rbd_img_request *img_request;
1946         struct ceph_snap_context *snapc;
1947         struct rbd_device *rbd_dev;
1948         struct ceph_osd_client *osdc;
1949         struct ceph_osd_request *osd_req;
1950         int num_osd_ops = 3;
1951
1952         rbd_assert(obj_request_img_data_test(obj_request));
1953         img_request = obj_request->img_request;
1954         rbd_assert(img_request);
1955         rbd_assert(img_request_write_test(img_request) ||
1956                         img_request_discard_test(img_request));
1957
1958         if (img_request_discard_test(img_request))
1959                 num_osd_ops = 2;
1960
1961         /* Allocate and initialize the request, for all the ops */
1962
1963         snapc = img_request->snapc;
1964         rbd_dev = img_request->rbd_dev;
1965         osdc = &rbd_dev->rbd_client->client->osdc;
1966         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
1967                                                 false, GFP_ATOMIC);
1968         if (!osd_req)
1969                 return NULL;    /* ENOMEM */
1970
1971         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1972         osd_req->r_callback = rbd_osd_req_callback;
1973         osd_req->r_priv = obj_request;
1974
1975         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1976         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1977
1978         return osd_req;
1979 }
1980
1981
1982 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1983 {
1984         ceph_osdc_put_request(osd_req);
1985 }
1986
1987 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1988
1989 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1990                                                 u64 offset, u64 length,
1991                                                 enum obj_request_type type)
1992 {
1993         struct rbd_obj_request *obj_request;
1994         size_t size;
1995         char *name;
1996
1997         rbd_assert(obj_request_type_valid(type));
1998
1999         size = strlen(object_name) + 1;
2000         name = kmalloc(size, GFP_KERNEL);
2001         if (!name)
2002                 return NULL;
2003
2004         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
2005         if (!obj_request) {
2006                 kfree(name);
2007                 return NULL;
2008         }
2009
2010         obj_request->object_name = memcpy(name, object_name, size);
2011         obj_request->offset = offset;
2012         obj_request->length = length;
2013         obj_request->flags = 0;
2014         obj_request->which = BAD_WHICH;
2015         obj_request->type = type;
2016         INIT_LIST_HEAD(&obj_request->links);
2017         init_completion(&obj_request->completion);
2018         kref_init(&obj_request->kref);
2019
2020         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2021                 offset, length, (int)type, obj_request);
2022
2023         return obj_request;
2024 }
2025
2026 static void rbd_obj_request_destroy(struct kref *kref)
2027 {
2028         struct rbd_obj_request *obj_request;
2029
2030         obj_request = container_of(kref, struct rbd_obj_request, kref);
2031
2032         dout("%s: obj %p\n", __func__, obj_request);
2033
2034         rbd_assert(obj_request->img_request == NULL);
2035         rbd_assert(obj_request->which == BAD_WHICH);
2036
2037         if (obj_request->osd_req)
2038                 rbd_osd_req_destroy(obj_request->osd_req);
2039
2040         rbd_assert(obj_request_type_valid(obj_request->type));
2041         switch (obj_request->type) {
2042         case OBJ_REQUEST_NODATA:
2043                 break;          /* Nothing to do */
2044         case OBJ_REQUEST_BIO:
2045                 if (obj_request->bio_list)
2046                         bio_chain_put(obj_request->bio_list);
2047                 break;
2048         case OBJ_REQUEST_PAGES:
2049                 if (obj_request->pages)
2050                         ceph_release_page_vector(obj_request->pages,
2051                                                 obj_request->page_count);
2052                 break;
2053         }
2054
2055         kfree(obj_request->object_name);
2056         obj_request->object_name = NULL;
2057         kmem_cache_free(rbd_obj_request_cache, obj_request);
2058 }
2059
2060 /* It's OK to call this for a device with no parent */
2061
2062 static void rbd_spec_put(struct rbd_spec *spec);
2063 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2064 {
2065         rbd_dev_remove_parent(rbd_dev);
2066         rbd_spec_put(rbd_dev->parent_spec);
2067         rbd_dev->parent_spec = NULL;
2068         rbd_dev->parent_overlap = 0;
2069 }
2070
2071 /*
2072  * Parent image reference counting is used to determine when an
2073  * image's parent fields can be safely torn down--after there are no
2074  * more in-flight requests to the parent image.  When the last
2075  * reference is dropped, cleaning them up is safe.
2076  */
2077 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2078 {
2079         int counter;
2080
2081         if (!rbd_dev->parent_spec)
2082                 return;
2083
2084         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2085         if (counter > 0)
2086                 return;
2087
2088         /* Last reference; clean up parent data structures */
2089
2090         if (!counter)
2091                 rbd_dev_unparent(rbd_dev);
2092         else
2093                 rbd_warn(rbd_dev, "parent reference underflow");
2094 }
2095
2096 /*
2097  * If an image has a non-zero parent overlap, get a reference to its
2098  * parent.
2099  *
2100  * We must get the reference before checking for the overlap to
2101  * coordinate properly with zeroing the parent overlap in
2102  * rbd_dev_v2_parent_info() when an image gets flattened.  We
2103  * drop it again if there is no overlap.
2104  *
2105  * Returns true if the rbd device has a parent with a non-zero
2106  * overlap and a reference for it was successfully taken, or
2107  * false otherwise.
2108  */
2109 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2110 {
2111         int counter;
2112
2113         if (!rbd_dev->parent_spec)
2114                 return false;
2115
2116         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2117         if (counter > 0 && rbd_dev->parent_overlap)
2118                 return true;
2119
2120         /* Image was flattened, but parent is not yet torn down */
2121
2122         if (counter < 0)
2123                 rbd_warn(rbd_dev, "parent reference overflow");
2124
2125         return false;
2126 }
2127
2128 /*
2129  * Caller is responsible for filling in the list of object requests
2130  * that comprises the image request, and the Linux request pointer
2131  * (if there is one).
2132  */
2133 static struct rbd_img_request *rbd_img_request_create(
2134                                         struct rbd_device *rbd_dev,
2135                                         u64 offset, u64 length,
2136                                         enum obj_operation_type op_type,
2137                                         struct ceph_snap_context *snapc)
2138 {
2139         struct rbd_img_request *img_request;
2140
2141         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2142         if (!img_request)
2143                 return NULL;
2144
2145         img_request->rq = NULL;
2146         img_request->rbd_dev = rbd_dev;
2147         img_request->offset = offset;
2148         img_request->length = length;
2149         img_request->flags = 0;
2150         if (op_type == OBJ_OP_DISCARD) {
2151                 img_request_discard_set(img_request);
2152                 img_request->snapc = snapc;
2153         } else if (op_type == OBJ_OP_WRITE) {
2154                 img_request_write_set(img_request);
2155                 img_request->snapc = snapc;
2156         } else {
2157                 img_request->snap_id = rbd_dev->spec->snap_id;
2158         }
2159         if (rbd_dev_parent_get(rbd_dev))
2160                 img_request_layered_set(img_request);
2161         spin_lock_init(&img_request->completion_lock);
2162         img_request->next_completion = 0;
2163         img_request->callback = NULL;
2164         img_request->result = 0;
2165         img_request->obj_request_count = 0;
2166         INIT_LIST_HEAD(&img_request->obj_requests);
2167         kref_init(&img_request->kref);
2168
2169         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2170                 obj_op_name(op_type), offset, length, img_request);
2171
2172         return img_request;
2173 }
2174
2175 static void rbd_img_request_destroy(struct kref *kref)
2176 {
2177         struct rbd_img_request *img_request;
2178         struct rbd_obj_request *obj_request;
2179         struct rbd_obj_request *next_obj_request;
2180
2181         img_request = container_of(kref, struct rbd_img_request, kref);
2182
2183         dout("%s: img %p\n", __func__, img_request);
2184
2185         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2186                 rbd_img_obj_request_del(img_request, obj_request);
2187         rbd_assert(img_request->obj_request_count == 0);
2188
2189         if (img_request_layered_test(img_request)) {
2190                 img_request_layered_clear(img_request);
2191                 rbd_dev_parent_put(img_request->rbd_dev);
2192         }
2193
2194         if (img_request_write_test(img_request) ||
2195                 img_request_discard_test(img_request))
2196                 ceph_put_snap_context(img_request->snapc);
2197
2198         kmem_cache_free(rbd_img_request_cache, img_request);
2199 }
2200
2201 static struct rbd_img_request *rbd_parent_request_create(
2202                                         struct rbd_obj_request *obj_request,
2203                                         u64 img_offset, u64 length)
2204 {
2205         struct rbd_img_request *parent_request;
2206         struct rbd_device *rbd_dev;
2207
2208         rbd_assert(obj_request->img_request);
2209         rbd_dev = obj_request->img_request->rbd_dev;
2210
2211         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2212                                                 length, OBJ_OP_READ, NULL);
2213         if (!parent_request)
2214                 return NULL;
2215
2216         img_request_child_set(parent_request);
2217         rbd_obj_request_get(obj_request);
2218         parent_request->obj_request = obj_request;
2219
2220         return parent_request;
2221 }
2222
2223 static void rbd_parent_request_destroy(struct kref *kref)
2224 {
2225         struct rbd_img_request *parent_request;
2226         struct rbd_obj_request *orig_request;
2227
2228         parent_request = container_of(kref, struct rbd_img_request, kref);
2229         orig_request = parent_request->obj_request;
2230
2231         parent_request->obj_request = NULL;
2232         rbd_obj_request_put(orig_request);
2233         img_request_child_clear(parent_request);
2234
2235         rbd_img_request_destroy(kref);
2236 }
2237
2238 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2239 {
2240         struct rbd_img_request *img_request;
2241         unsigned int xferred;
2242         int result;
2243         bool more;
2244
2245         rbd_assert(obj_request_img_data_test(obj_request));
2246         img_request = obj_request->img_request;
2247
2248         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2249         xferred = (unsigned int)obj_request->xferred;
2250         result = obj_request->result;
2251         if (result) {
2252                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2253                 enum obj_operation_type op_type;
2254
2255                 if (img_request_discard_test(img_request))
2256                         op_type = OBJ_OP_DISCARD;
2257                 else if (img_request_write_test(img_request))
2258                         op_type = OBJ_OP_WRITE;
2259                 else
2260                         op_type = OBJ_OP_READ;
2261
2262                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2263                         obj_op_name(op_type), obj_request->length,
2264                         obj_request->img_offset, obj_request->offset);
2265                 rbd_warn(rbd_dev, "  result %d xferred %x",
2266                         result, xferred);
2267                 if (!img_request->result)
2268                         img_request->result = result;
2269         }
2270
2271         /* Image object requests don't own their page array */
2272
2273         if (obj_request->type == OBJ_REQUEST_PAGES) {
2274                 obj_request->pages = NULL;
2275                 obj_request->page_count = 0;
2276         }
2277
2278         if (img_request_child_test(img_request)) {
2279                 rbd_assert(img_request->obj_request != NULL);
2280                 more = obj_request->which < img_request->obj_request_count - 1;
2281         } else {
2282                 rbd_assert(img_request->rq != NULL);
2283                 more = blk_end_request(img_request->rq, result, xferred);
2284         }
2285
2286         return more;
2287 }
2288
2289 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2290 {
2291         struct rbd_img_request *img_request;
2292         u32 which = obj_request->which;
2293         bool more = true;
2294
2295         rbd_assert(obj_request_img_data_test(obj_request));
2296         img_request = obj_request->img_request;
2297
2298         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2299         rbd_assert(img_request != NULL);
2300         rbd_assert(img_request->obj_request_count > 0);
2301         rbd_assert(which != BAD_WHICH);
2302         rbd_assert(which < img_request->obj_request_count);
2303
2304         spin_lock_irq(&img_request->completion_lock);
2305         if (which != img_request->next_completion)
2306                 goto out;
2307
2308         for_each_obj_request_from(img_request, obj_request) {
2309                 rbd_assert(more);
2310                 rbd_assert(which < img_request->obj_request_count);
2311
2312                 if (!obj_request_done_test(obj_request))
2313                         break;
2314                 more = rbd_img_obj_end_request(obj_request);
2315                 which++;
2316         }
2317
2318         rbd_assert(more ^ (which == img_request->obj_request_count));
2319         img_request->next_completion = which;
2320 out:
2321         spin_unlock_irq(&img_request->completion_lock);
2322         rbd_img_request_put(img_request);
2323
2324         if (!more)
2325                 rbd_img_request_complete(img_request);
2326 }
2327
2328 /*
2329  * Add individual osd ops to the given ceph_osd_request and prepare
2330  * them for submission. num_ops is the current number of
2331  * osd operations already to the object request.
2332  */
2333 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2334                                 struct ceph_osd_request *osd_request,
2335                                 enum obj_operation_type op_type,
2336                                 unsigned int num_ops)
2337 {
2338         struct rbd_img_request *img_request = obj_request->img_request;
2339         struct rbd_device *rbd_dev = img_request->rbd_dev;
2340         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2341         u64 offset = obj_request->offset;
2342         u64 length = obj_request->length;
2343         u64 img_end;
2344         u16 opcode;
2345
2346         if (op_type == OBJ_OP_DISCARD) {
2347                 if (!offset && length == object_size &&
2348                     (!img_request_layered_test(img_request) ||
2349                      !obj_request_overlaps_parent(obj_request))) {
2350                         opcode = CEPH_OSD_OP_DELETE;
2351                 } else if ((offset + length == object_size)) {
2352                         opcode = CEPH_OSD_OP_TRUNCATE;
2353                 } else {
2354                         down_read(&rbd_dev->header_rwsem);
2355                         img_end = rbd_dev->header.image_size;
2356                         up_read(&rbd_dev->header_rwsem);
2357
2358                         if (obj_request->img_offset + length == img_end)
2359                                 opcode = CEPH_OSD_OP_TRUNCATE;
2360                         else
2361                                 opcode = CEPH_OSD_OP_ZERO;
2362                 }
2363         } else if (op_type == OBJ_OP_WRITE) {
2364                 opcode = CEPH_OSD_OP_WRITE;
2365                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2366                                         object_size, object_size);
2367                 num_ops++;
2368         } else {
2369                 opcode = CEPH_OSD_OP_READ;
2370         }
2371
2372         osd_req_op_extent_init(osd_request, num_ops, opcode, offset, length,
2373                                 0, 0);
2374         if (obj_request->type == OBJ_REQUEST_BIO)
2375                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2376                                         obj_request->bio_list, length);
2377         else if (obj_request->type == OBJ_REQUEST_PAGES)
2378                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2379                                         obj_request->pages, length,
2380                                         offset & ~PAGE_MASK, false, false);
2381
2382         /* Discards are also writes */
2383         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2384                 rbd_osd_req_format_write(obj_request);
2385         else
2386                 rbd_osd_req_format_read(obj_request);
2387 }
2388
2389 /*
2390  * Split up an image request into one or more object requests, each
2391  * to a different object.  The "type" parameter indicates whether
2392  * "data_desc" is the pointer to the head of a list of bio
2393  * structures, or the base of a page array.  In either case this
2394  * function assumes data_desc describes memory sufficient to hold
2395  * all data described by the image request.
2396  */
2397 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2398                                         enum obj_request_type type,
2399                                         void *data_desc)
2400 {
2401         struct rbd_device *rbd_dev = img_request->rbd_dev;
2402         struct rbd_obj_request *obj_request = NULL;
2403         struct rbd_obj_request *next_obj_request;
2404         struct bio *bio_list = NULL;
2405         unsigned int bio_offset = 0;
2406         struct page **pages = NULL;
2407         enum obj_operation_type op_type;
2408         u64 img_offset;
2409         u64 resid;
2410
2411         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2412                 (int)type, data_desc);
2413
2414         img_offset = img_request->offset;
2415         resid = img_request->length;
2416         rbd_assert(resid > 0);
2417         op_type = rbd_img_request_op_type(img_request);
2418
2419         if (type == OBJ_REQUEST_BIO) {
2420                 bio_list = data_desc;
2421                 rbd_assert(img_offset ==
2422                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2423         } else if (type == OBJ_REQUEST_PAGES) {
2424                 pages = data_desc;
2425         }
2426
2427         while (resid) {
2428                 struct ceph_osd_request *osd_req;
2429                 const char *object_name;
2430                 u64 offset;
2431                 u64 length;
2432
2433                 object_name = rbd_segment_name(rbd_dev, img_offset);
2434                 if (!object_name)
2435                         goto out_unwind;
2436                 offset = rbd_segment_offset(rbd_dev, img_offset);
2437                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2438                 obj_request = rbd_obj_request_create(object_name,
2439                                                 offset, length, type);
2440                 /* object request has its own copy of the object name */
2441                 rbd_segment_name_free(object_name);
2442                 if (!obj_request)
2443                         goto out_unwind;
2444
2445                 /*
2446                  * set obj_request->img_request before creating the
2447                  * osd_request so that it gets the right snapc
2448                  */
2449                 rbd_img_obj_request_add(img_request, obj_request);
2450
2451                 if (type == OBJ_REQUEST_BIO) {
2452                         unsigned int clone_size;
2453
2454                         rbd_assert(length <= (u64)UINT_MAX);
2455                         clone_size = (unsigned int)length;
2456                         obj_request->bio_list =
2457                                         bio_chain_clone_range(&bio_list,
2458                                                                 &bio_offset,
2459                                                                 clone_size,
2460                                                                 GFP_ATOMIC);
2461                         if (!obj_request->bio_list)
2462                                 goto out_unwind;
2463                 } else if (type == OBJ_REQUEST_PAGES) {
2464                         unsigned int page_count;
2465
2466                         obj_request->pages = pages;
2467                         page_count = (u32)calc_pages_for(offset, length);
2468                         obj_request->page_count = page_count;
2469                         if ((offset + length) & ~PAGE_MASK)
2470                                 page_count--;   /* more on last page */
2471                         pages += page_count;
2472                 }
2473
2474                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2475                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2476                                         obj_request);
2477                 if (!osd_req)
2478                         goto out_unwind;
2479
2480                 obj_request->osd_req = osd_req;
2481                 obj_request->callback = rbd_img_obj_callback;
2482                 obj_request->img_offset = img_offset;
2483
2484                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2485
2486                 rbd_img_request_get(img_request);
2487
2488                 img_offset += length;
2489                 resid -= length;
2490         }
2491
2492         return 0;
2493
2494 out_unwind:
2495         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2496                 rbd_img_obj_request_del(img_request, obj_request);
2497
2498         return -ENOMEM;
2499 }
2500
2501 static void
2502 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2503 {
2504         struct rbd_img_request *img_request;
2505         struct rbd_device *rbd_dev;
2506         struct page **pages;
2507         u32 page_count;
2508
2509         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2510                 obj_request->type == OBJ_REQUEST_NODATA);
2511         rbd_assert(obj_request_img_data_test(obj_request));
2512         img_request = obj_request->img_request;
2513         rbd_assert(img_request);
2514
2515         rbd_dev = img_request->rbd_dev;
2516         rbd_assert(rbd_dev);
2517
2518         pages = obj_request->copyup_pages;
2519         rbd_assert(pages != NULL);
2520         obj_request->copyup_pages = NULL;
2521         page_count = obj_request->copyup_page_count;
2522         rbd_assert(page_count);
2523         obj_request->copyup_page_count = 0;
2524         ceph_release_page_vector(pages, page_count);
2525
2526         /*
2527          * We want the transfer count to reflect the size of the
2528          * original write request.  There is no such thing as a
2529          * successful short write, so if the request was successful
2530          * we can just set it to the originally-requested length.
2531          */
2532         if (!obj_request->result)
2533                 obj_request->xferred = obj_request->length;
2534
2535         /* Finish up with the normal image object callback */
2536
2537         rbd_img_obj_callback(obj_request);
2538 }
2539
2540 static void
2541 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2542 {
2543         struct rbd_obj_request *orig_request;
2544         struct ceph_osd_request *osd_req;
2545         struct ceph_osd_client *osdc;
2546         struct rbd_device *rbd_dev;
2547         struct page **pages;
2548         enum obj_operation_type op_type;
2549         u32 page_count;
2550         int img_result;
2551         u64 parent_length;
2552
2553         rbd_assert(img_request_child_test(img_request));
2554
2555         /* First get what we need from the image request */
2556
2557         pages = img_request->copyup_pages;
2558         rbd_assert(pages != NULL);
2559         img_request->copyup_pages = NULL;
2560         page_count = img_request->copyup_page_count;
2561         rbd_assert(page_count);
2562         img_request->copyup_page_count = 0;
2563
2564         orig_request = img_request->obj_request;
2565         rbd_assert(orig_request != NULL);
2566         rbd_assert(obj_request_type_valid(orig_request->type));
2567         img_result = img_request->result;
2568         parent_length = img_request->length;
2569         rbd_assert(parent_length == img_request->xferred);
2570         rbd_img_request_put(img_request);
2571
2572         rbd_assert(orig_request->img_request);
2573         rbd_dev = orig_request->img_request->rbd_dev;
2574         rbd_assert(rbd_dev);
2575
2576         /*
2577          * If the overlap has become 0 (most likely because the
2578          * image has been flattened) we need to free the pages
2579          * and re-submit the original write request.
2580          */
2581         if (!rbd_dev->parent_overlap) {
2582                 struct ceph_osd_client *osdc;
2583
2584                 ceph_release_page_vector(pages, page_count);
2585                 osdc = &rbd_dev->rbd_client->client->osdc;
2586                 img_result = rbd_obj_request_submit(osdc, orig_request);
2587                 if (!img_result)
2588                         return;
2589         }
2590
2591         if (img_result)
2592                 goto out_err;
2593
2594         /*
2595          * The original osd request is of no use to use any more.
2596          * We need a new one that can hold the three ops in a copyup
2597          * request.  Allocate the new copyup osd request for the
2598          * original request, and release the old one.
2599          */
2600         img_result = -ENOMEM;
2601         osd_req = rbd_osd_req_create_copyup(orig_request);
2602         if (!osd_req)
2603                 goto out_err;
2604         rbd_osd_req_destroy(orig_request->osd_req);
2605         orig_request->osd_req = osd_req;
2606         orig_request->copyup_pages = pages;
2607         orig_request->copyup_page_count = page_count;
2608
2609         /* Initialize the copyup op */
2610
2611         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2612         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2613                                                 false, false);
2614
2615         /* Add the other op(s) */
2616
2617         op_type = rbd_img_request_op_type(orig_request->img_request);
2618         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2619
2620         /* All set, send it off. */
2621
2622         orig_request->callback = rbd_img_obj_copyup_callback;
2623         osdc = &rbd_dev->rbd_client->client->osdc;
2624         img_result = rbd_obj_request_submit(osdc, orig_request);
2625         if (!img_result)
2626                 return;
2627 out_err:
2628         /* Record the error code and complete the request */
2629
2630         orig_request->result = img_result;
2631         orig_request->xferred = 0;
2632         obj_request_done_set(orig_request);
2633         rbd_obj_request_complete(orig_request);
2634 }
2635
2636 /*
2637  * Read from the parent image the range of data that covers the
2638  * entire target of the given object request.  This is used for
2639  * satisfying a layered image write request when the target of an
2640  * object request from the image request does not exist.
2641  *
2642  * A page array big enough to hold the returned data is allocated
2643  * and supplied to rbd_img_request_fill() as the "data descriptor."
2644  * When the read completes, this page array will be transferred to
2645  * the original object request for the copyup operation.
2646  *
2647  * If an error occurs, record it as the result of the original
2648  * object request and mark it done so it gets completed.
2649  */
2650 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2651 {
2652         struct rbd_img_request *img_request = NULL;
2653         struct rbd_img_request *parent_request = NULL;
2654         struct rbd_device *rbd_dev;
2655         u64 img_offset;
2656         u64 length;
2657         struct page **pages = NULL;
2658         u32 page_count;
2659         int result;
2660
2661         rbd_assert(obj_request_img_data_test(obj_request));
2662         rbd_assert(obj_request_type_valid(obj_request->type));
2663
2664         img_request = obj_request->img_request;
2665         rbd_assert(img_request != NULL);
2666         rbd_dev = img_request->rbd_dev;
2667         rbd_assert(rbd_dev->parent != NULL);
2668
2669         /*
2670          * Determine the byte range covered by the object in the
2671          * child image to which the original request was to be sent.
2672          */
2673         img_offset = obj_request->img_offset - obj_request->offset;
2674         length = (u64)1 << rbd_dev->header.obj_order;
2675
2676         /*
2677          * There is no defined parent data beyond the parent
2678          * overlap, so limit what we read at that boundary if
2679          * necessary.
2680          */
2681         if (img_offset + length > rbd_dev->parent_overlap) {
2682                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2683                 length = rbd_dev->parent_overlap - img_offset;
2684         }
2685
2686         /*
2687          * Allocate a page array big enough to receive the data read
2688          * from the parent.
2689          */
2690         page_count = (u32)calc_pages_for(0, length);
2691         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2692         if (IS_ERR(pages)) {
2693                 result = PTR_ERR(pages);
2694                 pages = NULL;
2695                 goto out_err;
2696         }
2697
2698         result = -ENOMEM;
2699         parent_request = rbd_parent_request_create(obj_request,
2700                                                 img_offset, length);
2701         if (!parent_request)
2702                 goto out_err;
2703
2704         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2705         if (result)
2706                 goto out_err;
2707         parent_request->copyup_pages = pages;
2708         parent_request->copyup_page_count = page_count;
2709
2710         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2711         result = rbd_img_request_submit(parent_request);
2712         if (!result)
2713                 return 0;
2714
2715         parent_request->copyup_pages = NULL;
2716         parent_request->copyup_page_count = 0;
2717         parent_request->obj_request = NULL;
2718         rbd_obj_request_put(obj_request);
2719 out_err:
2720         if (pages)
2721                 ceph_release_page_vector(pages, page_count);
2722         if (parent_request)
2723                 rbd_img_request_put(parent_request);
2724         obj_request->result = result;
2725         obj_request->xferred = 0;
2726         obj_request_done_set(obj_request);
2727
2728         return result;
2729 }
2730
2731 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2732 {
2733         struct rbd_obj_request *orig_request;
2734         struct rbd_device *rbd_dev;
2735         int result;
2736
2737         rbd_assert(!obj_request_img_data_test(obj_request));
2738
2739         /*
2740          * All we need from the object request is the original
2741          * request and the result of the STAT op.  Grab those, then
2742          * we're done with the request.
2743          */
2744         orig_request = obj_request->obj_request;
2745         obj_request->obj_request = NULL;
2746         rbd_obj_request_put(orig_request);
2747         rbd_assert(orig_request);
2748         rbd_assert(orig_request->img_request);
2749
2750         result = obj_request->result;
2751         obj_request->result = 0;
2752
2753         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2754                 obj_request, orig_request, result,
2755                 obj_request->xferred, obj_request->length);
2756         rbd_obj_request_put(obj_request);
2757
2758         /*
2759          * If the overlap has become 0 (most likely because the
2760          * image has been flattened) we need to free the pages
2761          * and re-submit the original write request.
2762          */
2763         rbd_dev = orig_request->img_request->rbd_dev;
2764         if (!rbd_dev->parent_overlap) {
2765                 struct ceph_osd_client *osdc;
2766
2767                 osdc = &rbd_dev->rbd_client->client->osdc;
2768                 result = rbd_obj_request_submit(osdc, orig_request);
2769                 if (!result)
2770                         return;
2771         }
2772
2773         /*
2774          * Our only purpose here is to determine whether the object
2775          * exists, and we don't want to treat the non-existence as
2776          * an error.  If something else comes back, transfer the
2777          * error to the original request and complete it now.
2778          */
2779         if (!result) {
2780                 obj_request_existence_set(orig_request, true);
2781         } else if (result == -ENOENT) {
2782                 obj_request_existence_set(orig_request, false);
2783         } else if (result) {
2784                 orig_request->result = result;
2785                 goto out;
2786         }
2787
2788         /*
2789          * Resubmit the original request now that we have recorded
2790          * whether the target object exists.
2791          */
2792         orig_request->result = rbd_img_obj_request_submit(orig_request);
2793 out:
2794         if (orig_request->result)
2795                 rbd_obj_request_complete(orig_request);
2796 }
2797
2798 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2799 {
2800         struct rbd_obj_request *stat_request;
2801         struct rbd_device *rbd_dev;
2802         struct ceph_osd_client *osdc;
2803         struct page **pages = NULL;
2804         u32 page_count;
2805         size_t size;
2806         int ret;
2807
2808         /*
2809          * The response data for a STAT call consists of:
2810          *     le64 length;
2811          *     struct {
2812          *         le32 tv_sec;
2813          *         le32 tv_nsec;
2814          *     } mtime;
2815          */
2816         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2817         page_count = (u32)calc_pages_for(0, size);
2818         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2819         if (IS_ERR(pages))
2820                 return PTR_ERR(pages);
2821
2822         ret = -ENOMEM;
2823         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2824                                                         OBJ_REQUEST_PAGES);
2825         if (!stat_request)
2826                 goto out;
2827
2828         rbd_obj_request_get(obj_request);
2829         stat_request->obj_request = obj_request;
2830         stat_request->pages = pages;
2831         stat_request->page_count = page_count;
2832
2833         rbd_assert(obj_request->img_request);
2834         rbd_dev = obj_request->img_request->rbd_dev;
2835         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2836                                                    stat_request);
2837         if (!stat_request->osd_req)
2838                 goto out;
2839         stat_request->callback = rbd_img_obj_exists_callback;
2840
2841         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2842         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2843                                         false, false);
2844         rbd_osd_req_format_read(stat_request);
2845
2846         osdc = &rbd_dev->rbd_client->client->osdc;
2847         ret = rbd_obj_request_submit(osdc, stat_request);
2848 out:
2849         if (ret)
2850                 rbd_obj_request_put(obj_request);
2851
2852         return ret;
2853 }
2854
2855 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2856 {
2857         struct rbd_img_request *img_request;
2858         struct rbd_device *rbd_dev;
2859
2860         rbd_assert(obj_request_img_data_test(obj_request));
2861
2862         img_request = obj_request->img_request;
2863         rbd_assert(img_request);
2864         rbd_dev = img_request->rbd_dev;
2865
2866         /* Reads */
2867         if (!img_request_write_test(img_request) &&
2868             !img_request_discard_test(img_request))
2869                 return true;
2870
2871         /* Non-layered writes */
2872         if (!img_request_layered_test(img_request))
2873                 return true;
2874
2875         /*
2876          * Layered writes outside of the parent overlap range don't
2877          * share any data with the parent.
2878          */
2879         if (!obj_request_overlaps_parent(obj_request))
2880                 return true;
2881
2882         /*
2883          * Entire-object layered writes - we will overwrite whatever
2884          * parent data there is anyway.
2885          */
2886         if (!obj_request->offset &&
2887             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2888                 return true;
2889
2890         /*
2891          * If the object is known to already exist, its parent data has
2892          * already been copied.
2893          */
2894         if (obj_request_known_test(obj_request) &&
2895             obj_request_exists_test(obj_request))
2896                 return true;
2897
2898         return false;
2899 }
2900
2901 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2902 {
2903         if (img_obj_request_simple(obj_request)) {
2904                 struct rbd_device *rbd_dev;
2905                 struct ceph_osd_client *osdc;
2906
2907                 rbd_dev = obj_request->img_request->rbd_dev;
2908                 osdc = &rbd_dev->rbd_client->client->osdc;
2909
2910                 return rbd_obj_request_submit(osdc, obj_request);
2911         }
2912
2913         /*
2914          * It's a layered write.  The target object might exist but
2915          * we may not know that yet.  If we know it doesn't exist,
2916          * start by reading the data for the full target object from
2917          * the parent so we can use it for a copyup to the target.
2918          */
2919         if (obj_request_known_test(obj_request))
2920                 return rbd_img_obj_parent_read_full(obj_request);
2921
2922         /* We don't know whether the target exists.  Go find out. */
2923
2924         return rbd_img_obj_exists_submit(obj_request);
2925 }
2926
2927 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2928 {
2929         struct rbd_obj_request *obj_request;
2930         struct rbd_obj_request *next_obj_request;
2931
2932         dout("%s: img %p\n", __func__, img_request);
2933         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2934                 int ret;
2935
2936                 ret = rbd_img_obj_request_submit(obj_request);
2937                 if (ret)
2938                         return ret;
2939         }
2940
2941         return 0;
2942 }
2943
2944 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2945 {
2946         struct rbd_obj_request *obj_request;
2947         struct rbd_device *rbd_dev;
2948         u64 obj_end;
2949         u64 img_xferred;
2950         int img_result;
2951
2952         rbd_assert(img_request_child_test(img_request));
2953
2954         /* First get what we need from the image request and release it */
2955
2956         obj_request = img_request->obj_request;
2957         img_xferred = img_request->xferred;
2958         img_result = img_request->result;
2959         rbd_img_request_put(img_request);
2960
2961         /*
2962          * If the overlap has become 0 (most likely because the
2963          * image has been flattened) we need to re-submit the
2964          * original request.
2965          */
2966         rbd_assert(obj_request);
2967         rbd_assert(obj_request->img_request);
2968         rbd_dev = obj_request->img_request->rbd_dev;
2969         if (!rbd_dev->parent_overlap) {
2970                 struct ceph_osd_client *osdc;
2971
2972                 osdc = &rbd_dev->rbd_client->client->osdc;
2973                 img_result = rbd_obj_request_submit(osdc, obj_request);
2974                 if (!img_result)
2975                         return;
2976         }
2977
2978         obj_request->result = img_result;
2979         if (obj_request->result)
2980                 goto out;
2981
2982         /*
2983          * We need to zero anything beyond the parent overlap
2984          * boundary.  Since rbd_img_obj_request_read_callback()
2985          * will zero anything beyond the end of a short read, an
2986          * easy way to do this is to pretend the data from the
2987          * parent came up short--ending at the overlap boundary.
2988          */
2989         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2990         obj_end = obj_request->img_offset + obj_request->length;
2991         if (obj_end > rbd_dev->parent_overlap) {
2992                 u64 xferred = 0;
2993
2994                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2995                         xferred = rbd_dev->parent_overlap -
2996                                         obj_request->img_offset;
2997
2998                 obj_request->xferred = min(img_xferred, xferred);
2999         } else {
3000                 obj_request->xferred = img_xferred;
3001         }
3002 out:
3003         rbd_img_obj_request_read_callback(obj_request);
3004         rbd_obj_request_complete(obj_request);
3005 }
3006
3007 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3008 {
3009         struct rbd_img_request *img_request;
3010         int result;
3011
3012         rbd_assert(obj_request_img_data_test(obj_request));
3013         rbd_assert(obj_request->img_request != NULL);
3014         rbd_assert(obj_request->result == (s32) -ENOENT);
3015         rbd_assert(obj_request_type_valid(obj_request->type));
3016
3017         /* rbd_read_finish(obj_request, obj_request->length); */
3018         img_request = rbd_parent_request_create(obj_request,
3019                                                 obj_request->img_offset,
3020                                                 obj_request->length);
3021         result = -ENOMEM;
3022         if (!img_request)
3023                 goto out_err;
3024
3025         if (obj_request->type == OBJ_REQUEST_BIO)
3026                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3027                                                 obj_request->bio_list);
3028         else
3029                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3030                                                 obj_request->pages);
3031         if (result)
3032                 goto out_err;
3033
3034         img_request->callback = rbd_img_parent_read_callback;
3035         result = rbd_img_request_submit(img_request);
3036         if (result)
3037                 goto out_err;
3038
3039         return;
3040 out_err:
3041         if (img_request)
3042                 rbd_img_request_put(img_request);
3043         obj_request->result = result;
3044         obj_request->xferred = 0;
3045         obj_request_done_set(obj_request);
3046 }
3047
3048 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3049 {
3050         struct rbd_obj_request *obj_request;
3051         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3052         int ret;
3053
3054         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3055                                                         OBJ_REQUEST_NODATA);
3056         if (!obj_request)
3057                 return -ENOMEM;
3058
3059         ret = -ENOMEM;
3060         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3061                                                   obj_request);
3062         if (!obj_request->osd_req)
3063                 goto out;
3064
3065         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3066                                         notify_id, 0, 0);
3067         rbd_osd_req_format_read(obj_request);
3068
3069         ret = rbd_obj_request_submit(osdc, obj_request);
3070         if (ret)
3071                 goto out;
3072         ret = rbd_obj_request_wait(obj_request);
3073 out:
3074         rbd_obj_request_put(obj_request);
3075
3076         return ret;
3077 }
3078
3079 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3080 {
3081         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3082         int ret;
3083
3084         if (!rbd_dev)
3085                 return;
3086
3087         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3088                 rbd_dev->header_name, (unsigned long long)notify_id,
3089                 (unsigned int)opcode);
3090
3091         /*
3092          * Until adequate refresh error handling is in place, there is
3093          * not much we can do here, except warn.
3094          *
3095          * See http://tracker.ceph.com/issues/5040
3096          */
3097         ret = rbd_dev_refresh(rbd_dev);
3098         if (ret)
3099                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3100
3101         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3102         if (ret)
3103                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3104 }
3105
3106 /*
3107  * Send a (un)watch request and wait for the ack.  Return a request
3108  * with a ref held on success or error.
3109  */
3110 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3111                                                 struct rbd_device *rbd_dev,
3112                                                 bool watch)
3113 {
3114         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3115         struct rbd_obj_request *obj_request;
3116         int ret;
3117
3118         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3119                                              OBJ_REQUEST_NODATA);
3120         if (!obj_request)
3121                 return ERR_PTR(-ENOMEM);
3122
3123         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3124                                                   obj_request);
3125         if (!obj_request->osd_req) {
3126                 ret = -ENOMEM;
3127                 goto out;
3128         }
3129
3130         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3131                               rbd_dev->watch_event->cookie, 0, watch);
3132         rbd_osd_req_format_write(obj_request);
3133
3134         if (watch)
3135                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3136
3137         ret = rbd_obj_request_submit(osdc, obj_request);
3138         if (ret)
3139                 goto out;
3140
3141         ret = rbd_obj_request_wait(obj_request);
3142         if (ret)
3143                 goto out;
3144
3145         ret = obj_request->result;
3146         if (ret) {
3147                 if (watch)
3148                         rbd_obj_request_end(obj_request);
3149                 goto out;
3150         }
3151
3152         return obj_request;
3153
3154 out:
3155         rbd_obj_request_put(obj_request);
3156         return ERR_PTR(ret);
3157 }
3158
3159 /*
3160  * Initiate a watch request, synchronously.
3161  */
3162 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3163 {
3164         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3165         struct rbd_obj_request *obj_request;
3166         int ret;
3167
3168         rbd_assert(!rbd_dev->watch_event);
3169         rbd_assert(!rbd_dev->watch_request);
3170
3171         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3172                                      &rbd_dev->watch_event);
3173         if (ret < 0)
3174                 return ret;
3175
3176         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3177         if (IS_ERR(obj_request)) {
3178                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3179                 rbd_dev->watch_event = NULL;
3180                 return PTR_ERR(obj_request);
3181         }
3182
3183         /*
3184          * A watch request is set to linger, so the underlying osd
3185          * request won't go away until we unregister it.  We retain
3186          * a pointer to the object request during that time (in
3187          * rbd_dev->watch_request), so we'll keep a reference to it.
3188          * We'll drop that reference after we've unregistered it in
3189          * rbd_dev_header_unwatch_sync().
3190          */
3191         rbd_dev->watch_request = obj_request;
3192
3193         return 0;
3194 }
3195
3196 /*
3197  * Tear down a watch request, synchronously.
3198  */
3199 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3200 {
3201         struct rbd_obj_request *obj_request;
3202
3203         rbd_assert(rbd_dev->watch_event);
3204         rbd_assert(rbd_dev->watch_request);
3205
3206         rbd_obj_request_end(rbd_dev->watch_request);
3207         rbd_obj_request_put(rbd_dev->watch_request);
3208         rbd_dev->watch_request = NULL;
3209
3210         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3211         if (!IS_ERR(obj_request))
3212                 rbd_obj_request_put(obj_request);
3213         else
3214                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3215                          PTR_ERR(obj_request));
3216
3217         ceph_osdc_cancel_event(rbd_dev->watch_event);
3218         rbd_dev->watch_event = NULL;
3219 }
3220
3221 /*
3222  * Synchronous osd object method call.  Returns the number of bytes
3223  * returned in the outbound buffer, or a negative error code.
3224  */
3225 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3226                              const char *object_name,
3227                              const char *class_name,
3228                              const char *method_name,
3229                              const void *outbound,
3230                              size_t outbound_size,
3231                              void *inbound,
3232                              size_t inbound_size)
3233 {
3234         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3235         struct rbd_obj_request *obj_request;
3236         struct page **pages;
3237         u32 page_count;
3238         int ret;
3239
3240         /*
3241          * Method calls are ultimately read operations.  The result
3242          * should placed into the inbound buffer provided.  They
3243          * also supply outbound data--parameters for the object
3244          * method.  Currently if this is present it will be a
3245          * snapshot id.
3246          */
3247         page_count = (u32)calc_pages_for(0, inbound_size);
3248         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3249         if (IS_ERR(pages))
3250                 return PTR_ERR(pages);
3251
3252         ret = -ENOMEM;
3253         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3254                                                         OBJ_REQUEST_PAGES);
3255         if (!obj_request)
3256                 goto out;
3257
3258         obj_request->pages = pages;
3259         obj_request->page_count = page_count;
3260
3261         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3262                                                   obj_request);
3263         if (!obj_request->osd_req)
3264                 goto out;
3265
3266         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3267                                         class_name, method_name);
3268         if (outbound_size) {
3269                 struct ceph_pagelist *pagelist;
3270
3271                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3272                 if (!pagelist)
3273                         goto out;
3274
3275                 ceph_pagelist_init(pagelist);
3276                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3277                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3278                                                 pagelist);
3279         }
3280         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3281                                         obj_request->pages, inbound_size,
3282                                         0, false, false);
3283         rbd_osd_req_format_read(obj_request);
3284
3285         ret = rbd_obj_request_submit(osdc, obj_request);
3286         if (ret)
3287                 goto out;
3288         ret = rbd_obj_request_wait(obj_request);
3289         if (ret)
3290                 goto out;
3291
3292         ret = obj_request->result;
3293         if (ret < 0)
3294                 goto out;
3295
3296         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3297         ret = (int)obj_request->xferred;
3298         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3299 out:
3300         if (obj_request)
3301                 rbd_obj_request_put(obj_request);
3302         else
3303                 ceph_release_page_vector(pages, page_count);
3304
3305         return ret;
3306 }
3307
3308 static void rbd_handle_request(struct rbd_device *rbd_dev, struct request *rq)
3309 {
3310         struct rbd_img_request *img_request;
3311         struct ceph_snap_context *snapc = NULL;
3312         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3313         u64 length = blk_rq_bytes(rq);
3314         enum obj_operation_type op_type;
3315         u64 mapping_size;
3316         int result;
3317
3318         if (rq->cmd_flags & REQ_DISCARD)
3319                 op_type = OBJ_OP_DISCARD;
3320         else if (rq->cmd_flags & REQ_WRITE)
3321                 op_type = OBJ_OP_WRITE;
3322         else
3323                 op_type = OBJ_OP_READ;
3324
3325         /* Ignore/skip any zero-length requests */
3326
3327         if (!length) {
3328                 dout("%s: zero-length request\n", __func__);
3329                 result = 0;
3330                 goto err_rq;
3331         }
3332
3333         /* Only reads are allowed to a read-only device */
3334
3335         if (op_type != OBJ_OP_READ) {
3336                 if (rbd_dev->mapping.read_only) {
3337                         result = -EROFS;
3338                         goto err_rq;
3339                 }
3340                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3341         }
3342
3343         /*
3344          * Quit early if the mapped snapshot no longer exists.  It's
3345          * still possible the snapshot will have disappeared by the
3346          * time our request arrives at the osd, but there's no sense in
3347          * sending it if we already know.
3348          */
3349         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3350                 dout("request for non-existent snapshot");
3351                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3352                 result = -ENXIO;
3353                 goto err_rq;
3354         }
3355
3356         if (offset && length > U64_MAX - offset + 1) {
3357                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3358                          length);
3359                 result = -EINVAL;
3360                 goto err_rq;    /* Shouldn't happen */
3361         }
3362
3363         down_read(&rbd_dev->header_rwsem);
3364         mapping_size = rbd_dev->mapping.size;
3365         if (op_type != OBJ_OP_READ) {
3366                 snapc = rbd_dev->header.snapc;
3367                 ceph_get_snap_context(snapc);
3368         }
3369         up_read(&rbd_dev->header_rwsem);
3370
3371         if (offset + length > mapping_size) {
3372                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3373                          length, mapping_size);
3374                 result = -EIO;
3375                 goto err_rq;
3376         }
3377
3378         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3379                                              snapc);
3380         if (!img_request) {
3381                 result = -ENOMEM;
3382                 goto err_rq;
3383         }
3384         img_request->rq = rq;
3385
3386         if (op_type == OBJ_OP_DISCARD)
3387                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3388                                               NULL);
3389         else
3390                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3391                                               rq->bio);
3392         if (result)
3393                 goto err_img_request;
3394
3395         result = rbd_img_request_submit(img_request);
3396         if (result)
3397                 goto err_img_request;
3398
3399         return;
3400
3401 err_img_request:
3402         rbd_img_request_put(img_request);
3403 err_rq:
3404         if (result)
3405                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3406                          obj_op_name(op_type), length, offset, result);
3407         if (snapc)
3408                 ceph_put_snap_context(snapc);
3409         blk_end_request_all(rq, result);
3410 }
3411
3412 static void rbd_request_workfn(struct work_struct *work)
3413 {
3414         struct rbd_device *rbd_dev =
3415             container_of(work, struct rbd_device, rq_work);
3416         struct request *rq, *next;
3417         LIST_HEAD(requests);
3418
3419         spin_lock_irq(&rbd_dev->lock); /* rq->q->queue_lock */
3420         list_splice_init(&rbd_dev->rq_queue, &requests);
3421         spin_unlock_irq(&rbd_dev->lock);
3422
3423         list_for_each_entry_safe(rq, next, &requests, queuelist) {
3424                 list_del_init(&rq->queuelist);
3425                 rbd_handle_request(rbd_dev, rq);
3426         }
3427 }
3428
3429 /*
3430  * Called with q->queue_lock held and interrupts disabled, possibly on
3431  * the way to schedule().  Do not sleep here!
3432  */
3433 static void rbd_request_fn(struct request_queue *q)
3434 {
3435         struct rbd_device *rbd_dev = q->queuedata;
3436         struct request *rq;
3437         int queued = 0;
3438
3439         rbd_assert(rbd_dev);
3440
3441         while ((rq = blk_fetch_request(q))) {
3442                 /* Ignore any non-FS requests that filter through. */
3443                 if (rq->cmd_type != REQ_TYPE_FS) {
3444                         dout("%s: non-fs request type %d\n", __func__,
3445                                 (int) rq->cmd_type);
3446                         __blk_end_request_all(rq, 0);
3447                         continue;
3448                 }
3449
3450                 list_add_tail(&rq->queuelist, &rbd_dev->rq_queue);
3451                 queued++;
3452         }
3453
3454         if (queued)
3455                 queue_work(rbd_dev->rq_wq, &rbd_dev->rq_work);
3456 }
3457
3458 /*
3459  * a queue callback. Makes sure that we don't create a bio that spans across
3460  * multiple osd objects. One exception would be with a single page bios,
3461  * which we handle later at bio_chain_clone_range()
3462  */
3463 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3464                           struct bio_vec *bvec)
3465 {
3466         struct rbd_device *rbd_dev = q->queuedata;
3467         sector_t sector_offset;
3468         sector_t sectors_per_obj;
3469         sector_t obj_sector_offset;
3470         int ret;
3471
3472         /*
3473          * Find how far into its rbd object the partition-relative
3474          * bio start sector is to offset relative to the enclosing
3475          * device.
3476          */
3477         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3478         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3479         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3480
3481         /*
3482          * Compute the number of bytes from that offset to the end
3483          * of the object.  Account for what's already used by the bio.
3484          */
3485         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3486         if (ret > bmd->bi_size)
3487                 ret -= bmd->bi_size;
3488         else
3489                 ret = 0;
3490
3491         /*
3492          * Don't send back more than was asked for.  And if the bio
3493          * was empty, let the whole thing through because:  "Note
3494          * that a block device *must* allow a single page to be
3495          * added to an empty bio."
3496          */
3497         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3498         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3499                 ret = (int) bvec->bv_len;
3500
3501         return ret;
3502 }
3503
3504 static void rbd_free_disk(struct rbd_device *rbd_dev)
3505 {
3506         struct gendisk *disk = rbd_dev->disk;
3507
3508         if (!disk)
3509                 return;
3510
3511         rbd_dev->disk = NULL;
3512         if (disk->flags & GENHD_FL_UP) {
3513                 del_gendisk(disk);
3514                 if (disk->queue)
3515                         blk_cleanup_queue(disk->queue);
3516         }
3517         put_disk(disk);
3518 }
3519
3520 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3521                                 const char *object_name,
3522                                 u64 offset, u64 length, void *buf)
3523
3524 {
3525         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3526         struct rbd_obj_request *obj_request;
3527         struct page **pages = NULL;
3528         u32 page_count;
3529         size_t size;
3530         int ret;
3531
3532         page_count = (u32) calc_pages_for(offset, length);
3533         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3534         if (IS_ERR(pages))
3535                 ret = PTR_ERR(pages);
3536
3537         ret = -ENOMEM;
3538         obj_request = rbd_obj_request_create(object_name, offset, length,
3539                                                         OBJ_REQUEST_PAGES);
3540         if (!obj_request)
3541                 goto out;
3542
3543         obj_request->pages = pages;
3544         obj_request->page_count = page_count;
3545
3546         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3547                                                   obj_request);
3548         if (!obj_request->osd_req)
3549                 goto out;
3550
3551         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3552                                         offset, length, 0, 0);
3553         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3554                                         obj_request->pages,
3555                                         obj_request->length,
3556                                         obj_request->offset & ~PAGE_MASK,
3557                                         false, false);
3558         rbd_osd_req_format_read(obj_request);
3559
3560         ret = rbd_obj_request_submit(osdc, obj_request);
3561         if (ret)
3562                 goto out;
3563         ret = rbd_obj_request_wait(obj_request);
3564         if (ret)
3565                 goto out;
3566
3567         ret = obj_request->result;
3568         if (ret < 0)
3569                 goto out;
3570
3571         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3572         size = (size_t) obj_request->xferred;
3573         ceph_copy_from_page_vector(pages, buf, 0, size);
3574         rbd_assert(size <= (size_t)INT_MAX);
3575         ret = (int)size;
3576 out:
3577         if (obj_request)
3578                 rbd_obj_request_put(obj_request);
3579         else
3580                 ceph_release_page_vector(pages, page_count);
3581
3582         return ret;
3583 }
3584
3585 /*
3586  * Read the complete header for the given rbd device.  On successful
3587  * return, the rbd_dev->header field will contain up-to-date
3588  * information about the image.
3589  */
3590 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3591 {
3592         struct rbd_image_header_ondisk *ondisk = NULL;
3593         u32 snap_count = 0;
3594         u64 names_size = 0;
3595         u32 want_count;
3596         int ret;
3597
3598         /*
3599          * The complete header will include an array of its 64-bit
3600          * snapshot ids, followed by the names of those snapshots as
3601          * a contiguous block of NUL-terminated strings.  Note that
3602          * the number of snapshots could change by the time we read
3603          * it in, in which case we re-read it.
3604          */
3605         do {
3606                 size_t size;
3607
3608                 kfree(ondisk);
3609
3610                 size = sizeof (*ondisk);
3611                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3612                 size += names_size;
3613                 ondisk = kmalloc(size, GFP_KERNEL);
3614                 if (!ondisk)
3615                         return -ENOMEM;
3616
3617                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3618                                        0, size, ondisk);
3619                 if (ret < 0)
3620                         goto out;
3621                 if ((size_t)ret < size) {
3622                         ret = -ENXIO;
3623                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3624                                 size, ret);
3625                         goto out;
3626                 }
3627                 if (!rbd_dev_ondisk_valid(ondisk)) {
3628                         ret = -ENXIO;
3629                         rbd_warn(rbd_dev, "invalid header");
3630                         goto out;
3631                 }
3632
3633                 names_size = le64_to_cpu(ondisk->snap_names_len);
3634                 want_count = snap_count;
3635                 snap_count = le32_to_cpu(ondisk->snap_count);
3636         } while (snap_count != want_count);
3637
3638         ret = rbd_header_from_disk(rbd_dev, ondisk);
3639 out:
3640         kfree(ondisk);
3641
3642         return ret;
3643 }
3644
3645 /*
3646  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3647  * has disappeared from the (just updated) snapshot context.
3648  */
3649 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3650 {
3651         u64 snap_id;
3652
3653         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3654                 return;
3655
3656         snap_id = rbd_dev->spec->snap_id;
3657         if (snap_id == CEPH_NOSNAP)
3658                 return;
3659
3660         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3661                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3662 }
3663
3664 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3665 {
3666         sector_t size;
3667         bool removing;
3668
3669         /*
3670          * Don't hold the lock while doing disk operations,
3671          * or lock ordering will conflict with the bdev mutex via:
3672          * rbd_add() -> blkdev_get() -> rbd_open()
3673          */
3674         spin_lock_irq(&rbd_dev->lock);
3675         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3676         spin_unlock_irq(&rbd_dev->lock);
3677         /*
3678          * If the device is being removed, rbd_dev->disk has
3679          * been destroyed, so don't try to update its size
3680          */
3681         if (!removing) {
3682                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3683                 dout("setting size to %llu sectors", (unsigned long long)size);
3684                 set_capacity(rbd_dev->disk, size);
3685                 revalidate_disk(rbd_dev->disk);
3686         }
3687 }
3688
3689 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3690 {
3691         u64 mapping_size;
3692         int ret;
3693
3694         down_write(&rbd_dev->header_rwsem);
3695         mapping_size = rbd_dev->mapping.size;
3696
3697         ret = rbd_dev_header_info(rbd_dev);
3698         if (ret)
3699                 return ret;
3700
3701         /*
3702          * If there is a parent, see if it has disappeared due to the
3703          * mapped image getting flattened.
3704          */
3705         if (rbd_dev->parent) {
3706                 ret = rbd_dev_v2_parent_info(rbd_dev);
3707                 if (ret)
3708                         return ret;
3709         }
3710
3711         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3712                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
3713                         rbd_dev->mapping.size = rbd_dev->header.image_size;
3714         } else {
3715                 /* validate mapped snapshot's EXISTS flag */
3716                 rbd_exists_validate(rbd_dev);
3717         }
3718
3719         up_write(&rbd_dev->header_rwsem);
3720
3721         if (mapping_size != rbd_dev->mapping.size)
3722                 rbd_dev_update_size(rbd_dev);
3723
3724         return 0;
3725 }
3726
3727 static int rbd_init_disk(struct rbd_device *rbd_dev)
3728 {
3729         struct gendisk *disk;
3730         struct request_queue *q;
3731         u64 segment_size;
3732
3733         /* create gendisk info */
3734         disk = alloc_disk(single_major ?
3735                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3736                           RBD_MINORS_PER_MAJOR);
3737         if (!disk)
3738                 return -ENOMEM;
3739
3740         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3741                  rbd_dev->dev_id);
3742         disk->major = rbd_dev->major;
3743         disk->first_minor = rbd_dev->minor;
3744         if (single_major)
3745                 disk->flags |= GENHD_FL_EXT_DEVT;
3746         disk->fops = &rbd_bd_ops;
3747         disk->private_data = rbd_dev;
3748
3749         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3750         if (!q)
3751                 goto out_disk;
3752
3753         /* We use the default size, but let's be explicit about it. */
3754         blk_queue_physical_block_size(q, SECTOR_SIZE);
3755
3756         /* set io sizes to object size */
3757         segment_size = rbd_obj_bytes(&rbd_dev->header);
3758         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3759         blk_queue_max_segment_size(q, segment_size);
3760         blk_queue_io_min(q, segment_size);
3761         blk_queue_io_opt(q, segment_size);
3762
3763         /* enable the discard support */
3764         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3765         q->limits.discard_granularity = segment_size;
3766         q->limits.discard_alignment = segment_size;
3767
3768         blk_queue_merge_bvec(q, rbd_merge_bvec);
3769         disk->queue = q;
3770
3771         q->queuedata = rbd_dev;
3772
3773         rbd_dev->disk = disk;
3774
3775         return 0;
3776 out_disk:
3777         put_disk(disk);
3778
3779         return -ENOMEM;
3780 }
3781
3782 /*
3783   sysfs
3784 */
3785
3786 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3787 {
3788         return container_of(dev, struct rbd_device, dev);
3789 }
3790
3791 static ssize_t rbd_size_show(struct device *dev,
3792                              struct device_attribute *attr, char *buf)
3793 {
3794         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3795
3796         return sprintf(buf, "%llu\n",
3797                 (unsigned long long)rbd_dev->mapping.size);
3798 }
3799
3800 /*
3801  * Note this shows the features for whatever's mapped, which is not
3802  * necessarily the base image.
3803  */
3804 static ssize_t rbd_features_show(struct device *dev,
3805                              struct device_attribute *attr, char *buf)
3806 {
3807         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3808
3809         return sprintf(buf, "0x%016llx\n",
3810                         (unsigned long long)rbd_dev->mapping.features);
3811 }
3812
3813 static ssize_t rbd_major_show(struct device *dev,
3814                               struct device_attribute *attr, char *buf)
3815 {
3816         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3817
3818         if (rbd_dev->major)
3819                 return sprintf(buf, "%d\n", rbd_dev->major);
3820
3821         return sprintf(buf, "(none)\n");
3822 }
3823
3824 static ssize_t rbd_minor_show(struct device *dev,
3825                               struct device_attribute *attr, char *buf)
3826 {
3827         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3828
3829         return sprintf(buf, "%d\n", rbd_dev->minor);
3830 }
3831
3832 static ssize_t rbd_client_id_show(struct device *dev,
3833                                   struct device_attribute *attr, char *buf)
3834 {
3835         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3836
3837         return sprintf(buf, "client%lld\n",
3838                         ceph_client_id(rbd_dev->rbd_client->client));
3839 }
3840
3841 static ssize_t rbd_pool_show(struct device *dev,
3842                              struct device_attribute *attr, char *buf)
3843 {
3844         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3845
3846         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3847 }
3848
3849 static ssize_t rbd_pool_id_show(struct device *dev,
3850                              struct device_attribute *attr, char *buf)
3851 {
3852         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3853
3854         return sprintf(buf, "%llu\n",
3855                         (unsigned long long) rbd_dev->spec->pool_id);
3856 }
3857
3858 static ssize_t rbd_name_show(struct device *dev,
3859                              struct device_attribute *attr, char *buf)
3860 {
3861         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3862
3863         if (rbd_dev->spec->image_name)
3864                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3865
3866         return sprintf(buf, "(unknown)\n");
3867 }
3868
3869 static ssize_t rbd_image_id_show(struct device *dev,
3870                              struct device_attribute *attr, char *buf)
3871 {
3872         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3873
3874         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3875 }
3876
3877 /*
3878  * Shows the name of the currently-mapped snapshot (or
3879  * RBD_SNAP_HEAD_NAME for the base image).
3880  */
3881 static ssize_t rbd_snap_show(struct device *dev,
3882                              struct device_attribute *attr,
3883                              char *buf)
3884 {
3885         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3886
3887         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3888 }
3889
3890 /*
3891  * For a v2 image, shows the chain of parent images, separated by empty
3892  * lines.  For v1 images or if there is no parent, shows "(no parent
3893  * image)".
3894  */
3895 static ssize_t rbd_parent_show(struct device *dev,
3896                                struct device_attribute *attr,
3897                                char *buf)
3898 {
3899         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3900         ssize_t count = 0;
3901
3902         if (!rbd_dev->parent)
3903                 return sprintf(buf, "(no parent image)\n");
3904
3905         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3906                 struct rbd_spec *spec = rbd_dev->parent_spec;
3907
3908                 count += sprintf(&buf[count], "%s"
3909                             "pool_id %llu\npool_name %s\n"
3910                             "image_id %s\nimage_name %s\n"
3911                             "snap_id %llu\nsnap_name %s\n"
3912                             "overlap %llu\n",
3913                             !count ? "" : "\n", /* first? */
3914                             spec->pool_id, spec->pool_name,
3915                             spec->image_id, spec->image_name ?: "(unknown)",
3916                             spec->snap_id, spec->snap_name,
3917                             rbd_dev->parent_overlap);
3918         }
3919
3920         return count;
3921 }
3922
3923 static ssize_t rbd_image_refresh(struct device *dev,
3924                                  struct device_attribute *attr,
3925                                  const char *buf,
3926                                  size_t size)
3927 {
3928         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3929         int ret;
3930
3931         ret = rbd_dev_refresh(rbd_dev);
3932         if (ret)
3933                 return ret;
3934
3935         return size;
3936 }
3937
3938 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3939 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3940 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3941 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3942 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3943 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3944 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3945 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3946 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3947 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3948 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3949 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3950
3951 static struct attribute *rbd_attrs[] = {
3952         &dev_attr_size.attr,
3953         &dev_attr_features.attr,
3954         &dev_attr_major.attr,
3955         &dev_attr_minor.attr,
3956         &dev_attr_client_id.attr,
3957         &dev_attr_pool.attr,
3958         &dev_attr_pool_id.attr,
3959         &dev_attr_name.attr,
3960         &dev_attr_image_id.attr,
3961         &dev_attr_current_snap.attr,
3962         &dev_attr_parent.attr,
3963         &dev_attr_refresh.attr,
3964         NULL
3965 };
3966
3967 static struct attribute_group rbd_attr_group = {
3968         .attrs = rbd_attrs,
3969 };
3970
3971 static const struct attribute_group *rbd_attr_groups[] = {
3972         &rbd_attr_group,
3973         NULL
3974 };
3975
3976 static void rbd_sysfs_dev_release(struct device *dev)
3977 {
3978 }
3979
3980 static struct device_type rbd_device_type = {
3981         .name           = "rbd",
3982         .groups         = rbd_attr_groups,
3983         .release        = rbd_sysfs_dev_release,
3984 };
3985
3986 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3987 {
3988         kref_get(&spec->kref);
3989
3990         return spec;
3991 }
3992
3993 static void rbd_spec_free(struct kref *kref);
3994 static void rbd_spec_put(struct rbd_spec *spec)
3995 {
3996         if (spec)
3997                 kref_put(&spec->kref, rbd_spec_free);
3998 }
3999
4000 static struct rbd_spec *rbd_spec_alloc(void)
4001 {
4002         struct rbd_spec *spec;
4003
4004         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4005         if (!spec)
4006                 return NULL;
4007
4008         spec->pool_id = CEPH_NOPOOL;
4009         spec->snap_id = CEPH_NOSNAP;
4010         kref_init(&spec->kref);
4011
4012         return spec;
4013 }
4014
4015 static void rbd_spec_free(struct kref *kref)
4016 {
4017         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4018
4019         kfree(spec->pool_name);
4020         kfree(spec->image_id);
4021         kfree(spec->image_name);
4022         kfree(spec->snap_name);
4023         kfree(spec);
4024 }
4025
4026 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4027                                 struct rbd_spec *spec)
4028 {
4029         struct rbd_device *rbd_dev;
4030
4031         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4032         if (!rbd_dev)
4033                 return NULL;
4034
4035         spin_lock_init(&rbd_dev->lock);
4036         INIT_LIST_HEAD(&rbd_dev->rq_queue);
4037         INIT_WORK(&rbd_dev->rq_work, rbd_request_workfn);
4038         rbd_dev->flags = 0;
4039         atomic_set(&rbd_dev->parent_ref, 0);
4040         INIT_LIST_HEAD(&rbd_dev->node);
4041         init_rwsem(&rbd_dev->header_rwsem);
4042
4043         rbd_dev->spec = spec;
4044         rbd_dev->rbd_client = rbdc;
4045
4046         /* Initialize the layout used for all rbd requests */
4047
4048         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4049         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4050         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4051         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4052
4053         return rbd_dev;
4054 }
4055
4056 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4057 {
4058         rbd_put_client(rbd_dev->rbd_client);
4059         rbd_spec_put(rbd_dev->spec);
4060         kfree(rbd_dev);
4061 }
4062
4063 /*
4064  * Get the size and object order for an image snapshot, or if
4065  * snap_id is CEPH_NOSNAP, gets this information for the base
4066  * image.
4067  */
4068 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4069                                 u8 *order, u64 *snap_size)
4070 {
4071         __le64 snapid = cpu_to_le64(snap_id);
4072         int ret;
4073         struct {
4074                 u8 order;
4075                 __le64 size;
4076         } __attribute__ ((packed)) size_buf = { 0 };
4077
4078         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4079                                 "rbd", "get_size",
4080                                 &snapid, sizeof (snapid),
4081                                 &size_buf, sizeof (size_buf));
4082         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4083         if (ret < 0)
4084                 return ret;
4085         if (ret < sizeof (size_buf))
4086                 return -ERANGE;
4087
4088         if (order) {
4089                 *order = size_buf.order;
4090                 dout("  order %u", (unsigned int)*order);
4091         }
4092         *snap_size = le64_to_cpu(size_buf.size);
4093
4094         dout("  snap_id 0x%016llx snap_size = %llu\n",
4095                 (unsigned long long)snap_id,
4096                 (unsigned long long)*snap_size);
4097
4098         return 0;
4099 }
4100
4101 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4102 {
4103         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4104                                         &rbd_dev->header.obj_order,
4105                                         &rbd_dev->header.image_size);
4106 }
4107
4108 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4109 {
4110         void *reply_buf;
4111         int ret;
4112         void *p;
4113
4114         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4115         if (!reply_buf)
4116                 return -ENOMEM;
4117
4118         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4119                                 "rbd", "get_object_prefix", NULL, 0,
4120                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4121         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4122         if (ret < 0)
4123                 goto out;
4124
4125         p = reply_buf;
4126         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4127                                                 p + ret, NULL, GFP_NOIO);
4128         ret = 0;
4129
4130         if (IS_ERR(rbd_dev->header.object_prefix)) {
4131                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4132                 rbd_dev->header.object_prefix = NULL;
4133         } else {
4134                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4135         }
4136 out:
4137         kfree(reply_buf);
4138
4139         return ret;
4140 }
4141
4142 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4143                 u64 *snap_features)
4144 {
4145         __le64 snapid = cpu_to_le64(snap_id);
4146         struct {
4147                 __le64 features;
4148                 __le64 incompat;
4149         } __attribute__ ((packed)) features_buf = { 0 };
4150         u64 incompat;
4151         int ret;
4152
4153         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4154                                 "rbd", "get_features",
4155                                 &snapid, sizeof (snapid),
4156                                 &features_buf, sizeof (features_buf));
4157         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158         if (ret < 0)
4159                 return ret;
4160         if (ret < sizeof (features_buf))
4161                 return -ERANGE;
4162
4163         incompat = le64_to_cpu(features_buf.incompat);
4164         if (incompat & ~RBD_FEATURES_SUPPORTED)
4165                 return -ENXIO;
4166
4167         *snap_features = le64_to_cpu(features_buf.features);
4168
4169         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4170                 (unsigned long long)snap_id,
4171                 (unsigned long long)*snap_features,
4172                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4173
4174         return 0;
4175 }
4176
4177 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4178 {
4179         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4180                                                 &rbd_dev->header.features);
4181 }
4182
4183 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4184 {
4185         struct rbd_spec *parent_spec;
4186         size_t size;
4187         void *reply_buf = NULL;
4188         __le64 snapid;
4189         void *p;
4190         void *end;
4191         u64 pool_id;
4192         char *image_id;
4193         u64 snap_id;
4194         u64 overlap;
4195         int ret;
4196
4197         parent_spec = rbd_spec_alloc();
4198         if (!parent_spec)
4199                 return -ENOMEM;
4200
4201         size = sizeof (__le64) +                                /* pool_id */
4202                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4203                 sizeof (__le64) +                               /* snap_id */
4204                 sizeof (__le64);                                /* overlap */
4205         reply_buf = kmalloc(size, GFP_KERNEL);
4206         if (!reply_buf) {
4207                 ret = -ENOMEM;
4208                 goto out_err;
4209         }
4210
4211         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4212         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4213                                 "rbd", "get_parent",
4214                                 &snapid, sizeof (snapid),
4215                                 reply_buf, size);
4216         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4217         if (ret < 0)
4218                 goto out_err;
4219
4220         p = reply_buf;
4221         end = reply_buf + ret;
4222         ret = -ERANGE;
4223         ceph_decode_64_safe(&p, end, pool_id, out_err);
4224         if (pool_id == CEPH_NOPOOL) {
4225                 /*
4226                  * Either the parent never existed, or we have
4227                  * record of it but the image got flattened so it no
4228                  * longer has a parent.  When the parent of a
4229                  * layered image disappears we immediately set the
4230                  * overlap to 0.  The effect of this is that all new
4231                  * requests will be treated as if the image had no
4232                  * parent.
4233                  */
4234                 if (rbd_dev->parent_overlap) {
4235                         rbd_dev->parent_overlap = 0;
4236                         smp_mb();
4237                         rbd_dev_parent_put(rbd_dev);
4238                         pr_info("%s: clone image has been flattened\n",
4239                                 rbd_dev->disk->disk_name);
4240                 }
4241
4242                 goto out;       /* No parent?  No problem. */
4243         }
4244
4245         /* The ceph file layout needs to fit pool id in 32 bits */
4246
4247         ret = -EIO;
4248         if (pool_id > (u64)U32_MAX) {
4249                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4250                         (unsigned long long)pool_id, U32_MAX);
4251                 goto out_err;
4252         }
4253
4254         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4255         if (IS_ERR(image_id)) {
4256                 ret = PTR_ERR(image_id);
4257                 goto out_err;
4258         }
4259         ceph_decode_64_safe(&p, end, snap_id, out_err);
4260         ceph_decode_64_safe(&p, end, overlap, out_err);
4261
4262         /*
4263          * The parent won't change (except when the clone is
4264          * flattened, already handled that).  So we only need to
4265          * record the parent spec we have not already done so.
4266          */
4267         if (!rbd_dev->parent_spec) {
4268                 parent_spec->pool_id = pool_id;
4269                 parent_spec->image_id = image_id;
4270                 parent_spec->snap_id = snap_id;
4271                 rbd_dev->parent_spec = parent_spec;
4272                 parent_spec = NULL;     /* rbd_dev now owns this */
4273         } else {
4274                 kfree(image_id);
4275         }
4276
4277         /*
4278          * We always update the parent overlap.  If it's zero we
4279          * treat it specially.
4280          */
4281         rbd_dev->parent_overlap = overlap;
4282         smp_mb();
4283         if (!overlap) {
4284
4285                 /* A null parent_spec indicates it's the initial probe */
4286
4287                 if (parent_spec) {
4288                         /*
4289                          * The overlap has become zero, so the clone
4290                          * must have been resized down to 0 at some
4291                          * point.  Treat this the same as a flatten.
4292                          */
4293                         rbd_dev_parent_put(rbd_dev);
4294                         pr_info("%s: clone image now standalone\n",
4295                                 rbd_dev->disk->disk_name);
4296                 } else {
4297                         /*
4298                          * For the initial probe, if we find the
4299                          * overlap is zero we just pretend there was
4300                          * no parent image.
4301                          */
4302                         rbd_warn(rbd_dev, "ignoring parent with overlap 0");
4303                 }
4304         }
4305 out:
4306         ret = 0;
4307 out_err:
4308         kfree(reply_buf);
4309         rbd_spec_put(parent_spec);
4310
4311         return ret;
4312 }
4313
4314 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4315 {
4316         struct {
4317                 __le64 stripe_unit;
4318                 __le64 stripe_count;
4319         } __attribute__ ((packed)) striping_info_buf = { 0 };
4320         size_t size = sizeof (striping_info_buf);
4321         void *p;
4322         u64 obj_size;
4323         u64 stripe_unit;
4324         u64 stripe_count;
4325         int ret;
4326
4327         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4328                                 "rbd", "get_stripe_unit_count", NULL, 0,
4329                                 (char *)&striping_info_buf, size);
4330         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4331         if (ret < 0)
4332                 return ret;
4333         if (ret < size)
4334                 return -ERANGE;
4335
4336         /*
4337          * We don't actually support the "fancy striping" feature
4338          * (STRIPINGV2) yet, but if the striping sizes are the
4339          * defaults the behavior is the same as before.  So find
4340          * out, and only fail if the image has non-default values.
4341          */
4342         ret = -EINVAL;
4343         obj_size = (u64)1 << rbd_dev->header.obj_order;
4344         p = &striping_info_buf;
4345         stripe_unit = ceph_decode_64(&p);
4346         if (stripe_unit != obj_size) {
4347                 rbd_warn(rbd_dev, "unsupported stripe unit "
4348                                 "(got %llu want %llu)",
4349                                 stripe_unit, obj_size);
4350                 return -EINVAL;
4351         }
4352         stripe_count = ceph_decode_64(&p);
4353         if (stripe_count != 1) {
4354                 rbd_warn(rbd_dev, "unsupported stripe count "
4355                                 "(got %llu want 1)", stripe_count);
4356                 return -EINVAL;
4357         }
4358         rbd_dev->header.stripe_unit = stripe_unit;
4359         rbd_dev->header.stripe_count = stripe_count;
4360
4361         return 0;
4362 }
4363
4364 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4365 {
4366         size_t image_id_size;
4367         char *image_id;
4368         void *p;
4369         void *end;
4370         size_t size;
4371         void *reply_buf = NULL;
4372         size_t len = 0;
4373         char *image_name = NULL;
4374         int ret;
4375
4376         rbd_assert(!rbd_dev->spec->image_name);
4377
4378         len = strlen(rbd_dev->spec->image_id);
4379         image_id_size = sizeof (__le32) + len;
4380         image_id = kmalloc(image_id_size, GFP_KERNEL);
4381         if (!image_id)
4382                 return NULL;
4383
4384         p = image_id;
4385         end = image_id + image_id_size;
4386         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4387
4388         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4389         reply_buf = kmalloc(size, GFP_KERNEL);
4390         if (!reply_buf)
4391                 goto out;
4392
4393         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4394                                 "rbd", "dir_get_name",
4395                                 image_id, image_id_size,
4396                                 reply_buf, size);
4397         if (ret < 0)
4398                 goto out;
4399         p = reply_buf;
4400         end = reply_buf + ret;
4401
4402         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4403         if (IS_ERR(image_name))
4404                 image_name = NULL;
4405         else
4406                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4407 out:
4408         kfree(reply_buf);
4409         kfree(image_id);
4410
4411         return image_name;
4412 }
4413
4414 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4415 {
4416         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4417         const char *snap_name;
4418         u32 which = 0;
4419
4420         /* Skip over names until we find the one we are looking for */
4421
4422         snap_name = rbd_dev->header.snap_names;
4423         while (which < snapc->num_snaps) {
4424                 if (!strcmp(name, snap_name))
4425                         return snapc->snaps[which];
4426                 snap_name += strlen(snap_name) + 1;
4427                 which++;
4428         }
4429         return CEPH_NOSNAP;
4430 }
4431
4432 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4433 {
4434         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4435         u32 which;
4436         bool found = false;
4437         u64 snap_id;
4438
4439         for (which = 0; !found && which < snapc->num_snaps; which++) {
4440                 const char *snap_name;
4441
4442                 snap_id = snapc->snaps[which];
4443                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4444                 if (IS_ERR(snap_name)) {
4445                         /* ignore no-longer existing snapshots */
4446                         if (PTR_ERR(snap_name) == -ENOENT)
4447                                 continue;
4448                         else
4449                                 break;
4450                 }
4451                 found = !strcmp(name, snap_name);
4452                 kfree(snap_name);
4453         }
4454         return found ? snap_id : CEPH_NOSNAP;
4455 }
4456
4457 /*
4458  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4459  * no snapshot by that name is found, or if an error occurs.
4460  */
4461 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4462 {
4463         if (rbd_dev->image_format == 1)
4464                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4465
4466         return rbd_v2_snap_id_by_name(rbd_dev, name);
4467 }
4468
4469 /*
4470  * An image being mapped will have everything but the snap id.
4471  */
4472 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4473 {
4474         struct rbd_spec *spec = rbd_dev->spec;
4475
4476         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4477         rbd_assert(spec->image_id && spec->image_name);
4478         rbd_assert(spec->snap_name);
4479
4480         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4481                 u64 snap_id;
4482
4483                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4484                 if (snap_id == CEPH_NOSNAP)
4485                         return -ENOENT;
4486
4487                 spec->snap_id = snap_id;
4488         } else {
4489                 spec->snap_id = CEPH_NOSNAP;
4490         }
4491
4492         return 0;
4493 }
4494
4495 /*
4496  * A parent image will have all ids but none of the names.
4497  *
4498  * All names in an rbd spec are dynamically allocated.  It's OK if we
4499  * can't figure out the name for an image id.
4500  */
4501 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4502 {
4503         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4504         struct rbd_spec *spec = rbd_dev->spec;
4505         const char *pool_name;
4506         const char *image_name;
4507         const char *snap_name;
4508         int ret;
4509
4510         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4511         rbd_assert(spec->image_id);
4512         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4513
4514         /* Get the pool name; we have to make our own copy of this */
4515
4516         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4517         if (!pool_name) {
4518                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4519                 return -EIO;
4520         }
4521         pool_name = kstrdup(pool_name, GFP_KERNEL);
4522         if (!pool_name)
4523                 return -ENOMEM;
4524
4525         /* Fetch the image name; tolerate failure here */
4526
4527         image_name = rbd_dev_image_name(rbd_dev);
4528         if (!image_name)
4529                 rbd_warn(rbd_dev, "unable to get image name");
4530
4531         /* Fetch the snapshot name */
4532
4533         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4534         if (IS_ERR(snap_name)) {
4535                 ret = PTR_ERR(snap_name);
4536                 goto out_err;
4537         }
4538
4539         spec->pool_name = pool_name;
4540         spec->image_name = image_name;
4541         spec->snap_name = snap_name;
4542
4543         return 0;
4544
4545 out_err:
4546         kfree(image_name);
4547         kfree(pool_name);
4548         return ret;
4549 }
4550
4551 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4552 {
4553         size_t size;
4554         int ret;
4555         void *reply_buf;
4556         void *p;
4557         void *end;
4558         u64 seq;
4559         u32 snap_count;
4560         struct ceph_snap_context *snapc;
4561         u32 i;
4562
4563         /*
4564          * We'll need room for the seq value (maximum snapshot id),
4565          * snapshot count, and array of that many snapshot ids.
4566          * For now we have a fixed upper limit on the number we're
4567          * prepared to receive.
4568          */
4569         size = sizeof (__le64) + sizeof (__le32) +
4570                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4571         reply_buf = kzalloc(size, GFP_KERNEL);
4572         if (!reply_buf)
4573                 return -ENOMEM;
4574
4575         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4576                                 "rbd", "get_snapcontext", NULL, 0,
4577                                 reply_buf, size);
4578         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4579         if (ret < 0)
4580                 goto out;
4581
4582         p = reply_buf;
4583         end = reply_buf + ret;
4584         ret = -ERANGE;
4585         ceph_decode_64_safe(&p, end, seq, out);
4586         ceph_decode_32_safe(&p, end, snap_count, out);
4587
4588         /*
4589          * Make sure the reported number of snapshot ids wouldn't go
4590          * beyond the end of our buffer.  But before checking that,
4591          * make sure the computed size of the snapshot context we
4592          * allocate is representable in a size_t.
4593          */
4594         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4595                                  / sizeof (u64)) {
4596                 ret = -EINVAL;
4597                 goto out;
4598         }
4599         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4600                 goto out;
4601         ret = 0;
4602
4603         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4604         if (!snapc) {
4605                 ret = -ENOMEM;
4606                 goto out;
4607         }
4608         snapc->seq = seq;
4609         for (i = 0; i < snap_count; i++)
4610                 snapc->snaps[i] = ceph_decode_64(&p);
4611
4612         ceph_put_snap_context(rbd_dev->header.snapc);
4613         rbd_dev->header.snapc = snapc;
4614
4615         dout("  snap context seq = %llu, snap_count = %u\n",
4616                 (unsigned long long)seq, (unsigned int)snap_count);
4617 out:
4618         kfree(reply_buf);
4619
4620         return ret;
4621 }
4622
4623 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4624                                         u64 snap_id)
4625 {
4626         size_t size;
4627         void *reply_buf;
4628         __le64 snapid;
4629         int ret;
4630         void *p;
4631         void *end;
4632         char *snap_name;
4633
4634         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4635         reply_buf = kmalloc(size, GFP_KERNEL);
4636         if (!reply_buf)
4637                 return ERR_PTR(-ENOMEM);
4638
4639         snapid = cpu_to_le64(snap_id);
4640         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4641                                 "rbd", "get_snapshot_name",
4642                                 &snapid, sizeof (snapid),
4643                                 reply_buf, size);
4644         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4645         if (ret < 0) {
4646                 snap_name = ERR_PTR(ret);
4647                 goto out;
4648         }
4649
4650         p = reply_buf;
4651         end = reply_buf + ret;
4652         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4653         if (IS_ERR(snap_name))
4654                 goto out;
4655
4656         dout("  snap_id 0x%016llx snap_name = %s\n",
4657                 (unsigned long long)snap_id, snap_name);
4658 out:
4659         kfree(reply_buf);
4660
4661         return snap_name;
4662 }
4663
4664 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4665 {
4666         bool first_time = rbd_dev->header.object_prefix == NULL;
4667         int ret;
4668
4669         ret = rbd_dev_v2_image_size(rbd_dev);
4670         if (ret)
4671                 return ret;
4672
4673         if (first_time) {
4674                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4675                 if (ret)
4676                         return ret;
4677         }
4678
4679         ret = rbd_dev_v2_snap_context(rbd_dev);
4680         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4681
4682         return ret;
4683 }
4684
4685 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4686 {
4687         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4688
4689         if (rbd_dev->image_format == 1)
4690                 return rbd_dev_v1_header_info(rbd_dev);
4691
4692         return rbd_dev_v2_header_info(rbd_dev);
4693 }
4694
4695 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4696 {
4697         struct device *dev;
4698         int ret;
4699
4700         dev = &rbd_dev->dev;
4701         dev->bus = &rbd_bus_type;
4702         dev->type = &rbd_device_type;
4703         dev->parent = &rbd_root_dev;
4704         dev->release = rbd_dev_device_release;
4705         dev_set_name(dev, "%d", rbd_dev->dev_id);
4706         ret = device_register(dev);
4707
4708         return ret;
4709 }
4710
4711 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4712 {
4713         device_unregister(&rbd_dev->dev);
4714 }
4715
4716 /*
4717  * Get a unique rbd identifier for the given new rbd_dev, and add
4718  * the rbd_dev to the global list.
4719  */
4720 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4721 {
4722         int new_dev_id;
4723
4724         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4725                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4726                                     GFP_KERNEL);
4727         if (new_dev_id < 0)
4728                 return new_dev_id;
4729
4730         rbd_dev->dev_id = new_dev_id;
4731
4732         spin_lock(&rbd_dev_list_lock);
4733         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4734         spin_unlock(&rbd_dev_list_lock);
4735
4736         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4737
4738         return 0;
4739 }
4740
4741 /*
4742  * Remove an rbd_dev from the global list, and record that its
4743  * identifier is no longer in use.
4744  */
4745 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4746 {
4747         spin_lock(&rbd_dev_list_lock);
4748         list_del_init(&rbd_dev->node);
4749         spin_unlock(&rbd_dev_list_lock);
4750
4751         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4752
4753         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4754 }
4755
4756 /*
4757  * Skips over white space at *buf, and updates *buf to point to the
4758  * first found non-space character (if any). Returns the length of
4759  * the token (string of non-white space characters) found.  Note
4760  * that *buf must be terminated with '\0'.
4761  */
4762 static inline size_t next_token(const char **buf)
4763 {
4764         /*
4765         * These are the characters that produce nonzero for
4766         * isspace() in the "C" and "POSIX" locales.
4767         */
4768         const char *spaces = " \f\n\r\t\v";
4769
4770         *buf += strspn(*buf, spaces);   /* Find start of token */
4771
4772         return strcspn(*buf, spaces);   /* Return token length */
4773 }
4774
4775 /*
4776  * Finds the next token in *buf, and if the provided token buffer is
4777  * big enough, copies the found token into it.  The result, if
4778  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4779  * must be terminated with '\0' on entry.
4780  *
4781  * Returns the length of the token found (not including the '\0').
4782  * Return value will be 0 if no token is found, and it will be >=
4783  * token_size if the token would not fit.
4784  *
4785  * The *buf pointer will be updated to point beyond the end of the
4786  * found token.  Note that this occurs even if the token buffer is
4787  * too small to hold it.
4788  */
4789 static inline size_t copy_token(const char **buf,
4790                                 char *token,
4791                                 size_t token_size)
4792 {
4793         size_t len;
4794
4795         len = next_token(buf);
4796         if (len < token_size) {
4797                 memcpy(token, *buf, len);
4798                 *(token + len) = '\0';
4799         }
4800         *buf += len;
4801
4802         return len;
4803 }
4804
4805 /*
4806  * Finds the next token in *buf, dynamically allocates a buffer big
4807  * enough to hold a copy of it, and copies the token into the new
4808  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4809  * that a duplicate buffer is created even for a zero-length token.
4810  *
4811  * Returns a pointer to the newly-allocated duplicate, or a null
4812  * pointer if memory for the duplicate was not available.  If
4813  * the lenp argument is a non-null pointer, the length of the token
4814  * (not including the '\0') is returned in *lenp.
4815  *
4816  * If successful, the *buf pointer will be updated to point beyond
4817  * the end of the found token.
4818  *
4819  * Note: uses GFP_KERNEL for allocation.
4820  */
4821 static inline char *dup_token(const char **buf, size_t *lenp)
4822 {
4823         char *dup;
4824         size_t len;
4825
4826         len = next_token(buf);
4827         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4828         if (!dup)
4829                 return NULL;
4830         *(dup + len) = '\0';
4831         *buf += len;
4832
4833         if (lenp)
4834                 *lenp = len;
4835
4836         return dup;
4837 }
4838
4839 /*
4840  * Parse the options provided for an "rbd add" (i.e., rbd image
4841  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4842  * and the data written is passed here via a NUL-terminated buffer.
4843  * Returns 0 if successful or an error code otherwise.
4844  *
4845  * The information extracted from these options is recorded in
4846  * the other parameters which return dynamically-allocated
4847  * structures:
4848  *  ceph_opts
4849  *      The address of a pointer that will refer to a ceph options
4850  *      structure.  Caller must release the returned pointer using
4851  *      ceph_destroy_options() when it is no longer needed.
4852  *  rbd_opts
4853  *      Address of an rbd options pointer.  Fully initialized by
4854  *      this function; caller must release with kfree().
4855  *  spec
4856  *      Address of an rbd image specification pointer.  Fully
4857  *      initialized by this function based on parsed options.
4858  *      Caller must release with rbd_spec_put().
4859  *
4860  * The options passed take this form:
4861  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4862  * where:
4863  *  <mon_addrs>
4864  *      A comma-separated list of one or more monitor addresses.
4865  *      A monitor address is an ip address, optionally followed
4866  *      by a port number (separated by a colon).
4867  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4868  *  <options>
4869  *      A comma-separated list of ceph and/or rbd options.
4870  *  <pool_name>
4871  *      The name of the rados pool containing the rbd image.
4872  *  <image_name>
4873  *      The name of the image in that pool to map.
4874  *  <snap_id>
4875  *      An optional snapshot id.  If provided, the mapping will
4876  *      present data from the image at the time that snapshot was
4877  *      created.  The image head is used if no snapshot id is
4878  *      provided.  Snapshot mappings are always read-only.
4879  */
4880 static int rbd_add_parse_args(const char *buf,
4881                                 struct ceph_options **ceph_opts,
4882                                 struct rbd_options **opts,
4883                                 struct rbd_spec **rbd_spec)
4884 {
4885         size_t len;
4886         char *options;
4887         const char *mon_addrs;
4888         char *snap_name;
4889         size_t mon_addrs_size;
4890         struct rbd_spec *spec = NULL;
4891         struct rbd_options *rbd_opts = NULL;
4892         struct ceph_options *copts;
4893         int ret;
4894
4895         /* The first four tokens are required */
4896
4897         len = next_token(&buf);
4898         if (!len) {
4899                 rbd_warn(NULL, "no monitor address(es) provided");
4900                 return -EINVAL;
4901         }
4902         mon_addrs = buf;
4903         mon_addrs_size = len + 1;
4904         buf += len;
4905
4906         ret = -EINVAL;
4907         options = dup_token(&buf, NULL);
4908         if (!options)
4909                 return -ENOMEM;
4910         if (!*options) {
4911                 rbd_warn(NULL, "no options provided");
4912                 goto out_err;
4913         }
4914
4915         spec = rbd_spec_alloc();
4916         if (!spec)
4917                 goto out_mem;
4918
4919         spec->pool_name = dup_token(&buf, NULL);
4920         if (!spec->pool_name)
4921                 goto out_mem;
4922         if (!*spec->pool_name) {
4923                 rbd_warn(NULL, "no pool name provided");
4924                 goto out_err;
4925         }
4926
4927         spec->image_name = dup_token(&buf, NULL);
4928         if (!spec->image_name)
4929                 goto out_mem;
4930         if (!*spec->image_name) {
4931                 rbd_warn(NULL, "no image name provided");
4932                 goto out_err;
4933         }
4934
4935         /*
4936          * Snapshot name is optional; default is to use "-"
4937          * (indicating the head/no snapshot).
4938          */
4939         len = next_token(&buf);
4940         if (!len) {
4941                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4942                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4943         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4944                 ret = -ENAMETOOLONG;
4945                 goto out_err;
4946         }
4947         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4948         if (!snap_name)
4949                 goto out_mem;
4950         *(snap_name + len) = '\0';
4951         spec->snap_name = snap_name;
4952
4953         /* Initialize all rbd options to the defaults */
4954
4955         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4956         if (!rbd_opts)
4957                 goto out_mem;
4958
4959         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4960
4961         copts = ceph_parse_options(options, mon_addrs,
4962                                         mon_addrs + mon_addrs_size - 1,
4963                                         parse_rbd_opts_token, rbd_opts);
4964         if (IS_ERR(copts)) {
4965                 ret = PTR_ERR(copts);
4966                 goto out_err;
4967         }
4968         kfree(options);
4969
4970         *ceph_opts = copts;
4971         *opts = rbd_opts;
4972         *rbd_spec = spec;
4973
4974         return 0;
4975 out_mem:
4976         ret = -ENOMEM;
4977 out_err:
4978         kfree(rbd_opts);
4979         rbd_spec_put(spec);
4980         kfree(options);
4981
4982         return ret;
4983 }
4984
4985 /*
4986  * Return pool id (>= 0) or a negative error code.
4987  */
4988 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4989 {
4990         u64 newest_epoch;
4991         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4992         int tries = 0;
4993         int ret;
4994
4995 again:
4996         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4997         if (ret == -ENOENT && tries++ < 1) {
4998                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4999                                                &newest_epoch);
5000                 if (ret < 0)
5001                         return ret;
5002
5003                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5004                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
5005                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5006                                                      newest_epoch, timeout);
5007                         goto again;
5008                 } else {
5009                         /* the osdmap we have is new enough */
5010                         return -ENOENT;
5011                 }
5012         }
5013
5014         return ret;
5015 }
5016
5017 /*
5018  * An rbd format 2 image has a unique identifier, distinct from the
5019  * name given to it by the user.  Internally, that identifier is
5020  * what's used to specify the names of objects related to the image.
5021  *
5022  * A special "rbd id" object is used to map an rbd image name to its
5023  * id.  If that object doesn't exist, then there is no v2 rbd image
5024  * with the supplied name.
5025  *
5026  * This function will record the given rbd_dev's image_id field if
5027  * it can be determined, and in that case will return 0.  If any
5028  * errors occur a negative errno will be returned and the rbd_dev's
5029  * image_id field will be unchanged (and should be NULL).
5030  */
5031 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5032 {
5033         int ret;
5034         size_t size;
5035         char *object_name;
5036         void *response;
5037         char *image_id;
5038
5039         /*
5040          * When probing a parent image, the image id is already
5041          * known (and the image name likely is not).  There's no
5042          * need to fetch the image id again in this case.  We
5043          * do still need to set the image format though.
5044          */
5045         if (rbd_dev->spec->image_id) {
5046                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5047
5048                 return 0;
5049         }
5050
5051         /*
5052          * First, see if the format 2 image id file exists, and if
5053          * so, get the image's persistent id from it.
5054          */
5055         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5056         object_name = kmalloc(size, GFP_NOIO);
5057         if (!object_name)
5058                 return -ENOMEM;
5059         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5060         dout("rbd id object name is %s\n", object_name);
5061
5062         /* Response will be an encoded string, which includes a length */
5063
5064         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5065         response = kzalloc(size, GFP_NOIO);
5066         if (!response) {
5067                 ret = -ENOMEM;
5068                 goto out;
5069         }
5070
5071         /* If it doesn't exist we'll assume it's a format 1 image */
5072
5073         ret = rbd_obj_method_sync(rbd_dev, object_name,
5074                                 "rbd", "get_id", NULL, 0,
5075                                 response, RBD_IMAGE_ID_LEN_MAX);
5076         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5077         if (ret == -ENOENT) {
5078                 image_id = kstrdup("", GFP_KERNEL);
5079                 ret = image_id ? 0 : -ENOMEM;
5080                 if (!ret)
5081                         rbd_dev->image_format = 1;
5082         } else if (ret >= 0) {
5083                 void *p = response;
5084
5085                 image_id = ceph_extract_encoded_string(&p, p + ret,
5086                                                 NULL, GFP_NOIO);
5087                 ret = PTR_ERR_OR_ZERO(image_id);
5088                 if (!ret)
5089                         rbd_dev->image_format = 2;
5090         }
5091
5092         if (!ret) {
5093                 rbd_dev->spec->image_id = image_id;
5094                 dout("image_id is %s\n", image_id);
5095         }
5096 out:
5097         kfree(response);
5098         kfree(object_name);
5099
5100         return ret;
5101 }
5102
5103 /*
5104  * Undo whatever state changes are made by v1 or v2 header info
5105  * call.
5106  */
5107 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5108 {
5109         struct rbd_image_header *header;
5110
5111         /* Drop parent reference unless it's already been done (or none) */
5112
5113         if (rbd_dev->parent_overlap)
5114                 rbd_dev_parent_put(rbd_dev);
5115
5116         /* Free dynamic fields from the header, then zero it out */
5117
5118         header = &rbd_dev->header;
5119         ceph_put_snap_context(header->snapc);
5120         kfree(header->snap_sizes);
5121         kfree(header->snap_names);
5122         kfree(header->object_prefix);
5123         memset(header, 0, sizeof (*header));
5124 }
5125
5126 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5127 {
5128         int ret;
5129
5130         ret = rbd_dev_v2_object_prefix(rbd_dev);
5131         if (ret)
5132                 goto out_err;
5133
5134         /*
5135          * Get the and check features for the image.  Currently the
5136          * features are assumed to never change.
5137          */
5138         ret = rbd_dev_v2_features(rbd_dev);
5139         if (ret)
5140                 goto out_err;
5141
5142         /* If the image supports fancy striping, get its parameters */
5143
5144         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5145                 ret = rbd_dev_v2_striping_info(rbd_dev);
5146                 if (ret < 0)
5147                         goto out_err;
5148         }
5149         /* No support for crypto and compression type format 2 images */
5150
5151         return 0;
5152 out_err:
5153         rbd_dev->header.features = 0;
5154         kfree(rbd_dev->header.object_prefix);
5155         rbd_dev->header.object_prefix = NULL;
5156
5157         return ret;
5158 }
5159
5160 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
5161 {
5162         struct rbd_device *parent = NULL;
5163         struct rbd_spec *parent_spec;
5164         struct rbd_client *rbdc;
5165         int ret;
5166
5167         if (!rbd_dev->parent_spec)
5168                 return 0;
5169         /*
5170          * We need to pass a reference to the client and the parent
5171          * spec when creating the parent rbd_dev.  Images related by
5172          * parent/child relationships always share both.
5173          */
5174         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
5175         rbdc = __rbd_get_client(rbd_dev->rbd_client);
5176
5177         ret = -ENOMEM;
5178         parent = rbd_dev_create(rbdc, parent_spec);
5179         if (!parent)
5180                 goto out_err;
5181
5182         ret = rbd_dev_image_probe(parent, false);
5183         if (ret < 0)
5184                 goto out_err;
5185         rbd_dev->parent = parent;
5186         atomic_set(&rbd_dev->parent_ref, 1);
5187
5188         return 0;
5189 out_err:
5190         if (parent) {
5191                 rbd_dev_unparent(rbd_dev);
5192                 kfree(rbd_dev->header_name);
5193                 rbd_dev_destroy(parent);
5194         } else {
5195                 rbd_put_client(rbdc);
5196                 rbd_spec_put(parent_spec);
5197         }
5198
5199         return ret;
5200 }
5201
5202 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5203 {
5204         int ret;
5205
5206         /* Get an id and fill in device name. */
5207
5208         ret = rbd_dev_id_get(rbd_dev);
5209         if (ret)
5210                 return ret;
5211
5212         BUILD_BUG_ON(DEV_NAME_LEN
5213                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5214         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5215
5216         /* Record our major and minor device numbers. */
5217
5218         if (!single_major) {
5219                 ret = register_blkdev(0, rbd_dev->name);
5220                 if (ret < 0)
5221                         goto err_out_id;
5222
5223                 rbd_dev->major = ret;
5224                 rbd_dev->minor = 0;
5225         } else {
5226                 rbd_dev->major = rbd_major;
5227                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5228         }
5229
5230         /* Set up the blkdev mapping. */
5231
5232         ret = rbd_init_disk(rbd_dev);
5233         if (ret)
5234                 goto err_out_blkdev;
5235
5236         ret = rbd_dev_mapping_set(rbd_dev);
5237         if (ret)
5238                 goto err_out_disk;
5239
5240         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5241         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5242
5243         rbd_dev->rq_wq = alloc_workqueue("%s", 0, 0, rbd_dev->disk->disk_name);
5244         if (!rbd_dev->rq_wq) {
5245                 ret = -ENOMEM;
5246                 goto err_out_mapping;
5247         }
5248
5249         ret = rbd_bus_add_dev(rbd_dev);
5250         if (ret)
5251                 goto err_out_workqueue;
5252
5253         /* Everything's ready.  Announce the disk to the world. */
5254
5255         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5256         add_disk(rbd_dev->disk);
5257
5258         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5259                 (unsigned long long) rbd_dev->mapping.size);
5260
5261         return ret;
5262
5263 err_out_workqueue:
5264         destroy_workqueue(rbd_dev->rq_wq);
5265         rbd_dev->rq_wq = NULL;
5266 err_out_mapping:
5267         rbd_dev_mapping_clear(rbd_dev);
5268 err_out_disk:
5269         rbd_free_disk(rbd_dev);
5270 err_out_blkdev:
5271         if (!single_major)
5272                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5273 err_out_id:
5274         rbd_dev_id_put(rbd_dev);
5275         rbd_dev_mapping_clear(rbd_dev);
5276
5277         return ret;
5278 }
5279
5280 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5281 {
5282         struct rbd_spec *spec = rbd_dev->spec;
5283         size_t size;
5284
5285         /* Record the header object name for this rbd image. */
5286
5287         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5288
5289         if (rbd_dev->image_format == 1)
5290                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5291         else
5292                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5293
5294         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5295         if (!rbd_dev->header_name)
5296                 return -ENOMEM;
5297
5298         if (rbd_dev->image_format == 1)
5299                 sprintf(rbd_dev->header_name, "%s%s",
5300                         spec->image_name, RBD_SUFFIX);
5301         else
5302                 sprintf(rbd_dev->header_name, "%s%s",
5303                         RBD_HEADER_PREFIX, spec->image_id);
5304         return 0;
5305 }
5306
5307 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5308 {
5309         rbd_dev_unprobe(rbd_dev);
5310         kfree(rbd_dev->header_name);
5311         rbd_dev->header_name = NULL;
5312         rbd_dev->image_format = 0;
5313         kfree(rbd_dev->spec->image_id);
5314         rbd_dev->spec->image_id = NULL;
5315
5316         rbd_dev_destroy(rbd_dev);
5317 }
5318
5319 /*
5320  * Probe for the existence of the header object for the given rbd
5321  * device.  If this image is the one being mapped (i.e., not a
5322  * parent), initiate a watch on its header object before using that
5323  * object to get detailed information about the rbd image.
5324  */
5325 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5326 {
5327         int ret;
5328
5329         /*
5330          * Get the id from the image id object.  Unless there's an
5331          * error, rbd_dev->spec->image_id will be filled in with
5332          * a dynamically-allocated string, and rbd_dev->image_format
5333          * will be set to either 1 or 2.
5334          */
5335         ret = rbd_dev_image_id(rbd_dev);
5336         if (ret)
5337                 return ret;
5338
5339         ret = rbd_dev_header_name(rbd_dev);
5340         if (ret)
5341                 goto err_out_format;
5342
5343         if (mapping) {
5344                 ret = rbd_dev_header_watch_sync(rbd_dev);
5345                 if (ret)
5346                         goto out_header_name;
5347         }
5348
5349         ret = rbd_dev_header_info(rbd_dev);
5350         if (ret)
5351                 goto err_out_watch;
5352
5353         /*
5354          * If this image is the one being mapped, we have pool name and
5355          * id, image name and id, and snap name - need to fill snap id.
5356          * Otherwise this is a parent image, identified by pool, image
5357          * and snap ids - need to fill in names for those ids.
5358          */
5359         if (mapping)
5360                 ret = rbd_spec_fill_snap_id(rbd_dev);
5361         else
5362                 ret = rbd_spec_fill_names(rbd_dev);
5363         if (ret)
5364                 goto err_out_probe;
5365
5366         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5367                 ret = rbd_dev_v2_parent_info(rbd_dev);
5368                 if (ret)
5369                         goto err_out_probe;
5370
5371                 /*
5372                  * Need to warn users if this image is the one being
5373                  * mapped and has a parent.
5374                  */
5375                 if (mapping && rbd_dev->parent_spec)
5376                         rbd_warn(rbd_dev,
5377                                  "WARNING: kernel layering is EXPERIMENTAL!");
5378         }
5379
5380         ret = rbd_dev_probe_parent(rbd_dev);
5381         if (ret)
5382                 goto err_out_probe;
5383
5384         dout("discovered format %u image, header name is %s\n",
5385                 rbd_dev->image_format, rbd_dev->header_name);
5386         return 0;
5387
5388 err_out_probe:
5389         rbd_dev_unprobe(rbd_dev);
5390 err_out_watch:
5391         if (mapping)
5392                 rbd_dev_header_unwatch_sync(rbd_dev);
5393 out_header_name:
5394         kfree(rbd_dev->header_name);
5395         rbd_dev->header_name = NULL;
5396 err_out_format:
5397         rbd_dev->image_format = 0;
5398         kfree(rbd_dev->spec->image_id);
5399         rbd_dev->spec->image_id = NULL;
5400         return ret;
5401 }
5402
5403 static ssize_t do_rbd_add(struct bus_type *bus,
5404                           const char *buf,
5405                           size_t count)
5406 {
5407         struct rbd_device *rbd_dev = NULL;
5408         struct ceph_options *ceph_opts = NULL;
5409         struct rbd_options *rbd_opts = NULL;
5410         struct rbd_spec *spec = NULL;
5411         struct rbd_client *rbdc;
5412         bool read_only;
5413         int rc = -ENOMEM;
5414
5415         if (!try_module_get(THIS_MODULE))
5416                 return -ENODEV;
5417
5418         /* parse add command */
5419         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5420         if (rc < 0)
5421                 goto err_out_module;
5422         read_only = rbd_opts->read_only;
5423         kfree(rbd_opts);
5424         rbd_opts = NULL;        /* done with this */
5425
5426         rbdc = rbd_get_client(ceph_opts);
5427         if (IS_ERR(rbdc)) {
5428                 rc = PTR_ERR(rbdc);
5429                 goto err_out_args;
5430         }
5431
5432         /* pick the pool */
5433         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5434         if (rc < 0)
5435                 goto err_out_client;
5436         spec->pool_id = (u64)rc;
5437
5438         /* The ceph file layout needs to fit pool id in 32 bits */
5439
5440         if (spec->pool_id > (u64)U32_MAX) {
5441                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5442                                 (unsigned long long)spec->pool_id, U32_MAX);
5443                 rc = -EIO;
5444                 goto err_out_client;
5445         }
5446
5447         rbd_dev = rbd_dev_create(rbdc, spec);
5448         if (!rbd_dev)
5449                 goto err_out_client;
5450         rbdc = NULL;            /* rbd_dev now owns this */
5451         spec = NULL;            /* rbd_dev now owns this */
5452
5453         rc = rbd_dev_image_probe(rbd_dev, true);
5454         if (rc < 0)
5455                 goto err_out_rbd_dev;
5456
5457         /* If we are mapping a snapshot it must be marked read-only */
5458
5459         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5460                 read_only = true;
5461         rbd_dev->mapping.read_only = read_only;
5462
5463         rc = rbd_dev_device_setup(rbd_dev);
5464         if (rc) {
5465                 /*
5466                  * rbd_dev_header_unwatch_sync() can't be moved into
5467                  * rbd_dev_image_release() without refactoring, see
5468                  * commit 1f3ef78861ac.
5469                  */
5470                 rbd_dev_header_unwatch_sync(rbd_dev);
5471                 rbd_dev_image_release(rbd_dev);
5472                 goto err_out_module;
5473         }
5474
5475         return count;
5476
5477 err_out_rbd_dev:
5478         rbd_dev_destroy(rbd_dev);
5479 err_out_client:
5480         rbd_put_client(rbdc);
5481 err_out_args:
5482         rbd_spec_put(spec);
5483 err_out_module:
5484         module_put(THIS_MODULE);
5485
5486         dout("Error adding device %s\n", buf);
5487
5488         return (ssize_t)rc;
5489 }
5490
5491 static ssize_t rbd_add(struct bus_type *bus,
5492                        const char *buf,
5493                        size_t count)
5494 {
5495         if (single_major)
5496                 return -EINVAL;
5497
5498         return do_rbd_add(bus, buf, count);
5499 }
5500
5501 static ssize_t rbd_add_single_major(struct bus_type *bus,
5502                                     const char *buf,
5503                                     size_t count)
5504 {
5505         return do_rbd_add(bus, buf, count);
5506 }
5507
5508 static void rbd_dev_device_release(struct device *dev)
5509 {
5510         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5511
5512         destroy_workqueue(rbd_dev->rq_wq);
5513         rbd_free_disk(rbd_dev);
5514         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5515         rbd_dev_mapping_clear(rbd_dev);
5516         if (!single_major)
5517                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5518         rbd_dev_id_put(rbd_dev);
5519         rbd_dev_mapping_clear(rbd_dev);
5520 }
5521
5522 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5523 {
5524         while (rbd_dev->parent) {
5525                 struct rbd_device *first = rbd_dev;
5526                 struct rbd_device *second = first->parent;
5527                 struct rbd_device *third;
5528
5529                 /*
5530                  * Follow to the parent with no grandparent and
5531                  * remove it.
5532                  */
5533                 while (second && (third = second->parent)) {
5534                         first = second;
5535                         second = third;
5536                 }
5537                 rbd_assert(second);
5538                 rbd_dev_image_release(second);
5539                 first->parent = NULL;
5540                 first->parent_overlap = 0;
5541
5542                 rbd_assert(first->parent_spec);
5543                 rbd_spec_put(first->parent_spec);
5544                 first->parent_spec = NULL;
5545         }
5546 }
5547
5548 static ssize_t do_rbd_remove(struct bus_type *bus,
5549                              const char *buf,
5550                              size_t count)
5551 {
5552         struct rbd_device *rbd_dev = NULL;
5553         struct list_head *tmp;
5554         int dev_id;
5555         unsigned long ul;
5556         bool already = false;
5557         int ret;
5558
5559         ret = kstrtoul(buf, 10, &ul);
5560         if (ret)
5561                 return ret;
5562
5563         /* convert to int; abort if we lost anything in the conversion */
5564         dev_id = (int)ul;
5565         if (dev_id != ul)
5566                 return -EINVAL;
5567
5568         ret = -ENOENT;
5569         spin_lock(&rbd_dev_list_lock);
5570         list_for_each(tmp, &rbd_dev_list) {
5571                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5572                 if (rbd_dev->dev_id == dev_id) {
5573                         ret = 0;
5574                         break;
5575                 }
5576         }
5577         if (!ret) {
5578                 spin_lock_irq(&rbd_dev->lock);
5579                 if (rbd_dev->open_count)
5580                         ret = -EBUSY;
5581                 else
5582                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5583                                                         &rbd_dev->flags);
5584                 spin_unlock_irq(&rbd_dev->lock);
5585         }
5586         spin_unlock(&rbd_dev_list_lock);
5587         if (ret < 0 || already)
5588                 return ret;
5589
5590         rbd_dev_header_unwatch_sync(rbd_dev);
5591         /*
5592          * flush remaining watch callbacks - these must be complete
5593          * before the osd_client is shutdown
5594          */
5595         dout("%s: flushing notifies", __func__);
5596         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5597
5598         /*
5599          * Don't free anything from rbd_dev->disk until after all
5600          * notifies are completely processed. Otherwise
5601          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5602          * in a potential use after free of rbd_dev->disk or rbd_dev.
5603          */
5604         rbd_bus_del_dev(rbd_dev);
5605         rbd_dev_image_release(rbd_dev);
5606         module_put(THIS_MODULE);
5607
5608         return count;
5609 }
5610
5611 static ssize_t rbd_remove(struct bus_type *bus,
5612                           const char *buf,
5613                           size_t count)
5614 {
5615         if (single_major)
5616                 return -EINVAL;
5617
5618         return do_rbd_remove(bus, buf, count);
5619 }
5620
5621 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5622                                        const char *buf,
5623                                        size_t count)
5624 {
5625         return do_rbd_remove(bus, buf, count);
5626 }
5627
5628 /*
5629  * create control files in sysfs
5630  * /sys/bus/rbd/...
5631  */
5632 static int rbd_sysfs_init(void)
5633 {
5634         int ret;
5635
5636         ret = device_register(&rbd_root_dev);
5637         if (ret < 0)
5638                 return ret;
5639
5640         ret = bus_register(&rbd_bus_type);
5641         if (ret < 0)
5642                 device_unregister(&rbd_root_dev);
5643
5644         return ret;
5645 }
5646
5647 static void rbd_sysfs_cleanup(void)
5648 {
5649         bus_unregister(&rbd_bus_type);
5650         device_unregister(&rbd_root_dev);
5651 }
5652
5653 static int rbd_slab_init(void)
5654 {
5655         rbd_assert(!rbd_img_request_cache);
5656         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5657                                         sizeof (struct rbd_img_request),
5658                                         __alignof__(struct rbd_img_request),
5659                                         0, NULL);
5660         if (!rbd_img_request_cache)
5661                 return -ENOMEM;
5662
5663         rbd_assert(!rbd_obj_request_cache);
5664         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5665                                         sizeof (struct rbd_obj_request),
5666                                         __alignof__(struct rbd_obj_request),
5667                                         0, NULL);
5668         if (!rbd_obj_request_cache)
5669                 goto out_err;
5670
5671         rbd_assert(!rbd_segment_name_cache);
5672         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5673                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5674         if (rbd_segment_name_cache)
5675                 return 0;
5676 out_err:
5677         if (rbd_obj_request_cache) {
5678                 kmem_cache_destroy(rbd_obj_request_cache);
5679                 rbd_obj_request_cache = NULL;
5680         }
5681
5682         kmem_cache_destroy(rbd_img_request_cache);
5683         rbd_img_request_cache = NULL;
5684
5685         return -ENOMEM;
5686 }
5687
5688 static void rbd_slab_exit(void)
5689 {
5690         rbd_assert(rbd_segment_name_cache);
5691         kmem_cache_destroy(rbd_segment_name_cache);
5692         rbd_segment_name_cache = NULL;
5693
5694         rbd_assert(rbd_obj_request_cache);
5695         kmem_cache_destroy(rbd_obj_request_cache);
5696         rbd_obj_request_cache = NULL;
5697
5698         rbd_assert(rbd_img_request_cache);
5699         kmem_cache_destroy(rbd_img_request_cache);
5700         rbd_img_request_cache = NULL;
5701 }
5702
5703 static int __init rbd_init(void)
5704 {
5705         int rc;
5706
5707         if (!libceph_compatible(NULL)) {
5708                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5709                 return -EINVAL;
5710         }
5711
5712         rc = rbd_slab_init();
5713         if (rc)
5714                 return rc;
5715
5716         if (single_major) {
5717                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5718                 if (rbd_major < 0) {
5719                         rc = rbd_major;
5720                         goto err_out_slab;
5721                 }
5722         }
5723
5724         rc = rbd_sysfs_init();
5725         if (rc)
5726                 goto err_out_blkdev;
5727
5728         if (single_major)
5729                 pr_info("loaded (major %d)\n", rbd_major);
5730         else
5731                 pr_info("loaded\n");
5732
5733         return 0;
5734
5735 err_out_blkdev:
5736         if (single_major)
5737                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5738 err_out_slab:
5739         rbd_slab_exit();
5740         return rc;
5741 }
5742
5743 static void __exit rbd_exit(void)
5744 {
5745         ida_destroy(&rbd_dev_id_ida);
5746         rbd_sysfs_cleanup();
5747         if (single_major)
5748                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5749         rbd_slab_exit();
5750 }
5751
5752 module_init(rbd_init);
5753 module_exit(rbd_exit);
5754
5755 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5756 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5757 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5758 /* following authorship retained from original osdblk.c */
5759 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5760
5761 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5762 MODULE_LICENSE("GPL");