]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/rbd.c
Merge branch 'pm-cpufreq'
[karo-tx-linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402
403 static struct attribute *rbd_bus_attrs[] = {
404         &bus_attr_add.attr,
405         &bus_attr_remove.attr,
406         NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409
410 static struct bus_type rbd_bus_type = {
411         .name           = "rbd",
412         .bus_groups     = rbd_bus_groups,
413 };
414
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418
419 static struct device rbd_root_dev = {
420         .init_name =    "rbd",
421         .release =      rbd_root_dev_release,
422 };
423
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427         struct va_format vaf;
428         va_list args;
429
430         va_start(args, fmt);
431         vaf.fmt = fmt;
432         vaf.va = &args;
433
434         if (!rbd_dev)
435                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436         else if (rbd_dev->disk)
437                 printk(KERN_WARNING "%s: %s: %pV\n",
438                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439         else if (rbd_dev->spec && rbd_dev->spec->image_name)
440                 printk(KERN_WARNING "%s: image %s: %pV\n",
441                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442         else if (rbd_dev->spec && rbd_dev->spec->image_id)
443                 printk(KERN_WARNING "%s: id %s: %pV\n",
444                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445         else    /* punt */
446                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447                         RBD_DRV_NAME, rbd_dev, &vaf);
448         va_end(args);
449 }
450
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr)                                                \
453                 if (unlikely(!(expr))) {                                \
454                         printk(KERN_ERR "\nAssertion failure in %s() "  \
455                                                 "at line %d:\n\n"       \
456                                         "\trbd_assert(%s);\n\n",        \
457                                         __func__, __LINE__, #expr);     \
458                         BUG();                                          \
459                 }
460 #else /* !RBD_DEBUG */
461 #  define rbd_assert(expr)      ((void) 0)
462 #endif /* !RBD_DEBUG */
463
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472                                         u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474                                 u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476                 u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482         bool removing = false;
483
484         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485                 return -EROFS;
486
487         spin_lock_irq(&rbd_dev->lock);
488         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489                 removing = true;
490         else
491                 rbd_dev->open_count++;
492         spin_unlock_irq(&rbd_dev->lock);
493         if (removing)
494                 return -ENOENT;
495
496         (void) get_device(&rbd_dev->dev);
497         set_device_ro(bdev, rbd_dev->mapping.read_only);
498
499         return 0;
500 }
501
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504         struct rbd_device *rbd_dev = disk->private_data;
505         unsigned long open_count_before;
506
507         spin_lock_irq(&rbd_dev->lock);
508         open_count_before = rbd_dev->open_count--;
509         spin_unlock_irq(&rbd_dev->lock);
510         rbd_assert(open_count_before > 0);
511
512         put_device(&rbd_dev->dev);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.  Caller holds client_mutex.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539         if (IS_ERR(rbdc->client))
540                 goto out_rbdc;
541         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542
543         ret = ceph_open_session(rbdc->client);
544         if (ret < 0)
545                 goto out_client;
546
547         spin_lock(&rbd_client_list_lock);
548         list_add_tail(&rbdc->node, &rbd_client_list);
549         spin_unlock(&rbd_client_list_lock);
550
551         dout("%s: rbdc %p\n", __func__, rbdc);
552
553         return rbdc;
554 out_client:
555         ceph_destroy_client(rbdc->client);
556 out_rbdc:
557         kfree(rbdc);
558 out_opt:
559         if (ceph_opts)
560                 ceph_destroy_options(ceph_opts);
561         dout("%s: error %d\n", __func__, ret);
562
563         return ERR_PTR(ret);
564 }
565
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568         kref_get(&rbdc->kref);
569
570         return rbdc;
571 }
572
573 /*
574  * Find a ceph client with specific addr and configuration.  If
575  * found, bump its reference count.
576  */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579         struct rbd_client *client_node;
580         bool found = false;
581
582         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583                 return NULL;
584
585         spin_lock(&rbd_client_list_lock);
586         list_for_each_entry(client_node, &rbd_client_list, node) {
587                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
588                         __rbd_get_client(client_node);
589
590                         found = true;
591                         break;
592                 }
593         }
594         spin_unlock(&rbd_client_list_lock);
595
596         return found ? client_node : NULL;
597 }
598
599 /*
600  * mount options
601  */
602 enum {
603         Opt_last_int,
604         /* int args above */
605         Opt_last_string,
606         /* string args above */
607         Opt_read_only,
608         Opt_read_write,
609         /* Boolean args above */
610         Opt_last_bool,
611 };
612
613 static match_table_t rbd_opts_tokens = {
614         /* int args above */
615         /* string args above */
616         {Opt_read_only, "read_only"},
617         {Opt_read_only, "ro"},          /* Alternate spelling */
618         {Opt_read_write, "read_write"},
619         {Opt_read_write, "rw"},         /* Alternate spelling */
620         /* Boolean args above */
621         {-1, NULL}
622 };
623
624 struct rbd_options {
625         bool    read_only;
626 };
627
628 #define RBD_READ_ONLY_DEFAULT   false
629
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632         struct rbd_options *rbd_opts = private;
633         substring_t argstr[MAX_OPT_ARGS];
634         int token, intval, ret;
635
636         token = match_token(c, rbd_opts_tokens, argstr);
637         if (token < 0)
638                 return -EINVAL;
639
640         if (token < Opt_last_int) {
641                 ret = match_int(&argstr[0], &intval);
642                 if (ret < 0) {
643                         pr_err("bad mount option arg (not int) "
644                                "at '%s'\n", c);
645                         return ret;
646                 }
647                 dout("got int token %d val %d\n", token, intval);
648         } else if (token > Opt_last_int && token < Opt_last_string) {
649                 dout("got string token %d val %s\n", token,
650                      argstr[0].from);
651         } else if (token > Opt_last_string && token < Opt_last_bool) {
652                 dout("got Boolean token %d\n", token);
653         } else {
654                 dout("got token %d\n", token);
655         }
656
657         switch (token) {
658         case Opt_read_only:
659                 rbd_opts->read_only = true;
660                 break;
661         case Opt_read_write:
662                 rbd_opts->read_only = false;
663                 break;
664         default:
665                 rbd_assert(false);
666                 break;
667         }
668         return 0;
669 }
670
671 /*
672  * Get a ceph client with specific addr and configuration, if one does
673  * not exist create it.  Either way, ceph_opts is consumed by this
674  * function.
675  */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678         struct rbd_client *rbdc;
679
680         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681         rbdc = rbd_client_find(ceph_opts);
682         if (rbdc)       /* using an existing client */
683                 ceph_destroy_options(ceph_opts);
684         else
685                 rbdc = rbd_client_create(ceph_opts);
686         mutex_unlock(&client_mutex);
687
688         return rbdc;
689 }
690
691 /*
692  * Destroy ceph client
693  *
694  * Caller must hold rbd_client_list_lock.
695  */
696 static void rbd_client_release(struct kref *kref)
697 {
698         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699
700         dout("%s: rbdc %p\n", __func__, rbdc);
701         spin_lock(&rbd_client_list_lock);
702         list_del(&rbdc->node);
703         spin_unlock(&rbd_client_list_lock);
704
705         ceph_destroy_client(rbdc->client);
706         kfree(rbdc);
707 }
708
709 /*
710  * Drop reference to ceph client node. If it's not referenced anymore, release
711  * it.
712  */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715         if (rbdc)
716                 kref_put(&rbdc->kref, rbd_client_release);
717 }
718
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721         return image_format == 1 || image_format == 2;
722 }
723
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726         size_t size;
727         u32 snap_count;
728
729         /* The header has to start with the magic rbd header text */
730         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731                 return false;
732
733         /* The bio layer requires at least sector-sized I/O */
734
735         if (ondisk->options.order < SECTOR_SHIFT)
736                 return false;
737
738         /* If we use u64 in a few spots we may be able to loosen this */
739
740         if (ondisk->options.order > 8 * sizeof (int) - 1)
741                 return false;
742
743         /*
744          * The size of a snapshot header has to fit in a size_t, and
745          * that limits the number of snapshots.
746          */
747         snap_count = le32_to_cpu(ondisk->snap_count);
748         size = SIZE_MAX - sizeof (struct ceph_snap_context);
749         if (snap_count > size / sizeof (__le64))
750                 return false;
751
752         /*
753          * Not only that, but the size of the entire the snapshot
754          * header must also be representable in a size_t.
755          */
756         size -= snap_count * sizeof (__le64);
757         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758                 return false;
759
760         return true;
761 }
762
763 /*
764  * Fill an rbd image header with information from the given format 1
765  * on-disk header.
766  */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768                                  struct rbd_image_header_ondisk *ondisk)
769 {
770         struct rbd_image_header *header = &rbd_dev->header;
771         bool first_time = header->object_prefix == NULL;
772         struct ceph_snap_context *snapc;
773         char *object_prefix = NULL;
774         char *snap_names = NULL;
775         u64 *snap_sizes = NULL;
776         u32 snap_count;
777         size_t size;
778         int ret = -ENOMEM;
779         u32 i;
780
781         /* Allocate this now to avoid having to handle failure below */
782
783         if (first_time) {
784                 size_t len;
785
786                 len = strnlen(ondisk->object_prefix,
787                                 sizeof (ondisk->object_prefix));
788                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
789                 if (!object_prefix)
790                         return -ENOMEM;
791                 memcpy(object_prefix, ondisk->object_prefix, len);
792                 object_prefix[len] = '\0';
793         }
794
795         /* Allocate the snapshot context and fill it in */
796
797         snap_count = le32_to_cpu(ondisk->snap_count);
798         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799         if (!snapc)
800                 goto out_err;
801         snapc->seq = le64_to_cpu(ondisk->snap_seq);
802         if (snap_count) {
803                 struct rbd_image_snap_ondisk *snaps;
804                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805
806                 /* We'll keep a copy of the snapshot names... */
807
808                 if (snap_names_len > (u64)SIZE_MAX)
809                         goto out_2big;
810                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811                 if (!snap_names)
812                         goto out_err;
813
814                 /* ...as well as the array of their sizes. */
815
816                 size = snap_count * sizeof (*header->snap_sizes);
817                 snap_sizes = kmalloc(size, GFP_KERNEL);
818                 if (!snap_sizes)
819                         goto out_err;
820
821                 /*
822                  * Copy the names, and fill in each snapshot's id
823                  * and size.
824                  *
825                  * Note that rbd_dev_v1_header_info() guarantees the
826                  * ondisk buffer we're working with has
827                  * snap_names_len bytes beyond the end of the
828                  * snapshot id array, this memcpy() is safe.
829                  */
830                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831                 snaps = ondisk->snaps;
832                 for (i = 0; i < snap_count; i++) {
833                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835                 }
836         }
837
838         /* We won't fail any more, fill in the header */
839
840         if (first_time) {
841                 header->object_prefix = object_prefix;
842                 header->obj_order = ondisk->options.order;
843                 header->crypt_type = ondisk->options.crypt_type;
844                 header->comp_type = ondisk->options.comp_type;
845                 /* The rest aren't used for format 1 images */
846                 header->stripe_unit = 0;
847                 header->stripe_count = 0;
848                 header->features = 0;
849         } else {
850                 ceph_put_snap_context(header->snapc);
851                 kfree(header->snap_names);
852                 kfree(header->snap_sizes);
853         }
854
855         /* The remaining fields always get updated (when we refresh) */
856
857         header->image_size = le64_to_cpu(ondisk->image_size);
858         header->snapc = snapc;
859         header->snap_names = snap_names;
860         header->snap_sizes = snap_sizes;
861
862         /* Make sure mapping size is consistent with header info */
863
864         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865                 if (rbd_dev->mapping.size != header->image_size)
866                         rbd_dev->mapping.size = header->image_size;
867
868         return 0;
869 out_2big:
870         ret = -EIO;
871 out_err:
872         kfree(snap_sizes);
873         kfree(snap_names);
874         ceph_put_snap_context(snapc);
875         kfree(object_prefix);
876
877         return ret;
878 }
879
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882         const char *snap_name;
883
884         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885
886         /* Skip over names until we find the one we are looking for */
887
888         snap_name = rbd_dev->header.snap_names;
889         while (which--)
890                 snap_name += strlen(snap_name) + 1;
891
892         return kstrdup(snap_name, GFP_KERNEL);
893 }
894
895 /*
896  * Snapshot id comparison function for use with qsort()/bsearch().
897  * Note that result is for snapshots in *descending* order.
898  */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901         u64 snap_id1 = *(u64 *)s1;
902         u64 snap_id2 = *(u64 *)s2;
903
904         if (snap_id1 < snap_id2)
905                 return 1;
906         return snap_id1 == snap_id2 ? 0 : -1;
907 }
908
909 /*
910  * Search a snapshot context to see if the given snapshot id is
911  * present.
912  *
913  * Returns the position of the snapshot id in the array if it's found,
914  * or BAD_SNAP_INDEX otherwise.
915  *
916  * Note: The snapshot array is in kept sorted (by the osd) in
917  * reverse order, highest snapshot id first.
918  */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922         u64 *found;
923
924         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925                                 sizeof (snap_id), snapid_compare_reverse);
926
927         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931                                         u64 snap_id)
932 {
933         u32 which;
934
935         which = rbd_dev_snap_index(rbd_dev, snap_id);
936         if (which == BAD_SNAP_INDEX)
937                 return NULL;
938
939         return _rbd_dev_v1_snap_name(rbd_dev, which);
940 }
941
942 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
943 {
944         if (snap_id == CEPH_NOSNAP)
945                 return RBD_SNAP_HEAD_NAME;
946
947         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
948         if (rbd_dev->image_format == 1)
949                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
950
951         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
952 }
953
954 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
955                                 u64 *snap_size)
956 {
957         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
958         if (snap_id == CEPH_NOSNAP) {
959                 *snap_size = rbd_dev->header.image_size;
960         } else if (rbd_dev->image_format == 1) {
961                 u32 which;
962
963                 which = rbd_dev_snap_index(rbd_dev, snap_id);
964                 if (which == BAD_SNAP_INDEX)
965                         return -ENOENT;
966
967                 *snap_size = rbd_dev->header.snap_sizes[which];
968         } else {
969                 u64 size = 0;
970                 int ret;
971
972                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
973                 if (ret)
974                         return ret;
975
976                 *snap_size = size;
977         }
978         return 0;
979 }
980
981 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
982                         u64 *snap_features)
983 {
984         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
985         if (snap_id == CEPH_NOSNAP) {
986                 *snap_features = rbd_dev->header.features;
987         } else if (rbd_dev->image_format == 1) {
988                 *snap_features = 0;     /* No features for format 1 */
989         } else {
990                 u64 features = 0;
991                 int ret;
992
993                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
994                 if (ret)
995                         return ret;
996
997                 *snap_features = features;
998         }
999         return 0;
1000 }
1001
1002 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1003 {
1004         u64 snap_id = rbd_dev->spec->snap_id;
1005         u64 size = 0;
1006         u64 features = 0;
1007         int ret;
1008
1009         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1010         if (ret)
1011                 return ret;
1012         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1013         if (ret)
1014                 return ret;
1015
1016         rbd_dev->mapping.size = size;
1017         rbd_dev->mapping.features = features;
1018
1019         return 0;
1020 }
1021
1022 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1023 {
1024         rbd_dev->mapping.size = 0;
1025         rbd_dev->mapping.features = 0;
1026 }
1027
1028 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1029 {
1030         char *name;
1031         u64 segment;
1032         int ret;
1033         char *name_format;
1034
1035         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1036         if (!name)
1037                 return NULL;
1038         segment = offset >> rbd_dev->header.obj_order;
1039         name_format = "%s.%012llx";
1040         if (rbd_dev->image_format == 2)
1041                 name_format = "%s.%016llx";
1042         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1043                         rbd_dev->header.object_prefix, segment);
1044         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1045                 pr_err("error formatting segment name for #%llu (%d)\n",
1046                         segment, ret);
1047                 kfree(name);
1048                 name = NULL;
1049         }
1050
1051         return name;
1052 }
1053
1054 static void rbd_segment_name_free(const char *name)
1055 {
1056         /* The explicit cast here is needed to drop the const qualifier */
1057
1058         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1059 }
1060
1061 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1062 {
1063         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1064
1065         return offset & (segment_size - 1);
1066 }
1067
1068 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1069                                 u64 offset, u64 length)
1070 {
1071         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073         offset &= segment_size - 1;
1074
1075         rbd_assert(length <= U64_MAX - offset);
1076         if (offset + length > segment_size)
1077                 length = segment_size - offset;
1078
1079         return length;
1080 }
1081
1082 /*
1083  * returns the size of an object in the image
1084  */
1085 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1086 {
1087         return 1 << header->obj_order;
1088 }
1089
1090 /*
1091  * bio helpers
1092  */
1093
1094 static void bio_chain_put(struct bio *chain)
1095 {
1096         struct bio *tmp;
1097
1098         while (chain) {
1099                 tmp = chain;
1100                 chain = chain->bi_next;
1101                 bio_put(tmp);
1102         }
1103 }
1104
1105 /*
1106  * zeros a bio chain, starting at specific offset
1107  */
1108 static void zero_bio_chain(struct bio *chain, int start_ofs)
1109 {
1110         struct bio_vec *bv;
1111         unsigned long flags;
1112         void *buf;
1113         int i;
1114         int pos = 0;
1115
1116         while (chain) {
1117                 bio_for_each_segment(bv, chain, i) {
1118                         if (pos + bv->bv_len > start_ofs) {
1119                                 int remainder = max(start_ofs - pos, 0);
1120                                 buf = bvec_kmap_irq(bv, &flags);
1121                                 memset(buf + remainder, 0,
1122                                        bv->bv_len - remainder);
1123                                 flush_dcache_page(bv->bv_page);
1124                                 bvec_kunmap_irq(buf, &flags);
1125                         }
1126                         pos += bv->bv_len;
1127                 }
1128
1129                 chain = chain->bi_next;
1130         }
1131 }
1132
1133 /*
1134  * similar to zero_bio_chain(), zeros data defined by a page array,
1135  * starting at the given byte offset from the start of the array and
1136  * continuing up to the given end offset.  The pages array is
1137  * assumed to be big enough to hold all bytes up to the end.
1138  */
1139 static void zero_pages(struct page **pages, u64 offset, u64 end)
1140 {
1141         struct page **page = &pages[offset >> PAGE_SHIFT];
1142
1143         rbd_assert(end > offset);
1144         rbd_assert(end - offset <= (u64)SIZE_MAX);
1145         while (offset < end) {
1146                 size_t page_offset;
1147                 size_t length;
1148                 unsigned long flags;
1149                 void *kaddr;
1150
1151                 page_offset = offset & ~PAGE_MASK;
1152                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1153                 local_irq_save(flags);
1154                 kaddr = kmap_atomic(*page);
1155                 memset(kaddr + page_offset, 0, length);
1156                 flush_dcache_page(*page);
1157                 kunmap_atomic(kaddr);
1158                 local_irq_restore(flags);
1159
1160                 offset += length;
1161                 page++;
1162         }
1163 }
1164
1165 /*
1166  * Clone a portion of a bio, starting at the given byte offset
1167  * and continuing for the number of bytes indicated.
1168  */
1169 static struct bio *bio_clone_range(struct bio *bio_src,
1170                                         unsigned int offset,
1171                                         unsigned int len,
1172                                         gfp_t gfpmask)
1173 {
1174         struct bio_vec *bv;
1175         unsigned int resid;
1176         unsigned short idx;
1177         unsigned int voff;
1178         unsigned short end_idx;
1179         unsigned short vcnt;
1180         struct bio *bio;
1181
1182         /* Handle the easy case for the caller */
1183
1184         if (!offset && len == bio_src->bi_size)
1185                 return bio_clone(bio_src, gfpmask);
1186
1187         if (WARN_ON_ONCE(!len))
1188                 return NULL;
1189         if (WARN_ON_ONCE(len > bio_src->bi_size))
1190                 return NULL;
1191         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1192                 return NULL;
1193
1194         /* Find first affected segment... */
1195
1196         resid = offset;
1197         bio_for_each_segment(bv, bio_src, idx) {
1198                 if (resid < bv->bv_len)
1199                         break;
1200                 resid -= bv->bv_len;
1201         }
1202         voff = resid;
1203
1204         /* ...and the last affected segment */
1205
1206         resid += len;
1207         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1208                 if (resid <= bv->bv_len)
1209                         break;
1210                 resid -= bv->bv_len;
1211         }
1212         vcnt = end_idx - idx + 1;
1213
1214         /* Build the clone */
1215
1216         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1217         if (!bio)
1218                 return NULL;    /* ENOMEM */
1219
1220         bio->bi_bdev = bio_src->bi_bdev;
1221         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1222         bio->bi_rw = bio_src->bi_rw;
1223         bio->bi_flags |= 1 << BIO_CLONED;
1224
1225         /*
1226          * Copy over our part of the bio_vec, then update the first
1227          * and last (or only) entries.
1228          */
1229         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1230                         vcnt * sizeof (struct bio_vec));
1231         bio->bi_io_vec[0].bv_offset += voff;
1232         if (vcnt > 1) {
1233                 bio->bi_io_vec[0].bv_len -= voff;
1234                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1235         } else {
1236                 bio->bi_io_vec[0].bv_len = len;
1237         }
1238
1239         bio->bi_vcnt = vcnt;
1240         bio->bi_size = len;
1241         bio->bi_idx = 0;
1242
1243         return bio;
1244 }
1245
1246 /*
1247  * Clone a portion of a bio chain, starting at the given byte offset
1248  * into the first bio in the source chain and continuing for the
1249  * number of bytes indicated.  The result is another bio chain of
1250  * exactly the given length, or a null pointer on error.
1251  *
1252  * The bio_src and offset parameters are both in-out.  On entry they
1253  * refer to the first source bio and the offset into that bio where
1254  * the start of data to be cloned is located.
1255  *
1256  * On return, bio_src is updated to refer to the bio in the source
1257  * chain that contains first un-cloned byte, and *offset will
1258  * contain the offset of that byte within that bio.
1259  */
1260 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1261                                         unsigned int *offset,
1262                                         unsigned int len,
1263                                         gfp_t gfpmask)
1264 {
1265         struct bio *bi = *bio_src;
1266         unsigned int off = *offset;
1267         struct bio *chain = NULL;
1268         struct bio **end;
1269
1270         /* Build up a chain of clone bios up to the limit */
1271
1272         if (!bi || off >= bi->bi_size || !len)
1273                 return NULL;            /* Nothing to clone */
1274
1275         end = &chain;
1276         while (len) {
1277                 unsigned int bi_size;
1278                 struct bio *bio;
1279
1280                 if (!bi) {
1281                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1282                         goto out_err;   /* EINVAL; ran out of bio's */
1283                 }
1284                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1285                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1286                 if (!bio)
1287                         goto out_err;   /* ENOMEM */
1288
1289                 *end = bio;
1290                 end = &bio->bi_next;
1291
1292                 off += bi_size;
1293                 if (off == bi->bi_size) {
1294                         bi = bi->bi_next;
1295                         off = 0;
1296                 }
1297                 len -= bi_size;
1298         }
1299         *bio_src = bi;
1300         *offset = off;
1301
1302         return chain;
1303 out_err:
1304         bio_chain_put(chain);
1305
1306         return NULL;
1307 }
1308
1309 /*
1310  * The default/initial value for all object request flags is 0.  For
1311  * each flag, once its value is set to 1 it is never reset to 0
1312  * again.
1313  */
1314 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1315 {
1316         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1317                 struct rbd_device *rbd_dev;
1318
1319                 rbd_dev = obj_request->img_request->rbd_dev;
1320                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1321                         obj_request);
1322         }
1323 }
1324
1325 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1326 {
1327         smp_mb();
1328         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1329 }
1330
1331 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1332 {
1333         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1334                 struct rbd_device *rbd_dev = NULL;
1335
1336                 if (obj_request_img_data_test(obj_request))
1337                         rbd_dev = obj_request->img_request->rbd_dev;
1338                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1339                         obj_request);
1340         }
1341 }
1342
1343 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1344 {
1345         smp_mb();
1346         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1347 }
1348
1349 /*
1350  * This sets the KNOWN flag after (possibly) setting the EXISTS
1351  * flag.  The latter is set based on the "exists" value provided.
1352  *
1353  * Note that for our purposes once an object exists it never goes
1354  * away again.  It's possible that the response from two existence
1355  * checks are separated by the creation of the target object, and
1356  * the first ("doesn't exist") response arrives *after* the second
1357  * ("does exist").  In that case we ignore the second one.
1358  */
1359 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1360                                 bool exists)
1361 {
1362         if (exists)
1363                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1364         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1365         smp_mb();
1366 }
1367
1368 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1369 {
1370         smp_mb();
1371         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1372 }
1373
1374 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1375 {
1376         smp_mb();
1377         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1378 }
1379
1380 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1381 {
1382         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1383                 atomic_read(&obj_request->kref.refcount));
1384         kref_get(&obj_request->kref);
1385 }
1386
1387 static void rbd_obj_request_destroy(struct kref *kref);
1388 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1389 {
1390         rbd_assert(obj_request != NULL);
1391         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1392                 atomic_read(&obj_request->kref.refcount));
1393         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1394 }
1395
1396 static bool img_request_child_test(struct rbd_img_request *img_request);
1397 static void rbd_parent_request_destroy(struct kref *kref);
1398 static void rbd_img_request_destroy(struct kref *kref);
1399 static void rbd_img_request_put(struct rbd_img_request *img_request)
1400 {
1401         rbd_assert(img_request != NULL);
1402         dout("%s: img %p (was %d)\n", __func__, img_request,
1403                 atomic_read(&img_request->kref.refcount));
1404         if (img_request_child_test(img_request))
1405                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1406         else
1407                 kref_put(&img_request->kref, rbd_img_request_destroy);
1408 }
1409
1410 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1411                                         struct rbd_obj_request *obj_request)
1412 {
1413         rbd_assert(obj_request->img_request == NULL);
1414
1415         /* Image request now owns object's original reference */
1416         obj_request->img_request = img_request;
1417         obj_request->which = img_request->obj_request_count;
1418         rbd_assert(!obj_request_img_data_test(obj_request));
1419         obj_request_img_data_set(obj_request);
1420         rbd_assert(obj_request->which != BAD_WHICH);
1421         img_request->obj_request_count++;
1422         list_add_tail(&obj_request->links, &img_request->obj_requests);
1423         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1424                 obj_request->which);
1425 }
1426
1427 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1428                                         struct rbd_obj_request *obj_request)
1429 {
1430         rbd_assert(obj_request->which != BAD_WHICH);
1431
1432         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1433                 obj_request->which);
1434         list_del(&obj_request->links);
1435         rbd_assert(img_request->obj_request_count > 0);
1436         img_request->obj_request_count--;
1437         rbd_assert(obj_request->which == img_request->obj_request_count);
1438         obj_request->which = BAD_WHICH;
1439         rbd_assert(obj_request_img_data_test(obj_request));
1440         rbd_assert(obj_request->img_request == img_request);
1441         obj_request->img_request = NULL;
1442         obj_request->callback = NULL;
1443         rbd_obj_request_put(obj_request);
1444 }
1445
1446 static bool obj_request_type_valid(enum obj_request_type type)
1447 {
1448         switch (type) {
1449         case OBJ_REQUEST_NODATA:
1450         case OBJ_REQUEST_BIO:
1451         case OBJ_REQUEST_PAGES:
1452                 return true;
1453         default:
1454                 return false;
1455         }
1456 }
1457
1458 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1459                                 struct rbd_obj_request *obj_request)
1460 {
1461         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1462
1463         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1464 }
1465
1466 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1467 {
1468
1469         dout("%s: img %p\n", __func__, img_request);
1470
1471         /*
1472          * If no error occurred, compute the aggregate transfer
1473          * count for the image request.  We could instead use
1474          * atomic64_cmpxchg() to update it as each object request
1475          * completes; not clear which way is better off hand.
1476          */
1477         if (!img_request->result) {
1478                 struct rbd_obj_request *obj_request;
1479                 u64 xferred = 0;
1480
1481                 for_each_obj_request(img_request, obj_request)
1482                         xferred += obj_request->xferred;
1483                 img_request->xferred = xferred;
1484         }
1485
1486         if (img_request->callback)
1487                 img_request->callback(img_request);
1488         else
1489                 rbd_img_request_put(img_request);
1490 }
1491
1492 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1493
1494 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1495 {
1496         dout("%s: obj %p\n", __func__, obj_request);
1497
1498         return wait_for_completion_interruptible(&obj_request->completion);
1499 }
1500
1501 /*
1502  * The default/initial value for all image request flags is 0.  Each
1503  * is conditionally set to 1 at image request initialization time
1504  * and currently never change thereafter.
1505  */
1506 static void img_request_write_set(struct rbd_img_request *img_request)
1507 {
1508         set_bit(IMG_REQ_WRITE, &img_request->flags);
1509         smp_mb();
1510 }
1511
1512 static bool img_request_write_test(struct rbd_img_request *img_request)
1513 {
1514         smp_mb();
1515         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1516 }
1517
1518 static void img_request_child_set(struct rbd_img_request *img_request)
1519 {
1520         set_bit(IMG_REQ_CHILD, &img_request->flags);
1521         smp_mb();
1522 }
1523
1524 static void img_request_child_clear(struct rbd_img_request *img_request)
1525 {
1526         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1527         smp_mb();
1528 }
1529
1530 static bool img_request_child_test(struct rbd_img_request *img_request)
1531 {
1532         smp_mb();
1533         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1534 }
1535
1536 static void img_request_layered_set(struct rbd_img_request *img_request)
1537 {
1538         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1539         smp_mb();
1540 }
1541
1542 static void img_request_layered_clear(struct rbd_img_request *img_request)
1543 {
1544         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1545         smp_mb();
1546 }
1547
1548 static bool img_request_layered_test(struct rbd_img_request *img_request)
1549 {
1550         smp_mb();
1551         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1552 }
1553
1554 static void
1555 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1556 {
1557         u64 xferred = obj_request->xferred;
1558         u64 length = obj_request->length;
1559
1560         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1561                 obj_request, obj_request->img_request, obj_request->result,
1562                 xferred, length);
1563         /*
1564          * ENOENT means a hole in the image.  We zero-fill the
1565          * entire length of the request.  A short read also implies
1566          * zero-fill to the end of the request.  Either way we
1567          * update the xferred count to indicate the whole request
1568          * was satisfied.
1569          */
1570         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1571         if (obj_request->result == -ENOENT) {
1572                 if (obj_request->type == OBJ_REQUEST_BIO)
1573                         zero_bio_chain(obj_request->bio_list, 0);
1574                 else
1575                         zero_pages(obj_request->pages, 0, length);
1576                 obj_request->result = 0;
1577                 obj_request->xferred = length;
1578         } else if (xferred < length && !obj_request->result) {
1579                 if (obj_request->type == OBJ_REQUEST_BIO)
1580                         zero_bio_chain(obj_request->bio_list, xferred);
1581                 else
1582                         zero_pages(obj_request->pages, xferred, length);
1583                 obj_request->xferred = length;
1584         }
1585         obj_request_done_set(obj_request);
1586 }
1587
1588 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1589 {
1590         dout("%s: obj %p cb %p\n", __func__, obj_request,
1591                 obj_request->callback);
1592         if (obj_request->callback)
1593                 obj_request->callback(obj_request);
1594         else
1595                 complete_all(&obj_request->completion);
1596 }
1597
1598 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1599 {
1600         dout("%s: obj %p\n", __func__, obj_request);
1601         obj_request_done_set(obj_request);
1602 }
1603
1604 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1605 {
1606         struct rbd_img_request *img_request = NULL;
1607         struct rbd_device *rbd_dev = NULL;
1608         bool layered = false;
1609
1610         if (obj_request_img_data_test(obj_request)) {
1611                 img_request = obj_request->img_request;
1612                 layered = img_request && img_request_layered_test(img_request);
1613                 rbd_dev = img_request->rbd_dev;
1614         }
1615
1616         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1617                 obj_request, img_request, obj_request->result,
1618                 obj_request->xferred, obj_request->length);
1619         if (layered && obj_request->result == -ENOENT &&
1620                         obj_request->img_offset < rbd_dev->parent_overlap)
1621                 rbd_img_parent_read(obj_request);
1622         else if (img_request)
1623                 rbd_img_obj_request_read_callback(obj_request);
1624         else
1625                 obj_request_done_set(obj_request);
1626 }
1627
1628 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1629 {
1630         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1631                 obj_request->result, obj_request->length);
1632         /*
1633          * There is no such thing as a successful short write.  Set
1634          * it to our originally-requested length.
1635          */
1636         obj_request->xferred = obj_request->length;
1637         obj_request_done_set(obj_request);
1638 }
1639
1640 /*
1641  * For a simple stat call there's nothing to do.  We'll do more if
1642  * this is part of a write sequence for a layered image.
1643  */
1644 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1645 {
1646         dout("%s: obj %p\n", __func__, obj_request);
1647         obj_request_done_set(obj_request);
1648 }
1649
1650 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1651                                 struct ceph_msg *msg)
1652 {
1653         struct rbd_obj_request *obj_request = osd_req->r_priv;
1654         u16 opcode;
1655
1656         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1657         rbd_assert(osd_req == obj_request->osd_req);
1658         if (obj_request_img_data_test(obj_request)) {
1659                 rbd_assert(obj_request->img_request);
1660                 rbd_assert(obj_request->which != BAD_WHICH);
1661         } else {
1662                 rbd_assert(obj_request->which == BAD_WHICH);
1663         }
1664
1665         if (osd_req->r_result < 0)
1666                 obj_request->result = osd_req->r_result;
1667
1668         BUG_ON(osd_req->r_num_ops > 2);
1669
1670         /*
1671          * We support a 64-bit length, but ultimately it has to be
1672          * passed to blk_end_request(), which takes an unsigned int.
1673          */
1674         obj_request->xferred = osd_req->r_reply_op_len[0];
1675         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1676         opcode = osd_req->r_ops[0].op;
1677         switch (opcode) {
1678         case CEPH_OSD_OP_READ:
1679                 rbd_osd_read_callback(obj_request);
1680                 break;
1681         case CEPH_OSD_OP_WRITE:
1682                 rbd_osd_write_callback(obj_request);
1683                 break;
1684         case CEPH_OSD_OP_STAT:
1685                 rbd_osd_stat_callback(obj_request);
1686                 break;
1687         case CEPH_OSD_OP_CALL:
1688         case CEPH_OSD_OP_NOTIFY_ACK:
1689         case CEPH_OSD_OP_WATCH:
1690                 rbd_osd_trivial_callback(obj_request);
1691                 break;
1692         default:
1693                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1694                         obj_request->object_name, (unsigned short) opcode);
1695                 break;
1696         }
1697
1698         if (obj_request_done_test(obj_request))
1699                 rbd_obj_request_complete(obj_request);
1700 }
1701
1702 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1703 {
1704         struct rbd_img_request *img_request = obj_request->img_request;
1705         struct ceph_osd_request *osd_req = obj_request->osd_req;
1706         u64 snap_id;
1707
1708         rbd_assert(osd_req != NULL);
1709
1710         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1711         ceph_osdc_build_request(osd_req, obj_request->offset,
1712                         NULL, snap_id, NULL);
1713 }
1714
1715 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1716 {
1717         struct rbd_img_request *img_request = obj_request->img_request;
1718         struct ceph_osd_request *osd_req = obj_request->osd_req;
1719         struct ceph_snap_context *snapc;
1720         struct timespec mtime = CURRENT_TIME;
1721
1722         rbd_assert(osd_req != NULL);
1723
1724         snapc = img_request ? img_request->snapc : NULL;
1725         ceph_osdc_build_request(osd_req, obj_request->offset,
1726                         snapc, CEPH_NOSNAP, &mtime);
1727 }
1728
1729 static struct ceph_osd_request *rbd_osd_req_create(
1730                                         struct rbd_device *rbd_dev,
1731                                         bool write_request,
1732                                         struct rbd_obj_request *obj_request)
1733 {
1734         struct ceph_snap_context *snapc = NULL;
1735         struct ceph_osd_client *osdc;
1736         struct ceph_osd_request *osd_req;
1737
1738         if (obj_request_img_data_test(obj_request)) {
1739                 struct rbd_img_request *img_request = obj_request->img_request;
1740
1741                 rbd_assert(write_request ==
1742                                 img_request_write_test(img_request));
1743                 if (write_request)
1744                         snapc = img_request->snapc;
1745         }
1746
1747         /* Allocate and initialize the request, for the single op */
1748
1749         osdc = &rbd_dev->rbd_client->client->osdc;
1750         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1751         if (!osd_req)
1752                 return NULL;    /* ENOMEM */
1753
1754         if (write_request)
1755                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1756         else
1757                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1758
1759         osd_req->r_callback = rbd_osd_req_callback;
1760         osd_req->r_priv = obj_request;
1761
1762         osd_req->r_oid_len = strlen(obj_request->object_name);
1763         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1764         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1765
1766         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1767
1768         return osd_req;
1769 }
1770
1771 /*
1772  * Create a copyup osd request based on the information in the
1773  * object request supplied.  A copyup request has two osd ops,
1774  * a copyup method call, and a "normal" write request.
1775  */
1776 static struct ceph_osd_request *
1777 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1778 {
1779         struct rbd_img_request *img_request;
1780         struct ceph_snap_context *snapc;
1781         struct rbd_device *rbd_dev;
1782         struct ceph_osd_client *osdc;
1783         struct ceph_osd_request *osd_req;
1784
1785         rbd_assert(obj_request_img_data_test(obj_request));
1786         img_request = obj_request->img_request;
1787         rbd_assert(img_request);
1788         rbd_assert(img_request_write_test(img_request));
1789
1790         /* Allocate and initialize the request, for the two ops */
1791
1792         snapc = img_request->snapc;
1793         rbd_dev = img_request->rbd_dev;
1794         osdc = &rbd_dev->rbd_client->client->osdc;
1795         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1796         if (!osd_req)
1797                 return NULL;    /* ENOMEM */
1798
1799         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1800         osd_req->r_callback = rbd_osd_req_callback;
1801         osd_req->r_priv = obj_request;
1802
1803         osd_req->r_oid_len = strlen(obj_request->object_name);
1804         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1805         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1806
1807         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1808
1809         return osd_req;
1810 }
1811
1812
1813 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1814 {
1815         ceph_osdc_put_request(osd_req);
1816 }
1817
1818 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1819
1820 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1821                                                 u64 offset, u64 length,
1822                                                 enum obj_request_type type)
1823 {
1824         struct rbd_obj_request *obj_request;
1825         size_t size;
1826         char *name;
1827
1828         rbd_assert(obj_request_type_valid(type));
1829
1830         size = strlen(object_name) + 1;
1831         name = kmalloc(size, GFP_KERNEL);
1832         if (!name)
1833                 return NULL;
1834
1835         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1836         if (!obj_request) {
1837                 kfree(name);
1838                 return NULL;
1839         }
1840
1841         obj_request->object_name = memcpy(name, object_name, size);
1842         obj_request->offset = offset;
1843         obj_request->length = length;
1844         obj_request->flags = 0;
1845         obj_request->which = BAD_WHICH;
1846         obj_request->type = type;
1847         INIT_LIST_HEAD(&obj_request->links);
1848         init_completion(&obj_request->completion);
1849         kref_init(&obj_request->kref);
1850
1851         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1852                 offset, length, (int)type, obj_request);
1853
1854         return obj_request;
1855 }
1856
1857 static void rbd_obj_request_destroy(struct kref *kref)
1858 {
1859         struct rbd_obj_request *obj_request;
1860
1861         obj_request = container_of(kref, struct rbd_obj_request, kref);
1862
1863         dout("%s: obj %p\n", __func__, obj_request);
1864
1865         rbd_assert(obj_request->img_request == NULL);
1866         rbd_assert(obj_request->which == BAD_WHICH);
1867
1868         if (obj_request->osd_req)
1869                 rbd_osd_req_destroy(obj_request->osd_req);
1870
1871         rbd_assert(obj_request_type_valid(obj_request->type));
1872         switch (obj_request->type) {
1873         case OBJ_REQUEST_NODATA:
1874                 break;          /* Nothing to do */
1875         case OBJ_REQUEST_BIO:
1876                 if (obj_request->bio_list)
1877                         bio_chain_put(obj_request->bio_list);
1878                 break;
1879         case OBJ_REQUEST_PAGES:
1880                 if (obj_request->pages)
1881                         ceph_release_page_vector(obj_request->pages,
1882                                                 obj_request->page_count);
1883                 break;
1884         }
1885
1886         kfree(obj_request->object_name);
1887         obj_request->object_name = NULL;
1888         kmem_cache_free(rbd_obj_request_cache, obj_request);
1889 }
1890
1891 /* It's OK to call this for a device with no parent */
1892
1893 static void rbd_spec_put(struct rbd_spec *spec);
1894 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1895 {
1896         rbd_dev_remove_parent(rbd_dev);
1897         rbd_spec_put(rbd_dev->parent_spec);
1898         rbd_dev->parent_spec = NULL;
1899         rbd_dev->parent_overlap = 0;
1900 }
1901
1902 /*
1903  * Parent image reference counting is used to determine when an
1904  * image's parent fields can be safely torn down--after there are no
1905  * more in-flight requests to the parent image.  When the last
1906  * reference is dropped, cleaning them up is safe.
1907  */
1908 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1909 {
1910         int counter;
1911
1912         if (!rbd_dev->parent_spec)
1913                 return;
1914
1915         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1916         if (counter > 0)
1917                 return;
1918
1919         /* Last reference; clean up parent data structures */
1920
1921         if (!counter)
1922                 rbd_dev_unparent(rbd_dev);
1923         else
1924                 rbd_warn(rbd_dev, "parent reference underflow\n");
1925 }
1926
1927 /*
1928  * If an image has a non-zero parent overlap, get a reference to its
1929  * parent.
1930  *
1931  * We must get the reference before checking for the overlap to
1932  * coordinate properly with zeroing the parent overlap in
1933  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1934  * drop it again if there is no overlap.
1935  *
1936  * Returns true if the rbd device has a parent with a non-zero
1937  * overlap and a reference for it was successfully taken, or
1938  * false otherwise.
1939  */
1940 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1941 {
1942         int counter;
1943
1944         if (!rbd_dev->parent_spec)
1945                 return false;
1946
1947         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1948         if (counter > 0 && rbd_dev->parent_overlap)
1949                 return true;
1950
1951         /* Image was flattened, but parent is not yet torn down */
1952
1953         if (counter < 0)
1954                 rbd_warn(rbd_dev, "parent reference overflow\n");
1955
1956         return false;
1957 }
1958
1959 /*
1960  * Caller is responsible for filling in the list of object requests
1961  * that comprises the image request, and the Linux request pointer
1962  * (if there is one).
1963  */
1964 static struct rbd_img_request *rbd_img_request_create(
1965                                         struct rbd_device *rbd_dev,
1966                                         u64 offset, u64 length,
1967                                         bool write_request)
1968 {
1969         struct rbd_img_request *img_request;
1970
1971         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1972         if (!img_request)
1973                 return NULL;
1974
1975         if (write_request) {
1976                 down_read(&rbd_dev->header_rwsem);
1977                 ceph_get_snap_context(rbd_dev->header.snapc);
1978                 up_read(&rbd_dev->header_rwsem);
1979         }
1980
1981         img_request->rq = NULL;
1982         img_request->rbd_dev = rbd_dev;
1983         img_request->offset = offset;
1984         img_request->length = length;
1985         img_request->flags = 0;
1986         if (write_request) {
1987                 img_request_write_set(img_request);
1988                 img_request->snapc = rbd_dev->header.snapc;
1989         } else {
1990                 img_request->snap_id = rbd_dev->spec->snap_id;
1991         }
1992         if (rbd_dev_parent_get(rbd_dev))
1993                 img_request_layered_set(img_request);
1994         spin_lock_init(&img_request->completion_lock);
1995         img_request->next_completion = 0;
1996         img_request->callback = NULL;
1997         img_request->result = 0;
1998         img_request->obj_request_count = 0;
1999         INIT_LIST_HEAD(&img_request->obj_requests);
2000         kref_init(&img_request->kref);
2001
2002         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2003                 write_request ? "write" : "read", offset, length,
2004                 img_request);
2005
2006         return img_request;
2007 }
2008
2009 static void rbd_img_request_destroy(struct kref *kref)
2010 {
2011         struct rbd_img_request *img_request;
2012         struct rbd_obj_request *obj_request;
2013         struct rbd_obj_request *next_obj_request;
2014
2015         img_request = container_of(kref, struct rbd_img_request, kref);
2016
2017         dout("%s: img %p\n", __func__, img_request);
2018
2019         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2020                 rbd_img_obj_request_del(img_request, obj_request);
2021         rbd_assert(img_request->obj_request_count == 0);
2022
2023         if (img_request_layered_test(img_request)) {
2024                 img_request_layered_clear(img_request);
2025                 rbd_dev_parent_put(img_request->rbd_dev);
2026         }
2027
2028         if (img_request_write_test(img_request))
2029                 ceph_put_snap_context(img_request->snapc);
2030
2031         kmem_cache_free(rbd_img_request_cache, img_request);
2032 }
2033
2034 static struct rbd_img_request *rbd_parent_request_create(
2035                                         struct rbd_obj_request *obj_request,
2036                                         u64 img_offset, u64 length)
2037 {
2038         struct rbd_img_request *parent_request;
2039         struct rbd_device *rbd_dev;
2040
2041         rbd_assert(obj_request->img_request);
2042         rbd_dev = obj_request->img_request->rbd_dev;
2043
2044         parent_request = rbd_img_request_create(rbd_dev->parent,
2045                                                 img_offset, length, false);
2046         if (!parent_request)
2047                 return NULL;
2048
2049         img_request_child_set(parent_request);
2050         rbd_obj_request_get(obj_request);
2051         parent_request->obj_request = obj_request;
2052
2053         return parent_request;
2054 }
2055
2056 static void rbd_parent_request_destroy(struct kref *kref)
2057 {
2058         struct rbd_img_request *parent_request;
2059         struct rbd_obj_request *orig_request;
2060
2061         parent_request = container_of(kref, struct rbd_img_request, kref);
2062         orig_request = parent_request->obj_request;
2063
2064         parent_request->obj_request = NULL;
2065         rbd_obj_request_put(orig_request);
2066         img_request_child_clear(parent_request);
2067
2068         rbd_img_request_destroy(kref);
2069 }
2070
2071 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2072 {
2073         struct rbd_img_request *img_request;
2074         unsigned int xferred;
2075         int result;
2076         bool more;
2077
2078         rbd_assert(obj_request_img_data_test(obj_request));
2079         img_request = obj_request->img_request;
2080
2081         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2082         xferred = (unsigned int)obj_request->xferred;
2083         result = obj_request->result;
2084         if (result) {
2085                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2086
2087                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2088                         img_request_write_test(img_request) ? "write" : "read",
2089                         obj_request->length, obj_request->img_offset,
2090                         obj_request->offset);
2091                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2092                         result, xferred);
2093                 if (!img_request->result)
2094                         img_request->result = result;
2095         }
2096
2097         /* Image object requests don't own their page array */
2098
2099         if (obj_request->type == OBJ_REQUEST_PAGES) {
2100                 obj_request->pages = NULL;
2101                 obj_request->page_count = 0;
2102         }
2103
2104         if (img_request_child_test(img_request)) {
2105                 rbd_assert(img_request->obj_request != NULL);
2106                 more = obj_request->which < img_request->obj_request_count - 1;
2107         } else {
2108                 rbd_assert(img_request->rq != NULL);
2109                 more = blk_end_request(img_request->rq, result, xferred);
2110         }
2111
2112         return more;
2113 }
2114
2115 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2116 {
2117         struct rbd_img_request *img_request;
2118         u32 which = obj_request->which;
2119         bool more = true;
2120
2121         rbd_assert(obj_request_img_data_test(obj_request));
2122         img_request = obj_request->img_request;
2123
2124         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2125         rbd_assert(img_request != NULL);
2126         rbd_assert(img_request->obj_request_count > 0);
2127         rbd_assert(which != BAD_WHICH);
2128         rbd_assert(which < img_request->obj_request_count);
2129         rbd_assert(which >= img_request->next_completion);
2130
2131         spin_lock_irq(&img_request->completion_lock);
2132         if (which != img_request->next_completion)
2133                 goto out;
2134
2135         for_each_obj_request_from(img_request, obj_request) {
2136                 rbd_assert(more);
2137                 rbd_assert(which < img_request->obj_request_count);
2138
2139                 if (!obj_request_done_test(obj_request))
2140                         break;
2141                 more = rbd_img_obj_end_request(obj_request);
2142                 which++;
2143         }
2144
2145         rbd_assert(more ^ (which == img_request->obj_request_count));
2146         img_request->next_completion = which;
2147 out:
2148         spin_unlock_irq(&img_request->completion_lock);
2149
2150         if (!more)
2151                 rbd_img_request_complete(img_request);
2152 }
2153
2154 /*
2155  * Split up an image request into one or more object requests, each
2156  * to a different object.  The "type" parameter indicates whether
2157  * "data_desc" is the pointer to the head of a list of bio
2158  * structures, or the base of a page array.  In either case this
2159  * function assumes data_desc describes memory sufficient to hold
2160  * all data described by the image request.
2161  */
2162 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2163                                         enum obj_request_type type,
2164                                         void *data_desc)
2165 {
2166         struct rbd_device *rbd_dev = img_request->rbd_dev;
2167         struct rbd_obj_request *obj_request = NULL;
2168         struct rbd_obj_request *next_obj_request;
2169         bool write_request = img_request_write_test(img_request);
2170         struct bio *bio_list = 0;
2171         unsigned int bio_offset = 0;
2172         struct page **pages = 0;
2173         u64 img_offset;
2174         u64 resid;
2175         u16 opcode;
2176
2177         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2178                 (int)type, data_desc);
2179
2180         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2181         img_offset = img_request->offset;
2182         resid = img_request->length;
2183         rbd_assert(resid > 0);
2184
2185         if (type == OBJ_REQUEST_BIO) {
2186                 bio_list = data_desc;
2187                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2188         } else {
2189                 rbd_assert(type == OBJ_REQUEST_PAGES);
2190                 pages = data_desc;
2191         }
2192
2193         while (resid) {
2194                 struct ceph_osd_request *osd_req;
2195                 const char *object_name;
2196                 u64 offset;
2197                 u64 length;
2198
2199                 object_name = rbd_segment_name(rbd_dev, img_offset);
2200                 if (!object_name)
2201                         goto out_unwind;
2202                 offset = rbd_segment_offset(rbd_dev, img_offset);
2203                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2204                 obj_request = rbd_obj_request_create(object_name,
2205                                                 offset, length, type);
2206                 /* object request has its own copy of the object name */
2207                 rbd_segment_name_free(object_name);
2208                 if (!obj_request)
2209                         goto out_unwind;
2210
2211                 if (type == OBJ_REQUEST_BIO) {
2212                         unsigned int clone_size;
2213
2214                         rbd_assert(length <= (u64)UINT_MAX);
2215                         clone_size = (unsigned int)length;
2216                         obj_request->bio_list =
2217                                         bio_chain_clone_range(&bio_list,
2218                                                                 &bio_offset,
2219                                                                 clone_size,
2220                                                                 GFP_ATOMIC);
2221                         if (!obj_request->bio_list)
2222                                 goto out_partial;
2223                 } else {
2224                         unsigned int page_count;
2225
2226                         obj_request->pages = pages;
2227                         page_count = (u32)calc_pages_for(offset, length);
2228                         obj_request->page_count = page_count;
2229                         if ((offset + length) & ~PAGE_MASK)
2230                                 page_count--;   /* more on last page */
2231                         pages += page_count;
2232                 }
2233
2234                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2235                                                 obj_request);
2236                 if (!osd_req)
2237                         goto out_partial;
2238                 obj_request->osd_req = osd_req;
2239                 obj_request->callback = rbd_img_obj_callback;
2240
2241                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2242                                                 0, 0);
2243                 if (type == OBJ_REQUEST_BIO)
2244                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2245                                         obj_request->bio_list, length);
2246                 else
2247                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2248                                         obj_request->pages, length,
2249                                         offset & ~PAGE_MASK, false, false);
2250
2251                 /*
2252                  * set obj_request->img_request before formatting
2253                  * the osd_request so that it gets the right snapc
2254                  */
2255                 rbd_img_obj_request_add(img_request, obj_request);
2256                 if (write_request)
2257                         rbd_osd_req_format_write(obj_request);
2258                 else
2259                         rbd_osd_req_format_read(obj_request);
2260
2261                 obj_request->img_offset = img_offset;
2262
2263                 img_offset += length;
2264                 resid -= length;
2265         }
2266
2267         return 0;
2268
2269 out_partial:
2270         rbd_obj_request_put(obj_request);
2271 out_unwind:
2272         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2273                 rbd_obj_request_put(obj_request);
2274
2275         return -ENOMEM;
2276 }
2277
2278 static void
2279 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2280 {
2281         struct rbd_img_request *img_request;
2282         struct rbd_device *rbd_dev;
2283         struct page **pages;
2284         u32 page_count;
2285
2286         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2287         rbd_assert(obj_request_img_data_test(obj_request));
2288         img_request = obj_request->img_request;
2289         rbd_assert(img_request);
2290
2291         rbd_dev = img_request->rbd_dev;
2292         rbd_assert(rbd_dev);
2293
2294         pages = obj_request->copyup_pages;
2295         rbd_assert(pages != NULL);
2296         obj_request->copyup_pages = NULL;
2297         page_count = obj_request->copyup_page_count;
2298         rbd_assert(page_count);
2299         obj_request->copyup_page_count = 0;
2300         ceph_release_page_vector(pages, page_count);
2301
2302         /*
2303          * We want the transfer count to reflect the size of the
2304          * original write request.  There is no such thing as a
2305          * successful short write, so if the request was successful
2306          * we can just set it to the originally-requested length.
2307          */
2308         if (!obj_request->result)
2309                 obj_request->xferred = obj_request->length;
2310
2311         /* Finish up with the normal image object callback */
2312
2313         rbd_img_obj_callback(obj_request);
2314 }
2315
2316 static void
2317 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2318 {
2319         struct rbd_obj_request *orig_request;
2320         struct ceph_osd_request *osd_req;
2321         struct ceph_osd_client *osdc;
2322         struct rbd_device *rbd_dev;
2323         struct page **pages;
2324         u32 page_count;
2325         int img_result;
2326         u64 parent_length;
2327         u64 offset;
2328         u64 length;
2329
2330         rbd_assert(img_request_child_test(img_request));
2331
2332         /* First get what we need from the image request */
2333
2334         pages = img_request->copyup_pages;
2335         rbd_assert(pages != NULL);
2336         img_request->copyup_pages = NULL;
2337         page_count = img_request->copyup_page_count;
2338         rbd_assert(page_count);
2339         img_request->copyup_page_count = 0;
2340
2341         orig_request = img_request->obj_request;
2342         rbd_assert(orig_request != NULL);
2343         rbd_assert(obj_request_type_valid(orig_request->type));
2344         img_result = img_request->result;
2345         parent_length = img_request->length;
2346         rbd_assert(parent_length == img_request->xferred);
2347         rbd_img_request_put(img_request);
2348
2349         rbd_assert(orig_request->img_request);
2350         rbd_dev = orig_request->img_request->rbd_dev;
2351         rbd_assert(rbd_dev);
2352
2353         /*
2354          * If the overlap has become 0 (most likely because the
2355          * image has been flattened) we need to free the pages
2356          * and re-submit the original write request.
2357          */
2358         if (!rbd_dev->parent_overlap) {
2359                 struct ceph_osd_client *osdc;
2360
2361                 ceph_release_page_vector(pages, page_count);
2362                 osdc = &rbd_dev->rbd_client->client->osdc;
2363                 img_result = rbd_obj_request_submit(osdc, orig_request);
2364                 if (!img_result)
2365                         return;
2366         }
2367
2368         if (img_result)
2369                 goto out_err;
2370
2371         /*
2372          * The original osd request is of no use to use any more.
2373          * We need a new one that can hold the two ops in a copyup
2374          * request.  Allocate the new copyup osd request for the
2375          * original request, and release the old one.
2376          */
2377         img_result = -ENOMEM;
2378         osd_req = rbd_osd_req_create_copyup(orig_request);
2379         if (!osd_req)
2380                 goto out_err;
2381         rbd_osd_req_destroy(orig_request->osd_req);
2382         orig_request->osd_req = osd_req;
2383         orig_request->copyup_pages = pages;
2384         orig_request->copyup_page_count = page_count;
2385
2386         /* Initialize the copyup op */
2387
2388         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2389         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2390                                                 false, false);
2391
2392         /* Then the original write request op */
2393
2394         offset = orig_request->offset;
2395         length = orig_request->length;
2396         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2397                                         offset, length, 0, 0);
2398         if (orig_request->type == OBJ_REQUEST_BIO)
2399                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2400                                         orig_request->bio_list, length);
2401         else
2402                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2403                                         orig_request->pages, length,
2404                                         offset & ~PAGE_MASK, false, false);
2405
2406         rbd_osd_req_format_write(orig_request);
2407
2408         /* All set, send it off. */
2409
2410         orig_request->callback = rbd_img_obj_copyup_callback;
2411         osdc = &rbd_dev->rbd_client->client->osdc;
2412         img_result = rbd_obj_request_submit(osdc, orig_request);
2413         if (!img_result)
2414                 return;
2415 out_err:
2416         /* Record the error code and complete the request */
2417
2418         orig_request->result = img_result;
2419         orig_request->xferred = 0;
2420         obj_request_done_set(orig_request);
2421         rbd_obj_request_complete(orig_request);
2422 }
2423
2424 /*
2425  * Read from the parent image the range of data that covers the
2426  * entire target of the given object request.  This is used for
2427  * satisfying a layered image write request when the target of an
2428  * object request from the image request does not exist.
2429  *
2430  * A page array big enough to hold the returned data is allocated
2431  * and supplied to rbd_img_request_fill() as the "data descriptor."
2432  * When the read completes, this page array will be transferred to
2433  * the original object request for the copyup operation.
2434  *
2435  * If an error occurs, record it as the result of the original
2436  * object request and mark it done so it gets completed.
2437  */
2438 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2439 {
2440         struct rbd_img_request *img_request = NULL;
2441         struct rbd_img_request *parent_request = NULL;
2442         struct rbd_device *rbd_dev;
2443         u64 img_offset;
2444         u64 length;
2445         struct page **pages = NULL;
2446         u32 page_count;
2447         int result;
2448
2449         rbd_assert(obj_request_img_data_test(obj_request));
2450         rbd_assert(obj_request_type_valid(obj_request->type));
2451
2452         img_request = obj_request->img_request;
2453         rbd_assert(img_request != NULL);
2454         rbd_dev = img_request->rbd_dev;
2455         rbd_assert(rbd_dev->parent != NULL);
2456
2457         /*
2458          * Determine the byte range covered by the object in the
2459          * child image to which the original request was to be sent.
2460          */
2461         img_offset = obj_request->img_offset - obj_request->offset;
2462         length = (u64)1 << rbd_dev->header.obj_order;
2463
2464         /*
2465          * There is no defined parent data beyond the parent
2466          * overlap, so limit what we read at that boundary if
2467          * necessary.
2468          */
2469         if (img_offset + length > rbd_dev->parent_overlap) {
2470                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2471                 length = rbd_dev->parent_overlap - img_offset;
2472         }
2473
2474         /*
2475          * Allocate a page array big enough to receive the data read
2476          * from the parent.
2477          */
2478         page_count = (u32)calc_pages_for(0, length);
2479         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2480         if (IS_ERR(pages)) {
2481                 result = PTR_ERR(pages);
2482                 pages = NULL;
2483                 goto out_err;
2484         }
2485
2486         result = -ENOMEM;
2487         parent_request = rbd_parent_request_create(obj_request,
2488                                                 img_offset, length);
2489         if (!parent_request)
2490                 goto out_err;
2491
2492         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2493         if (result)
2494                 goto out_err;
2495         parent_request->copyup_pages = pages;
2496         parent_request->copyup_page_count = page_count;
2497
2498         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2499         result = rbd_img_request_submit(parent_request);
2500         if (!result)
2501                 return 0;
2502
2503         parent_request->copyup_pages = NULL;
2504         parent_request->copyup_page_count = 0;
2505         parent_request->obj_request = NULL;
2506         rbd_obj_request_put(obj_request);
2507 out_err:
2508         if (pages)
2509                 ceph_release_page_vector(pages, page_count);
2510         if (parent_request)
2511                 rbd_img_request_put(parent_request);
2512         obj_request->result = result;
2513         obj_request->xferred = 0;
2514         obj_request_done_set(obj_request);
2515
2516         return result;
2517 }
2518
2519 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2520 {
2521         struct rbd_obj_request *orig_request;
2522         struct rbd_device *rbd_dev;
2523         int result;
2524
2525         rbd_assert(!obj_request_img_data_test(obj_request));
2526
2527         /*
2528          * All we need from the object request is the original
2529          * request and the result of the STAT op.  Grab those, then
2530          * we're done with the request.
2531          */
2532         orig_request = obj_request->obj_request;
2533         obj_request->obj_request = NULL;
2534         rbd_obj_request_put(orig_request);
2535         rbd_assert(orig_request);
2536         rbd_assert(orig_request->img_request);
2537
2538         result = obj_request->result;
2539         obj_request->result = 0;
2540
2541         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2542                 obj_request, orig_request, result,
2543                 obj_request->xferred, obj_request->length);
2544         rbd_obj_request_put(obj_request);
2545
2546         /*
2547          * If the overlap has become 0 (most likely because the
2548          * image has been flattened) we need to free the pages
2549          * and re-submit the original write request.
2550          */
2551         rbd_dev = orig_request->img_request->rbd_dev;
2552         if (!rbd_dev->parent_overlap) {
2553                 struct ceph_osd_client *osdc;
2554
2555                 osdc = &rbd_dev->rbd_client->client->osdc;
2556                 result = rbd_obj_request_submit(osdc, orig_request);
2557                 if (!result)
2558                         return;
2559         }
2560
2561         /*
2562          * Our only purpose here is to determine whether the object
2563          * exists, and we don't want to treat the non-existence as
2564          * an error.  If something else comes back, transfer the
2565          * error to the original request and complete it now.
2566          */
2567         if (!result) {
2568                 obj_request_existence_set(orig_request, true);
2569         } else if (result == -ENOENT) {
2570                 obj_request_existence_set(orig_request, false);
2571         } else if (result) {
2572                 orig_request->result = result;
2573                 goto out;
2574         }
2575
2576         /*
2577          * Resubmit the original request now that we have recorded
2578          * whether the target object exists.
2579          */
2580         orig_request->result = rbd_img_obj_request_submit(orig_request);
2581 out:
2582         if (orig_request->result)
2583                 rbd_obj_request_complete(orig_request);
2584 }
2585
2586 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2587 {
2588         struct rbd_obj_request *stat_request;
2589         struct rbd_device *rbd_dev;
2590         struct ceph_osd_client *osdc;
2591         struct page **pages = NULL;
2592         u32 page_count;
2593         size_t size;
2594         int ret;
2595
2596         /*
2597          * The response data for a STAT call consists of:
2598          *     le64 length;
2599          *     struct {
2600          *         le32 tv_sec;
2601          *         le32 tv_nsec;
2602          *     } mtime;
2603          */
2604         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2605         page_count = (u32)calc_pages_for(0, size);
2606         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2607         if (IS_ERR(pages))
2608                 return PTR_ERR(pages);
2609
2610         ret = -ENOMEM;
2611         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2612                                                         OBJ_REQUEST_PAGES);
2613         if (!stat_request)
2614                 goto out;
2615
2616         rbd_obj_request_get(obj_request);
2617         stat_request->obj_request = obj_request;
2618         stat_request->pages = pages;
2619         stat_request->page_count = page_count;
2620
2621         rbd_assert(obj_request->img_request);
2622         rbd_dev = obj_request->img_request->rbd_dev;
2623         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2624                                                 stat_request);
2625         if (!stat_request->osd_req)
2626                 goto out;
2627         stat_request->callback = rbd_img_obj_exists_callback;
2628
2629         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2630         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2631                                         false, false);
2632         rbd_osd_req_format_read(stat_request);
2633
2634         osdc = &rbd_dev->rbd_client->client->osdc;
2635         ret = rbd_obj_request_submit(osdc, stat_request);
2636 out:
2637         if (ret)
2638                 rbd_obj_request_put(obj_request);
2639
2640         return ret;
2641 }
2642
2643 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2644 {
2645         struct rbd_img_request *img_request;
2646         struct rbd_device *rbd_dev;
2647         bool known;
2648
2649         rbd_assert(obj_request_img_data_test(obj_request));
2650
2651         img_request = obj_request->img_request;
2652         rbd_assert(img_request);
2653         rbd_dev = img_request->rbd_dev;
2654
2655         /*
2656          * Only writes to layered images need special handling.
2657          * Reads and non-layered writes are simple object requests.
2658          * Layered writes that start beyond the end of the overlap
2659          * with the parent have no parent data, so they too are
2660          * simple object requests.  Finally, if the target object is
2661          * known to already exist, its parent data has already been
2662          * copied, so a write to the object can also be handled as a
2663          * simple object request.
2664          */
2665         if (!img_request_write_test(img_request) ||
2666                 !img_request_layered_test(img_request) ||
2667                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2668                 ((known = obj_request_known_test(obj_request)) &&
2669                         obj_request_exists_test(obj_request))) {
2670
2671                 struct rbd_device *rbd_dev;
2672                 struct ceph_osd_client *osdc;
2673
2674                 rbd_dev = obj_request->img_request->rbd_dev;
2675                 osdc = &rbd_dev->rbd_client->client->osdc;
2676
2677                 return rbd_obj_request_submit(osdc, obj_request);
2678         }
2679
2680         /*
2681          * It's a layered write.  The target object might exist but
2682          * we may not know that yet.  If we know it doesn't exist,
2683          * start by reading the data for the full target object from
2684          * the parent so we can use it for a copyup to the target.
2685          */
2686         if (known)
2687                 return rbd_img_obj_parent_read_full(obj_request);
2688
2689         /* We don't know whether the target exists.  Go find out. */
2690
2691         return rbd_img_obj_exists_submit(obj_request);
2692 }
2693
2694 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2695 {
2696         struct rbd_obj_request *obj_request;
2697         struct rbd_obj_request *next_obj_request;
2698
2699         dout("%s: img %p\n", __func__, img_request);
2700         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2701                 int ret;
2702
2703                 ret = rbd_img_obj_request_submit(obj_request);
2704                 if (ret)
2705                         return ret;
2706         }
2707
2708         return 0;
2709 }
2710
2711 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2712 {
2713         struct rbd_obj_request *obj_request;
2714         struct rbd_device *rbd_dev;
2715         u64 obj_end;
2716         u64 img_xferred;
2717         int img_result;
2718
2719         rbd_assert(img_request_child_test(img_request));
2720
2721         /* First get what we need from the image request and release it */
2722
2723         obj_request = img_request->obj_request;
2724         img_xferred = img_request->xferred;
2725         img_result = img_request->result;
2726         rbd_img_request_put(img_request);
2727
2728         /*
2729          * If the overlap has become 0 (most likely because the
2730          * image has been flattened) we need to re-submit the
2731          * original request.
2732          */
2733         rbd_assert(obj_request);
2734         rbd_assert(obj_request->img_request);
2735         rbd_dev = obj_request->img_request->rbd_dev;
2736         if (!rbd_dev->parent_overlap) {
2737                 struct ceph_osd_client *osdc;
2738
2739                 osdc = &rbd_dev->rbd_client->client->osdc;
2740                 img_result = rbd_obj_request_submit(osdc, obj_request);
2741                 if (!img_result)
2742                         return;
2743         }
2744
2745         obj_request->result = img_result;
2746         if (obj_request->result)
2747                 goto out;
2748
2749         /*
2750          * We need to zero anything beyond the parent overlap
2751          * boundary.  Since rbd_img_obj_request_read_callback()
2752          * will zero anything beyond the end of a short read, an
2753          * easy way to do this is to pretend the data from the
2754          * parent came up short--ending at the overlap boundary.
2755          */
2756         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2757         obj_end = obj_request->img_offset + obj_request->length;
2758         if (obj_end > rbd_dev->parent_overlap) {
2759                 u64 xferred = 0;
2760
2761                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2762                         xferred = rbd_dev->parent_overlap -
2763                                         obj_request->img_offset;
2764
2765                 obj_request->xferred = min(img_xferred, xferred);
2766         } else {
2767                 obj_request->xferred = img_xferred;
2768         }
2769 out:
2770         rbd_img_obj_request_read_callback(obj_request);
2771         rbd_obj_request_complete(obj_request);
2772 }
2773
2774 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2775 {
2776         struct rbd_img_request *img_request;
2777         int result;
2778
2779         rbd_assert(obj_request_img_data_test(obj_request));
2780         rbd_assert(obj_request->img_request != NULL);
2781         rbd_assert(obj_request->result == (s32) -ENOENT);
2782         rbd_assert(obj_request_type_valid(obj_request->type));
2783
2784         /* rbd_read_finish(obj_request, obj_request->length); */
2785         img_request = rbd_parent_request_create(obj_request,
2786                                                 obj_request->img_offset,
2787                                                 obj_request->length);
2788         result = -ENOMEM;
2789         if (!img_request)
2790                 goto out_err;
2791
2792         if (obj_request->type == OBJ_REQUEST_BIO)
2793                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2794                                                 obj_request->bio_list);
2795         else
2796                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2797                                                 obj_request->pages);
2798         if (result)
2799                 goto out_err;
2800
2801         img_request->callback = rbd_img_parent_read_callback;
2802         result = rbd_img_request_submit(img_request);
2803         if (result)
2804                 goto out_err;
2805
2806         return;
2807 out_err:
2808         if (img_request)
2809                 rbd_img_request_put(img_request);
2810         obj_request->result = result;
2811         obj_request->xferred = 0;
2812         obj_request_done_set(obj_request);
2813 }
2814
2815 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2816 {
2817         struct rbd_obj_request *obj_request;
2818         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2819         int ret;
2820
2821         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2822                                                         OBJ_REQUEST_NODATA);
2823         if (!obj_request)
2824                 return -ENOMEM;
2825
2826         ret = -ENOMEM;
2827         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2828         if (!obj_request->osd_req)
2829                 goto out;
2830         obj_request->callback = rbd_obj_request_put;
2831
2832         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2833                                         notify_id, 0, 0);
2834         rbd_osd_req_format_read(obj_request);
2835
2836         ret = rbd_obj_request_submit(osdc, obj_request);
2837 out:
2838         if (ret)
2839                 rbd_obj_request_put(obj_request);
2840
2841         return ret;
2842 }
2843
2844 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2845 {
2846         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2847         int ret;
2848
2849         if (!rbd_dev)
2850                 return;
2851
2852         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2853                 rbd_dev->header_name, (unsigned long long)notify_id,
2854                 (unsigned int)opcode);
2855         ret = rbd_dev_refresh(rbd_dev);
2856         if (ret)
2857                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2858
2859         rbd_obj_notify_ack(rbd_dev, notify_id);
2860 }
2861
2862 /*
2863  * Request sync osd watch/unwatch.  The value of "start" determines
2864  * whether a watch request is being initiated or torn down.
2865  */
2866 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2867 {
2868         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2869         struct rbd_obj_request *obj_request;
2870         int ret;
2871
2872         rbd_assert(start ^ !!rbd_dev->watch_event);
2873         rbd_assert(start ^ !!rbd_dev->watch_request);
2874
2875         if (start) {
2876                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2877                                                 &rbd_dev->watch_event);
2878                 if (ret < 0)
2879                         return ret;
2880                 rbd_assert(rbd_dev->watch_event != NULL);
2881         }
2882
2883         ret = -ENOMEM;
2884         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2885                                                         OBJ_REQUEST_NODATA);
2886         if (!obj_request)
2887                 goto out_cancel;
2888
2889         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2890         if (!obj_request->osd_req)
2891                 goto out_cancel;
2892
2893         if (start)
2894                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2895         else
2896                 ceph_osdc_unregister_linger_request(osdc,
2897                                         rbd_dev->watch_request->osd_req);
2898
2899         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2900                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2901         rbd_osd_req_format_write(obj_request);
2902
2903         ret = rbd_obj_request_submit(osdc, obj_request);
2904         if (ret)
2905                 goto out_cancel;
2906         ret = rbd_obj_request_wait(obj_request);
2907         if (ret)
2908                 goto out_cancel;
2909         ret = obj_request->result;
2910         if (ret)
2911                 goto out_cancel;
2912
2913         /*
2914          * A watch request is set to linger, so the underlying osd
2915          * request won't go away until we unregister it.  We retain
2916          * a pointer to the object request during that time (in
2917          * rbd_dev->watch_request), so we'll keep a reference to
2918          * it.  We'll drop that reference (below) after we've
2919          * unregistered it.
2920          */
2921         if (start) {
2922                 rbd_dev->watch_request = obj_request;
2923
2924                 return 0;
2925         }
2926
2927         /* We have successfully torn down the watch request */
2928
2929         rbd_obj_request_put(rbd_dev->watch_request);
2930         rbd_dev->watch_request = NULL;
2931 out_cancel:
2932         /* Cancel the event if we're tearing down, or on error */
2933         ceph_osdc_cancel_event(rbd_dev->watch_event);
2934         rbd_dev->watch_event = NULL;
2935         if (obj_request)
2936                 rbd_obj_request_put(obj_request);
2937
2938         return ret;
2939 }
2940
2941 /*
2942  * Synchronous osd object method call.  Returns the number of bytes
2943  * returned in the outbound buffer, or a negative error code.
2944  */
2945 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2946                              const char *object_name,
2947                              const char *class_name,
2948                              const char *method_name,
2949                              const void *outbound,
2950                              size_t outbound_size,
2951                              void *inbound,
2952                              size_t inbound_size)
2953 {
2954         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2955         struct rbd_obj_request *obj_request;
2956         struct page **pages;
2957         u32 page_count;
2958         int ret;
2959
2960         /*
2961          * Method calls are ultimately read operations.  The result
2962          * should placed into the inbound buffer provided.  They
2963          * also supply outbound data--parameters for the object
2964          * method.  Currently if this is present it will be a
2965          * snapshot id.
2966          */
2967         page_count = (u32)calc_pages_for(0, inbound_size);
2968         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2969         if (IS_ERR(pages))
2970                 return PTR_ERR(pages);
2971
2972         ret = -ENOMEM;
2973         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2974                                                         OBJ_REQUEST_PAGES);
2975         if (!obj_request)
2976                 goto out;
2977
2978         obj_request->pages = pages;
2979         obj_request->page_count = page_count;
2980
2981         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2982         if (!obj_request->osd_req)
2983                 goto out;
2984
2985         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2986                                         class_name, method_name);
2987         if (outbound_size) {
2988                 struct ceph_pagelist *pagelist;
2989
2990                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2991                 if (!pagelist)
2992                         goto out;
2993
2994                 ceph_pagelist_init(pagelist);
2995                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2996                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2997                                                 pagelist);
2998         }
2999         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3000                                         obj_request->pages, inbound_size,
3001                                         0, false, false);
3002         rbd_osd_req_format_read(obj_request);
3003
3004         ret = rbd_obj_request_submit(osdc, obj_request);
3005         if (ret)
3006                 goto out;
3007         ret = rbd_obj_request_wait(obj_request);
3008         if (ret)
3009                 goto out;
3010
3011         ret = obj_request->result;
3012         if (ret < 0)
3013                 goto out;
3014
3015         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3016         ret = (int)obj_request->xferred;
3017         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3018 out:
3019         if (obj_request)
3020                 rbd_obj_request_put(obj_request);
3021         else
3022                 ceph_release_page_vector(pages, page_count);
3023
3024         return ret;
3025 }
3026
3027 static void rbd_request_fn(struct request_queue *q)
3028                 __releases(q->queue_lock) __acquires(q->queue_lock)
3029 {
3030         struct rbd_device *rbd_dev = q->queuedata;
3031         bool read_only = rbd_dev->mapping.read_only;
3032         struct request *rq;
3033         int result;
3034
3035         while ((rq = blk_fetch_request(q))) {
3036                 bool write_request = rq_data_dir(rq) == WRITE;
3037                 struct rbd_img_request *img_request;
3038                 u64 offset;
3039                 u64 length;
3040
3041                 /* Ignore any non-FS requests that filter through. */
3042
3043                 if (rq->cmd_type != REQ_TYPE_FS) {
3044                         dout("%s: non-fs request type %d\n", __func__,
3045                                 (int) rq->cmd_type);
3046                         __blk_end_request_all(rq, 0);
3047                         continue;
3048                 }
3049
3050                 /* Ignore/skip any zero-length requests */
3051
3052                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3053                 length = (u64) blk_rq_bytes(rq);
3054
3055                 if (!length) {
3056                         dout("%s: zero-length request\n", __func__);
3057                         __blk_end_request_all(rq, 0);
3058                         continue;
3059                 }
3060
3061                 spin_unlock_irq(q->queue_lock);
3062
3063                 /* Disallow writes to a read-only device */
3064
3065                 if (write_request) {
3066                         result = -EROFS;
3067                         if (read_only)
3068                                 goto end_request;
3069                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3070                 }
3071
3072                 /*
3073                  * Quit early if the mapped snapshot no longer
3074                  * exists.  It's still possible the snapshot will
3075                  * have disappeared by the time our request arrives
3076                  * at the osd, but there's no sense in sending it if
3077                  * we already know.
3078                  */
3079                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3080                         dout("request for non-existent snapshot");
3081                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3082                         result = -ENXIO;
3083                         goto end_request;
3084                 }
3085
3086                 result = -EINVAL;
3087                 if (offset && length > U64_MAX - offset + 1) {
3088                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3089                                 offset, length);
3090                         goto end_request;       /* Shouldn't happen */
3091                 }
3092
3093                 result = -EIO;
3094                 if (offset + length > rbd_dev->mapping.size) {
3095                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3096                                 offset, length, rbd_dev->mapping.size);
3097                         goto end_request;
3098                 }
3099
3100                 result = -ENOMEM;
3101                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3102                                                         write_request);
3103                 if (!img_request)
3104                         goto end_request;
3105
3106                 img_request->rq = rq;
3107
3108                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3109                                                 rq->bio);
3110                 if (!result)
3111                         result = rbd_img_request_submit(img_request);
3112                 if (result)
3113                         rbd_img_request_put(img_request);
3114 end_request:
3115                 spin_lock_irq(q->queue_lock);
3116                 if (result < 0) {
3117                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3118                                 write_request ? "write" : "read",
3119                                 length, offset, result);
3120
3121                         __blk_end_request_all(rq, result);
3122                 }
3123         }
3124 }
3125
3126 /*
3127  * a queue callback. Makes sure that we don't create a bio that spans across
3128  * multiple osd objects. One exception would be with a single page bios,
3129  * which we handle later at bio_chain_clone_range()
3130  */
3131 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3132                           struct bio_vec *bvec)
3133 {
3134         struct rbd_device *rbd_dev = q->queuedata;
3135         sector_t sector_offset;
3136         sector_t sectors_per_obj;
3137         sector_t obj_sector_offset;
3138         int ret;
3139
3140         /*
3141          * Find how far into its rbd object the partition-relative
3142          * bio start sector is to offset relative to the enclosing
3143          * device.
3144          */
3145         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3146         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3147         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3148
3149         /*
3150          * Compute the number of bytes from that offset to the end
3151          * of the object.  Account for what's already used by the bio.
3152          */
3153         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3154         if (ret > bmd->bi_size)
3155                 ret -= bmd->bi_size;
3156         else
3157                 ret = 0;
3158
3159         /*
3160          * Don't send back more than was asked for.  And if the bio
3161          * was empty, let the whole thing through because:  "Note
3162          * that a block device *must* allow a single page to be
3163          * added to an empty bio."
3164          */
3165         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3166         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3167                 ret = (int) bvec->bv_len;
3168
3169         return ret;
3170 }
3171
3172 static void rbd_free_disk(struct rbd_device *rbd_dev)
3173 {
3174         struct gendisk *disk = rbd_dev->disk;
3175
3176         if (!disk)
3177                 return;
3178
3179         rbd_dev->disk = NULL;
3180         if (disk->flags & GENHD_FL_UP) {
3181                 del_gendisk(disk);
3182                 if (disk->queue)
3183                         blk_cleanup_queue(disk->queue);
3184         }
3185         put_disk(disk);
3186 }
3187
3188 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3189                                 const char *object_name,
3190                                 u64 offset, u64 length, void *buf)
3191
3192 {
3193         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3194         struct rbd_obj_request *obj_request;
3195         struct page **pages = NULL;
3196         u32 page_count;
3197         size_t size;
3198         int ret;
3199
3200         page_count = (u32) calc_pages_for(offset, length);
3201         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3202         if (IS_ERR(pages))
3203                 ret = PTR_ERR(pages);
3204
3205         ret = -ENOMEM;
3206         obj_request = rbd_obj_request_create(object_name, offset, length,
3207                                                         OBJ_REQUEST_PAGES);
3208         if (!obj_request)
3209                 goto out;
3210
3211         obj_request->pages = pages;
3212         obj_request->page_count = page_count;
3213
3214         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3215         if (!obj_request->osd_req)
3216                 goto out;
3217
3218         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3219                                         offset, length, 0, 0);
3220         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3221                                         obj_request->pages,
3222                                         obj_request->length,
3223                                         obj_request->offset & ~PAGE_MASK,
3224                                         false, false);
3225         rbd_osd_req_format_read(obj_request);
3226
3227         ret = rbd_obj_request_submit(osdc, obj_request);
3228         if (ret)
3229                 goto out;
3230         ret = rbd_obj_request_wait(obj_request);
3231         if (ret)
3232                 goto out;
3233
3234         ret = obj_request->result;
3235         if (ret < 0)
3236                 goto out;
3237
3238         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3239         size = (size_t) obj_request->xferred;
3240         ceph_copy_from_page_vector(pages, buf, 0, size);
3241         rbd_assert(size <= (size_t)INT_MAX);
3242         ret = (int)size;
3243 out:
3244         if (obj_request)
3245                 rbd_obj_request_put(obj_request);
3246         else
3247                 ceph_release_page_vector(pages, page_count);
3248
3249         return ret;
3250 }
3251
3252 /*
3253  * Read the complete header for the given rbd device.  On successful
3254  * return, the rbd_dev->header field will contain up-to-date
3255  * information about the image.
3256  */
3257 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3258 {
3259         struct rbd_image_header_ondisk *ondisk = NULL;
3260         u32 snap_count = 0;
3261         u64 names_size = 0;
3262         u32 want_count;
3263         int ret;
3264
3265         /*
3266          * The complete header will include an array of its 64-bit
3267          * snapshot ids, followed by the names of those snapshots as
3268          * a contiguous block of NUL-terminated strings.  Note that
3269          * the number of snapshots could change by the time we read
3270          * it in, in which case we re-read it.
3271          */
3272         do {
3273                 size_t size;
3274
3275                 kfree(ondisk);
3276
3277                 size = sizeof (*ondisk);
3278                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3279                 size += names_size;
3280                 ondisk = kmalloc(size, GFP_KERNEL);
3281                 if (!ondisk)
3282                         return -ENOMEM;
3283
3284                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3285                                        0, size, ondisk);
3286                 if (ret < 0)
3287                         goto out;
3288                 if ((size_t)ret < size) {
3289                         ret = -ENXIO;
3290                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3291                                 size, ret);
3292                         goto out;
3293                 }
3294                 if (!rbd_dev_ondisk_valid(ondisk)) {
3295                         ret = -ENXIO;
3296                         rbd_warn(rbd_dev, "invalid header");
3297                         goto out;
3298                 }
3299
3300                 names_size = le64_to_cpu(ondisk->snap_names_len);
3301                 want_count = snap_count;
3302                 snap_count = le32_to_cpu(ondisk->snap_count);
3303         } while (snap_count != want_count);
3304
3305         ret = rbd_header_from_disk(rbd_dev, ondisk);
3306 out:
3307         kfree(ondisk);
3308
3309         return ret;
3310 }
3311
3312 /*
3313  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3314  * has disappeared from the (just updated) snapshot context.
3315  */
3316 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3317 {
3318         u64 snap_id;
3319
3320         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3321                 return;
3322
3323         snap_id = rbd_dev->spec->snap_id;
3324         if (snap_id == CEPH_NOSNAP)
3325                 return;
3326
3327         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3328                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3329 }
3330
3331 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3332 {
3333         u64 mapping_size;
3334         int ret;
3335
3336         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3337         down_write(&rbd_dev->header_rwsem);
3338         mapping_size = rbd_dev->mapping.size;
3339         if (rbd_dev->image_format == 1)
3340                 ret = rbd_dev_v1_header_info(rbd_dev);
3341         else
3342                 ret = rbd_dev_v2_header_info(rbd_dev);
3343
3344         /* If it's a mapped snapshot, validate its EXISTS flag */
3345
3346         rbd_exists_validate(rbd_dev);
3347         up_write(&rbd_dev->header_rwsem);
3348
3349         if (mapping_size != rbd_dev->mapping.size) {
3350                 sector_t size;
3351
3352                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3353                 dout("setting size to %llu sectors", (unsigned long long)size);
3354                 set_capacity(rbd_dev->disk, size);
3355                 revalidate_disk(rbd_dev->disk);
3356         }
3357
3358         return ret;
3359 }
3360
3361 static int rbd_init_disk(struct rbd_device *rbd_dev)
3362 {
3363         struct gendisk *disk;
3364         struct request_queue *q;
3365         u64 segment_size;
3366
3367         /* create gendisk info */
3368         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3369         if (!disk)
3370                 return -ENOMEM;
3371
3372         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3373                  rbd_dev->dev_id);
3374         disk->major = rbd_dev->major;
3375         disk->first_minor = 0;
3376         disk->fops = &rbd_bd_ops;
3377         disk->private_data = rbd_dev;
3378
3379         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3380         if (!q)
3381                 goto out_disk;
3382
3383         /* We use the default size, but let's be explicit about it. */
3384         blk_queue_physical_block_size(q, SECTOR_SIZE);
3385
3386         /* set io sizes to object size */
3387         segment_size = rbd_obj_bytes(&rbd_dev->header);
3388         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3389         blk_queue_max_segment_size(q, segment_size);
3390         blk_queue_io_min(q, segment_size);
3391         blk_queue_io_opt(q, segment_size);
3392
3393         blk_queue_merge_bvec(q, rbd_merge_bvec);
3394         disk->queue = q;
3395
3396         q->queuedata = rbd_dev;
3397
3398         rbd_dev->disk = disk;
3399
3400         return 0;
3401 out_disk:
3402         put_disk(disk);
3403
3404         return -ENOMEM;
3405 }
3406
3407 /*
3408   sysfs
3409 */
3410
3411 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3412 {
3413         return container_of(dev, struct rbd_device, dev);
3414 }
3415
3416 static ssize_t rbd_size_show(struct device *dev,
3417                              struct device_attribute *attr, char *buf)
3418 {
3419         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3420
3421         return sprintf(buf, "%llu\n",
3422                 (unsigned long long)rbd_dev->mapping.size);
3423 }
3424
3425 /*
3426  * Note this shows the features for whatever's mapped, which is not
3427  * necessarily the base image.
3428  */
3429 static ssize_t rbd_features_show(struct device *dev,
3430                              struct device_attribute *attr, char *buf)
3431 {
3432         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3433
3434         return sprintf(buf, "0x%016llx\n",
3435                         (unsigned long long)rbd_dev->mapping.features);
3436 }
3437
3438 static ssize_t rbd_major_show(struct device *dev,
3439                               struct device_attribute *attr, char *buf)
3440 {
3441         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3442
3443         if (rbd_dev->major)
3444                 return sprintf(buf, "%d\n", rbd_dev->major);
3445
3446         return sprintf(buf, "(none)\n");
3447
3448 }
3449
3450 static ssize_t rbd_client_id_show(struct device *dev,
3451                                   struct device_attribute *attr, char *buf)
3452 {
3453         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3454
3455         return sprintf(buf, "client%lld\n",
3456                         ceph_client_id(rbd_dev->rbd_client->client));
3457 }
3458
3459 static ssize_t rbd_pool_show(struct device *dev,
3460                              struct device_attribute *attr, char *buf)
3461 {
3462         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3463
3464         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3465 }
3466
3467 static ssize_t rbd_pool_id_show(struct device *dev,
3468                              struct device_attribute *attr, char *buf)
3469 {
3470         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3471
3472         return sprintf(buf, "%llu\n",
3473                         (unsigned long long) rbd_dev->spec->pool_id);
3474 }
3475
3476 static ssize_t rbd_name_show(struct device *dev,
3477                              struct device_attribute *attr, char *buf)
3478 {
3479         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3480
3481         if (rbd_dev->spec->image_name)
3482                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3483
3484         return sprintf(buf, "(unknown)\n");
3485 }
3486
3487 static ssize_t rbd_image_id_show(struct device *dev,
3488                              struct device_attribute *attr, char *buf)
3489 {
3490         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3491
3492         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3493 }
3494
3495 /*
3496  * Shows the name of the currently-mapped snapshot (or
3497  * RBD_SNAP_HEAD_NAME for the base image).
3498  */
3499 static ssize_t rbd_snap_show(struct device *dev,
3500                              struct device_attribute *attr,
3501                              char *buf)
3502 {
3503         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504
3505         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3506 }
3507
3508 /*
3509  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3510  * for the parent image.  If there is no parent, simply shows
3511  * "(no parent image)".
3512  */
3513 static ssize_t rbd_parent_show(struct device *dev,
3514                              struct device_attribute *attr,
3515                              char *buf)
3516 {
3517         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3518         struct rbd_spec *spec = rbd_dev->parent_spec;
3519         int count;
3520         char *bufp = buf;
3521
3522         if (!spec)
3523                 return sprintf(buf, "(no parent image)\n");
3524
3525         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3526                         (unsigned long long) spec->pool_id, spec->pool_name);
3527         if (count < 0)
3528                 return count;
3529         bufp += count;
3530
3531         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3532                         spec->image_name ? spec->image_name : "(unknown)");
3533         if (count < 0)
3534                 return count;
3535         bufp += count;
3536
3537         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3538                         (unsigned long long) spec->snap_id, spec->snap_name);
3539         if (count < 0)
3540                 return count;
3541         bufp += count;
3542
3543         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3544         if (count < 0)
3545                 return count;
3546         bufp += count;
3547
3548         return (ssize_t) (bufp - buf);
3549 }
3550
3551 static ssize_t rbd_image_refresh(struct device *dev,
3552                                  struct device_attribute *attr,
3553                                  const char *buf,
3554                                  size_t size)
3555 {
3556         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3557         int ret;
3558
3559         ret = rbd_dev_refresh(rbd_dev);
3560         if (ret)
3561                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3562
3563         return ret < 0 ? ret : size;
3564 }
3565
3566 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3567 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3568 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3569 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3570 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3571 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3572 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3573 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3574 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3575 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3576 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3577
3578 static struct attribute *rbd_attrs[] = {
3579         &dev_attr_size.attr,
3580         &dev_attr_features.attr,
3581         &dev_attr_major.attr,
3582         &dev_attr_client_id.attr,
3583         &dev_attr_pool.attr,
3584         &dev_attr_pool_id.attr,
3585         &dev_attr_name.attr,
3586         &dev_attr_image_id.attr,
3587         &dev_attr_current_snap.attr,
3588         &dev_attr_parent.attr,
3589         &dev_attr_refresh.attr,
3590         NULL
3591 };
3592
3593 static struct attribute_group rbd_attr_group = {
3594         .attrs = rbd_attrs,
3595 };
3596
3597 static const struct attribute_group *rbd_attr_groups[] = {
3598         &rbd_attr_group,
3599         NULL
3600 };
3601
3602 static void rbd_sysfs_dev_release(struct device *dev)
3603 {
3604 }
3605
3606 static struct device_type rbd_device_type = {
3607         .name           = "rbd",
3608         .groups         = rbd_attr_groups,
3609         .release        = rbd_sysfs_dev_release,
3610 };
3611
3612 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3613 {
3614         kref_get(&spec->kref);
3615
3616         return spec;
3617 }
3618
3619 static void rbd_spec_free(struct kref *kref);
3620 static void rbd_spec_put(struct rbd_spec *spec)
3621 {
3622         if (spec)
3623                 kref_put(&spec->kref, rbd_spec_free);
3624 }
3625
3626 static struct rbd_spec *rbd_spec_alloc(void)
3627 {
3628         struct rbd_spec *spec;
3629
3630         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3631         if (!spec)
3632                 return NULL;
3633         kref_init(&spec->kref);
3634
3635         return spec;
3636 }
3637
3638 static void rbd_spec_free(struct kref *kref)
3639 {
3640         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3641
3642         kfree(spec->pool_name);
3643         kfree(spec->image_id);
3644         kfree(spec->image_name);
3645         kfree(spec->snap_name);
3646         kfree(spec);
3647 }
3648
3649 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3650                                 struct rbd_spec *spec)
3651 {
3652         struct rbd_device *rbd_dev;
3653
3654         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3655         if (!rbd_dev)
3656                 return NULL;
3657
3658         spin_lock_init(&rbd_dev->lock);
3659         rbd_dev->flags = 0;
3660         atomic_set(&rbd_dev->parent_ref, 0);
3661         INIT_LIST_HEAD(&rbd_dev->node);
3662         init_rwsem(&rbd_dev->header_rwsem);
3663
3664         rbd_dev->spec = spec;
3665         rbd_dev->rbd_client = rbdc;
3666
3667         /* Initialize the layout used for all rbd requests */
3668
3669         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3670         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3671         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3672         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3673
3674         return rbd_dev;
3675 }
3676
3677 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3678 {
3679         rbd_put_client(rbd_dev->rbd_client);
3680         rbd_spec_put(rbd_dev->spec);
3681         kfree(rbd_dev);
3682 }
3683
3684 /*
3685  * Get the size and object order for an image snapshot, or if
3686  * snap_id is CEPH_NOSNAP, gets this information for the base
3687  * image.
3688  */
3689 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3690                                 u8 *order, u64 *snap_size)
3691 {
3692         __le64 snapid = cpu_to_le64(snap_id);
3693         int ret;
3694         struct {
3695                 u8 order;
3696                 __le64 size;
3697         } __attribute__ ((packed)) size_buf = { 0 };
3698
3699         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3700                                 "rbd", "get_size",
3701                                 &snapid, sizeof (snapid),
3702                                 &size_buf, sizeof (size_buf));
3703         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3704         if (ret < 0)
3705                 return ret;
3706         if (ret < sizeof (size_buf))
3707                 return -ERANGE;
3708
3709         if (order)
3710                 *order = size_buf.order;
3711         *snap_size = le64_to_cpu(size_buf.size);
3712
3713         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3714                 (unsigned long long)snap_id, (unsigned int)*order,
3715                 (unsigned long long)*snap_size);
3716
3717         return 0;
3718 }
3719
3720 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3721 {
3722         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3723                                         &rbd_dev->header.obj_order,
3724                                         &rbd_dev->header.image_size);
3725 }
3726
3727 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3728 {
3729         void *reply_buf;
3730         int ret;
3731         void *p;
3732
3733         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3734         if (!reply_buf)
3735                 return -ENOMEM;
3736
3737         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3738                                 "rbd", "get_object_prefix", NULL, 0,
3739                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3740         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3741         if (ret < 0)
3742                 goto out;
3743
3744         p = reply_buf;
3745         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3746                                                 p + ret, NULL, GFP_NOIO);
3747         ret = 0;
3748
3749         if (IS_ERR(rbd_dev->header.object_prefix)) {
3750                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3751                 rbd_dev->header.object_prefix = NULL;
3752         } else {
3753                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3754         }
3755 out:
3756         kfree(reply_buf);
3757
3758         return ret;
3759 }
3760
3761 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3762                 u64 *snap_features)
3763 {
3764         __le64 snapid = cpu_to_le64(snap_id);
3765         struct {
3766                 __le64 features;
3767                 __le64 incompat;
3768         } __attribute__ ((packed)) features_buf = { 0 };
3769         u64 incompat;
3770         int ret;
3771
3772         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3773                                 "rbd", "get_features",
3774                                 &snapid, sizeof (snapid),
3775                                 &features_buf, sizeof (features_buf));
3776         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3777         if (ret < 0)
3778                 return ret;
3779         if (ret < sizeof (features_buf))
3780                 return -ERANGE;
3781
3782         incompat = le64_to_cpu(features_buf.incompat);
3783         if (incompat & ~RBD_FEATURES_SUPPORTED)
3784                 return -ENXIO;
3785
3786         *snap_features = le64_to_cpu(features_buf.features);
3787
3788         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3789                 (unsigned long long)snap_id,
3790                 (unsigned long long)*snap_features,
3791                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3792
3793         return 0;
3794 }
3795
3796 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3797 {
3798         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3799                                                 &rbd_dev->header.features);
3800 }
3801
3802 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3803 {
3804         struct rbd_spec *parent_spec;
3805         size_t size;
3806         void *reply_buf = NULL;
3807         __le64 snapid;
3808         void *p;
3809         void *end;
3810         u64 pool_id;
3811         char *image_id;
3812         u64 snap_id;
3813         u64 overlap;
3814         int ret;
3815
3816         parent_spec = rbd_spec_alloc();
3817         if (!parent_spec)
3818                 return -ENOMEM;
3819
3820         size = sizeof (__le64) +                                /* pool_id */
3821                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3822                 sizeof (__le64) +                               /* snap_id */
3823                 sizeof (__le64);                                /* overlap */
3824         reply_buf = kmalloc(size, GFP_KERNEL);
3825         if (!reply_buf) {
3826                 ret = -ENOMEM;
3827                 goto out_err;
3828         }
3829
3830         snapid = cpu_to_le64(CEPH_NOSNAP);
3831         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3832                                 "rbd", "get_parent",
3833                                 &snapid, sizeof (snapid),
3834                                 reply_buf, size);
3835         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3836         if (ret < 0)
3837                 goto out_err;
3838
3839         p = reply_buf;
3840         end = reply_buf + ret;
3841         ret = -ERANGE;
3842         ceph_decode_64_safe(&p, end, pool_id, out_err);
3843         if (pool_id == CEPH_NOPOOL) {
3844                 /*
3845                  * Either the parent never existed, or we have
3846                  * record of it but the image got flattened so it no
3847                  * longer has a parent.  When the parent of a
3848                  * layered image disappears we immediately set the
3849                  * overlap to 0.  The effect of this is that all new
3850                  * requests will be treated as if the image had no
3851                  * parent.
3852                  */
3853                 if (rbd_dev->parent_overlap) {
3854                         rbd_dev->parent_overlap = 0;
3855                         smp_mb();
3856                         rbd_dev_parent_put(rbd_dev);
3857                         pr_info("%s: clone image has been flattened\n",
3858                                 rbd_dev->disk->disk_name);
3859                 }
3860
3861                 goto out;       /* No parent?  No problem. */
3862         }
3863
3864         /* The ceph file layout needs to fit pool id in 32 bits */
3865
3866         ret = -EIO;
3867         if (pool_id > (u64)U32_MAX) {
3868                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3869                         (unsigned long long)pool_id, U32_MAX);
3870                 goto out_err;
3871         }
3872
3873         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3874         if (IS_ERR(image_id)) {
3875                 ret = PTR_ERR(image_id);
3876                 goto out_err;
3877         }
3878         ceph_decode_64_safe(&p, end, snap_id, out_err);
3879         ceph_decode_64_safe(&p, end, overlap, out_err);
3880
3881         /*
3882          * The parent won't change (except when the clone is
3883          * flattened, already handled that).  So we only need to
3884          * record the parent spec we have not already done so.
3885          */
3886         if (!rbd_dev->parent_spec) {
3887                 parent_spec->pool_id = pool_id;
3888                 parent_spec->image_id = image_id;
3889                 parent_spec->snap_id = snap_id;
3890                 rbd_dev->parent_spec = parent_spec;
3891                 parent_spec = NULL;     /* rbd_dev now owns this */
3892         }
3893
3894         /*
3895          * We always update the parent overlap.  If it's zero we
3896          * treat it specially.
3897          */
3898         rbd_dev->parent_overlap = overlap;
3899         smp_mb();
3900         if (!overlap) {
3901
3902                 /* A null parent_spec indicates it's the initial probe */
3903
3904                 if (parent_spec) {
3905                         /*
3906                          * The overlap has become zero, so the clone
3907                          * must have been resized down to 0 at some
3908                          * point.  Treat this the same as a flatten.
3909                          */
3910                         rbd_dev_parent_put(rbd_dev);
3911                         pr_info("%s: clone image now standalone\n",
3912                                 rbd_dev->disk->disk_name);
3913                 } else {
3914                         /*
3915                          * For the initial probe, if we find the
3916                          * overlap is zero we just pretend there was
3917                          * no parent image.
3918                          */
3919                         rbd_warn(rbd_dev, "ignoring parent of "
3920                                                 "clone with overlap 0\n");
3921                 }
3922         }
3923 out:
3924         ret = 0;
3925 out_err:
3926         kfree(reply_buf);
3927         rbd_spec_put(parent_spec);
3928
3929         return ret;
3930 }
3931
3932 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3933 {
3934         struct {
3935                 __le64 stripe_unit;
3936                 __le64 stripe_count;
3937         } __attribute__ ((packed)) striping_info_buf = { 0 };
3938         size_t size = sizeof (striping_info_buf);
3939         void *p;
3940         u64 obj_size;
3941         u64 stripe_unit;
3942         u64 stripe_count;
3943         int ret;
3944
3945         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3946                                 "rbd", "get_stripe_unit_count", NULL, 0,
3947                                 (char *)&striping_info_buf, size);
3948         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3949         if (ret < 0)
3950                 return ret;
3951         if (ret < size)
3952                 return -ERANGE;
3953
3954         /*
3955          * We don't actually support the "fancy striping" feature
3956          * (STRIPINGV2) yet, but if the striping sizes are the
3957          * defaults the behavior is the same as before.  So find
3958          * out, and only fail if the image has non-default values.
3959          */
3960         ret = -EINVAL;
3961         obj_size = (u64)1 << rbd_dev->header.obj_order;
3962         p = &striping_info_buf;
3963         stripe_unit = ceph_decode_64(&p);
3964         if (stripe_unit != obj_size) {
3965                 rbd_warn(rbd_dev, "unsupported stripe unit "
3966                                 "(got %llu want %llu)",
3967                                 stripe_unit, obj_size);
3968                 return -EINVAL;
3969         }
3970         stripe_count = ceph_decode_64(&p);
3971         if (stripe_count != 1) {
3972                 rbd_warn(rbd_dev, "unsupported stripe count "
3973                                 "(got %llu want 1)", stripe_count);
3974                 return -EINVAL;
3975         }
3976         rbd_dev->header.stripe_unit = stripe_unit;
3977         rbd_dev->header.stripe_count = stripe_count;
3978
3979         return 0;
3980 }
3981
3982 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3983 {
3984         size_t image_id_size;
3985         char *image_id;
3986         void *p;
3987         void *end;
3988         size_t size;
3989         void *reply_buf = NULL;
3990         size_t len = 0;
3991         char *image_name = NULL;
3992         int ret;
3993
3994         rbd_assert(!rbd_dev->spec->image_name);
3995
3996         len = strlen(rbd_dev->spec->image_id);
3997         image_id_size = sizeof (__le32) + len;
3998         image_id = kmalloc(image_id_size, GFP_KERNEL);
3999         if (!image_id)
4000                 return NULL;
4001
4002         p = image_id;
4003         end = image_id + image_id_size;
4004         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4005
4006         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4007         reply_buf = kmalloc(size, GFP_KERNEL);
4008         if (!reply_buf)
4009                 goto out;
4010
4011         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4012                                 "rbd", "dir_get_name",
4013                                 image_id, image_id_size,
4014                                 reply_buf, size);
4015         if (ret < 0)
4016                 goto out;
4017         p = reply_buf;
4018         end = reply_buf + ret;
4019
4020         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4021         if (IS_ERR(image_name))
4022                 image_name = NULL;
4023         else
4024                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4025 out:
4026         kfree(reply_buf);
4027         kfree(image_id);
4028
4029         return image_name;
4030 }
4031
4032 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4033 {
4034         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4035         const char *snap_name;
4036         u32 which = 0;
4037
4038         /* Skip over names until we find the one we are looking for */
4039
4040         snap_name = rbd_dev->header.snap_names;
4041         while (which < snapc->num_snaps) {
4042                 if (!strcmp(name, snap_name))
4043                         return snapc->snaps[which];
4044                 snap_name += strlen(snap_name) + 1;
4045                 which++;
4046         }
4047         return CEPH_NOSNAP;
4048 }
4049
4050 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4051 {
4052         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4053         u32 which;
4054         bool found = false;
4055         u64 snap_id;
4056
4057         for (which = 0; !found && which < snapc->num_snaps; which++) {
4058                 const char *snap_name;
4059
4060                 snap_id = snapc->snaps[which];
4061                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4062                 if (IS_ERR(snap_name))
4063                         break;
4064                 found = !strcmp(name, snap_name);
4065                 kfree(snap_name);
4066         }
4067         return found ? snap_id : CEPH_NOSNAP;
4068 }
4069
4070 /*
4071  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4072  * no snapshot by that name is found, or if an error occurs.
4073  */
4074 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4075 {
4076         if (rbd_dev->image_format == 1)
4077                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4078
4079         return rbd_v2_snap_id_by_name(rbd_dev, name);
4080 }
4081
4082 /*
4083  * When an rbd image has a parent image, it is identified by the
4084  * pool, image, and snapshot ids (not names).  This function fills
4085  * in the names for those ids.  (It's OK if we can't figure out the
4086  * name for an image id, but the pool and snapshot ids should always
4087  * exist and have names.)  All names in an rbd spec are dynamically
4088  * allocated.
4089  *
4090  * When an image being mapped (not a parent) is probed, we have the
4091  * pool name and pool id, image name and image id, and the snapshot
4092  * name.  The only thing we're missing is the snapshot id.
4093  */
4094 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4095 {
4096         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4097         struct rbd_spec *spec = rbd_dev->spec;
4098         const char *pool_name;
4099         const char *image_name;
4100         const char *snap_name;
4101         int ret;
4102
4103         /*
4104          * An image being mapped will have the pool name (etc.), but
4105          * we need to look up the snapshot id.
4106          */
4107         if (spec->pool_name) {
4108                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4109                         u64 snap_id;
4110
4111                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4112                         if (snap_id == CEPH_NOSNAP)
4113                                 return -ENOENT;
4114                         spec->snap_id = snap_id;
4115                 } else {
4116                         spec->snap_id = CEPH_NOSNAP;
4117                 }
4118
4119                 return 0;
4120         }
4121
4122         /* Get the pool name; we have to make our own copy of this */
4123
4124         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4125         if (!pool_name) {
4126                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4127                 return -EIO;
4128         }
4129         pool_name = kstrdup(pool_name, GFP_KERNEL);
4130         if (!pool_name)
4131                 return -ENOMEM;
4132
4133         /* Fetch the image name; tolerate failure here */
4134
4135         image_name = rbd_dev_image_name(rbd_dev);
4136         if (!image_name)
4137                 rbd_warn(rbd_dev, "unable to get image name");
4138
4139         /* Look up the snapshot name, and make a copy */
4140
4141         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4142         if (!snap_name) {
4143                 ret = -ENOMEM;
4144                 goto out_err;
4145         }
4146
4147         spec->pool_name = pool_name;
4148         spec->image_name = image_name;
4149         spec->snap_name = snap_name;
4150
4151         return 0;
4152 out_err:
4153         kfree(image_name);
4154         kfree(pool_name);
4155
4156         return ret;
4157 }
4158
4159 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4160 {
4161         size_t size;
4162         int ret;
4163         void *reply_buf;
4164         void *p;
4165         void *end;
4166         u64 seq;
4167         u32 snap_count;
4168         struct ceph_snap_context *snapc;
4169         u32 i;
4170
4171         /*
4172          * We'll need room for the seq value (maximum snapshot id),
4173          * snapshot count, and array of that many snapshot ids.
4174          * For now we have a fixed upper limit on the number we're
4175          * prepared to receive.
4176          */
4177         size = sizeof (__le64) + sizeof (__le32) +
4178                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4179         reply_buf = kzalloc(size, GFP_KERNEL);
4180         if (!reply_buf)
4181                 return -ENOMEM;
4182
4183         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4184                                 "rbd", "get_snapcontext", NULL, 0,
4185                                 reply_buf, size);
4186         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4187         if (ret < 0)
4188                 goto out;
4189
4190         p = reply_buf;
4191         end = reply_buf + ret;
4192         ret = -ERANGE;
4193         ceph_decode_64_safe(&p, end, seq, out);
4194         ceph_decode_32_safe(&p, end, snap_count, out);
4195
4196         /*
4197          * Make sure the reported number of snapshot ids wouldn't go
4198          * beyond the end of our buffer.  But before checking that,
4199          * make sure the computed size of the snapshot context we
4200          * allocate is representable in a size_t.
4201          */
4202         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4203                                  / sizeof (u64)) {
4204                 ret = -EINVAL;
4205                 goto out;
4206         }
4207         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4208                 goto out;
4209         ret = 0;
4210
4211         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4212         if (!snapc) {
4213                 ret = -ENOMEM;
4214                 goto out;
4215         }
4216         snapc->seq = seq;
4217         for (i = 0; i < snap_count; i++)
4218                 snapc->snaps[i] = ceph_decode_64(&p);
4219
4220         ceph_put_snap_context(rbd_dev->header.snapc);
4221         rbd_dev->header.snapc = snapc;
4222
4223         dout("  snap context seq = %llu, snap_count = %u\n",
4224                 (unsigned long long)seq, (unsigned int)snap_count);
4225 out:
4226         kfree(reply_buf);
4227
4228         return ret;
4229 }
4230
4231 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4232                                         u64 snap_id)
4233 {
4234         size_t size;
4235         void *reply_buf;
4236         __le64 snapid;
4237         int ret;
4238         void *p;
4239         void *end;
4240         char *snap_name;
4241
4242         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4243         reply_buf = kmalloc(size, GFP_KERNEL);
4244         if (!reply_buf)
4245                 return ERR_PTR(-ENOMEM);
4246
4247         snapid = cpu_to_le64(snap_id);
4248         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4249                                 "rbd", "get_snapshot_name",
4250                                 &snapid, sizeof (snapid),
4251                                 reply_buf, size);
4252         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4253         if (ret < 0) {
4254                 snap_name = ERR_PTR(ret);
4255                 goto out;
4256         }
4257
4258         p = reply_buf;
4259         end = reply_buf + ret;
4260         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4261         if (IS_ERR(snap_name))
4262                 goto out;
4263
4264         dout("  snap_id 0x%016llx snap_name = %s\n",
4265                 (unsigned long long)snap_id, snap_name);
4266 out:
4267         kfree(reply_buf);
4268
4269         return snap_name;
4270 }
4271
4272 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4273 {
4274         bool first_time = rbd_dev->header.object_prefix == NULL;
4275         int ret;
4276
4277         ret = rbd_dev_v2_image_size(rbd_dev);
4278         if (ret)
4279                 return ret;
4280
4281         if (first_time) {
4282                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4283                 if (ret)
4284                         return ret;
4285         }
4286
4287         /*
4288          * If the image supports layering, get the parent info.  We
4289          * need to probe the first time regardless.  Thereafter we
4290          * only need to if there's a parent, to see if it has
4291          * disappeared due to the mapped image getting flattened.
4292          */
4293         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4294                         (first_time || rbd_dev->parent_spec)) {
4295                 bool warn;
4296
4297                 ret = rbd_dev_v2_parent_info(rbd_dev);
4298                 if (ret)
4299                         return ret;
4300
4301                 /*
4302                  * Print a warning if this is the initial probe and
4303                  * the image has a parent.  Don't print it if the
4304                  * image now being probed is itself a parent.  We
4305                  * can tell at this point because we won't know its
4306                  * pool name yet (just its pool id).
4307                  */
4308                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4309                 if (first_time && warn)
4310                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4311                                         "is EXPERIMENTAL!");
4312         }
4313
4314         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4315                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4316                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4317
4318         ret = rbd_dev_v2_snap_context(rbd_dev);
4319         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4320
4321         return ret;
4322 }
4323
4324 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4325 {
4326         struct device *dev;
4327         int ret;
4328
4329         dev = &rbd_dev->dev;
4330         dev->bus = &rbd_bus_type;
4331         dev->type = &rbd_device_type;
4332         dev->parent = &rbd_root_dev;
4333         dev->release = rbd_dev_device_release;
4334         dev_set_name(dev, "%d", rbd_dev->dev_id);
4335         ret = device_register(dev);
4336
4337         return ret;
4338 }
4339
4340 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4341 {
4342         device_unregister(&rbd_dev->dev);
4343 }
4344
4345 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4346
4347 /*
4348  * Get a unique rbd identifier for the given new rbd_dev, and add
4349  * the rbd_dev to the global list.  The minimum rbd id is 1.
4350  */
4351 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4352 {
4353         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4354
4355         spin_lock(&rbd_dev_list_lock);
4356         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4357         spin_unlock(&rbd_dev_list_lock);
4358         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4359                 (unsigned long long) rbd_dev->dev_id);
4360 }
4361
4362 /*
4363  * Remove an rbd_dev from the global list, and record that its
4364  * identifier is no longer in use.
4365  */
4366 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4367 {
4368         struct list_head *tmp;
4369         int rbd_id = rbd_dev->dev_id;
4370         int max_id;
4371
4372         rbd_assert(rbd_id > 0);
4373
4374         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4375                 (unsigned long long) rbd_dev->dev_id);
4376         spin_lock(&rbd_dev_list_lock);
4377         list_del_init(&rbd_dev->node);
4378
4379         /*
4380          * If the id being "put" is not the current maximum, there
4381          * is nothing special we need to do.
4382          */
4383         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4384                 spin_unlock(&rbd_dev_list_lock);
4385                 return;
4386         }
4387
4388         /*
4389          * We need to update the current maximum id.  Search the
4390          * list to find out what it is.  We're more likely to find
4391          * the maximum at the end, so search the list backward.
4392          */
4393         max_id = 0;
4394         list_for_each_prev(tmp, &rbd_dev_list) {
4395                 struct rbd_device *rbd_dev;
4396
4397                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4398                 if (rbd_dev->dev_id > max_id)
4399                         max_id = rbd_dev->dev_id;
4400         }
4401         spin_unlock(&rbd_dev_list_lock);
4402
4403         /*
4404          * The max id could have been updated by rbd_dev_id_get(), in
4405          * which case it now accurately reflects the new maximum.
4406          * Be careful not to overwrite the maximum value in that
4407          * case.
4408          */
4409         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4410         dout("  max dev id has been reset\n");
4411 }
4412
4413 /*
4414  * Skips over white space at *buf, and updates *buf to point to the
4415  * first found non-space character (if any). Returns the length of
4416  * the token (string of non-white space characters) found.  Note
4417  * that *buf must be terminated with '\0'.
4418  */
4419 static inline size_t next_token(const char **buf)
4420 {
4421         /*
4422         * These are the characters that produce nonzero for
4423         * isspace() in the "C" and "POSIX" locales.
4424         */
4425         const char *spaces = " \f\n\r\t\v";
4426
4427         *buf += strspn(*buf, spaces);   /* Find start of token */
4428
4429         return strcspn(*buf, spaces);   /* Return token length */
4430 }
4431
4432 /*
4433  * Finds the next token in *buf, and if the provided token buffer is
4434  * big enough, copies the found token into it.  The result, if
4435  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4436  * must be terminated with '\0' on entry.
4437  *
4438  * Returns the length of the token found (not including the '\0').
4439  * Return value will be 0 if no token is found, and it will be >=
4440  * token_size if the token would not fit.
4441  *
4442  * The *buf pointer will be updated to point beyond the end of the
4443  * found token.  Note that this occurs even if the token buffer is
4444  * too small to hold it.
4445  */
4446 static inline size_t copy_token(const char **buf,
4447                                 char *token,
4448                                 size_t token_size)
4449 {
4450         size_t len;
4451
4452         len = next_token(buf);
4453         if (len < token_size) {
4454                 memcpy(token, *buf, len);
4455                 *(token + len) = '\0';
4456         }
4457         *buf += len;
4458
4459         return len;
4460 }
4461
4462 /*
4463  * Finds the next token in *buf, dynamically allocates a buffer big
4464  * enough to hold a copy of it, and copies the token into the new
4465  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4466  * that a duplicate buffer is created even for a zero-length token.
4467  *
4468  * Returns a pointer to the newly-allocated duplicate, or a null
4469  * pointer if memory for the duplicate was not available.  If
4470  * the lenp argument is a non-null pointer, the length of the token
4471  * (not including the '\0') is returned in *lenp.
4472  *
4473  * If successful, the *buf pointer will be updated to point beyond
4474  * the end of the found token.
4475  *
4476  * Note: uses GFP_KERNEL for allocation.
4477  */
4478 static inline char *dup_token(const char **buf, size_t *lenp)
4479 {
4480         char *dup;
4481         size_t len;
4482
4483         len = next_token(buf);
4484         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4485         if (!dup)
4486                 return NULL;
4487         *(dup + len) = '\0';
4488         *buf += len;
4489
4490         if (lenp)
4491                 *lenp = len;
4492
4493         return dup;
4494 }
4495
4496 /*
4497  * Parse the options provided for an "rbd add" (i.e., rbd image
4498  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4499  * and the data written is passed here via a NUL-terminated buffer.
4500  * Returns 0 if successful or an error code otherwise.
4501  *
4502  * The information extracted from these options is recorded in
4503  * the other parameters which return dynamically-allocated
4504  * structures:
4505  *  ceph_opts
4506  *      The address of a pointer that will refer to a ceph options
4507  *      structure.  Caller must release the returned pointer using
4508  *      ceph_destroy_options() when it is no longer needed.
4509  *  rbd_opts
4510  *      Address of an rbd options pointer.  Fully initialized by
4511  *      this function; caller must release with kfree().
4512  *  spec
4513  *      Address of an rbd image specification pointer.  Fully
4514  *      initialized by this function based on parsed options.
4515  *      Caller must release with rbd_spec_put().
4516  *
4517  * The options passed take this form:
4518  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4519  * where:
4520  *  <mon_addrs>
4521  *      A comma-separated list of one or more monitor addresses.
4522  *      A monitor address is an ip address, optionally followed
4523  *      by a port number (separated by a colon).
4524  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4525  *  <options>
4526  *      A comma-separated list of ceph and/or rbd options.
4527  *  <pool_name>
4528  *      The name of the rados pool containing the rbd image.
4529  *  <image_name>
4530  *      The name of the image in that pool to map.
4531  *  <snap_id>
4532  *      An optional snapshot id.  If provided, the mapping will
4533  *      present data from the image at the time that snapshot was
4534  *      created.  The image head is used if no snapshot id is
4535  *      provided.  Snapshot mappings are always read-only.
4536  */
4537 static int rbd_add_parse_args(const char *buf,
4538                                 struct ceph_options **ceph_opts,
4539                                 struct rbd_options **opts,
4540                                 struct rbd_spec **rbd_spec)
4541 {
4542         size_t len;
4543         char *options;
4544         const char *mon_addrs;
4545         char *snap_name;
4546         size_t mon_addrs_size;
4547         struct rbd_spec *spec = NULL;
4548         struct rbd_options *rbd_opts = NULL;
4549         struct ceph_options *copts;
4550         int ret;
4551
4552         /* The first four tokens are required */
4553
4554         len = next_token(&buf);
4555         if (!len) {
4556                 rbd_warn(NULL, "no monitor address(es) provided");
4557                 return -EINVAL;
4558         }
4559         mon_addrs = buf;
4560         mon_addrs_size = len + 1;
4561         buf += len;
4562
4563         ret = -EINVAL;
4564         options = dup_token(&buf, NULL);
4565         if (!options)
4566                 return -ENOMEM;
4567         if (!*options) {
4568                 rbd_warn(NULL, "no options provided");
4569                 goto out_err;
4570         }
4571
4572         spec = rbd_spec_alloc();
4573         if (!spec)
4574                 goto out_mem;
4575
4576         spec->pool_name = dup_token(&buf, NULL);
4577         if (!spec->pool_name)
4578                 goto out_mem;
4579         if (!*spec->pool_name) {
4580                 rbd_warn(NULL, "no pool name provided");
4581                 goto out_err;
4582         }
4583
4584         spec->image_name = dup_token(&buf, NULL);
4585         if (!spec->image_name)
4586                 goto out_mem;
4587         if (!*spec->image_name) {
4588                 rbd_warn(NULL, "no image name provided");
4589                 goto out_err;
4590         }
4591
4592         /*
4593          * Snapshot name is optional; default is to use "-"
4594          * (indicating the head/no snapshot).
4595          */
4596         len = next_token(&buf);
4597         if (!len) {
4598                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4599                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4600         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4601                 ret = -ENAMETOOLONG;
4602                 goto out_err;
4603         }
4604         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4605         if (!snap_name)
4606                 goto out_mem;
4607         *(snap_name + len) = '\0';
4608         spec->snap_name = snap_name;
4609
4610         /* Initialize all rbd options to the defaults */
4611
4612         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4613         if (!rbd_opts)
4614                 goto out_mem;
4615
4616         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4617
4618         copts = ceph_parse_options(options, mon_addrs,
4619                                         mon_addrs + mon_addrs_size - 1,
4620                                         parse_rbd_opts_token, rbd_opts);
4621         if (IS_ERR(copts)) {
4622                 ret = PTR_ERR(copts);
4623                 goto out_err;
4624         }
4625         kfree(options);
4626
4627         *ceph_opts = copts;
4628         *opts = rbd_opts;
4629         *rbd_spec = spec;
4630
4631         return 0;
4632 out_mem:
4633         ret = -ENOMEM;
4634 out_err:
4635         kfree(rbd_opts);
4636         rbd_spec_put(spec);
4637         kfree(options);
4638
4639         return ret;
4640 }
4641
4642 /*
4643  * An rbd format 2 image has a unique identifier, distinct from the
4644  * name given to it by the user.  Internally, that identifier is
4645  * what's used to specify the names of objects related to the image.
4646  *
4647  * A special "rbd id" object is used to map an rbd image name to its
4648  * id.  If that object doesn't exist, then there is no v2 rbd image
4649  * with the supplied name.
4650  *
4651  * This function will record the given rbd_dev's image_id field if
4652  * it can be determined, and in that case will return 0.  If any
4653  * errors occur a negative errno will be returned and the rbd_dev's
4654  * image_id field will be unchanged (and should be NULL).
4655  */
4656 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4657 {
4658         int ret;
4659         size_t size;
4660         char *object_name;
4661         void *response;
4662         char *image_id;
4663
4664         /*
4665          * When probing a parent image, the image id is already
4666          * known (and the image name likely is not).  There's no
4667          * need to fetch the image id again in this case.  We
4668          * do still need to set the image format though.
4669          */
4670         if (rbd_dev->spec->image_id) {
4671                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4672
4673                 return 0;
4674         }
4675
4676         /*
4677          * First, see if the format 2 image id file exists, and if
4678          * so, get the image's persistent id from it.
4679          */
4680         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4681         object_name = kmalloc(size, GFP_NOIO);
4682         if (!object_name)
4683                 return -ENOMEM;
4684         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4685         dout("rbd id object name is %s\n", object_name);
4686
4687         /* Response will be an encoded string, which includes a length */
4688
4689         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4690         response = kzalloc(size, GFP_NOIO);
4691         if (!response) {
4692                 ret = -ENOMEM;
4693                 goto out;
4694         }
4695
4696         /* If it doesn't exist we'll assume it's a format 1 image */
4697
4698         ret = rbd_obj_method_sync(rbd_dev, object_name,
4699                                 "rbd", "get_id", NULL, 0,
4700                                 response, RBD_IMAGE_ID_LEN_MAX);
4701         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4702         if (ret == -ENOENT) {
4703                 image_id = kstrdup("", GFP_KERNEL);
4704                 ret = image_id ? 0 : -ENOMEM;
4705                 if (!ret)
4706                         rbd_dev->image_format = 1;
4707         } else if (ret > sizeof (__le32)) {
4708                 void *p = response;
4709
4710                 image_id = ceph_extract_encoded_string(&p, p + ret,
4711                                                 NULL, GFP_NOIO);
4712                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4713                 if (!ret)
4714                         rbd_dev->image_format = 2;
4715         } else {
4716                 ret = -EINVAL;
4717         }
4718
4719         if (!ret) {
4720                 rbd_dev->spec->image_id = image_id;
4721                 dout("image_id is %s\n", image_id);
4722         }
4723 out:
4724         kfree(response);
4725         kfree(object_name);
4726
4727         return ret;
4728 }
4729
4730 /*
4731  * Undo whatever state changes are made by v1 or v2 header info
4732  * call.
4733  */
4734 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4735 {
4736         struct rbd_image_header *header;
4737
4738         /* Drop parent reference unless it's already been done (or none) */
4739
4740         if (rbd_dev->parent_overlap)
4741                 rbd_dev_parent_put(rbd_dev);
4742
4743         /* Free dynamic fields from the header, then zero it out */
4744
4745         header = &rbd_dev->header;
4746         ceph_put_snap_context(header->snapc);
4747         kfree(header->snap_sizes);
4748         kfree(header->snap_names);
4749         kfree(header->object_prefix);
4750         memset(header, 0, sizeof (*header));
4751 }
4752
4753 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4754 {
4755         int ret;
4756
4757         ret = rbd_dev_v2_object_prefix(rbd_dev);
4758         if (ret)
4759                 goto out_err;
4760
4761         /*
4762          * Get the and check features for the image.  Currently the
4763          * features are assumed to never change.
4764          */
4765         ret = rbd_dev_v2_features(rbd_dev);
4766         if (ret)
4767                 goto out_err;
4768
4769         /* If the image supports fancy striping, get its parameters */
4770
4771         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4772                 ret = rbd_dev_v2_striping_info(rbd_dev);
4773                 if (ret < 0)
4774                         goto out_err;
4775         }
4776         /* No support for crypto and compression type format 2 images */
4777
4778         return 0;
4779 out_err:
4780         rbd_dev->header.features = 0;
4781         kfree(rbd_dev->header.object_prefix);
4782         rbd_dev->header.object_prefix = NULL;
4783
4784         return ret;
4785 }
4786
4787 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4788 {
4789         struct rbd_device *parent = NULL;
4790         struct rbd_spec *parent_spec;
4791         struct rbd_client *rbdc;
4792         int ret;
4793
4794         if (!rbd_dev->parent_spec)
4795                 return 0;
4796         /*
4797          * We need to pass a reference to the client and the parent
4798          * spec when creating the parent rbd_dev.  Images related by
4799          * parent/child relationships always share both.
4800          */
4801         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4802         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4803
4804         ret = -ENOMEM;
4805         parent = rbd_dev_create(rbdc, parent_spec);
4806         if (!parent)
4807                 goto out_err;
4808
4809         ret = rbd_dev_image_probe(parent, false);
4810         if (ret < 0)
4811                 goto out_err;
4812         rbd_dev->parent = parent;
4813         atomic_set(&rbd_dev->parent_ref, 1);
4814
4815         return 0;
4816 out_err:
4817         if (parent) {
4818                 rbd_dev_unparent(rbd_dev);
4819                 kfree(rbd_dev->header_name);
4820                 rbd_dev_destroy(parent);
4821         } else {
4822                 rbd_put_client(rbdc);
4823                 rbd_spec_put(parent_spec);
4824         }
4825
4826         return ret;
4827 }
4828
4829 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4830 {
4831         int ret;
4832
4833         /* generate unique id: find highest unique id, add one */
4834         rbd_dev_id_get(rbd_dev);
4835
4836         /* Fill in the device name, now that we have its id. */
4837         BUILD_BUG_ON(DEV_NAME_LEN
4838                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4839         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4840
4841         /* Get our block major device number. */
4842
4843         ret = register_blkdev(0, rbd_dev->name);
4844         if (ret < 0)
4845                 goto err_out_id;
4846         rbd_dev->major = ret;
4847
4848         /* Set up the blkdev mapping. */
4849
4850         ret = rbd_init_disk(rbd_dev);
4851         if (ret)
4852                 goto err_out_blkdev;
4853
4854         ret = rbd_dev_mapping_set(rbd_dev);
4855         if (ret)
4856                 goto err_out_disk;
4857         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4858
4859         ret = rbd_bus_add_dev(rbd_dev);
4860         if (ret)
4861                 goto err_out_mapping;
4862
4863         /* Everything's ready.  Announce the disk to the world. */
4864
4865         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4866         add_disk(rbd_dev->disk);
4867
4868         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4869                 (unsigned long long) rbd_dev->mapping.size);
4870
4871         return ret;
4872
4873 err_out_mapping:
4874         rbd_dev_mapping_clear(rbd_dev);
4875 err_out_disk:
4876         rbd_free_disk(rbd_dev);
4877 err_out_blkdev:
4878         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4879 err_out_id:
4880         rbd_dev_id_put(rbd_dev);
4881         rbd_dev_mapping_clear(rbd_dev);
4882
4883         return ret;
4884 }
4885
4886 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4887 {
4888         struct rbd_spec *spec = rbd_dev->spec;
4889         size_t size;
4890
4891         /* Record the header object name for this rbd image. */
4892
4893         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4894
4895         if (rbd_dev->image_format == 1)
4896                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4897         else
4898                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4899
4900         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4901         if (!rbd_dev->header_name)
4902                 return -ENOMEM;
4903
4904         if (rbd_dev->image_format == 1)
4905                 sprintf(rbd_dev->header_name, "%s%s",
4906                         spec->image_name, RBD_SUFFIX);
4907         else
4908                 sprintf(rbd_dev->header_name, "%s%s",
4909                         RBD_HEADER_PREFIX, spec->image_id);
4910         return 0;
4911 }
4912
4913 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4914 {
4915         rbd_dev_unprobe(rbd_dev);
4916         kfree(rbd_dev->header_name);
4917         rbd_dev->header_name = NULL;
4918         rbd_dev->image_format = 0;
4919         kfree(rbd_dev->spec->image_id);
4920         rbd_dev->spec->image_id = NULL;
4921
4922         rbd_dev_destroy(rbd_dev);
4923 }
4924
4925 /*
4926  * Probe for the existence of the header object for the given rbd
4927  * device.  If this image is the one being mapped (i.e., not a
4928  * parent), initiate a watch on its header object before using that
4929  * object to get detailed information about the rbd image.
4930  */
4931 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4932 {
4933         int ret;
4934         int tmp;
4935
4936         /*
4937          * Get the id from the image id object.  Unless there's an
4938          * error, rbd_dev->spec->image_id will be filled in with
4939          * a dynamically-allocated string, and rbd_dev->image_format
4940          * will be set to either 1 or 2.
4941          */
4942         ret = rbd_dev_image_id(rbd_dev);
4943         if (ret)
4944                 return ret;
4945         rbd_assert(rbd_dev->spec->image_id);
4946         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4947
4948         ret = rbd_dev_header_name(rbd_dev);
4949         if (ret)
4950                 goto err_out_format;
4951
4952         if (mapping) {
4953                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4954                 if (ret)
4955                         goto out_header_name;
4956         }
4957
4958         if (rbd_dev->image_format == 1)
4959                 ret = rbd_dev_v1_header_info(rbd_dev);
4960         else
4961                 ret = rbd_dev_v2_header_info(rbd_dev);
4962         if (ret)
4963                 goto err_out_watch;
4964
4965         ret = rbd_dev_spec_update(rbd_dev);
4966         if (ret)
4967                 goto err_out_probe;
4968
4969         ret = rbd_dev_probe_parent(rbd_dev);
4970         if (ret)
4971                 goto err_out_probe;
4972
4973         dout("discovered format %u image, header name is %s\n",
4974                 rbd_dev->image_format, rbd_dev->header_name);
4975
4976         return 0;
4977 err_out_probe:
4978         rbd_dev_unprobe(rbd_dev);
4979 err_out_watch:
4980         if (mapping) {
4981                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4982                 if (tmp)
4983                         rbd_warn(rbd_dev, "unable to tear down "
4984                                         "watch request (%d)\n", tmp);
4985         }
4986 out_header_name:
4987         kfree(rbd_dev->header_name);
4988         rbd_dev->header_name = NULL;
4989 err_out_format:
4990         rbd_dev->image_format = 0;
4991         kfree(rbd_dev->spec->image_id);
4992         rbd_dev->spec->image_id = NULL;
4993
4994         dout("probe failed, returning %d\n", ret);
4995
4996         return ret;
4997 }
4998
4999 static ssize_t rbd_add(struct bus_type *bus,
5000                        const char *buf,
5001                        size_t count)
5002 {
5003         struct rbd_device *rbd_dev = NULL;
5004         struct ceph_options *ceph_opts = NULL;
5005         struct rbd_options *rbd_opts = NULL;
5006         struct rbd_spec *spec = NULL;
5007         struct rbd_client *rbdc;
5008         struct ceph_osd_client *osdc;
5009         bool read_only;
5010         int rc = -ENOMEM;
5011
5012         if (!try_module_get(THIS_MODULE))
5013                 return -ENODEV;
5014
5015         /* parse add command */
5016         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5017         if (rc < 0)
5018                 goto err_out_module;
5019         read_only = rbd_opts->read_only;
5020         kfree(rbd_opts);
5021         rbd_opts = NULL;        /* done with this */
5022
5023         rbdc = rbd_get_client(ceph_opts);
5024         if (IS_ERR(rbdc)) {
5025                 rc = PTR_ERR(rbdc);
5026                 goto err_out_args;
5027         }
5028
5029         /* pick the pool */
5030         osdc = &rbdc->client->osdc;
5031         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5032         if (rc < 0)
5033                 goto err_out_client;
5034         spec->pool_id = (u64)rc;
5035
5036         /* The ceph file layout needs to fit pool id in 32 bits */
5037
5038         if (spec->pool_id > (u64)U32_MAX) {
5039                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5040                                 (unsigned long long)spec->pool_id, U32_MAX);
5041                 rc = -EIO;
5042                 goto err_out_client;
5043         }
5044
5045         rbd_dev = rbd_dev_create(rbdc, spec);
5046         if (!rbd_dev)
5047                 goto err_out_client;
5048         rbdc = NULL;            /* rbd_dev now owns this */
5049         spec = NULL;            /* rbd_dev now owns this */
5050
5051         rc = rbd_dev_image_probe(rbd_dev, true);
5052         if (rc < 0)
5053                 goto err_out_rbd_dev;
5054
5055         /* If we are mapping a snapshot it must be marked read-only */
5056
5057         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5058                 read_only = true;
5059         rbd_dev->mapping.read_only = read_only;
5060
5061         rc = rbd_dev_device_setup(rbd_dev);
5062         if (rc) {
5063                 rbd_dev_image_release(rbd_dev);
5064                 goto err_out_module;
5065         }
5066
5067         return count;
5068
5069 err_out_rbd_dev:
5070         rbd_dev_destroy(rbd_dev);
5071 err_out_client:
5072         rbd_put_client(rbdc);
5073 err_out_args:
5074         rbd_spec_put(spec);
5075 err_out_module:
5076         module_put(THIS_MODULE);
5077
5078         dout("Error adding device %s\n", buf);
5079
5080         return (ssize_t)rc;
5081 }
5082
5083 static void rbd_dev_device_release(struct device *dev)
5084 {
5085         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5086
5087         rbd_free_disk(rbd_dev);
5088         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5089         rbd_dev_mapping_clear(rbd_dev);
5090         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5091         rbd_dev->major = 0;
5092         rbd_dev_id_put(rbd_dev);
5093         rbd_dev_mapping_clear(rbd_dev);
5094 }
5095
5096 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5097 {
5098         while (rbd_dev->parent) {
5099                 struct rbd_device *first = rbd_dev;
5100                 struct rbd_device *second = first->parent;
5101                 struct rbd_device *third;
5102
5103                 /*
5104                  * Follow to the parent with no grandparent and
5105                  * remove it.
5106                  */
5107                 while (second && (third = second->parent)) {
5108                         first = second;
5109                         second = third;
5110                 }
5111                 rbd_assert(second);
5112                 rbd_dev_image_release(second);
5113                 first->parent = NULL;
5114                 first->parent_overlap = 0;
5115
5116                 rbd_assert(first->parent_spec);
5117                 rbd_spec_put(first->parent_spec);
5118                 first->parent_spec = NULL;
5119         }
5120 }
5121
5122 static ssize_t rbd_remove(struct bus_type *bus,
5123                           const char *buf,
5124                           size_t count)
5125 {
5126         struct rbd_device *rbd_dev = NULL;
5127         struct list_head *tmp;
5128         int dev_id;
5129         unsigned long ul;
5130         bool already = false;
5131         int ret;
5132
5133         ret = strict_strtoul(buf, 10, &ul);
5134         if (ret)
5135                 return ret;
5136
5137         /* convert to int; abort if we lost anything in the conversion */
5138         dev_id = (int)ul;
5139         if (dev_id != ul)
5140                 return -EINVAL;
5141
5142         ret = -ENOENT;
5143         spin_lock(&rbd_dev_list_lock);
5144         list_for_each(tmp, &rbd_dev_list) {
5145                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5146                 if (rbd_dev->dev_id == dev_id) {
5147                         ret = 0;
5148                         break;
5149                 }
5150         }
5151         if (!ret) {
5152                 spin_lock_irq(&rbd_dev->lock);
5153                 if (rbd_dev->open_count)
5154                         ret = -EBUSY;
5155                 else
5156                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5157                                                         &rbd_dev->flags);
5158                 spin_unlock_irq(&rbd_dev->lock);
5159         }
5160         spin_unlock(&rbd_dev_list_lock);
5161         if (ret < 0 || already)
5162                 return ret;
5163
5164         rbd_bus_del_dev(rbd_dev);
5165         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5166         if (ret)
5167                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5168         rbd_dev_image_release(rbd_dev);
5169         module_put(THIS_MODULE);
5170
5171         return count;
5172 }
5173
5174 /*
5175  * create control files in sysfs
5176  * /sys/bus/rbd/...
5177  */
5178 static int rbd_sysfs_init(void)
5179 {
5180         int ret;
5181
5182         ret = device_register(&rbd_root_dev);
5183         if (ret < 0)
5184                 return ret;
5185
5186         ret = bus_register(&rbd_bus_type);
5187         if (ret < 0)
5188                 device_unregister(&rbd_root_dev);
5189
5190         return ret;
5191 }
5192
5193 static void rbd_sysfs_cleanup(void)
5194 {
5195         bus_unregister(&rbd_bus_type);
5196         device_unregister(&rbd_root_dev);
5197 }
5198
5199 static int rbd_slab_init(void)
5200 {
5201         rbd_assert(!rbd_img_request_cache);
5202         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5203                                         sizeof (struct rbd_img_request),
5204                                         __alignof__(struct rbd_img_request),
5205                                         0, NULL);
5206         if (!rbd_img_request_cache)
5207                 return -ENOMEM;
5208
5209         rbd_assert(!rbd_obj_request_cache);
5210         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5211                                         sizeof (struct rbd_obj_request),
5212                                         __alignof__(struct rbd_obj_request),
5213                                         0, NULL);
5214         if (!rbd_obj_request_cache)
5215                 goto out_err;
5216
5217         rbd_assert(!rbd_segment_name_cache);
5218         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5219                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5220         if (rbd_segment_name_cache)
5221                 return 0;
5222 out_err:
5223         if (rbd_obj_request_cache) {
5224                 kmem_cache_destroy(rbd_obj_request_cache);
5225                 rbd_obj_request_cache = NULL;
5226         }
5227
5228         kmem_cache_destroy(rbd_img_request_cache);
5229         rbd_img_request_cache = NULL;
5230
5231         return -ENOMEM;
5232 }
5233
5234 static void rbd_slab_exit(void)
5235 {
5236         rbd_assert(rbd_segment_name_cache);
5237         kmem_cache_destroy(rbd_segment_name_cache);
5238         rbd_segment_name_cache = NULL;
5239
5240         rbd_assert(rbd_obj_request_cache);
5241         kmem_cache_destroy(rbd_obj_request_cache);
5242         rbd_obj_request_cache = NULL;
5243
5244         rbd_assert(rbd_img_request_cache);
5245         kmem_cache_destroy(rbd_img_request_cache);
5246         rbd_img_request_cache = NULL;
5247 }
5248
5249 static int __init rbd_init(void)
5250 {
5251         int rc;
5252
5253         if (!libceph_compatible(NULL)) {
5254                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5255
5256                 return -EINVAL;
5257         }
5258         rc = rbd_slab_init();
5259         if (rc)
5260                 return rc;
5261         rc = rbd_sysfs_init();
5262         if (rc)
5263                 rbd_slab_exit();
5264         else
5265                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5266
5267         return rc;
5268 }
5269
5270 static void __exit rbd_exit(void)
5271 {
5272         rbd_sysfs_cleanup();
5273         rbd_slab_exit();
5274 }
5275
5276 module_init(rbd_init);
5277 module_exit(rbd_exit);
5278
5279 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5280 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5281 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5282 MODULE_DESCRIPTION("rados block device");
5283
5284 /* following authorship retained from original osdblk.c */
5285 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5286
5287 MODULE_LICENSE("GPL");