]> git.karo-electronics.de Git - linux-beck.git/blob - drivers/block/zram/zram_drv.c
d94696b28a852b8c974cd58a7515b1ad5a1ea051
[linux-beck.git] / drivers / block / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33
34 #include "zram_drv.h"
35
36 static DEFINE_IDR(zram_index_idr);
37 /* idr index must be protected */
38 static DEFINE_MUTEX(zram_index_mutex);
39
40 static int zram_major;
41 static const char *default_compressor = "lzo";
42
43 /* Module params (documentation at end) */
44 static unsigned int num_devices = 1;
45
46 static inline void deprecated_attr_warn(const char *name)
47 {
48         pr_warn_once("%d (%s) Attribute %s (and others) will be removed. %s\n",
49                         task_pid_nr(current),
50                         current->comm,
51                         name,
52                         "See zram documentation.");
53 }
54
55 #define ZRAM_ATTR_RO(name)                                              \
56 static ssize_t name##_show(struct device *d,                            \
57                                 struct device_attribute *attr, char *b) \
58 {                                                                       \
59         struct zram *zram = dev_to_zram(d);                             \
60                                                                         \
61         deprecated_attr_warn(__stringify(name));                        \
62         return scnprintf(b, PAGE_SIZE, "%llu\n",                        \
63                 (u64)atomic64_read(&zram->stats.name));                 \
64 }                                                                       \
65 static DEVICE_ATTR_RO(name);
66
67 static inline bool init_done(struct zram *zram)
68 {
69         return zram->disksize;
70 }
71
72 static inline struct zram *dev_to_zram(struct device *dev)
73 {
74         return (struct zram *)dev_to_disk(dev)->private_data;
75 }
76
77 /* flag operations require table entry bit_spin_lock() being held */
78 static int zram_test_flag(struct zram_meta *meta, u32 index,
79                         enum zram_pageflags flag)
80 {
81         return meta->table[index].value & BIT(flag);
82 }
83
84 static void zram_set_flag(struct zram_meta *meta, u32 index,
85                         enum zram_pageflags flag)
86 {
87         meta->table[index].value |= BIT(flag);
88 }
89
90 static void zram_clear_flag(struct zram_meta *meta, u32 index,
91                         enum zram_pageflags flag)
92 {
93         meta->table[index].value &= ~BIT(flag);
94 }
95
96 static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
97 {
98         return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
99 }
100
101 static void zram_set_obj_size(struct zram_meta *meta,
102                                         u32 index, size_t size)
103 {
104         unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
105
106         meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
107 }
108
109 static inline int is_partial_io(struct bio_vec *bvec)
110 {
111         return bvec->bv_len != PAGE_SIZE;
112 }
113
114 /*
115  * Check if request is within bounds and aligned on zram logical blocks.
116  */
117 static inline int valid_io_request(struct zram *zram,
118                 sector_t start, unsigned int size)
119 {
120         u64 end, bound;
121
122         /* unaligned request */
123         if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
124                 return 0;
125         if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
126                 return 0;
127
128         end = start + (size >> SECTOR_SHIFT);
129         bound = zram->disksize >> SECTOR_SHIFT;
130         /* out of range range */
131         if (unlikely(start >= bound || end > bound || start > end))
132                 return 0;
133
134         /* I/O request is valid */
135         return 1;
136 }
137
138 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
139 {
140         if (*offset + bvec->bv_len >= PAGE_SIZE)
141                 (*index)++;
142         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
143 }
144
145 static inline void update_used_max(struct zram *zram,
146                                         const unsigned long pages)
147 {
148         unsigned long old_max, cur_max;
149
150         old_max = atomic_long_read(&zram->stats.max_used_pages);
151
152         do {
153                 cur_max = old_max;
154                 if (pages > cur_max)
155                         old_max = atomic_long_cmpxchg(
156                                 &zram->stats.max_used_pages, cur_max, pages);
157         } while (old_max != cur_max);
158 }
159
160 static int page_zero_filled(void *ptr)
161 {
162         unsigned int pos;
163         unsigned long *page;
164
165         page = (unsigned long *)ptr;
166
167         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
168                 if (page[pos])
169                         return 0;
170         }
171
172         return 1;
173 }
174
175 static void handle_zero_page(struct bio_vec *bvec)
176 {
177         struct page *page = bvec->bv_page;
178         void *user_mem;
179
180         user_mem = kmap_atomic(page);
181         if (is_partial_io(bvec))
182                 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
183         else
184                 clear_page(user_mem);
185         kunmap_atomic(user_mem);
186
187         flush_dcache_page(page);
188 }
189
190 static ssize_t initstate_show(struct device *dev,
191                 struct device_attribute *attr, char *buf)
192 {
193         u32 val;
194         struct zram *zram = dev_to_zram(dev);
195
196         down_read(&zram->init_lock);
197         val = init_done(zram);
198         up_read(&zram->init_lock);
199
200         return scnprintf(buf, PAGE_SIZE, "%u\n", val);
201 }
202
203 static ssize_t disksize_show(struct device *dev,
204                 struct device_attribute *attr, char *buf)
205 {
206         struct zram *zram = dev_to_zram(dev);
207
208         return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
209 }
210
211 static ssize_t orig_data_size_show(struct device *dev,
212                 struct device_attribute *attr, char *buf)
213 {
214         struct zram *zram = dev_to_zram(dev);
215
216         deprecated_attr_warn("orig_data_size");
217         return scnprintf(buf, PAGE_SIZE, "%llu\n",
218                 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
219 }
220
221 static ssize_t mem_used_total_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         u64 val = 0;
225         struct zram *zram = dev_to_zram(dev);
226
227         deprecated_attr_warn("mem_used_total");
228         down_read(&zram->init_lock);
229         if (init_done(zram)) {
230                 struct zram_meta *meta = zram->meta;
231                 val = zs_get_total_pages(meta->mem_pool);
232         }
233         up_read(&zram->init_lock);
234
235         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
236 }
237
238 static ssize_t mem_limit_show(struct device *dev,
239                 struct device_attribute *attr, char *buf)
240 {
241         u64 val;
242         struct zram *zram = dev_to_zram(dev);
243
244         deprecated_attr_warn("mem_limit");
245         down_read(&zram->init_lock);
246         val = zram->limit_pages;
247         up_read(&zram->init_lock);
248
249         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
250 }
251
252 static ssize_t mem_limit_store(struct device *dev,
253                 struct device_attribute *attr, const char *buf, size_t len)
254 {
255         u64 limit;
256         char *tmp;
257         struct zram *zram = dev_to_zram(dev);
258
259         limit = memparse(buf, &tmp);
260         if (buf == tmp) /* no chars parsed, invalid input */
261                 return -EINVAL;
262
263         down_write(&zram->init_lock);
264         zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
265         up_write(&zram->init_lock);
266
267         return len;
268 }
269
270 static ssize_t mem_used_max_show(struct device *dev,
271                 struct device_attribute *attr, char *buf)
272 {
273         u64 val = 0;
274         struct zram *zram = dev_to_zram(dev);
275
276         deprecated_attr_warn("mem_used_max");
277         down_read(&zram->init_lock);
278         if (init_done(zram))
279                 val = atomic_long_read(&zram->stats.max_used_pages);
280         up_read(&zram->init_lock);
281
282         return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
283 }
284
285 static ssize_t mem_used_max_store(struct device *dev,
286                 struct device_attribute *attr, const char *buf, size_t len)
287 {
288         int err;
289         unsigned long val;
290         struct zram *zram = dev_to_zram(dev);
291
292         err = kstrtoul(buf, 10, &val);
293         if (err || val != 0)
294                 return -EINVAL;
295
296         down_read(&zram->init_lock);
297         if (init_done(zram)) {
298                 struct zram_meta *meta = zram->meta;
299                 atomic_long_set(&zram->stats.max_used_pages,
300                                 zs_get_total_pages(meta->mem_pool));
301         }
302         up_read(&zram->init_lock);
303
304         return len;
305 }
306
307 static ssize_t max_comp_streams_show(struct device *dev,
308                 struct device_attribute *attr, char *buf)
309 {
310         int val;
311         struct zram *zram = dev_to_zram(dev);
312
313         down_read(&zram->init_lock);
314         val = zram->max_comp_streams;
315         up_read(&zram->init_lock);
316
317         return scnprintf(buf, PAGE_SIZE, "%d\n", val);
318 }
319
320 static ssize_t max_comp_streams_store(struct device *dev,
321                 struct device_attribute *attr, const char *buf, size_t len)
322 {
323         int num;
324         struct zram *zram = dev_to_zram(dev);
325         int ret;
326
327         ret = kstrtoint(buf, 0, &num);
328         if (ret < 0)
329                 return ret;
330         if (num < 1)
331                 return -EINVAL;
332
333         down_write(&zram->init_lock);
334         if (init_done(zram)) {
335                 if (!zcomp_set_max_streams(zram->comp, num)) {
336                         pr_info("Cannot change max compression streams\n");
337                         ret = -EINVAL;
338                         goto out;
339                 }
340         }
341
342         zram->max_comp_streams = num;
343         ret = len;
344 out:
345         up_write(&zram->init_lock);
346         return ret;
347 }
348
349 static ssize_t comp_algorithm_show(struct device *dev,
350                 struct device_attribute *attr, char *buf)
351 {
352         size_t sz;
353         struct zram *zram = dev_to_zram(dev);
354
355         down_read(&zram->init_lock);
356         sz = zcomp_available_show(zram->compressor, buf);
357         up_read(&zram->init_lock);
358
359         return sz;
360 }
361
362 static ssize_t comp_algorithm_store(struct device *dev,
363                 struct device_attribute *attr, const char *buf, size_t len)
364 {
365         struct zram *zram = dev_to_zram(dev);
366         size_t sz;
367
368         down_write(&zram->init_lock);
369         if (init_done(zram)) {
370                 up_write(&zram->init_lock);
371                 pr_info("Can't change algorithm for initialized device\n");
372                 return -EBUSY;
373         }
374         strlcpy(zram->compressor, buf, sizeof(zram->compressor));
375
376         /* ignore trailing newline */
377         sz = strlen(zram->compressor);
378         if (sz > 0 && zram->compressor[sz - 1] == '\n')
379                 zram->compressor[sz - 1] = 0x00;
380
381         up_write(&zram->init_lock);
382         return len;
383 }
384
385 static ssize_t compact_store(struct device *dev,
386                 struct device_attribute *attr, const char *buf, size_t len)
387 {
388         unsigned long nr_migrated;
389         struct zram *zram = dev_to_zram(dev);
390         struct zram_meta *meta;
391
392         down_read(&zram->init_lock);
393         if (!init_done(zram)) {
394                 up_read(&zram->init_lock);
395                 return -EINVAL;
396         }
397
398         meta = zram->meta;
399         nr_migrated = zs_compact(meta->mem_pool);
400         atomic64_add(nr_migrated, &zram->stats.num_migrated);
401         up_read(&zram->init_lock);
402
403         return len;
404 }
405
406 static ssize_t io_stat_show(struct device *dev,
407                 struct device_attribute *attr, char *buf)
408 {
409         struct zram *zram = dev_to_zram(dev);
410         ssize_t ret;
411
412         down_read(&zram->init_lock);
413         ret = scnprintf(buf, PAGE_SIZE,
414                         "%8llu %8llu %8llu %8llu\n",
415                         (u64)atomic64_read(&zram->stats.failed_reads),
416                         (u64)atomic64_read(&zram->stats.failed_writes),
417                         (u64)atomic64_read(&zram->stats.invalid_io),
418                         (u64)atomic64_read(&zram->stats.notify_free));
419         up_read(&zram->init_lock);
420
421         return ret;
422 }
423
424 static ssize_t mm_stat_show(struct device *dev,
425                 struct device_attribute *attr, char *buf)
426 {
427         struct zram *zram = dev_to_zram(dev);
428         u64 orig_size, mem_used = 0;
429         long max_used;
430         ssize_t ret;
431
432         down_read(&zram->init_lock);
433         if (init_done(zram))
434                 mem_used = zs_get_total_pages(zram->meta->mem_pool);
435
436         orig_size = atomic64_read(&zram->stats.pages_stored);
437         max_used = atomic_long_read(&zram->stats.max_used_pages);
438
439         ret = scnprintf(buf, PAGE_SIZE,
440                         "%8llu %8llu %8llu %8lu %8ld %8llu %8llu\n",
441                         orig_size << PAGE_SHIFT,
442                         (u64)atomic64_read(&zram->stats.compr_data_size),
443                         mem_used << PAGE_SHIFT,
444                         zram->limit_pages << PAGE_SHIFT,
445                         max_used << PAGE_SHIFT,
446                         (u64)atomic64_read(&zram->stats.zero_pages),
447                         (u64)atomic64_read(&zram->stats.num_migrated));
448         up_read(&zram->init_lock);
449
450         return ret;
451 }
452
453 static DEVICE_ATTR_RO(io_stat);
454 static DEVICE_ATTR_RO(mm_stat);
455 ZRAM_ATTR_RO(num_reads);
456 ZRAM_ATTR_RO(num_writes);
457 ZRAM_ATTR_RO(failed_reads);
458 ZRAM_ATTR_RO(failed_writes);
459 ZRAM_ATTR_RO(invalid_io);
460 ZRAM_ATTR_RO(notify_free);
461 ZRAM_ATTR_RO(zero_pages);
462 ZRAM_ATTR_RO(compr_data_size);
463
464 static inline bool zram_meta_get(struct zram *zram)
465 {
466         if (atomic_inc_not_zero(&zram->refcount))
467                 return true;
468         return false;
469 }
470
471 static inline void zram_meta_put(struct zram *zram)
472 {
473         atomic_dec(&zram->refcount);
474 }
475
476 static void zram_meta_free(struct zram_meta *meta, u64 disksize)
477 {
478         size_t num_pages = disksize >> PAGE_SHIFT;
479         size_t index;
480
481         /* Free all pages that are still in this zram device */
482         for (index = 0; index < num_pages; index++) {
483                 unsigned long handle = meta->table[index].handle;
484
485                 if (!handle)
486                         continue;
487
488                 zs_free(meta->mem_pool, handle);
489         }
490
491         zs_destroy_pool(meta->mem_pool);
492         vfree(meta->table);
493         kfree(meta);
494 }
495
496 static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
497 {
498         size_t num_pages;
499         char pool_name[8];
500         struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
501
502         if (!meta)
503                 return NULL;
504
505         num_pages = disksize >> PAGE_SHIFT;
506         meta->table = vzalloc(num_pages * sizeof(*meta->table));
507         if (!meta->table) {
508                 pr_err("Error allocating zram address table\n");
509                 goto out_error;
510         }
511
512         snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
513         meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
514         if (!meta->mem_pool) {
515                 pr_err("Error creating memory pool\n");
516                 goto out_error;
517         }
518
519         return meta;
520
521 out_error:
522         vfree(meta->table);
523         kfree(meta);
524         return NULL;
525 }
526
527 /*
528  * To protect concurrent access to the same index entry,
529  * caller should hold this table index entry's bit_spinlock to
530  * indicate this index entry is accessing.
531  */
532 static void zram_free_page(struct zram *zram, size_t index)
533 {
534         struct zram_meta *meta = zram->meta;
535         unsigned long handle = meta->table[index].handle;
536
537         if (unlikely(!handle)) {
538                 /*
539                  * No memory is allocated for zero filled pages.
540                  * Simply clear zero page flag.
541                  */
542                 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
543                         zram_clear_flag(meta, index, ZRAM_ZERO);
544                         atomic64_dec(&zram->stats.zero_pages);
545                 }
546                 return;
547         }
548
549         zs_free(meta->mem_pool, handle);
550
551         atomic64_sub(zram_get_obj_size(meta, index),
552                         &zram->stats.compr_data_size);
553         atomic64_dec(&zram->stats.pages_stored);
554
555         meta->table[index].handle = 0;
556         zram_set_obj_size(meta, index, 0);
557 }
558
559 static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
560 {
561         int ret = 0;
562         unsigned char *cmem;
563         struct zram_meta *meta = zram->meta;
564         unsigned long handle;
565         size_t size;
566
567         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
568         handle = meta->table[index].handle;
569         size = zram_get_obj_size(meta, index);
570
571         if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
572                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
573                 clear_page(mem);
574                 return 0;
575         }
576
577         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
578         if (size == PAGE_SIZE)
579                 copy_page(mem, cmem);
580         else
581                 ret = zcomp_decompress(zram->comp, cmem, size, mem);
582         zs_unmap_object(meta->mem_pool, handle);
583         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
584
585         /* Should NEVER happen. Return bio error if it does. */
586         if (unlikely(ret)) {
587                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
588                 return ret;
589         }
590
591         return 0;
592 }
593
594 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
595                           u32 index, int offset)
596 {
597         int ret;
598         struct page *page;
599         unsigned char *user_mem, *uncmem = NULL;
600         struct zram_meta *meta = zram->meta;
601         page = bvec->bv_page;
602
603         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
604         if (unlikely(!meta->table[index].handle) ||
605                         zram_test_flag(meta, index, ZRAM_ZERO)) {
606                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
607                 handle_zero_page(bvec);
608                 return 0;
609         }
610         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
611
612         if (is_partial_io(bvec))
613                 /* Use  a temporary buffer to decompress the page */
614                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
615
616         user_mem = kmap_atomic(page);
617         if (!is_partial_io(bvec))
618                 uncmem = user_mem;
619
620         if (!uncmem) {
621                 pr_info("Unable to allocate temp memory\n");
622                 ret = -ENOMEM;
623                 goto out_cleanup;
624         }
625
626         ret = zram_decompress_page(zram, uncmem, index);
627         /* Should NEVER happen. Return bio error if it does. */
628         if (unlikely(ret))
629                 goto out_cleanup;
630
631         if (is_partial_io(bvec))
632                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
633                                 bvec->bv_len);
634
635         flush_dcache_page(page);
636         ret = 0;
637 out_cleanup:
638         kunmap_atomic(user_mem);
639         if (is_partial_io(bvec))
640                 kfree(uncmem);
641         return ret;
642 }
643
644 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
645                            int offset)
646 {
647         int ret = 0;
648         size_t clen;
649         unsigned long handle;
650         struct page *page;
651         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
652         struct zram_meta *meta = zram->meta;
653         struct zcomp_strm *zstrm = NULL;
654         unsigned long alloced_pages;
655
656         page = bvec->bv_page;
657         if (is_partial_io(bvec)) {
658                 /*
659                  * This is a partial IO. We need to read the full page
660                  * before to write the changes.
661                  */
662                 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
663                 if (!uncmem) {
664                         ret = -ENOMEM;
665                         goto out;
666                 }
667                 ret = zram_decompress_page(zram, uncmem, index);
668                 if (ret)
669                         goto out;
670         }
671
672         zstrm = zcomp_strm_find(zram->comp);
673         user_mem = kmap_atomic(page);
674
675         if (is_partial_io(bvec)) {
676                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
677                        bvec->bv_len);
678                 kunmap_atomic(user_mem);
679                 user_mem = NULL;
680         } else {
681                 uncmem = user_mem;
682         }
683
684         if (page_zero_filled(uncmem)) {
685                 if (user_mem)
686                         kunmap_atomic(user_mem);
687                 /* Free memory associated with this sector now. */
688                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
689                 zram_free_page(zram, index);
690                 zram_set_flag(meta, index, ZRAM_ZERO);
691                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
692
693                 atomic64_inc(&zram->stats.zero_pages);
694                 ret = 0;
695                 goto out;
696         }
697
698         ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
699         if (!is_partial_io(bvec)) {
700                 kunmap_atomic(user_mem);
701                 user_mem = NULL;
702                 uncmem = NULL;
703         }
704
705         if (unlikely(ret)) {
706                 pr_err("Compression failed! err=%d\n", ret);
707                 goto out;
708         }
709         src = zstrm->buffer;
710         if (unlikely(clen > max_zpage_size)) {
711                 clen = PAGE_SIZE;
712                 if (is_partial_io(bvec))
713                         src = uncmem;
714         }
715
716         handle = zs_malloc(meta->mem_pool, clen);
717         if (!handle) {
718                 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
719                         index, clen);
720                 ret = -ENOMEM;
721                 goto out;
722         }
723
724         alloced_pages = zs_get_total_pages(meta->mem_pool);
725         if (zram->limit_pages && alloced_pages > zram->limit_pages) {
726                 zs_free(meta->mem_pool, handle);
727                 ret = -ENOMEM;
728                 goto out;
729         }
730
731         update_used_max(zram, alloced_pages);
732
733         cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
734
735         if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
736                 src = kmap_atomic(page);
737                 copy_page(cmem, src);
738                 kunmap_atomic(src);
739         } else {
740                 memcpy(cmem, src, clen);
741         }
742
743         zcomp_strm_release(zram->comp, zstrm);
744         zstrm = NULL;
745         zs_unmap_object(meta->mem_pool, handle);
746
747         /*
748          * Free memory associated with this sector
749          * before overwriting unused sectors.
750          */
751         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
752         zram_free_page(zram, index);
753
754         meta->table[index].handle = handle;
755         zram_set_obj_size(meta, index, clen);
756         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
757
758         /* Update stats */
759         atomic64_add(clen, &zram->stats.compr_data_size);
760         atomic64_inc(&zram->stats.pages_stored);
761 out:
762         if (zstrm)
763                 zcomp_strm_release(zram->comp, zstrm);
764         if (is_partial_io(bvec))
765                 kfree(uncmem);
766         return ret;
767 }
768
769 /*
770  * zram_bio_discard - handler on discard request
771  * @index: physical block index in PAGE_SIZE units
772  * @offset: byte offset within physical block
773  */
774 static void zram_bio_discard(struct zram *zram, u32 index,
775                              int offset, struct bio *bio)
776 {
777         size_t n = bio->bi_iter.bi_size;
778         struct zram_meta *meta = zram->meta;
779
780         /*
781          * zram manages data in physical block size units. Because logical block
782          * size isn't identical with physical block size on some arch, we
783          * could get a discard request pointing to a specific offset within a
784          * certain physical block.  Although we can handle this request by
785          * reading that physiclal block and decompressing and partially zeroing
786          * and re-compressing and then re-storing it, this isn't reasonable
787          * because our intent with a discard request is to save memory.  So
788          * skipping this logical block is appropriate here.
789          */
790         if (offset) {
791                 if (n <= (PAGE_SIZE - offset))
792                         return;
793
794                 n -= (PAGE_SIZE - offset);
795                 index++;
796         }
797
798         while (n >= PAGE_SIZE) {
799                 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
800                 zram_free_page(zram, index);
801                 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
802                 atomic64_inc(&zram->stats.notify_free);
803                 index++;
804                 n -= PAGE_SIZE;
805         }
806 }
807
808 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
809                         int offset, int rw)
810 {
811         unsigned long start_time = jiffies;
812         int ret;
813
814         generic_start_io_acct(rw, bvec->bv_len >> SECTOR_SHIFT,
815                         &zram->disk->part0);
816
817         if (rw == READ) {
818                 atomic64_inc(&zram->stats.num_reads);
819                 ret = zram_bvec_read(zram, bvec, index, offset);
820         } else {
821                 atomic64_inc(&zram->stats.num_writes);
822                 ret = zram_bvec_write(zram, bvec, index, offset);
823         }
824
825         generic_end_io_acct(rw, &zram->disk->part0, start_time);
826
827         if (unlikely(ret)) {
828                 if (rw == READ)
829                         atomic64_inc(&zram->stats.failed_reads);
830                 else
831                         atomic64_inc(&zram->stats.failed_writes);
832         }
833
834         return ret;
835 }
836
837 static void __zram_make_request(struct zram *zram, struct bio *bio)
838 {
839         int offset, rw;
840         u32 index;
841         struct bio_vec bvec;
842         struct bvec_iter iter;
843
844         index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
845         offset = (bio->bi_iter.bi_sector &
846                   (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
847
848         if (unlikely(bio->bi_rw & REQ_DISCARD)) {
849                 zram_bio_discard(zram, index, offset, bio);
850                 bio_endio(bio, 0);
851                 return;
852         }
853
854         rw = bio_data_dir(bio);
855         bio_for_each_segment(bvec, bio, iter) {
856                 int max_transfer_size = PAGE_SIZE - offset;
857
858                 if (bvec.bv_len > max_transfer_size) {
859                         /*
860                          * zram_bvec_rw() can only make operation on a single
861                          * zram page. Split the bio vector.
862                          */
863                         struct bio_vec bv;
864
865                         bv.bv_page = bvec.bv_page;
866                         bv.bv_len = max_transfer_size;
867                         bv.bv_offset = bvec.bv_offset;
868
869                         if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
870                                 goto out;
871
872                         bv.bv_len = bvec.bv_len - max_transfer_size;
873                         bv.bv_offset += max_transfer_size;
874                         if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
875                                 goto out;
876                 } else
877                         if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
878                                 goto out;
879
880                 update_position(&index, &offset, &bvec);
881         }
882
883         set_bit(BIO_UPTODATE, &bio->bi_flags);
884         bio_endio(bio, 0);
885         return;
886
887 out:
888         bio_io_error(bio);
889 }
890
891 /*
892  * Handler function for all zram I/O requests.
893  */
894 static void zram_make_request(struct request_queue *queue, struct bio *bio)
895 {
896         struct zram *zram = queue->queuedata;
897
898         if (unlikely(!zram_meta_get(zram)))
899                 goto error;
900
901         if (!valid_io_request(zram, bio->bi_iter.bi_sector,
902                                         bio->bi_iter.bi_size)) {
903                 atomic64_inc(&zram->stats.invalid_io);
904                 goto put_zram;
905         }
906
907         __zram_make_request(zram, bio);
908         zram_meta_put(zram);
909         return;
910 put_zram:
911         zram_meta_put(zram);
912 error:
913         bio_io_error(bio);
914 }
915
916 static void zram_slot_free_notify(struct block_device *bdev,
917                                 unsigned long index)
918 {
919         struct zram *zram;
920         struct zram_meta *meta;
921
922         zram = bdev->bd_disk->private_data;
923         meta = zram->meta;
924
925         bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
926         zram_free_page(zram, index);
927         bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
928         atomic64_inc(&zram->stats.notify_free);
929 }
930
931 static int zram_rw_page(struct block_device *bdev, sector_t sector,
932                        struct page *page, int rw)
933 {
934         int offset, err = -EIO;
935         u32 index;
936         struct zram *zram;
937         struct bio_vec bv;
938
939         zram = bdev->bd_disk->private_data;
940         if (unlikely(!zram_meta_get(zram)))
941                 goto out;
942
943         if (!valid_io_request(zram, sector, PAGE_SIZE)) {
944                 atomic64_inc(&zram->stats.invalid_io);
945                 err = -EINVAL;
946                 goto put_zram;
947         }
948
949         index = sector >> SECTORS_PER_PAGE_SHIFT;
950         offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
951
952         bv.bv_page = page;
953         bv.bv_len = PAGE_SIZE;
954         bv.bv_offset = 0;
955
956         err = zram_bvec_rw(zram, &bv, index, offset, rw);
957 put_zram:
958         zram_meta_put(zram);
959 out:
960         /*
961          * If I/O fails, just return error(ie, non-zero) without
962          * calling page_endio.
963          * It causes resubmit the I/O with bio request by upper functions
964          * of rw_page(e.g., swap_readpage, __swap_writepage) and
965          * bio->bi_end_io does things to handle the error
966          * (e.g., SetPageError, set_page_dirty and extra works).
967          */
968         if (err == 0)
969                 page_endio(page, rw, 0);
970         return err;
971 }
972
973 static void zram_reset_device(struct zram *zram)
974 {
975         struct zram_meta *meta;
976         struct zcomp *comp;
977         u64 disksize;
978
979         down_write(&zram->init_lock);
980
981         zram->limit_pages = 0;
982
983         if (!init_done(zram)) {
984                 up_write(&zram->init_lock);
985                 return;
986         }
987
988         meta = zram->meta;
989         comp = zram->comp;
990         disksize = zram->disksize;
991         /*
992          * Refcount will go down to 0 eventually and r/w handler
993          * cannot handle further I/O so it will bail out by
994          * check zram_meta_get.
995          */
996         zram_meta_put(zram);
997         /*
998          * We want to free zram_meta in process context to avoid
999          * deadlock between reclaim path and any other locks.
1000          */
1001         wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
1002
1003         /* Reset stats */
1004         memset(&zram->stats, 0, sizeof(zram->stats));
1005         zram->disksize = 0;
1006         zram->max_comp_streams = 1;
1007
1008         set_capacity(zram->disk, 0);
1009         part_stat_set_all(&zram->disk->part0, 0);
1010
1011         up_write(&zram->init_lock);
1012         /* I/O operation under all of CPU are done so let's free */
1013         zram_meta_free(meta, disksize);
1014         zcomp_destroy(comp);
1015 }
1016
1017 static ssize_t disksize_store(struct device *dev,
1018                 struct device_attribute *attr, const char *buf, size_t len)
1019 {
1020         u64 disksize;
1021         struct zcomp *comp;
1022         struct zram_meta *meta;
1023         struct zram *zram = dev_to_zram(dev);
1024         int err;
1025
1026         disksize = memparse(buf, NULL);
1027         if (!disksize)
1028                 return -EINVAL;
1029
1030         disksize = PAGE_ALIGN(disksize);
1031         meta = zram_meta_alloc(zram->disk->first_minor, disksize);
1032         if (!meta)
1033                 return -ENOMEM;
1034
1035         comp = zcomp_create(zram->compressor, zram->max_comp_streams);
1036         if (IS_ERR(comp)) {
1037                 pr_info("Cannot initialise %s compressing backend\n",
1038                                 zram->compressor);
1039                 err = PTR_ERR(comp);
1040                 goto out_free_meta;
1041         }
1042
1043         down_write(&zram->init_lock);
1044         if (init_done(zram)) {
1045                 pr_info("Cannot change disksize for initialized device\n");
1046                 err = -EBUSY;
1047                 goto out_destroy_comp;
1048         }
1049
1050         init_waitqueue_head(&zram->io_done);
1051         atomic_set(&zram->refcount, 1);
1052         zram->meta = meta;
1053         zram->comp = comp;
1054         zram->disksize = disksize;
1055         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1056         up_write(&zram->init_lock);
1057
1058         /*
1059          * Revalidate disk out of the init_lock to avoid lockdep splat.
1060          * It's okay because disk's capacity is protected by init_lock
1061          * so that revalidate_disk always sees up-to-date capacity.
1062          */
1063         revalidate_disk(zram->disk);
1064
1065         return len;
1066
1067 out_destroy_comp:
1068         up_write(&zram->init_lock);
1069         zcomp_destroy(comp);
1070 out_free_meta:
1071         zram_meta_free(meta, disksize);
1072         return err;
1073 }
1074
1075 static ssize_t reset_store(struct device *dev,
1076                 struct device_attribute *attr, const char *buf, size_t len)
1077 {
1078         int ret;
1079         unsigned short do_reset;
1080         struct zram *zram;
1081         struct block_device *bdev;
1082
1083         ret = kstrtou16(buf, 10, &do_reset);
1084         if (ret)
1085                 return ret;
1086
1087         if (!do_reset)
1088                 return -EINVAL;
1089
1090         zram = dev_to_zram(dev);
1091         bdev = bdget_disk(zram->disk, 0);
1092         if (!bdev)
1093                 return -ENOMEM;
1094
1095         mutex_lock(&bdev->bd_mutex);
1096         /* Do not reset an active device or claimed device */
1097         if (bdev->bd_openers || zram->claim) {
1098                 mutex_unlock(&bdev->bd_mutex);
1099                 bdput(bdev);
1100                 return -EBUSY;
1101         }
1102
1103         /* From now on, anyone can't open /dev/zram[0-9] */
1104         zram->claim = true;
1105         mutex_unlock(&bdev->bd_mutex);
1106
1107         /* Make sure all the pending I/O are finished */
1108         fsync_bdev(bdev);
1109         zram_reset_device(zram);
1110         revalidate_disk(zram->disk);
1111         bdput(bdev);
1112
1113         mutex_lock(&bdev->bd_mutex);
1114         zram->claim = false;
1115         mutex_unlock(&bdev->bd_mutex);
1116
1117         return len;
1118 }
1119
1120 static int zram_open(struct block_device *bdev, fmode_t mode)
1121 {
1122         int ret = 0;
1123         struct zram *zram;
1124
1125         WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1126
1127         zram = bdev->bd_disk->private_data;
1128         /* zram was claimed to reset so open request fails */
1129         if (zram->claim)
1130                 ret = -EBUSY;
1131
1132         return ret;
1133 }
1134
1135 static const struct block_device_operations zram_devops = {
1136         .open = zram_open,
1137         .swap_slot_free_notify = zram_slot_free_notify,
1138         .rw_page = zram_rw_page,
1139         .owner = THIS_MODULE
1140 };
1141
1142 static DEVICE_ATTR_WO(compact);
1143 static DEVICE_ATTR_RW(disksize);
1144 static DEVICE_ATTR_RO(initstate);
1145 static DEVICE_ATTR_WO(reset);
1146 static DEVICE_ATTR_RO(orig_data_size);
1147 static DEVICE_ATTR_RO(mem_used_total);
1148 static DEVICE_ATTR_RW(mem_limit);
1149 static DEVICE_ATTR_RW(mem_used_max);
1150 static DEVICE_ATTR_RW(max_comp_streams);
1151 static DEVICE_ATTR_RW(comp_algorithm);
1152
1153 static struct attribute *zram_disk_attrs[] = {
1154         &dev_attr_disksize.attr,
1155         &dev_attr_initstate.attr,
1156         &dev_attr_reset.attr,
1157         &dev_attr_num_reads.attr,
1158         &dev_attr_num_writes.attr,
1159         &dev_attr_failed_reads.attr,
1160         &dev_attr_failed_writes.attr,
1161         &dev_attr_compact.attr,
1162         &dev_attr_invalid_io.attr,
1163         &dev_attr_notify_free.attr,
1164         &dev_attr_zero_pages.attr,
1165         &dev_attr_orig_data_size.attr,
1166         &dev_attr_compr_data_size.attr,
1167         &dev_attr_mem_used_total.attr,
1168         &dev_attr_mem_limit.attr,
1169         &dev_attr_mem_used_max.attr,
1170         &dev_attr_max_comp_streams.attr,
1171         &dev_attr_comp_algorithm.attr,
1172         &dev_attr_io_stat.attr,
1173         &dev_attr_mm_stat.attr,
1174         NULL,
1175 };
1176
1177 static struct attribute_group zram_disk_attr_group = {
1178         .attrs = zram_disk_attrs,
1179 };
1180
1181 /*
1182  * Allocate and initialize new zram device. the function returns
1183  * '>= 0' device_id upon success, and negative value otherwise.
1184  */
1185 static int zram_add(void)
1186 {
1187         struct zram *zram;
1188         struct request_queue *queue;
1189         int ret, device_id;
1190
1191         zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1192         if (!zram)
1193                 return -ENOMEM;
1194
1195         ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1196         if (ret < 0)
1197                 goto out_free_dev;
1198         device_id = ret;
1199
1200         init_rwsem(&zram->init_lock);
1201
1202         queue = blk_alloc_queue(GFP_KERNEL);
1203         if (!queue) {
1204                 pr_err("Error allocating disk queue for device %d\n",
1205                         device_id);
1206                 ret = -ENOMEM;
1207                 goto out_free_idr;
1208         }
1209
1210         blk_queue_make_request(queue, zram_make_request);
1211
1212         /* gendisk structure */
1213         zram->disk = alloc_disk(1);
1214         if (!zram->disk) {
1215                 pr_warn("Error allocating disk structure for device %d\n",
1216                         device_id);
1217                 ret = -ENOMEM;
1218                 goto out_free_queue;
1219         }
1220
1221         zram->disk->major = zram_major;
1222         zram->disk->first_minor = device_id;
1223         zram->disk->fops = &zram_devops;
1224         zram->disk->queue = queue;
1225         zram->disk->queue->queuedata = zram;
1226         zram->disk->private_data = zram;
1227         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1228
1229         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1230         set_capacity(zram->disk, 0);
1231         /* zram devices sort of resembles non-rotational disks */
1232         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
1233         queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1234         /*
1235          * To ensure that we always get PAGE_SIZE aligned
1236          * and n*PAGE_SIZED sized I/O requests.
1237          */
1238         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1239         blk_queue_logical_block_size(zram->disk->queue,
1240                                         ZRAM_LOGICAL_BLOCK_SIZE);
1241         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1242         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1243         zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1244         zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1245         /*
1246          * zram_bio_discard() will clear all logical blocks if logical block
1247          * size is identical with physical block size(PAGE_SIZE). But if it is
1248          * different, we will skip discarding some parts of logical blocks in
1249          * the part of the request range which isn't aligned to physical block
1250          * size.  So we can't ensure that all discarded logical blocks are
1251          * zeroed.
1252          */
1253         if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1254                 zram->disk->queue->limits.discard_zeroes_data = 1;
1255         else
1256                 zram->disk->queue->limits.discard_zeroes_data = 0;
1257         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
1258
1259         add_disk(zram->disk);
1260
1261         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1262                                 &zram_disk_attr_group);
1263         if (ret < 0) {
1264                 pr_warn("Error creating sysfs group");
1265                 goto out_free_disk;
1266         }
1267         strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1268         zram->meta = NULL;
1269         zram->max_comp_streams = 1;
1270
1271         pr_info("Added device: %s\n", zram->disk->disk_name);
1272         return device_id;
1273
1274 out_free_disk:
1275         del_gendisk(zram->disk);
1276         put_disk(zram->disk);
1277 out_free_queue:
1278         blk_cleanup_queue(queue);
1279 out_free_idr:
1280         idr_remove(&zram_index_idr, device_id);
1281 out_free_dev:
1282         kfree(zram);
1283         return ret;
1284 }
1285
1286 static int zram_remove(struct zram *zram)
1287 {
1288         struct block_device *bdev;
1289
1290         bdev = bdget_disk(zram->disk, 0);
1291         if (!bdev)
1292                 return -ENOMEM;
1293
1294         mutex_lock(&bdev->bd_mutex);
1295         if (bdev->bd_openers || zram->claim) {
1296                 mutex_unlock(&bdev->bd_mutex);
1297                 bdput(bdev);
1298                 return -EBUSY;
1299         }
1300
1301         zram->claim = true;
1302         mutex_unlock(&bdev->bd_mutex);
1303
1304         /*
1305          * Remove sysfs first, so no one will perform a disksize
1306          * store while we destroy the devices. This also helps during
1307          * hot_remove -- zram_reset_device() is the last holder of
1308          * ->init_lock, no later/concurrent disksize_store() or any
1309          * other sysfs handlers are possible.
1310          */
1311         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1312                         &zram_disk_attr_group);
1313
1314         /* Make sure all the pending I/O are finished */
1315         fsync_bdev(bdev);
1316         zram_reset_device(zram);
1317         bdput(bdev);
1318
1319         pr_info("Removed device: %s\n", zram->disk->disk_name);
1320
1321         idr_remove(&zram_index_idr, zram->disk->first_minor);
1322         blk_cleanup_queue(zram->disk->queue);
1323         del_gendisk(zram->disk);
1324         put_disk(zram->disk);
1325         kfree(zram);
1326         return 0;
1327 }
1328
1329 /* zram-control sysfs attributes */
1330 static ssize_t hot_add_show(struct class *class,
1331                         struct class_attribute *attr,
1332                         char *buf)
1333 {
1334         int ret;
1335
1336         mutex_lock(&zram_index_mutex);
1337         ret = zram_add();
1338         mutex_unlock(&zram_index_mutex);
1339
1340         if (ret < 0)
1341                 return ret;
1342         return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1343 }
1344
1345 static ssize_t hot_remove_store(struct class *class,
1346                         struct class_attribute *attr,
1347                         const char *buf,
1348                         size_t count)
1349 {
1350         struct zram *zram;
1351         int ret, dev_id;
1352
1353         /* dev_id is gendisk->first_minor, which is `int' */
1354         ret = kstrtoint(buf, 10, &dev_id);
1355         if (ret)
1356                 return ret;
1357         if (dev_id < 0)
1358                 return -EINVAL;
1359
1360         mutex_lock(&zram_index_mutex);
1361
1362         zram = idr_find(&zram_index_idr, dev_id);
1363         if (zram)
1364                 ret = zram_remove(zram);
1365         else
1366                 ret = -ENODEV;
1367
1368         mutex_unlock(&zram_index_mutex);
1369         return ret ? ret : count;
1370 }
1371
1372 static struct class_attribute zram_control_class_attrs[] = {
1373         __ATTR_RO(hot_add),
1374         __ATTR_WO(hot_remove),
1375         __ATTR_NULL,
1376 };
1377
1378 static struct class zram_control_class = {
1379         .name           = "zram-control",
1380         .owner          = THIS_MODULE,
1381         .class_attrs    = zram_control_class_attrs,
1382 };
1383
1384 static int zram_remove_cb(int id, void *ptr, void *data)
1385 {
1386         zram_remove(ptr);
1387         return 0;
1388 }
1389
1390 static void destroy_devices(void)
1391 {
1392         class_unregister(&zram_control_class);
1393         idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1394         idr_destroy(&zram_index_idr);
1395         unregister_blkdev(zram_major, "zram");
1396 }
1397
1398 static int __init zram_init(void)
1399 {
1400         int ret;
1401
1402         ret = class_register(&zram_control_class);
1403         if (ret) {
1404                 pr_warn("Unable to register zram-control class\n");
1405                 return ret;
1406         }
1407
1408         zram_major = register_blkdev(0, "zram");
1409         if (zram_major <= 0) {
1410                 pr_warn("Unable to get major number\n");
1411                 class_unregister(&zram_control_class);
1412                 return -EBUSY;
1413         }
1414
1415         while (num_devices != 0) {
1416                 mutex_lock(&zram_index_mutex);
1417                 ret = zram_add();
1418                 mutex_unlock(&zram_index_mutex);
1419                 if (ret < 0)
1420                         goto out_error;
1421                 num_devices--;
1422         }
1423
1424         return 0;
1425
1426 out_error:
1427         destroy_devices();
1428         return ret;
1429 }
1430
1431 static void __exit zram_exit(void)
1432 {
1433         destroy_devices();
1434 }
1435
1436 module_init(zram_init);
1437 module_exit(zram_exit);
1438
1439 module_param(num_devices, uint, 0);
1440 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1441
1442 MODULE_LICENSE("Dual BSD/GPL");
1443 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1444 MODULE_DESCRIPTION("Compressed RAM Block Device");