]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/zram/zram_drv.c
zram: use generic start/end io accounting
[karo-tx-linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/string.h>
33 #include <linux/vmalloc.h>
34 #include <linux/err.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 static struct zram *zram_devices;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 #define ZRAM_ATTR_RO(name)                                              \
47 static ssize_t name##_show(struct device *d,            \
48                                 struct device_attribute *attr, char *b) \
49 {                                                                       \
50         struct zram *zram = dev_to_zram(d);                             \
51         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
52                 (u64)atomic64_read(&zram->stats.name));                 \
53 }                                                                       \
54 static DEVICE_ATTR_RO(name);
55
56 static inline bool init_done(struct zram *zram)
57 {
58         return zram->disksize;
59 }
60
61 static inline struct zram *dev_to_zram(struct device *dev)
62 {
63         return (struct zram *)dev_to_disk(dev)->private_data;
64 }
65
66 static ssize_t disksize_show(struct device *dev,
67                 struct device_attribute *attr, char *buf)
68 {
69         struct zram *zram = dev_to_zram(dev);
70
71         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
72 }
73
74 static ssize_t initstate_show(struct device *dev,
75                 struct device_attribute *attr, char *buf)
76 {
77         u32 val;
78         struct zram *zram = dev_to_zram(dev);
79
80         down_read(&zram->init_lock);
81         val = init_done(zram);
82         up_read(&zram->init_lock);
83
84         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
85 }
86
87 static ssize_t orig_data_size_show(struct device *dev,
88                 struct device_attribute *attr, char *buf)
89 {
90         struct zram *zram = dev_to_zram(dev);
91
92         return scnprintf(buf, PAGE_SIZE, "%llu\n",
93                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
94 }
95
96 static ssize_t mem_used_total_show(struct device *dev,
97                 struct device_attribute *attr, char *buf)
98 {
99         u64 val = 0;
100         struct zram *zram = dev_to_zram(dev);
101
102         down_read(&zram->init_lock);
103         if (init_done(zram)) {
104                 struct zram_meta *meta = zram->meta;
105                 val = zs_get_total_pages(meta->mem_pool);
106         }
107         up_read(&zram->init_lock);
108
109         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
110 }
111
112 static ssize_t max_comp_streams_show(struct device *dev,
113                 struct device_attribute *attr, char *buf)
114 {
115         int val;
116         struct zram *zram = dev_to_zram(dev);
117
118         down_read(&zram->init_lock);
119         val = zram->max_comp_streams;
120         up_read(&zram->init_lock);
121
122         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
123 }
124
125 static ssize_t mem_limit_show(struct device *dev,
126                 struct device_attribute *attr, char *buf)
127 {
128         u64 val;
129         struct zram *zram = dev_to_zram(dev);
130
131         down_read(&zram->init_lock);
132         val = zram->limit_pages;
133         up_read(&zram->init_lock);
134
135         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
136 }
137
138 static ssize_t mem_limit_store(struct device *dev,
139                 struct device_attribute *attr, const char *buf, size_t len)
140 {
141         u64 limit;
142         char *tmp;
143         struct zram *zram = dev_to_zram(dev);
144
145         limit = memparse(buf, &tmp);
146         if (buf == tmp) /* no chars parsed, invalid input */
147                 return -EINVAL;
148
149         down_write(&zram->init_lock);
150         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
151         up_write(&zram->init_lock);
152
153         return len;
154 }
155
156 static ssize_t mem_used_max_show(struct device *dev,
157                 struct device_attribute *attr, char *buf)
158 {
159         u64 val = 0;
160         struct zram *zram = dev_to_zram(dev);
161
162         down_read(&zram->init_lock);
163         if (init_done(zram))
164                 val = atomic_long_read(&zram->stats.max_used_pages);
165         up_read(&zram->init_lock);
166
167         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
168 }
169
170 static ssize_t mem_used_max_store(struct device *dev,
171                 struct device_attribute *attr, const char *buf, size_t len)
172 {
173         int err;
174         unsigned long val;
175         struct zram *zram = dev_to_zram(dev);
176
177         err = kstrtoul(buf, 10, &val);
178         if (err || val != 0)
179                 return -EINVAL;
180
181         down_read(&zram->init_lock);
182         if (init_done(zram)) {
183                 struct zram_meta *meta = zram->meta;
184                 atomic_long_set(&zram->stats.max_used_pages,
185                                 zs_get_total_pages(meta->mem_pool));
186         }
187         up_read(&zram->init_lock);
188
189         return len;
190 }
191
192 static ssize_t max_comp_streams_store(struct device *dev,
193                 struct device_attribute *attr, const char *buf, size_t len)
194 {
195         int num;
196         struct zram *zram = dev_to_zram(dev);
197         int ret;
198
199         ret = kstrtoint(buf, 0, &num);
200         if (ret < 0)
201                 return ret;
202         if (num < 1)
203                 return -EINVAL;
204
205         down_write(&zram->init_lock);
206         if (init_done(zram)) {
207                 if (!zcomp_set_max_streams(zram->comp, num)) {
208                         pr_info("Cannot change max compression streams\n");
209                         ret = -EINVAL;
210                         goto out;
211                 }
212         }
213
214         zram->max_comp_streams = num;
215         ret = len;
216 out:
217         up_write(&zram->init_lock);
218         return ret;
219 }
220
221 static ssize_t comp_algorithm_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         size_t sz;
225         struct zram *zram = dev_to_zram(dev);
226
227         down_read(&zram->init_lock);
228         sz = zcomp_available_show(zram->compressor, buf);
229         up_read(&zram->init_lock);
230
231         return sz;
232 }
233
234 static ssize_t comp_algorithm_store(struct device *dev,
235                 struct device_attribute *attr, const char *buf, size_t len)
236 {
237         struct zram *zram = dev_to_zram(dev);
238         down_write(&zram->init_lock);
239         if (init_done(zram)) {
240                 up_write(&zram->init_lock);
241                 pr_info("Can't change algorithm for initialized device\n");
242                 return -EBUSY;
243         }
244         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
245         up_write(&zram->init_lock);
246         return len;
247 }
248
249 /* flag operations needs meta->tb_lock */
250 static int zram_test_flag(struct zram_meta *meta, u32 index,
251                         enum zram_pageflags flag)
252 {
253         return meta->table[index].value & BIT(flag);
254 }
255
256 static void zram_set_flag(struct zram_meta *meta, u32 index,
257                         enum zram_pageflags flag)
258 {
259         meta->table[index].value |= BIT(flag);
260 }
261
262 static void zram_clear_flag(struct zram_meta *meta, u32 index,
263                         enum zram_pageflags flag)
264 {
265         meta->table[index].value &= ~BIT(flag);
266 }
267
268 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
269 {
270         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
271 }
272
273 static void zram_set_obj_size(struct zram_meta *meta,
274                                         u32 index, size_t size)
275 {
276         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
277
278         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
279 }
280
281 static inline int is_partial_io(struct bio_vec *bvec)
282 {
283         return bvec->bv_len != PAGE_SIZE;
284 }
285
286 /*
287  * Check if request is within bounds and aligned on zram logical blocks.
288  */
289 static inline int valid_io_request(struct zram *zram,
290                 sector_t start, unsigned int size)
291 {
292         u64 end, bound;
293
294         /* unaligned request */
295         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
296                 return 0;
297         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
298                 return 0;
299
300         end = start + (size >> SECTOR_SHIFT);
301         bound = zram->disksize >> SECTOR_SHIFT;
302         /* out of range range */
303         if (unlikely(start >= bound || end > bound || start > end))
304                 return 0;
305
306         /* I/O request is valid */
307         return 1;
308 }
309
310 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
311 {
312         size_t num_pages = disksize >> PAGE_SHIFT;
313         size_t index;
314
315         /* Free all pages that are still in this zram device */
316         for (index = 0; index < num_pages; index++) {
317                 unsigned long handle = meta->table[index].handle;
318
319                 if (!handle)
320                         continue;
321
322                 zs_free(meta->mem_pool, handle);
323         }
324
325         zs_destroy_pool(meta->mem_pool);
326         vfree(meta->table);
327         kfree(meta);
328 }
329
330 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
331 {
332         size_t num_pages;
333         char pool_name[8];
334         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
335
336         if (!meta)
337                 return NULL;
338
339         num_pages = disksize >> PAGE_SHIFT;
340         meta->table = vzalloc(num_pages * sizeof(*meta->table));
341         if (!meta->table) {
342                 pr_err("Error allocating zram address table\n");
343                 goto out_error;
344         }
345
346         snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
347         meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
348         if (!meta->mem_pool) {
349                 pr_err("Error creating memory pool\n");
350                 goto out_error;
351         }
352
353         return meta;
354
355 out_error:
356         vfree(meta->table);
357         kfree(meta);
358         return NULL;
359 }
360
361 static inline bool zram_meta_get(struct zram *zram)
362 {
363         if (atomic_inc_not_zero(&zram->refcount))
364                 return true;
365         return false;
366 }
367
368 static inline void zram_meta_put(struct zram *zram)
369 {
370         atomic_dec(&zram->refcount);
371 }
372
373 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
374 {
375         if (*offset + bvec->bv_len >= PAGE_SIZE)
376                 (*index)++;
377         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
378 }
379
380 static int page_zero_filled(void *ptr)
381 {
382         unsigned int pos;
383         unsigned long *page;
384
385         page = (unsigned long *)ptr;
386
387         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
388                 if (page[pos])
389                         return 0;
390         }
391
392         return 1;
393 }
394
395 static void handle_zero_page(struct bio_vec *bvec)
396 {
397         struct page *page = bvec->bv_page;
398         void *user_mem;
399
400         user_mem = kmap_atomic(page);
401         if (is_partial_io(bvec))
402                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
403         else
404                 clear_page(user_mem);
405         kunmap_atomic(user_mem);
406
407         flush_dcache_page(page);
408 }
409
410
411 /*
412  * To protect concurrent access to the same index entry,
413  * caller should hold this table index entry's bit_spinlock to
414  * indicate this index entry is accessing.
415  */
416 static void zram_free_page(struct zram *zram, size_t index)
417 {
418         struct zram_meta *meta = zram->meta;
419         unsigned long handle = meta->table[index].handle;
420
421         if (unlikely(!handle)) {
422                 /*
423                  * No memory is allocated for zero filled pages.
424                  * Simply clear zero page flag.
425                  */
426                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
427                         zram_clear_flag(meta, index, ZRAM_ZERO);
428                         atomic64_dec(&zram->stats.zero_pages);
429                 }
430                 return;
431         }
432
433         zs_free(meta->mem_pool, handle);
434
435         atomic64_sub(zram_get_obj_size(meta, index),
436                         &zram->stats.compr_data_size);
437         atomic64_dec(&zram->stats.pages_stored);
438
439         meta->table[index].handle = 0;
440         zram_set_obj_size(meta, index, 0);
441 }
442
443 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
444 {
445         int ret = 0;
446         unsigned char *cmem;
447         struct zram_meta *meta = zram->meta;
448         unsigned long handle;
449         size_t size;
450
451         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
452         handle = meta->table[index].handle;
453         size = zram_get_obj_size(meta, index);
454
455         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
456                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
457                 clear_page(mem);
458                 return 0;
459         }
460
461         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
462         if (size == PAGE_SIZE)
463                 copy_page(mem, cmem);
464         else
465                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
466         zs_unmap_object(meta->mem_pool, handle);
467         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
468
469         /* Should NEVER happen. Return bio error if it does. */
470         if (unlikely(ret)) {
471                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
472                 return ret;
473         }
474
475         return 0;
476 }
477
478 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
479                           u32 index, int offset)
480 {
481         int ret;
482         struct page *page;
483         unsigned char *user_mem, *uncmem = NULL;
484         struct zram_meta *meta = zram->meta;
485         page = bvec->bv_page;
486
487         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
488         if (unlikely(!meta->table[index].handle) ||
489                         zram_test_flag(meta, index, ZRAM_ZERO)) {
490                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
491                 handle_zero_page(bvec);
492                 return 0;
493         }
494         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
495
496         if (is_partial_io(bvec))
497                 /* Use  a temporary buffer to decompress the page */
498                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
499
500         user_mem = kmap_atomic(page);
501         if (!is_partial_io(bvec))
502                 uncmem = user_mem;
503
504         if (!uncmem) {
505                 pr_info("Unable to allocate temp memory\n");
506                 ret = -ENOMEM;
507                 goto out_cleanup;
508         }
509
510         ret = zram_decompress_page(zram, uncmem, index);
511         /* Should NEVER happen. Return bio error if it does. */
512         if (unlikely(ret))
513                 goto out_cleanup;
514
515         if (is_partial_io(bvec))
516                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
517                                 bvec->bv_len);
518
519         flush_dcache_page(page);
520         ret = 0;
521 out_cleanup:
522         kunmap_atomic(user_mem);
523         if (is_partial_io(bvec))
524                 kfree(uncmem);
525         return ret;
526 }
527
528 static inline void update_used_max(struct zram *zram,
529                                         const unsigned long pages)
530 {
531         unsigned long old_max, cur_max;
532
533         old_max = atomic_long_read(&zram->stats.max_used_pages);
534
535         do {
536                 cur_max = old_max;
537                 if (pages > cur_max)
538                         old_max = atomic_long_cmpxchg(
539                                 &zram->stats.max_used_pages, cur_max, pages);
540         } while (old_max != cur_max);
541 }
542
543 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
544                            int offset)
545 {
546         int ret = 0;
547         size_t clen;
548         unsigned long handle;
549         struct page *page;
550         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
551         struct zram_meta *meta = zram->meta;
552         struct zcomp_strm *zstrm;
553         bool locked = false;
554         unsigned long alloced_pages;
555
556         page = bvec->bv_page;
557         if (is_partial_io(bvec)) {
558                 /*
559                  * This is a partial IO. We need to read the full page
560                  * before to write the changes.
561                  */
562                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
563                 if (!uncmem) {
564                         ret = -ENOMEM;
565                         goto out;
566                 }
567                 ret = zram_decompress_page(zram, uncmem, index);
568                 if (ret)
569                         goto out;
570         }
571
572         zstrm = zcomp_strm_find(zram->comp);
573         locked = true;
574         user_mem = kmap_atomic(page);
575
576         if (is_partial_io(bvec)) {
577                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
578                        bvec->bv_len);
579                 kunmap_atomic(user_mem);
580                 user_mem = NULL;
581         } else {
582                 uncmem = user_mem;
583         }
584
585         if (page_zero_filled(uncmem)) {
586                 if (user_mem)
587                         kunmap_atomic(user_mem);
588                 /* Free memory associated with this sector now. */
589                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
590                 zram_free_page(zram, index);
591                 zram_set_flag(meta, index, ZRAM_ZERO);
592                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
593
594                 atomic64_inc(&zram->stats.zero_pages);
595                 ret = 0;
596                 goto out;
597         }
598
599         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
600         if (!is_partial_io(bvec)) {
601                 kunmap_atomic(user_mem);
602                 user_mem = NULL;
603                 uncmem = NULL;
604         }
605
606         if (unlikely(ret)) {
607                 pr_err("Compression failed! err=%d\n", ret);
608                 goto out;
609         }
610         src = zstrm->buffer;
611         if (unlikely(clen > max_zpage_size)) {
612                 clen = PAGE_SIZE;
613                 if (is_partial_io(bvec))
614                         src = uncmem;
615         }
616
617         handle = zs_malloc(meta->mem_pool, clen);
618         if (!handle) {
619                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
620                         index, clen);
621                 ret = -ENOMEM;
622                 goto out;
623         }
624
625         alloced_pages = zs_get_total_pages(meta->mem_pool);
626         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
627                 zs_free(meta->mem_pool, handle);
628                 ret = -ENOMEM;
629                 goto out;
630         }
631
632         update_used_max(zram, alloced_pages);
633
634         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
635
636         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
637                 src = kmap_atomic(page);
638                 copy_page(cmem, src);
639                 kunmap_atomic(src);
640         } else {
641                 memcpy(cmem, src, clen);
642         }
643
644         zcomp_strm_release(zram->comp, zstrm);
645         locked = false;
646         zs_unmap_object(meta->mem_pool, handle);
647
648         /*
649          * Free memory associated with this sector
650          * before overwriting unused sectors.
651          */
652         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
653         zram_free_page(zram, index);
654
655         meta->table[index].handle = handle;
656         zram_set_obj_size(meta, index, clen);
657         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
658
659         /* Update stats */
660         atomic64_add(clen, &zram->stats.compr_data_size);
661         atomic64_inc(&zram->stats.pages_stored);
662 out:
663         if (locked)
664                 zcomp_strm_release(zram->comp, zstrm);
665         if (is_partial_io(bvec))
666                 kfree(uncmem);
667         return ret;
668 }
669
670 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
671                         int offset, int rw)
672 {
673         unsigned long start_time = jiffies;
674         int ret;
675
676         generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
677                         &zram->disk->part0);
678
679         if (rw == READ) {
680                 atomic64_inc(&zram->stats.num_reads);
681                 ret = zram_bvec_read(zram, bvec, index, offset);
682         } else {
683                 atomic64_inc(&zram->stats.num_writes);
684                 ret = zram_bvec_write(zram, bvec, index, offset);
685         }
686
687         generic_end_io_acct(rw, &zram->disk->part0, start_time);
688
689         if (unlikely(ret)) {
690                 if (rw == READ)
691                         atomic64_inc(&zram->stats.failed_reads);
692                 else
693                         atomic64_inc(&zram->stats.failed_writes);
694         }
695
696         return ret;
697 }
698
699 /*
700  * zram_bio_discard - handler on discard request
701  * @index: physical block index in PAGE_SIZE units
702  * @offset: byte offset within physical block
703  */
704 static void zram_bio_discard(struct zram *zram, u32 index,
705                              int offset, struct bio *bio)
706 {
707         size_t n = bio->bi_iter.bi_size;
708         struct zram_meta *meta = zram->meta;
709
710         /*
711          * zram manages data in physical block size units. Because logical block
712          * size isn't identical with physical block size on some arch, we
713          * could get a discard request pointing to a specific offset within a
714          * certain physical block.  Although we can handle this request by
715          * reading that physiclal block and decompressing and partially zeroing
716          * and re-compressing and then re-storing it, this isn't reasonable
717          * because our intent with a discard request is to save memory.  So
718          * skipping this logical block is appropriate here.
719          */
720         if (offset) {
721                 if (n <= (PAGE_SIZE - offset))
722                         return;
723
724                 n -= (PAGE_SIZE - offset);
725                 index++;
726         }
727
728         while (n >= PAGE_SIZE) {
729                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
730                 zram_free_page(zram, index);
731                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
732                 atomic64_inc(&zram->stats.notify_free);
733                 index++;
734                 n -= PAGE_SIZE;
735         }
736 }
737
738 static void zram_reset_device(struct zram *zram)
739 {
740         struct zram_meta *meta;
741         struct zcomp *comp;
742         u64 disksize;
743
744         down_write(&zram->init_lock);
745
746         zram->limit_pages = 0;
747
748         if (!init_done(zram)) {
749                 up_write(&zram->init_lock);
750                 return;
751         }
752
753         meta = zram->meta;
754         comp = zram->comp;
755         disksize = zram->disksize;
756         /*
757          * Refcount will go down to 0 eventually and r/w handler
758          * cannot handle further I/O so it will bail out by
759          * check zram_meta_get.
760          */
761         zram_meta_put(zram);
762         /*
763          * We want to free zram_meta in process context to avoid
764          * deadlock between reclaim path and any other locks.
765          */
766         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
767
768         /* Reset stats */
769         memset(&zram->stats, 0, sizeof(zram->stats));
770         zram->disksize = 0;
771         zram->max_comp_streams = 1;
772         set_capacity(zram->disk, 0);
773
774         up_write(&zram->init_lock);
775         /* I/O operation under all of CPU are done so let's free */
776         zram_meta_free(meta, disksize);
777         zcomp_destroy(comp);
778 }
779
780 static ssize_t disksize_store(struct device *dev,
781                 struct device_attribute *attr, const char *buf, size_t len)
782 {
783         u64 disksize;
784         struct zcomp *comp;
785         struct zram_meta *meta;
786         struct zram *zram = dev_to_zram(dev);
787         int err;
788
789         disksize = memparse(buf, NULL);
790         if (!disksize)
791                 return -EINVAL;
792
793         disksize = PAGE_ALIGN(disksize);
794         meta = zram_meta_alloc(zram->disk->first_minor, disksize);
795         if (!meta)
796                 return -ENOMEM;
797
798         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
799         if (IS_ERR(comp)) {
800                 pr_info("Cannot initialise %s compressing backend\n",
801                                 zram->compressor);
802                 err = PTR_ERR(comp);
803                 goto out_free_meta;
804         }
805
806         down_write(&zram->init_lock);
807         if (init_done(zram)) {
808                 pr_info("Cannot change disksize for initialized device\n");
809                 err = -EBUSY;
810                 goto out_destroy_comp;
811         }
812
813         init_waitqueue_head(&zram->io_done);
814         atomic_set(&zram->refcount, 1);
815         zram->meta = meta;
816         zram->comp = comp;
817         zram->disksize = disksize;
818         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
819         up_write(&zram->init_lock);
820
821         /*
822          * Revalidate disk out of the init_lock to avoid lockdep splat.
823          * It's okay because disk's capacity is protected by init_lock
824          * so that revalidate_disk always sees up-to-date capacity.
825          */
826         revalidate_disk(zram->disk);
827
828         return len;
829
830 out_destroy_comp:
831         up_write(&zram->init_lock);
832         zcomp_destroy(comp);
833 out_free_meta:
834         zram_meta_free(meta, disksize);
835         return err;
836 }
837
838 static ssize_t reset_store(struct device *dev,
839                 struct device_attribute *attr, const char *buf, size_t len)
840 {
841         int ret;
842         unsigned short do_reset;
843         struct zram *zram;
844         struct block_device *bdev;
845
846         zram = dev_to_zram(dev);
847         bdev = bdget_disk(zram->disk, 0);
848
849         if (!bdev)
850                 return -ENOMEM;
851
852         mutex_lock(&bdev->bd_mutex);
853         /* Do not reset an active device! */
854         if (bdev->bd_openers) {
855                 ret = -EBUSY;
856                 goto out;
857         }
858
859         ret = kstrtou16(buf, 10, &do_reset);
860         if (ret)
861                 goto out;
862
863         if (!do_reset) {
864                 ret = -EINVAL;
865                 goto out;
866         }
867
868         /* Make sure all pending I/O is finished */
869         fsync_bdev(bdev);
870         zram_reset_device(zram);
871
872         mutex_unlock(&bdev->bd_mutex);
873         revalidate_disk(zram->disk);
874         bdput(bdev);
875
876         return len;
877
878 out:
879         mutex_unlock(&bdev->bd_mutex);
880         bdput(bdev);
881         return ret;
882 }
883
884 static void __zram_make_request(struct zram *zram, struct bio *bio)
885 {
886         int offset, rw;
887         u32 index;
888         struct bio_vec bvec;
889         struct bvec_iter iter;
890
891         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
892         offset = (bio->bi_iter.bi_sector &
893                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
894
895         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
896                 zram_bio_discard(zram, index, offset, bio);
897                 bio_endio(bio, 0);
898                 return;
899         }
900
901         rw = bio_data_dir(bio);
902         bio_for_each_segment(bvec, bio, iter) {
903                 int max_transfer_size = PAGE_SIZE - offset;
904
905                 if (bvec.bv_len > max_transfer_size) {
906                         /*
907                          * zram_bvec_rw() can only make operation on a single
908                          * zram page. Split the bio vector.
909                          */
910                         struct bio_vec bv;
911
912                         bv.bv_page = bvec.bv_page;
913                         bv.bv_len = max_transfer_size;
914                         bv.bv_offset = bvec.bv_offset;
915
916                         if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
917                                 goto out;
918
919                         bv.bv_len = bvec.bv_len - max_transfer_size;
920                         bv.bv_offset += max_transfer_size;
921                         if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
922                                 goto out;
923                 } else
924                         if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
925                                 goto out;
926
927                 update_position(&index, &offset, &bvec);
928         }
929
930         set_bit(BIO_UPTODATE, &bio->bi_flags);
931         bio_endio(bio, 0);
932         return;
933
934 out:
935         bio_io_error(bio);
936 }
937
938 /*
939  * Handler function for all zram I/O requests.
940  */
941 static void zram_make_request(struct request_queue *queue, struct bio *bio)
942 {
943         struct zram *zram = queue->queuedata;
944
945         if (unlikely(!zram_meta_get(zram)))
946                 goto error;
947
948         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
949                                         bio->bi_iter.bi_size)) {
950                 atomic64_inc(&zram->stats.invalid_io);
951                 goto put_zram;
952         }
953
954         __zram_make_request(zram, bio);
955         zram_meta_put(zram);
956         return;
957 put_zram:
958         zram_meta_put(zram);
959 error:
960         bio_io_error(bio);
961 }
962
963 static void zram_slot_free_notify(struct block_device *bdev,
964                                 unsigned long index)
965 {
966         struct zram *zram;
967         struct zram_meta *meta;
968
969         zram = bdev->bd_disk->private_data;
970         meta = zram->meta;
971
972         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
973         zram_free_page(zram, index);
974         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
975         atomic64_inc(&zram->stats.notify_free);
976 }
977
978 static int zram_rw_page(struct block_device *bdev, sector_t sector,
979                        struct page *page, int rw)
980 {
981         int offset, err = -EIO;
982         u32 index;
983         struct zram *zram;
984         struct bio_vec bv;
985
986         zram = bdev->bd_disk->private_data;
987         if (unlikely(!zram_meta_get(zram)))
988                 goto out;
989
990         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
991                 atomic64_inc(&zram->stats.invalid_io);
992                 err = -EINVAL;
993                 goto put_zram;
994         }
995
996         index = sector >> SECTORS_PER_PAGE_SHIFT;
997         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
998
999         bv.bv_page = page;
1000         bv.bv_len = PAGE_SIZE;
1001         bv.bv_offset = 0;
1002
1003         err = zram_bvec_rw(zram, &bv, index, offset, rw);
1004 put_zram:
1005         zram_meta_put(zram);
1006 out:
1007         /*
1008          * If I/O fails, just return error(ie, non-zero) without
1009          * calling page_endio.
1010          * It causes resubmit the I/O with bio request by upper functions
1011          * of rw_page(e.g., swap_readpage, __swap_writepage) and
1012          * bio->bi_end_io does things to handle the error
1013          * (e.g., SetPageError, set_page_dirty and extra works).
1014          */
1015         if (err == 0)
1016                 page_endio(page, rw, 0);
1017         return err;
1018 }
1019
1020 static const struct block_device_operations zram_devops = {
1021         .swap_slot_free_notify = zram_slot_free_notify,
1022         .rw_page = zram_rw_page,
1023         .owner = THIS_MODULE
1024 };
1025
1026 static DEVICE_ATTR_RW(disksize);
1027 static DEVICE_ATTR_RO(initstate);
1028 static DEVICE_ATTR_WO(reset);
1029 static DEVICE_ATTR_RO(orig_data_size);
1030 static DEVICE_ATTR_RO(mem_used_total);
1031 static DEVICE_ATTR_RW(mem_limit);
1032 static DEVICE_ATTR_RW(mem_used_max);
1033 static DEVICE_ATTR_RW(max_comp_streams);
1034 static DEVICE_ATTR_RW(comp_algorithm);
1035
1036 ZRAM_ATTR_RO(num_reads);
1037 ZRAM_ATTR_RO(num_writes);
1038 ZRAM_ATTR_RO(failed_reads);
1039 ZRAM_ATTR_RO(failed_writes);
1040 ZRAM_ATTR_RO(invalid_io);
1041 ZRAM_ATTR_RO(notify_free);
1042 ZRAM_ATTR_RO(zero_pages);
1043 ZRAM_ATTR_RO(compr_data_size);
1044
1045 static struct attribute *zram_disk_attrs[] = {
1046         &dev_attr_disksize.attr,
1047         &dev_attr_initstate.attr,
1048         &dev_attr_reset.attr,
1049         &dev_attr_num_reads.attr,
1050         &dev_attr_num_writes.attr,
1051         &dev_attr_failed_reads.attr,
1052         &dev_attr_failed_writes.attr,
1053         &dev_attr_invalid_io.attr,
1054         &dev_attr_notify_free.attr,
1055         &dev_attr_zero_pages.attr,
1056         &dev_attr_orig_data_size.attr,
1057         &dev_attr_compr_data_size.attr,
1058         &dev_attr_mem_used_total.attr,
1059         &dev_attr_mem_limit.attr,
1060         &dev_attr_mem_used_max.attr,
1061         &dev_attr_max_comp_streams.attr,
1062         &dev_attr_comp_algorithm.attr,
1063         NULL,
1064 };
1065
1066 static struct attribute_group zram_disk_attr_group = {
1067         .attrs = zram_disk_attrs,
1068 };
1069
1070 static int create_device(struct zram *zram, int device_id)
1071 {
1072         struct request_queue *queue;
1073         int ret = -ENOMEM;
1074
1075         init_rwsem(&zram->init_lock);
1076
1077         queue = blk_alloc_queue(GFP_KERNEL);
1078         if (!queue) {
1079                 pr_err("Error allocating disk queue for device %d\n",
1080                         device_id);
1081                 goto out;
1082         }
1083
1084         blk_queue_make_request(queue, zram_make_request);
1085
1086          /* gendisk structure */
1087         zram->disk = alloc_disk(1);
1088         if (!zram->disk) {
1089                 pr_warn("Error allocating disk structure for device %d\n",
1090                         device_id);
1091                 goto out_free_queue;
1092         }
1093
1094         zram->disk->major = zram_major;
1095         zram->disk->first_minor = device_id;
1096         zram->disk->fops = &zram_devops;
1097         zram->disk->queue = queue;
1098         zram->disk->queue->queuedata = zram;
1099         zram->disk->private_data = zram;
1100         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1101
1102         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1103         set_capacity(zram->disk, 0);
1104         /* zram devices sort of resembles non-rotational disks */
1105         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1106         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1107         /*
1108          * To ensure that we always get PAGE_SIZE aligned
1109          * and n*PAGE_SIZED sized I/O requests.
1110          */
1111         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1112         blk_queue_logical_block_size(zram->disk->queue,
1113                                         ZRAM_LOGICAL_BLOCK_SIZE);
1114         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1115         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1116         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1117         zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1118         /*
1119          * zram_bio_discard() will clear all logical blocks if logical block
1120          * size is identical with physical block size(PAGE_SIZE). But if it is
1121          * different, we will skip discarding some parts of logical blocks in
1122          * the part of the request range which isn't aligned to physical block
1123          * size.  So we can't ensure that all discarded logical blocks are
1124          * zeroed.
1125          */
1126         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1127                 zram->disk->queue->limits.discard_zeroes_data = 1;
1128         else
1129                 zram->disk->queue->limits.discard_zeroes_data = 0;
1130         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1131
1132         add_disk(zram->disk);
1133
1134         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1135                                 &zram_disk_attr_group);
1136         if (ret < 0) {
1137                 pr_warn("Error creating sysfs group");
1138                 goto out_free_disk;
1139         }
1140         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1141         zram->meta = NULL;
1142         zram->max_comp_streams = 1;
1143         return 0;
1144
1145 out_free_disk:
1146         del_gendisk(zram->disk);
1147         put_disk(zram->disk);
1148 out_free_queue:
1149         blk_cleanup_queue(queue);
1150 out:
1151         return ret;
1152 }
1153
1154 static void destroy_devices(unsigned int nr)
1155 {
1156         struct zram *zram;
1157         unsigned int i;
1158
1159         for (i = 0; i < nr; i++) {
1160                 zram = &zram_devices[i];
1161                 /*
1162                  * Remove sysfs first, so no one will perform a disksize
1163                  * store while we destroy the devices
1164                  */
1165                 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1166                                 &zram_disk_attr_group);
1167
1168                 zram_reset_device(zram);
1169
1170                 blk_cleanup_queue(zram->disk->queue);
1171                 del_gendisk(zram->disk);
1172                 put_disk(zram->disk);
1173         }
1174
1175         kfree(zram_devices);
1176         unregister_blkdev(zram_major, "zram");
1177         pr_info("Destroyed %u device(s)\n", nr);
1178 }
1179
1180 static int __init zram_init(void)
1181 {
1182         int ret, dev_id;
1183
1184         if (num_devices > max_num_devices) {
1185                 pr_warn("Invalid value for num_devices: %u\n",
1186                                 num_devices);
1187                 return -EINVAL;
1188         }
1189
1190         zram_major = register_blkdev(0, "zram");
1191         if (zram_major <= 0) {
1192                 pr_warn("Unable to get major number\n");
1193                 return -EBUSY;
1194         }
1195
1196         /* Allocate the device array and initialize each one */
1197         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
1198         if (!zram_devices) {
1199                 unregister_blkdev(zram_major, "zram");
1200                 return -ENOMEM;
1201         }
1202
1203         for (dev_id = 0; dev_id < num_devices; dev_id++) {
1204                 ret = create_device(&zram_devices[dev_id], dev_id);
1205                 if (ret)
1206                         goto out_error;
1207         }
1208
1209         pr_info("Created %u device(s)\n", num_devices);
1210         return 0;
1211
1212 out_error:
1213         destroy_devices(dev_id);
1214         return ret;
1215 }
1216
1217 static void __exit zram_exit(void)
1218 {
1219         destroy_devices(num_devices);
1220 }
1221
1222 module_init(zram_init);
1223 module_exit(zram_exit);
1224
1225 module_param(num_devices, uint, 0);
1226 MODULE_PARM_DESC(num_devices, "Number of zram devices");
1227
1228 MODULE_LICENSE("Dual BSD/GPL");
1229 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1230 MODULE_DESCRIPTION("Compressed RAM Block Device");