]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/block/zram/zram_drv.c
c2a1d7dbaec90a4e0fdf7f632c89ccd5dd624763
[karo-tx-linux.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48         pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49                         task_pid_nr(current),
50                         current->comm,
51                         name,
52                         "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name)                                              \
56 static ssize_t name##_show(struct device *d,                            \
57                                 struct device_attribute *attr, char *b) \
58 {                                                                       \
59         struct zram *zram = dev_to_zram(d);                             \
60                                                                         \
61         deprecated_attr_warn(__stringify(name));                        \
62         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
63                 (u64)atomic64_read(&zram->stats.name));                 \
64 }                                                                       \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69         return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74         return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79                         enum zram_pageflags flag)
80 {
81         return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85                         enum zram_pageflags flag)
86 {
87         meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91                         enum zram_pageflags flag)
92 {
93         meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102                                         u32 index, size_t size)
103 {
104         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline bool is_partial_io(struct bio_vec *bvec)
110 {
111         return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline bool valid_io_request(struct zram *zram,
118                 sector_t start, unsigned int size)
119 {
120         u64 end, bound;
121
122         /* unaligned request */
123         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124                 return false;
125         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126                 return false;
127
128         end = start + (size >> SECTOR_SHIFT);
129         bound = zram->disksize >> SECTOR_SHIFT;
130         /* out of range range */
131         if (unlikely(start >= bound || end > bound || start > end))
132                 return false;
133
134         /* I/O request is valid */
135         return true;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140         if (*offset + bvec->bv_len >= PAGE_SIZE)
141                 (*index)++;
142         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146                                         const unsigned long pages)
147 {
148         unsigned long old_max, cur_max;
149
150         old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152         do {
153                 cur_max = old_max;
154                 if (pages > cur_max)
155                         old_max = atomic_long_cmpxchg(
156                                 &zram->stats.max_used_pages, cur_max, pages);
157         } while (old_max != cur_max);
158 }
159
160 static bool page_zero_filled(void *ptr)
161 {
162         unsigned int pos;
163         unsigned long *page;
164
165         page = (unsigned long *)ptr;
166
167         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168                 if (page[pos])
169                         return false;
170         }
171
172         return true;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177         struct page *page = bvec->bv_page;
178         void *user_mem;
179
180         user_mem = kmap_atomic(page);
181         if (is_partial_io(bvec))
182                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183         else
184                 clear_page(user_mem);
185         kunmap_atomic(user_mem);
186
187         flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191                 struct device_attribute *attr, char *buf)
192 {
193         u32 val;
194         struct zram *zram = dev_to_zram(dev);
195
196         down_read(&zram->init_lock);
197         val = init_done(zram);
198         up_read(&zram->init_lock);
199
200         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204                 struct device_attribute *attr, char *buf)
205 {
206         struct zram *zram = dev_to_zram(dev);
207
208         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212                 struct device_attribute *attr, char *buf)
213 {
214         struct zram *zram = dev_to_zram(dev);
215
216         deprecated_attr_warn("orig_data_size");
217         return scnprintf(buf, PAGE_SIZE, "%llu\n",
218                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         u64 val = 0;
225         struct zram *zram = dev_to_zram(dev);
226
227         deprecated_attr_warn("mem_used_total");
228         down_read(&zram->init_lock);
229         if (init_done(zram)) {
230                 struct zram_meta *meta = zram->meta;
231                 val = zs_get_total_pages(meta->mem_pool);
232         }
233         up_read(&zram->init_lock);
234
235         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239                 struct device_attribute *attr, char *buf)
240 {
241         u64 val;
242         struct zram *zram = dev_to_zram(dev);
243
244         deprecated_attr_warn("mem_limit");
245         down_read(&zram->init_lock);
246         val = zram->limit_pages;
247         up_read(&zram->init_lock);
248
249         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253                 struct device_attribute *attr, const char *buf, size_t len)
254 {
255         u64 limit;
256         char *tmp;
257         struct zram *zram = dev_to_zram(dev);
258
259         limit = memparse(buf, &tmp);
260         if (buf == tmp) /* no chars parsed, invalid input */
261                 return -EINVAL;
262
263         down_write(&zram->init_lock);
264         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265         up_write(&zram->init_lock);
266
267         return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271                 struct device_attribute *attr, char *buf)
272 {
273         u64 val = 0;
274         struct zram *zram = dev_to_zram(dev);
275
276         deprecated_attr_warn("mem_used_max");
277         down_read(&zram->init_lock);
278         if (init_done(zram))
279                 val = atomic_long_read(&zram->stats.max_used_pages);
280         up_read(&zram->init_lock);
281
282         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286                 struct device_attribute *attr, const char *buf, size_t len)
287 {
288         int err;
289         unsigned long val;
290         struct zram *zram = dev_to_zram(dev);
291
292         err = kstrtoul(buf, 10, &val);
293         if (err || val != 0)
294                 return -EINVAL;
295
296         down_read(&zram->init_lock);
297         if (init_done(zram)) {
298                 struct zram_meta *meta = zram->meta;
299                 atomic_long_set(&zram->stats.max_used_pages,
300                                 zs_get_total_pages(meta->mem_pool));
301         }
302         up_read(&zram->init_lock);
303
304         return len;
305 }
306
307 /*
308  * We switched to per-cpu streams and this attr is not needed anymore.
309  * However, we will keep it around for some time, because:
310  * a) we may revert per-cpu streams in the future
311  * b) it's visible to user space and we need to follow our 2 years
312  *    retirement rule; but we already have a number of 'soon to be
313  *    altered' attrs, so max_comp_streams need to wait for the next
314  *    layoff cycle.
315  */
316 static ssize_t max_comp_streams_show(struct device *dev,
317                 struct device_attribute *attr, char *buf)
318 {
319         return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
320 }
321
322 static ssize_t max_comp_streams_store(struct device *dev,
323                 struct device_attribute *attr, const char *buf, size_t len)
324 {
325         return len;
326 }
327
328 static ssize_t comp_algorithm_show(struct device *dev,
329                 struct device_attribute *attr, char *buf)
330 {
331         size_t sz;
332         struct zram *zram = dev_to_zram(dev);
333
334         down_read(&zram->init_lock);
335         sz = zcomp_available_show(zram->compressor, buf);
336         up_read(&zram->init_lock);
337
338         return sz;
339 }
340
341 static ssize_t comp_algorithm_store(struct device *dev,
342                 struct device_attribute *attr, const char *buf, size_t len)
343 {
344         struct zram *zram = dev_to_zram(dev);
345         char compressor[CRYPTO_MAX_ALG_NAME];
346         size_t sz;
347
348         strlcpy(compressor, buf, sizeof(compressor));
349         /* ignore trailing newline */
350         sz = strlen(compressor);
351         if (sz > 0 && compressor[sz - 1] == '\n')
352                 compressor[sz - 1] = 0x00;
353
354         if (!zcomp_available_algorithm(compressor))
355                 return -EINVAL;
356
357         down_write(&zram->init_lock);
358         if (init_done(zram)) {
359                 up_write(&zram->init_lock);
360                 pr_info("Can't change algorithm for initialized device\n");
361                 return -EBUSY;
362         }
363
364         strlcpy(zram->compressor, compressor, sizeof(compressor));
365         up_write(&zram->init_lock);
366         return len;
367 }
368
369 static ssize_t compact_store(struct device *dev,
370                 struct device_attribute *attr, const char *buf, size_t len)
371 {
372         struct zram *zram = dev_to_zram(dev);
373         struct zram_meta *meta;
374
375         down_read(&zram->init_lock);
376         if (!init_done(zram)) {
377                 up_read(&zram->init_lock);
378                 return -EINVAL;
379         }
380
381         meta = zram->meta;
382         zs_compact(meta->mem_pool);
383         up_read(&zram->init_lock);
384
385         return len;
386 }
387
388 static ssize_t io_stat_show(struct device *dev,
389                 struct device_attribute *attr, char *buf)
390 {
391         struct zram *zram = dev_to_zram(dev);
392         ssize_t ret;
393
394         down_read(&zram->init_lock);
395         ret = scnprintf(buf, PAGE_SIZE,
396                         "%8llu %8llu %8llu %8llu\n",
397                         (u64)atomic64_read(&zram->stats.failed_reads),
398                         (u64)atomic64_read(&zram->stats.failed_writes),
399                         (u64)atomic64_read(&zram->stats.invalid_io),
400                         (u64)atomic64_read(&zram->stats.notify_free));
401         up_read(&zram->init_lock);
402
403         return ret;
404 }
405
406 static ssize_t mm_stat_show(struct device *dev,
407                 struct device_attribute *attr, char *buf)
408 {
409         struct zram *zram = dev_to_zram(dev);
410         struct zs_pool_stats pool_stats;
411         u64 orig_size, mem_used = 0;
412         long max_used;
413         ssize_t ret;
414
415         memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
416
417         down_read(&zram->init_lock);
418         if (init_done(zram)) {
419                 mem_used = zs_get_total_pages(zram->meta->mem_pool);
420                 zs_pool_stats(zram->meta->mem_pool, &pool_stats);
421         }
422
423         orig_size = atomic64_read(&zram->stats.pages_stored);
424         max_used = atomic_long_read(&zram->stats.max_used_pages);
425
426         ret = scnprintf(buf, PAGE_SIZE,
427                         "%8llu %8llu %8llu %8lu %8ld %8llu %8lu\n",
428                         orig_size << PAGE_SHIFT,
429                         (u64)atomic64_read(&zram->stats.compr_data_size),
430                         mem_used << PAGE_SHIFT,
431                         zram->limit_pages << PAGE_SHIFT,
432                         max_used << PAGE_SHIFT,
433                         (u64)atomic64_read(&zram->stats.zero_pages),
434                         pool_stats.pages_compacted);
435         up_read(&zram->init_lock);
436
437         return ret;
438 }
439
440 static ssize_t debug_stat_show(struct device *dev,
441                 struct device_attribute *attr, char *buf)
442 {
443         int version = 1;
444         struct zram *zram = dev_to_zram(dev);
445         ssize_t ret;
446
447         down_read(&zram->init_lock);
448         ret = scnprintf(buf, PAGE_SIZE,
449                         "version: %d\n%8llu\n",
450                         version,
451                         (u64)atomic64_read(&zram->stats.writestall));
452         up_read(&zram->init_lock);
453
454         return ret;
455 }
456
457 static DEVICE_ATTR_RO(io_stat);
458 static DEVICE_ATTR_RO(mm_stat);
459 static DEVICE_ATTR_RO(debug_stat);
460 ZRAM_ATTR_RO(num_reads);
461 ZRAM_ATTR_RO(num_writes);
462 ZRAM_ATTR_RO(failed_reads);
463 ZRAM_ATTR_RO(failed_writes);
464 ZRAM_ATTR_RO(invalid_io);
465 ZRAM_ATTR_RO(notify_free);
466 ZRAM_ATTR_RO(zero_pages);
467 ZRAM_ATTR_RO(compr_data_size);
468
469 static inline bool zram_meta_get(struct zram *zram)
470 {
471         if (atomic_inc_not_zero(&zram->refcount))
472                 return true;
473         return false;
474 }
475
476 static inline void zram_meta_put(struct zram *zram)
477 {
478         atomic_dec(&zram->refcount);
479 }
480
481 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
482 {
483         size_t num_pages = disksize >> PAGE_SHIFT;
484         size_t index;
485
486         /* Free all pages that are still in this zram device */
487         for (index = 0; index < num_pages; index++) {
488                 unsigned long handle = meta->table[index].handle;
489
490                 if (!handle)
491                         continue;
492
493                 zs_free(meta->mem_pool, handle);
494         }
495
496         zs_destroy_pool(meta->mem_pool);
497         vfree(meta->table);
498         kfree(meta);
499 }
500
501 static struct zram_meta *zram_meta_alloc(char *pool_name, u64 disksize)
502 {
503         size_t num_pages;
504         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
505
506         if (!meta)
507                 return NULL;
508
509         num_pages = disksize >> PAGE_SHIFT;
510         meta->table = vzalloc(num_pages * sizeof(*meta->table));
511         if (!meta->table) {
512                 pr_err("Error allocating zram address table\n");
513                 goto out_error;
514         }
515
516         meta->mem_pool = zs_create_pool(pool_name);
517         if (!meta->mem_pool) {
518                 pr_err("Error creating memory pool\n");
519                 goto out_error;
520         }
521
522         return meta;
523
524 out_error:
525         vfree(meta->table);
526         kfree(meta);
527         return NULL;
528 }
529
530 /*
531  * To protect concurrent access to the same index entry,
532  * caller should hold this table index entry's bit_spinlock to
533  * indicate this index entry is accessing.
534  */
535 static void zram_free_page(struct zram *zram, size_t index)
536 {
537         struct zram_meta *meta = zram->meta;
538         unsigned long handle = meta->table[index].handle;
539
540         if (unlikely(!handle)) {
541                 /*
542                  * No memory is allocated for zero filled pages.
543                  * Simply clear zero page flag.
544                  */
545                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
546                         zram_clear_flag(meta, index, ZRAM_ZERO);
547                         atomic64_dec(&zram->stats.zero_pages);
548                 }
549                 return;
550         }
551
552         zs_free(meta->mem_pool, handle);
553
554         atomic64_sub(zram_get_obj_size(meta, index),
555                         &zram->stats.compr_data_size);
556         atomic64_dec(&zram->stats.pages_stored);
557
558         meta->table[index].handle = 0;
559         zram_set_obj_size(meta, index, 0);
560 }
561
562 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
563 {
564         int ret = 0;
565         unsigned char *cmem;
566         struct zram_meta *meta = zram->meta;
567         unsigned long handle;
568         unsigned int size;
569
570         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
571         handle = meta->table[index].handle;
572         size = zram_get_obj_size(meta, index);
573
574         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
575                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
576                 clear_page(mem);
577                 return 0;
578         }
579
580         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
581         if (size == PAGE_SIZE) {
582                 copy_page(mem, cmem);
583         } else {
584                 struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
585
586                 ret = zcomp_decompress(zstrm, cmem, size, mem);
587                 zcomp_stream_put(zram->comp);
588         }
589         zs_unmap_object(meta->mem_pool, handle);
590         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
591
592         /* Should NEVER happen. Return bio error if it does. */
593         if (unlikely(ret)) {
594                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
595                 return ret;
596         }
597
598         return 0;
599 }
600
601 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
602                           u32 index, int offset)
603 {
604         int ret;
605         struct page *page;
606         unsigned char *user_mem, *uncmem = NULL;
607         struct zram_meta *meta = zram->meta;
608         page = bvec->bv_page;
609
610         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
611         if (unlikely(!meta->table[index].handle) ||
612                         zram_test_flag(meta, index, ZRAM_ZERO)) {
613                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
614                 handle_zero_page(bvec);
615                 return 0;
616         }
617         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
618
619         if (is_partial_io(bvec))
620                 /* Use  a temporary buffer to decompress the page */
621                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
622
623         user_mem = kmap_atomic(page);
624         if (!is_partial_io(bvec))
625                 uncmem = user_mem;
626
627         if (!uncmem) {
628                 pr_err("Unable to allocate temp memory\n");
629                 ret = -ENOMEM;
630                 goto out_cleanup;
631         }
632
633         ret = zram_decompress_page(zram, uncmem, index);
634         /* Should NEVER happen. Return bio error if it does. */
635         if (unlikely(ret))
636                 goto out_cleanup;
637
638         if (is_partial_io(bvec))
639                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
640                                 bvec->bv_len);
641
642         flush_dcache_page(page);
643         ret = 0;
644 out_cleanup:
645         kunmap_atomic(user_mem);
646         if (is_partial_io(bvec))
647                 kfree(uncmem);
648         return ret;
649 }
650
651 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
652                            int offset)
653 {
654         int ret = 0;
655         unsigned int clen;
656         unsigned long handle = 0;
657         struct page *page;
658         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
659         struct zram_meta *meta = zram->meta;
660         struct zcomp_strm *zstrm = NULL;
661         unsigned long alloced_pages;
662
663         page = bvec->bv_page;
664         if (is_partial_io(bvec)) {
665                 /*
666                  * This is a partial IO. We need to read the full page
667                  * before to write the changes.
668                  */
669                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
670                 if (!uncmem) {
671                         ret = -ENOMEM;
672                         goto out;
673                 }
674                 ret = zram_decompress_page(zram, uncmem, index);
675                 if (ret)
676                         goto out;
677         }
678
679 compress_again:
680         user_mem = kmap_atomic(page);
681         if (is_partial_io(bvec)) {
682                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
683                        bvec->bv_len);
684                 kunmap_atomic(user_mem);
685                 user_mem = NULL;
686         } else {
687                 uncmem = user_mem;
688         }
689
690         if (page_zero_filled(uncmem)) {
691                 if (user_mem)
692                         kunmap_atomic(user_mem);
693                 /* Free memory associated with this sector now. */
694                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
695                 zram_free_page(zram, index);
696                 zram_set_flag(meta, index, ZRAM_ZERO);
697                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
698
699                 atomic64_inc(&zram->stats.zero_pages);
700                 ret = 0;
701                 goto out;
702         }
703
704         zstrm = zcomp_stream_get(zram->comp);
705         ret = zcomp_compress(zstrm, uncmem, &clen);
706         if (!is_partial_io(bvec)) {
707                 kunmap_atomic(user_mem);
708                 user_mem = NULL;
709                 uncmem = NULL;
710         }
711
712         if (unlikely(ret)) {
713                 pr_err("Compression failed! err=%d\n", ret);
714                 goto out;
715         }
716
717         src = zstrm->buffer;
718         if (unlikely(clen > max_zpage_size)) {
719                 clen = PAGE_SIZE;
720                 if (is_partial_io(bvec))
721                         src = uncmem;
722         }
723
724         /*
725          * handle allocation has 2 paths:
726          * a) fast path is executed with preemption disabled (for
727          *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
728          *  since we can't sleep;
729          * b) slow path enables preemption and attempts to allocate
730          *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
731          *  put per-cpu compression stream and, thus, to re-do
732          *  the compression once handle is allocated.
733          *
734          * if we have a 'non-null' handle here then we are coming
735          * from the slow path and handle has already been allocated.
736          */
737         if (!handle)
738                 handle = zs_malloc(meta->mem_pool, clen,
739                                 __GFP_KSWAPD_RECLAIM |
740                                 __GFP_NOWARN |
741                                 __GFP_HIGHMEM);
742         if (!handle) {
743                 zcomp_stream_put(zram->comp);
744                 zstrm = NULL;
745
746                 atomic64_inc(&zram->stats.writestall);
747
748                 handle = zs_malloc(meta->mem_pool, clen,
749                                 GFP_NOIO | __GFP_HIGHMEM);
750                 if (handle)
751                         goto compress_again;
752
753                 pr_err("Error allocating memory for compressed page: %u, size=%u\n",
754                         index, clen);
755                 ret = -ENOMEM;
756                 goto out;
757         }
758
759         alloced_pages = zs_get_total_pages(meta->mem_pool);
760         update_used_max(zram, alloced_pages);
761
762         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
763                 zs_free(meta->mem_pool, handle);
764                 ret = -ENOMEM;
765                 goto out;
766         }
767
768         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
769
770         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
771                 src = kmap_atomic(page);
772                 copy_page(cmem, src);
773                 kunmap_atomic(src);
774         } else {
775                 memcpy(cmem, src, clen);
776         }
777
778         zcomp_stream_put(zram->comp);
779         zstrm = NULL;
780         zs_unmap_object(meta->mem_pool, handle);
781
782         /*
783          * Free memory associated with this sector
784          * before overwriting unused sectors.
785          */
786         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
787         zram_free_page(zram, index);
788
789         meta->table[index].handle = handle;
790         zram_set_obj_size(meta, index, clen);
791         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
792
793         /* Update stats */
794         atomic64_add(clen, &zram->stats.compr_data_size);
795         atomic64_inc(&zram->stats.pages_stored);
796 out:
797         if (zstrm)
798                 zcomp_stream_put(zram->comp);
799         if (is_partial_io(bvec))
800                 kfree(uncmem);
801         return ret;
802 }
803
804 /*
805  * zram_bio_discard - handler on discard request
806  * @index: physical block index in PAGE_SIZE units
807  * @offset: byte offset within physical block
808  */
809 static void zram_bio_discard(struct zram *zram, u32 index,
810                              int offset, struct bio *bio)
811 {
812         size_t n = bio->bi_iter.bi_size;
813         struct zram_meta *meta = zram->meta;
814
815         /*
816          * zram manages data in physical block size units. Because logical block
817          * size isn't identical with physical block size on some arch, we
818          * could get a discard request pointing to a specific offset within a
819          * certain physical block.  Although we can handle this request by
820          * reading that physiclal block and decompressing and partially zeroing
821          * and re-compressing and then re-storing it, this isn't reasonable
822          * because our intent with a discard request is to save memory.  So
823          * skipping this logical block is appropriate here.
824          */
825         if (offset) {
826                 if (n <= (PAGE_SIZE - offset))
827                         return;
828
829                 n -= (PAGE_SIZE - offset);
830                 index++;
831         }
832
833         while (n >= PAGE_SIZE) {
834                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
835                 zram_free_page(zram, index);
836                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
837                 atomic64_inc(&zram->stats.notify_free);
838                 index++;
839                 n -= PAGE_SIZE;
840         }
841 }
842
843 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
844                         int offset, int rw)
845 {
846         unsigned long start_time = jiffies;
847         int ret;
848
849         generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
850                         &zram->disk->part0);
851
852         if (rw == READ) {
853                 atomic64_inc(&zram->stats.num_reads);
854                 ret = zram_bvec_read(zram, bvec, index, offset);
855         } else {
856                 atomic64_inc(&zram->stats.num_writes);
857                 ret = zram_bvec_write(zram, bvec, index, offset);
858         }
859
860         generic_end_io_acct(rw, &zram->disk->part0, start_time);
861
862         if (unlikely(ret)) {
863                 if (rw == READ)
864                         atomic64_inc(&zram->stats.failed_reads);
865                 else
866                         atomic64_inc(&zram->stats.failed_writes);
867         }
868
869         return ret;
870 }
871
872 static void __zram_make_request(struct zram *zram, struct bio *bio)
873 {
874         int offset, rw;
875         u32 index;
876         struct bio_vec bvec;
877         struct bvec_iter iter;
878
879         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
880         offset = (bio->bi_iter.bi_sector &
881                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
882
883         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
884                 zram_bio_discard(zram, index, offset, bio);
885                 bio_endio(bio);
886                 return;
887         }
888
889         rw = bio_data_dir(bio);
890         bio_for_each_segment(bvec, bio, iter) {
891                 int max_transfer_size = PAGE_SIZE - offset;
892
893                 if (bvec.bv_len > max_transfer_size) {
894                         /*
895                          * zram_bvec_rw() can only make operation on a single
896                          * zram page. Split the bio vector.
897                          */
898                         struct bio_vec bv;
899
900                         bv.bv_page = bvec.bv_page;
901                         bv.bv_len = max_transfer_size;
902                         bv.bv_offset = bvec.bv_offset;
903
904                         if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
905                                 goto out;
906
907                         bv.bv_len = bvec.bv_len - max_transfer_size;
908                         bv.bv_offset += max_transfer_size;
909                         if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
910                                 goto out;
911                 } else
912                         if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
913                                 goto out;
914
915                 update_position(&index, &offset, &bvec);
916         }
917
918         bio_endio(bio);
919         return;
920
921 out:
922         bio_io_error(bio);
923 }
924
925 /*
926  * Handler function for all zram I/O requests.
927  */
928 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
929 {
930         struct zram *zram = queue->queuedata;
931
932         if (unlikely(!zram_meta_get(zram)))
933                 goto error;
934
935         blk_queue_split(queue, &bio, queue->bio_split);
936
937         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
938                                         bio->bi_iter.bi_size)) {
939                 atomic64_inc(&zram->stats.invalid_io);
940                 goto put_zram;
941         }
942
943         __zram_make_request(zram, bio);
944         zram_meta_put(zram);
945         return BLK_QC_T_NONE;
946 put_zram:
947         zram_meta_put(zram);
948 error:
949         bio_io_error(bio);
950         return BLK_QC_T_NONE;
951 }
952
953 static void zram_slot_free_notify(struct block_device *bdev,
954                                 unsigned long index)
955 {
956         struct zram *zram;
957         struct zram_meta *meta;
958
959         zram = bdev->bd_disk->private_data;
960         meta = zram->meta;
961
962         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
963         zram_free_page(zram, index);
964         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
965         atomic64_inc(&zram->stats.notify_free);
966 }
967
968 static int zram_rw_page(struct block_device *bdev, sector_t sector,
969                        struct page *page, int rw)
970 {
971         int offset, err = -EIO;
972         u32 index;
973         struct zram *zram;
974         struct bio_vec bv;
975
976         zram = bdev->bd_disk->private_data;
977         if (unlikely(!zram_meta_get(zram)))
978                 goto out;
979
980         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
981                 atomic64_inc(&zram->stats.invalid_io);
982                 err = -EINVAL;
983                 goto put_zram;
984         }
985
986         index = sector >> SECTORS_PER_PAGE_SHIFT;
987         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
988
989         bv.bv_page = page;
990         bv.bv_len = PAGE_SIZE;
991         bv.bv_offset = 0;
992
993         err = zram_bvec_rw(zram, &bv, index, offset, rw);
994 put_zram:
995         zram_meta_put(zram);
996 out:
997         /*
998          * If I/O fails, just return error(ie, non-zero) without
999          * calling page_endio.
1000          * It causes resubmit the I/O with bio request by upper functions
1001          * of rw_page(e.g., swap_readpage, __swap_writepage) and
1002          * bio->bi_end_io does things to handle the error
1003          * (e.g., SetPageError, set_page_dirty and extra works).
1004          */
1005         if (err == 0)
1006                 page_endio(page, rw, 0);
1007         return err;
1008 }
1009
1010 static void zram_reset_device(struct zram *zram)
1011 {
1012         struct zram_meta *meta;
1013         struct zcomp *comp;
1014         u64 disksize;
1015
1016         down_write(&zram->init_lock);
1017
1018         zram->limit_pages = 0;
1019
1020         if (!init_done(zram)) {
1021                 up_write(&zram->init_lock);
1022                 return;
1023         }
1024
1025         meta = zram->meta;
1026         comp = zram->comp;
1027         disksize = zram->disksize;
1028         /*
1029          * Refcount will go down to 0 eventually and r/w handler
1030          * cannot handle further I/O so it will bail out by
1031          * check zram_meta_get.
1032          */
1033         zram_meta_put(zram);
1034         /*
1035          * We want to free zram_meta in process context to avoid
1036          * deadlock between reclaim path and any other locks.
1037          */
1038         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1039
1040         /* Reset stats */
1041         memset(&zram->stats, 0, sizeof(zram->stats));
1042         zram->disksize = 0;
1043
1044         set_capacity(zram->disk, 0);
1045         part_stat_set_all(&zram->disk->part0, 0);
1046
1047         up_write(&zram->init_lock);
1048         /* I/O operation under all of CPU are done so let's free */
1049         zram_meta_free(meta, disksize);
1050         zcomp_destroy(comp);
1051 }
1052
1053 static ssize_t disksize_store(struct device *dev,
1054                 struct device_attribute *attr, const char *buf, size_t len)
1055 {
1056         u64 disksize;
1057         struct zcomp *comp;
1058         struct zram_meta *meta;
1059         struct zram *zram = dev_to_zram(dev);
1060         int err;
1061
1062         disksize = memparse(buf, NULL);
1063         if (!disksize)
1064                 return -EINVAL;
1065
1066         disksize = PAGE_ALIGN(disksize);
1067         meta = zram_meta_alloc(zram->disk->disk_name, disksize);
1068         if (!meta)
1069                 return -ENOMEM;
1070
1071         comp = zcomp_create(zram->compressor);
1072         if (IS_ERR(comp)) {
1073                 pr_err("Cannot initialise %s compressing backend\n",
1074                                 zram->compressor);
1075                 err = PTR_ERR(comp);
1076                 goto out_free_meta;
1077         }
1078
1079         down_write(&zram->init_lock);
1080         if (init_done(zram)) {
1081                 pr_info("Cannot change disksize for initialized device\n");
1082                 err = -EBUSY;
1083                 goto out_destroy_comp;
1084         }
1085
1086         init_waitqueue_head(&zram->io_done);
1087         atomic_set(&zram->refcount, 1);
1088         zram->meta = meta;
1089         zram->comp = comp;
1090         zram->disksize = disksize;
1091         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1092         up_write(&zram->init_lock);
1093
1094         /*
1095          * Revalidate disk out of the init_lock to avoid lockdep splat.
1096          * It's okay because disk's capacity is protected by init_lock
1097          * so that revalidate_disk always sees up-to-date capacity.
1098          */
1099         revalidate_disk(zram->disk);
1100
1101         return len;
1102
1103 out_destroy_comp:
1104         up_write(&zram->init_lock);
1105         zcomp_destroy(comp);
1106 out_free_meta:
1107         zram_meta_free(meta, disksize);
1108         return err;
1109 }
1110
1111 static ssize_t reset_store(struct device *dev,
1112                 struct device_attribute *attr, const char *buf, size_t len)
1113 {
1114         int ret;
1115         unsigned short do_reset;
1116         struct zram *zram;
1117         struct block_device *bdev;
1118
1119         ret = kstrtou16(buf, 10, &do_reset);
1120         if (ret)
1121                 return ret;
1122
1123         if (!do_reset)
1124                 return -EINVAL;
1125
1126         zram = dev_to_zram(dev);
1127         bdev = bdget_disk(zram->disk, 0);
1128         if (!bdev)
1129                 return -ENOMEM;
1130
1131         mutex_lock(&bdev->bd_mutex);
1132         /* Do not reset an active device or claimed device */
1133         if (bdev->bd_openers || zram->claim) {
1134                 mutex_unlock(&bdev->bd_mutex);
1135                 bdput(bdev);
1136                 return -EBUSY;
1137         }
1138
1139         /* From now on, anyone can't open /dev/zram[0-9] */
1140         zram->claim = true;
1141         mutex_unlock(&bdev->bd_mutex);
1142
1143         /* Make sure all the pending I/O are finished */
1144         fsync_bdev(bdev);
1145         zram_reset_device(zram);
1146         revalidate_disk(zram->disk);
1147         bdput(bdev);
1148
1149         mutex_lock(&bdev->bd_mutex);
1150         zram->claim = false;
1151         mutex_unlock(&bdev->bd_mutex);
1152
1153         return len;
1154 }
1155
1156 static int zram_open(struct block_device *bdev, fmode_t mode)
1157 {
1158         int ret = 0;
1159         struct zram *zram;
1160
1161         WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1162
1163         zram = bdev->bd_disk->private_data;
1164         /* zram was claimed to reset so open request fails */
1165         if (zram->claim)
1166                 ret = -EBUSY;
1167
1168         return ret;
1169 }
1170
1171 static const struct block_device_operations zram_devops = {
1172         .open = zram_open,
1173         .swap_slot_free_notify = zram_slot_free_notify,
1174         .rw_page = zram_rw_page,
1175         .owner = THIS_MODULE
1176 };
1177
1178 static DEVICE_ATTR_WO(compact);
1179 static DEVICE_ATTR_RW(disksize);
1180 static DEVICE_ATTR_RO(initstate);
1181 static DEVICE_ATTR_WO(reset);
1182 static DEVICE_ATTR_RO(orig_data_size);
1183 static DEVICE_ATTR_RO(mem_used_total);
1184 static DEVICE_ATTR_RW(mem_limit);
1185 static DEVICE_ATTR_RW(mem_used_max);
1186 static DEVICE_ATTR_RW(max_comp_streams);
1187 static DEVICE_ATTR_RW(comp_algorithm);
1188
1189 static struct attribute *zram_disk_attrs[] = {
1190         &dev_attr_disksize.attr,
1191         &dev_attr_initstate.attr,
1192         &dev_attr_reset.attr,
1193         &dev_attr_num_reads.attr,
1194         &dev_attr_num_writes.attr,
1195         &dev_attr_failed_reads.attr,
1196         &dev_attr_failed_writes.attr,
1197         &dev_attr_compact.attr,
1198         &dev_attr_invalid_io.attr,
1199         &dev_attr_notify_free.attr,
1200         &dev_attr_zero_pages.attr,
1201         &dev_attr_orig_data_size.attr,
1202         &dev_attr_compr_data_size.attr,
1203         &dev_attr_mem_used_total.attr,
1204         &dev_attr_mem_limit.attr,
1205         &dev_attr_mem_used_max.attr,
1206         &dev_attr_max_comp_streams.attr,
1207         &dev_attr_comp_algorithm.attr,
1208         &dev_attr_io_stat.attr,
1209         &dev_attr_mm_stat.attr,
1210         &dev_attr_debug_stat.attr,
1211         NULL,
1212 };
1213
1214 static struct attribute_group zram_disk_attr_group = {
1215         .attrs = zram_disk_attrs,
1216 };
1217
1218 /*
1219  * Allocate and initialize new zram device. the function returns
1220  * '>= 0' device_id upon success, and negative value otherwise.
1221  */
1222 static int zram_add(void)
1223 {
1224         struct zram *zram;
1225         struct request_queue *queue;
1226         int ret, device_id;
1227
1228         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1229         if (!zram)
1230                 return -ENOMEM;
1231
1232         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1233         if (ret < 0)
1234                 goto out_free_dev;
1235         device_id = ret;
1236
1237         init_rwsem(&zram->init_lock);
1238
1239         queue = blk_alloc_queue(GFP_KERNEL);
1240         if (!queue) {
1241                 pr_err("Error allocating disk queue for device %d\n",
1242                         device_id);
1243                 ret = -ENOMEM;
1244                 goto out_free_idr;
1245         }
1246
1247         blk_queue_make_request(queue, zram_make_request);
1248
1249         /* gendisk structure */
1250         zram->disk = alloc_disk(1);
1251         if (!zram->disk) {
1252                 pr_err("Error allocating disk structure for device %d\n",
1253                         device_id);
1254                 ret = -ENOMEM;
1255                 goto out_free_queue;
1256         }
1257
1258         zram->disk->major = zram_major;
1259         zram->disk->first_minor = device_id;
1260         zram->disk->fops = &zram_devops;
1261         zram->disk->queue = queue;
1262         zram->disk->queue->queuedata = zram;
1263         zram->disk->private_data = zram;
1264         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1265
1266         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1267         set_capacity(zram->disk, 0);
1268         /* zram devices sort of resembles non-rotational disks */
1269         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1270         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1271         /*
1272          * To ensure that we always get PAGE_SIZE aligned
1273          * and n*PAGE_SIZED sized I/O requests.
1274          */
1275         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1276         blk_queue_logical_block_size(zram->disk->queue,
1277                                         ZRAM_LOGICAL_BLOCK_SIZE);
1278         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1279         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1280         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1281         blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1282         /*
1283          * zram_bio_discard() will clear all logical blocks if logical block
1284          * size is identical with physical block size(PAGE_SIZE). But if it is
1285          * different, we will skip discarding some parts of logical blocks in
1286          * the part of the request range which isn't aligned to physical block
1287          * size.  So we can't ensure that all discarded logical blocks are
1288          * zeroed.
1289          */
1290         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1291                 zram->disk->queue->limits.discard_zeroes_data = 1;
1292         else
1293                 zram->disk->queue->limits.discard_zeroes_data = 0;
1294         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1295
1296         add_disk(zram->disk);
1297
1298         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1299                                 &zram_disk_attr_group);
1300         if (ret < 0) {
1301                 pr_err("Error creating sysfs group for device %d\n",
1302                                 device_id);
1303                 goto out_free_disk;
1304         }
1305         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1306         zram->meta = NULL;
1307
1308         pr_info("Added device: %s\n", zram->disk->disk_name);
1309         return device_id;
1310
1311 out_free_disk:
1312         del_gendisk(zram->disk);
1313         put_disk(zram->disk);
1314 out_free_queue:
1315         blk_cleanup_queue(queue);
1316 out_free_idr:
1317         idr_remove(&zram_index_idr, device_id);
1318 out_free_dev:
1319         kfree(zram);
1320         return ret;
1321 }
1322
1323 static int zram_remove(struct zram *zram)
1324 {
1325         struct block_device *bdev;
1326
1327         bdev = bdget_disk(zram->disk, 0);
1328         if (!bdev)
1329                 return -ENOMEM;
1330
1331         mutex_lock(&bdev->bd_mutex);
1332         if (bdev->bd_openers || zram->claim) {
1333                 mutex_unlock(&bdev->bd_mutex);
1334                 bdput(bdev);
1335                 return -EBUSY;
1336         }
1337
1338         zram->claim = true;
1339         mutex_unlock(&bdev->bd_mutex);
1340
1341         /*
1342          * Remove sysfs first, so no one will perform a disksize
1343          * store while we destroy the devices. This also helps during
1344          * hot_remove -- zram_reset_device() is the last holder of
1345          * ->init_lock, no later/concurrent disksize_store() or any
1346          * other sysfs handlers are possible.
1347          */
1348         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1349                         &zram_disk_attr_group);
1350
1351         /* Make sure all the pending I/O are finished */
1352         fsync_bdev(bdev);
1353         zram_reset_device(zram);
1354         bdput(bdev);
1355
1356         pr_info("Removed device: %s\n", zram->disk->disk_name);
1357
1358         blk_cleanup_queue(zram->disk->queue);
1359         del_gendisk(zram->disk);
1360         put_disk(zram->disk);
1361         kfree(zram);
1362         return 0;
1363 }
1364
1365 /* zram-control sysfs attributes */
1366 static ssize_t hot_add_show(struct class *class,
1367                         struct class_attribute *attr,
1368                         char *buf)
1369 {
1370         int ret;
1371
1372         mutex_lock(&zram_index_mutex);
1373         ret = zram_add();
1374         mutex_unlock(&zram_index_mutex);
1375
1376         if (ret < 0)
1377                 return ret;
1378         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1379 }
1380
1381 static ssize_t hot_remove_store(struct class *class,
1382                         struct class_attribute *attr,
1383                         const char *buf,
1384                         size_t count)
1385 {
1386         struct zram *zram;
1387         int ret, dev_id;
1388
1389         /* dev_id is gendisk->first_minor, which is `int' */
1390         ret = kstrtoint(buf, 10, &dev_id);
1391         if (ret)
1392                 return ret;
1393         if (dev_id < 0)
1394                 return -EINVAL;
1395
1396         mutex_lock(&zram_index_mutex);
1397
1398         zram = idr_find(&zram_index_idr, dev_id);
1399         if (zram) {
1400                 ret = zram_remove(zram);
1401                 idr_remove(&zram_index_idr, dev_id);
1402         } else {
1403                 ret = -ENODEV;
1404         }
1405
1406         mutex_unlock(&zram_index_mutex);
1407         return ret ? ret : count;
1408 }
1409
1410 static struct class_attribute zram_control_class_attrs[] = {
1411         __ATTR_RO(hot_add),
1412         __ATTR_WO(hot_remove),
1413         __ATTR_NULL,
1414 };
1415
1416 static struct class zram_control_class = {
1417         .name           = "zram-control",
1418         .owner          = THIS_MODULE,
1419         .class_attrs    = zram_control_class_attrs,
1420 };
1421
1422 static int zram_remove_cb(int id, void *ptr, void *data)
1423 {
1424         zram_remove(ptr);
1425         return 0;
1426 }
1427
1428 static void destroy_devices(void)
1429 {
1430         class_unregister(&zram_control_class);
1431         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1432         idr_destroy(&zram_index_idr);
1433         unregister_blkdev(zram_major, "zram");
1434 }
1435
1436 static int __init zram_init(void)
1437 {
1438         int ret;
1439
1440         ret = class_register(&zram_control_class);
1441         if (ret) {
1442                 pr_err("Unable to register zram-control class\n");
1443                 return ret;
1444         }
1445
1446         zram_major = register_blkdev(0, "zram");
1447         if (zram_major <= 0) {
1448                 pr_err("Unable to get major number\n");
1449                 class_unregister(&zram_control_class);
1450                 return -EBUSY;
1451         }
1452
1453         while (num_devices != 0) {
1454                 mutex_lock(&zram_index_mutex);
1455                 ret = zram_add();
1456                 mutex_unlock(&zram_index_mutex);
1457                 if (ret < 0)
1458                         goto out_error;
1459                 num_devices--;
1460         }
1461
1462         return 0;
1463
1464 out_error:
1465         destroy_devices();
1466         return ret;
1467 }
1468
1469 static void __exit zram_exit(void)
1470 {
1471         destroy_devices();
1472 }
1473
1474 module_init(zram_init);
1475 module_exit(zram_exit);
1476
1477 module_param(num_devices, uint, 0);
1478 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1479
1480 MODULE_LICENSE("Dual BSD/GPL");
1481 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1482 MODULE_DESCRIPTION("Compressed RAM Block Device");