]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/bluetooth/hci_intel.c
PCI: rockchip: Check for clk_prepare_enable() errors during resume
[karo-tx-linux.git] / drivers / bluetooth / hci_intel.c
1 /*
2  *
3  *  Bluetooth HCI UART driver for Intel devices
4  *
5  *  Copyright (C) 2015  Intel Corporation
6  *
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  *
22  */
23
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/skbuff.h>
27 #include <linux/firmware.h>
28 #include <linux/module.h>
29 #include <linux/wait.h>
30 #include <linux/tty.h>
31 #include <linux/platform_device.h>
32 #include <linux/gpio/consumer.h>
33 #include <linux/acpi.h>
34 #include <linux/interrupt.h>
35 #include <linux/pm_runtime.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39
40 #include "hci_uart.h"
41 #include "btintel.h"
42
43 #define STATE_BOOTLOADER        0
44 #define STATE_DOWNLOADING       1
45 #define STATE_FIRMWARE_LOADED   2
46 #define STATE_FIRMWARE_FAILED   3
47 #define STATE_BOOTING           4
48 #define STATE_LPM_ENABLED       5
49 #define STATE_TX_ACTIVE         6
50 #define STATE_SUSPENDED         7
51 #define STATE_LPM_TRANSACTION   8
52
53 #define HCI_LPM_WAKE_PKT 0xf0
54 #define HCI_LPM_PKT 0xf1
55 #define HCI_LPM_MAX_SIZE 10
56 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
57
58 #define LPM_OP_TX_NOTIFY 0x00
59 #define LPM_OP_SUSPEND_ACK 0x02
60 #define LPM_OP_RESUME_ACK 0x03
61
62 #define LPM_SUSPEND_DELAY_MS 1000
63
64 struct hci_lpm_pkt {
65         __u8 opcode;
66         __u8 dlen;
67         __u8 data[0];
68 } __packed;
69
70 struct intel_device {
71         struct list_head list;
72         struct platform_device *pdev;
73         struct gpio_desc *reset;
74         struct hci_uart *hu;
75         struct mutex hu_lock;
76         int irq;
77 };
78
79 static LIST_HEAD(intel_device_list);
80 static DEFINE_MUTEX(intel_device_list_lock);
81
82 struct intel_data {
83         struct sk_buff *rx_skb;
84         struct sk_buff_head txq;
85         struct work_struct busy_work;
86         struct hci_uart *hu;
87         unsigned long flags;
88 };
89
90 static u8 intel_convert_speed(unsigned int speed)
91 {
92         switch (speed) {
93         case 9600:
94                 return 0x00;
95         case 19200:
96                 return 0x01;
97         case 38400:
98                 return 0x02;
99         case 57600:
100                 return 0x03;
101         case 115200:
102                 return 0x04;
103         case 230400:
104                 return 0x05;
105         case 460800:
106                 return 0x06;
107         case 921600:
108                 return 0x07;
109         case 1843200:
110                 return 0x08;
111         case 3250000:
112                 return 0x09;
113         case 2000000:
114                 return 0x0a;
115         case 3000000:
116                 return 0x0b;
117         default:
118                 return 0xff;
119         }
120 }
121
122 static int intel_wait_booting(struct hci_uart *hu)
123 {
124         struct intel_data *intel = hu->priv;
125         int err;
126
127         err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
128                                   TASK_INTERRUPTIBLE,
129                                   msecs_to_jiffies(1000));
130
131         if (err == -EINTR) {
132                 bt_dev_err(hu->hdev, "Device boot interrupted");
133                 return -EINTR;
134         }
135
136         if (err) {
137                 bt_dev_err(hu->hdev, "Device boot timeout");
138                 return -ETIMEDOUT;
139         }
140
141         return err;
142 }
143
144 #ifdef CONFIG_PM
145 static int intel_wait_lpm_transaction(struct hci_uart *hu)
146 {
147         struct intel_data *intel = hu->priv;
148         int err;
149
150         err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
151                                   TASK_INTERRUPTIBLE,
152                                   msecs_to_jiffies(1000));
153
154         if (err == -EINTR) {
155                 bt_dev_err(hu->hdev, "LPM transaction interrupted");
156                 return -EINTR;
157         }
158
159         if (err) {
160                 bt_dev_err(hu->hdev, "LPM transaction timeout");
161                 return -ETIMEDOUT;
162         }
163
164         return err;
165 }
166
167 static int intel_lpm_suspend(struct hci_uart *hu)
168 {
169         static const u8 suspend[] = { 0x01, 0x01, 0x01 };
170         struct intel_data *intel = hu->priv;
171         struct sk_buff *skb;
172
173         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
174             test_bit(STATE_SUSPENDED, &intel->flags))
175                 return 0;
176
177         if (test_bit(STATE_TX_ACTIVE, &intel->flags))
178                 return -EAGAIN;
179
180         bt_dev_dbg(hu->hdev, "Suspending");
181
182         skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
183         if (!skb) {
184                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
185                 return -ENOMEM;
186         }
187
188         memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
189         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
190
191         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
192
193         /* LPM flow is a priority, enqueue packet at list head */
194         skb_queue_head(&intel->txq, skb);
195         hci_uart_tx_wakeup(hu);
196
197         intel_wait_lpm_transaction(hu);
198         /* Even in case of failure, continue and test the suspended flag */
199
200         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
201
202         if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
203                 bt_dev_err(hu->hdev, "Device suspend error");
204                 return -EINVAL;
205         }
206
207         bt_dev_dbg(hu->hdev, "Suspended");
208
209         hci_uart_set_flow_control(hu, true);
210
211         return 0;
212 }
213
214 static int intel_lpm_resume(struct hci_uart *hu)
215 {
216         struct intel_data *intel = hu->priv;
217         struct sk_buff *skb;
218
219         if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
220             !test_bit(STATE_SUSPENDED, &intel->flags))
221                 return 0;
222
223         bt_dev_dbg(hu->hdev, "Resuming");
224
225         hci_uart_set_flow_control(hu, false);
226
227         skb = bt_skb_alloc(0, GFP_KERNEL);
228         if (!skb) {
229                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
230                 return -ENOMEM;
231         }
232
233         hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
234
235         set_bit(STATE_LPM_TRANSACTION, &intel->flags);
236
237         /* LPM flow is a priority, enqueue packet at list head */
238         skb_queue_head(&intel->txq, skb);
239         hci_uart_tx_wakeup(hu);
240
241         intel_wait_lpm_transaction(hu);
242         /* Even in case of failure, continue and test the suspended flag */
243
244         clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
245
246         if (test_bit(STATE_SUSPENDED, &intel->flags)) {
247                 bt_dev_err(hu->hdev, "Device resume error");
248                 return -EINVAL;
249         }
250
251         bt_dev_dbg(hu->hdev, "Resumed");
252
253         return 0;
254 }
255 #endif /* CONFIG_PM */
256
257 static int intel_lpm_host_wake(struct hci_uart *hu)
258 {
259         static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
260         struct intel_data *intel = hu->priv;
261         struct sk_buff *skb;
262
263         hci_uart_set_flow_control(hu, false);
264
265         clear_bit(STATE_SUSPENDED, &intel->flags);
266
267         skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
268         if (!skb) {
269                 bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
270                 return -ENOMEM;
271         }
272
273         memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
274                sizeof(lpm_resume_ack));
275         hci_skb_pkt_type(skb) = HCI_LPM_PKT;
276
277         /* LPM flow is a priority, enqueue packet at list head */
278         skb_queue_head(&intel->txq, skb);
279         hci_uart_tx_wakeup(hu);
280
281         bt_dev_dbg(hu->hdev, "Resumed by controller");
282
283         return 0;
284 }
285
286 static irqreturn_t intel_irq(int irq, void *dev_id)
287 {
288         struct intel_device *idev = dev_id;
289
290         dev_info(&idev->pdev->dev, "hci_intel irq\n");
291
292         mutex_lock(&idev->hu_lock);
293         if (idev->hu)
294                 intel_lpm_host_wake(idev->hu);
295         mutex_unlock(&idev->hu_lock);
296
297         /* Host/Controller are now LPM resumed, trigger a new delayed suspend */
298         pm_runtime_get(&idev->pdev->dev);
299         pm_runtime_mark_last_busy(&idev->pdev->dev);
300         pm_runtime_put_autosuspend(&idev->pdev->dev);
301
302         return IRQ_HANDLED;
303 }
304
305 static int intel_set_power(struct hci_uart *hu, bool powered)
306 {
307         struct list_head *p;
308         int err = -ENODEV;
309
310         if (!hu->tty->dev)
311                 return err;
312
313         mutex_lock(&intel_device_list_lock);
314
315         list_for_each(p, &intel_device_list) {
316                 struct intel_device *idev = list_entry(p, struct intel_device,
317                                                        list);
318
319                 /* tty device and pdev device should share the same parent
320                  * which is the UART port.
321                  */
322                 if (hu->tty->dev->parent != idev->pdev->dev.parent)
323                         continue;
324
325                 if (!idev->reset) {
326                         err = -ENOTSUPP;
327                         break;
328                 }
329
330                 BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
331                         hu, dev_name(&idev->pdev->dev), powered);
332
333                 gpiod_set_value(idev->reset, powered);
334
335                 /* Provide to idev a hu reference which is used to run LPM
336                  * transactions (lpm suspend/resume) from PM callbacks.
337                  * hu needs to be protected against concurrent removing during
338                  * these PM ops.
339                  */
340                 mutex_lock(&idev->hu_lock);
341                 idev->hu = powered ? hu : NULL;
342                 mutex_unlock(&idev->hu_lock);
343
344                 if (idev->irq < 0)
345                         break;
346
347                 if (powered && device_can_wakeup(&idev->pdev->dev)) {
348                         err = devm_request_threaded_irq(&idev->pdev->dev,
349                                                         idev->irq, NULL,
350                                                         intel_irq,
351                                                         IRQF_ONESHOT,
352                                                         "bt-host-wake", idev);
353                         if (err) {
354                                 BT_ERR("hu %p, unable to allocate irq-%d",
355                                        hu, idev->irq);
356                                 break;
357                         }
358
359                         device_wakeup_enable(&idev->pdev->dev);
360
361                         pm_runtime_set_active(&idev->pdev->dev);
362                         pm_runtime_use_autosuspend(&idev->pdev->dev);
363                         pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
364                                                          LPM_SUSPEND_DELAY_MS);
365                         pm_runtime_enable(&idev->pdev->dev);
366                 } else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
367                         devm_free_irq(&idev->pdev->dev, idev->irq, idev);
368                         device_wakeup_disable(&idev->pdev->dev);
369
370                         pm_runtime_disable(&idev->pdev->dev);
371                 }
372         }
373
374         mutex_unlock(&intel_device_list_lock);
375
376         return err;
377 }
378
379 static void intel_busy_work(struct work_struct *work)
380 {
381         struct list_head *p;
382         struct intel_data *intel = container_of(work, struct intel_data,
383                                                 busy_work);
384
385         if (!intel->hu->tty->dev)
386                 return;
387
388         /* Link is busy, delay the suspend */
389         mutex_lock(&intel_device_list_lock);
390         list_for_each(p, &intel_device_list) {
391                 struct intel_device *idev = list_entry(p, struct intel_device,
392                                                        list);
393
394                 if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
395                         pm_runtime_get(&idev->pdev->dev);
396                         pm_runtime_mark_last_busy(&idev->pdev->dev);
397                         pm_runtime_put_autosuspend(&idev->pdev->dev);
398                         break;
399                 }
400         }
401         mutex_unlock(&intel_device_list_lock);
402 }
403
404 static int intel_open(struct hci_uart *hu)
405 {
406         struct intel_data *intel;
407
408         BT_DBG("hu %p", hu);
409
410         intel = kzalloc(sizeof(*intel), GFP_KERNEL);
411         if (!intel)
412                 return -ENOMEM;
413
414         skb_queue_head_init(&intel->txq);
415         INIT_WORK(&intel->busy_work, intel_busy_work);
416
417         intel->hu = hu;
418
419         hu->priv = intel;
420
421         if (!intel_set_power(hu, true))
422                 set_bit(STATE_BOOTING, &intel->flags);
423
424         return 0;
425 }
426
427 static int intel_close(struct hci_uart *hu)
428 {
429         struct intel_data *intel = hu->priv;
430
431         BT_DBG("hu %p", hu);
432
433         cancel_work_sync(&intel->busy_work);
434
435         intel_set_power(hu, false);
436
437         skb_queue_purge(&intel->txq);
438         kfree_skb(intel->rx_skb);
439         kfree(intel);
440
441         hu->priv = NULL;
442         return 0;
443 }
444
445 static int intel_flush(struct hci_uart *hu)
446 {
447         struct intel_data *intel = hu->priv;
448
449         BT_DBG("hu %p", hu);
450
451         skb_queue_purge(&intel->txq);
452
453         return 0;
454 }
455
456 static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
457 {
458         struct sk_buff *skb;
459         struct hci_event_hdr *hdr;
460         struct hci_ev_cmd_complete *evt;
461
462         skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
463         if (!skb)
464                 return -ENOMEM;
465
466         hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
467         hdr->evt = HCI_EV_CMD_COMPLETE;
468         hdr->plen = sizeof(*evt) + 1;
469
470         evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
471         evt->ncmd = 0x01;
472         evt->opcode = cpu_to_le16(opcode);
473
474         *skb_put(skb, 1) = 0x00;
475
476         hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
477
478         return hci_recv_frame(hdev, skb);
479 }
480
481 static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
482 {
483         struct intel_data *intel = hu->priv;
484         struct hci_dev *hdev = hu->hdev;
485         u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
486         struct sk_buff *skb;
487         int err;
488
489         /* This can be the first command sent to the chip, check
490          * that the controller is ready.
491          */
492         err = intel_wait_booting(hu);
493
494         clear_bit(STATE_BOOTING, &intel->flags);
495
496         /* In case of timeout, try to continue anyway */
497         if (err && err != -ETIMEDOUT)
498                 return err;
499
500         bt_dev_info(hdev, "Change controller speed to %d", speed);
501
502         speed_cmd[3] = intel_convert_speed(speed);
503         if (speed_cmd[3] == 0xff) {
504                 bt_dev_err(hdev, "Unsupported speed");
505                 return -EINVAL;
506         }
507
508         /* Device will not accept speed change if Intel version has not been
509          * previously requested.
510          */
511         skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
512         if (IS_ERR(skb)) {
513                 bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
514                            PTR_ERR(skb));
515                 return PTR_ERR(skb);
516         }
517         kfree_skb(skb);
518
519         skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
520         if (!skb) {
521                 bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
522                 return -ENOMEM;
523         }
524
525         memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
526         hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
527
528         hci_uart_set_flow_control(hu, true);
529
530         skb_queue_tail(&intel->txq, skb);
531         hci_uart_tx_wakeup(hu);
532
533         /* wait 100ms to change baudrate on controller side */
534         msleep(100);
535
536         hci_uart_set_baudrate(hu, speed);
537         hci_uart_set_flow_control(hu, false);
538
539         return 0;
540 }
541
542 static int intel_setup(struct hci_uart *hu)
543 {
544         static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
545                                           0x00, 0x08, 0x04, 0x00 };
546         struct intel_data *intel = hu->priv;
547         struct hci_dev *hdev = hu->hdev;
548         struct sk_buff *skb;
549         struct intel_version ver;
550         struct intel_boot_params *params;
551         struct list_head *p;
552         const struct firmware *fw;
553         const u8 *fw_ptr;
554         char fwname[64];
555         u32 frag_len;
556         ktime_t calltime, delta, rettime;
557         unsigned long long duration;
558         unsigned int init_speed, oper_speed;
559         int speed_change = 0;
560         int err;
561
562         bt_dev_dbg(hdev, "start intel_setup");
563
564         hu->hdev->set_diag = btintel_set_diag;
565         hu->hdev->set_bdaddr = btintel_set_bdaddr;
566
567         calltime = ktime_get();
568
569         if (hu->init_speed)
570                 init_speed = hu->init_speed;
571         else
572                 init_speed = hu->proto->init_speed;
573
574         if (hu->oper_speed)
575                 oper_speed = hu->oper_speed;
576         else
577                 oper_speed = hu->proto->oper_speed;
578
579         if (oper_speed && init_speed && oper_speed != init_speed)
580                 speed_change = 1;
581
582         /* Check that the controller is ready */
583         err = intel_wait_booting(hu);
584
585         clear_bit(STATE_BOOTING, &intel->flags);
586
587         /* In case of timeout, try to continue anyway */
588         if (err && err != -ETIMEDOUT)
589                 return err;
590
591         set_bit(STATE_BOOTLOADER, &intel->flags);
592
593         /* Read the Intel version information to determine if the device
594          * is in bootloader mode or if it already has operational firmware
595          * loaded.
596          */
597          err = btintel_read_version(hdev, &ver);
598          if (err)
599                 return err;
600
601         /* The hardware platform number has a fixed value of 0x37 and
602          * for now only accept this single value.
603          */
604         if (ver.hw_platform != 0x37) {
605                 bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
606                            ver.hw_platform);
607                 return -EINVAL;
608         }
609
610         /* Check for supported iBT hardware variants of this firmware
611          * loading method.
612          *
613          * This check has been put in place to ensure correct forward
614          * compatibility options when newer hardware variants come along.
615          */
616         switch (ver.hw_variant) {
617         case 0x0b:      /* LnP */
618         case 0x0c:      /* WsP */
619         case 0x12:      /* ThP */
620                 break;
621         default:
622                 bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
623                            ver.hw_variant);
624                 return -EINVAL;
625         }
626
627         btintel_version_info(hdev, &ver);
628
629         /* The firmware variant determines if the device is in bootloader
630          * mode or is running operational firmware. The value 0x06 identifies
631          * the bootloader and the value 0x23 identifies the operational
632          * firmware.
633          *
634          * When the operational firmware is already present, then only
635          * the check for valid Bluetooth device address is needed. This
636          * determines if the device will be added as configured or
637          * unconfigured controller.
638          *
639          * It is not possible to use the Secure Boot Parameters in this
640          * case since that command is only available in bootloader mode.
641          */
642         if (ver.fw_variant == 0x23) {
643                 clear_bit(STATE_BOOTLOADER, &intel->flags);
644                 btintel_check_bdaddr(hdev);
645                 return 0;
646         }
647
648         /* If the device is not in bootloader mode, then the only possible
649          * choice is to return an error and abort the device initialization.
650          */
651         if (ver.fw_variant != 0x06) {
652                 bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
653                            ver.fw_variant);
654                 return -ENODEV;
655         }
656
657         /* Read the secure boot parameters to identify the operating
658          * details of the bootloader.
659          */
660         skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_CMD_TIMEOUT);
661         if (IS_ERR(skb)) {
662                 bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
663                            PTR_ERR(skb));
664                 return PTR_ERR(skb);
665         }
666
667         if (skb->len != sizeof(*params)) {
668                 bt_dev_err(hdev, "Intel boot parameters size mismatch");
669                 kfree_skb(skb);
670                 return -EILSEQ;
671         }
672
673         params = (struct intel_boot_params *)skb->data;
674         if (params->status) {
675                 bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
676                            params->status);
677                 err = -bt_to_errno(params->status);
678                 kfree_skb(skb);
679                 return err;
680         }
681
682         bt_dev_info(hdev, "Device revision is %u",
683                     le16_to_cpu(params->dev_revid));
684
685         bt_dev_info(hdev, "Secure boot is %s",
686                     params->secure_boot ? "enabled" : "disabled");
687
688         bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
689                 params->min_fw_build_nn, params->min_fw_build_cw,
690                 2000 + params->min_fw_build_yy);
691
692         /* It is required that every single firmware fragment is acknowledged
693          * with a command complete event. If the boot parameters indicate
694          * that this bootloader does not send them, then abort the setup.
695          */
696         if (params->limited_cce != 0x00) {
697                 bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
698                            params->limited_cce);
699                 kfree_skb(skb);
700                 return -EINVAL;
701         }
702
703         /* If the OTP has no valid Bluetooth device address, then there will
704          * also be no valid address for the operational firmware.
705          */
706         if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
707                 bt_dev_info(hdev, "No device address configured");
708                 set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
709         }
710
711         /* With this Intel bootloader only the hardware variant and device
712          * revision information are used to select the right firmware.
713          *
714          * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
715          *
716          * Currently the supported hardware variants are:
717          *   11 (0x0b) for iBT 3.0 (LnP/SfP)
718          */
719         snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
720                 le16_to_cpu(ver.hw_variant),
721                 le16_to_cpu(params->dev_revid));
722
723         err = request_firmware(&fw, fwname, &hdev->dev);
724         if (err < 0) {
725                 bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
726                            err);
727                 kfree_skb(skb);
728                 return err;
729         }
730
731         bt_dev_info(hdev, "Found device firmware: %s", fwname);
732
733         /* Save the DDC file name for later */
734         snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
735                 le16_to_cpu(ver.hw_variant),
736                 le16_to_cpu(params->dev_revid));
737
738         kfree_skb(skb);
739
740         if (fw->size < 644) {
741                 bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
742                            fw->size);
743                 err = -EBADF;
744                 goto done;
745         }
746
747         set_bit(STATE_DOWNLOADING, &intel->flags);
748
749         /* Start the firmware download transaction with the Init fragment
750          * represented by the 128 bytes of CSS header.
751          */
752         err = btintel_secure_send(hdev, 0x00, 128, fw->data);
753         if (err < 0) {
754                 bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
755                 goto done;
756         }
757
758         /* Send the 256 bytes of public key information from the firmware
759          * as the PKey fragment.
760          */
761         err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
762         if (err < 0) {
763                 bt_dev_err(hdev, "Failed to send firmware public key (%d)",
764                            err);
765                 goto done;
766         }
767
768         /* Send the 256 bytes of signature information from the firmware
769          * as the Sign fragment.
770          */
771         err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
772         if (err < 0) {
773                 bt_dev_err(hdev, "Failed to send firmware signature (%d)",
774                            err);
775                 goto done;
776         }
777
778         fw_ptr = fw->data + 644;
779         frag_len = 0;
780
781         while (fw_ptr - fw->data < fw->size) {
782                 struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
783
784                 frag_len += sizeof(*cmd) + cmd->plen;
785
786                 bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
787                            fw->size);
788
789                 /* The parameter length of the secure send command requires
790                  * a 4 byte alignment. It happens so that the firmware file
791                  * contains proper Intel_NOP commands to align the fragments
792                  * as needed.
793                  *
794                  * Send set of commands with 4 byte alignment from the
795                  * firmware data buffer as a single Data fragement.
796                  */
797                 if (frag_len % 4)
798                         continue;
799
800                 /* Send each command from the firmware data buffer as
801                  * a single Data fragment.
802                  */
803                 err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
804                 if (err < 0) {
805                         bt_dev_err(hdev, "Failed to send firmware data (%d)",
806                                    err);
807                         goto done;
808                 }
809
810                 fw_ptr += frag_len;
811                 frag_len = 0;
812         }
813
814         set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
815
816         bt_dev_info(hdev, "Waiting for firmware download to complete");
817
818         /* Before switching the device into operational mode and with that
819          * booting the loaded firmware, wait for the bootloader notification
820          * that all fragments have been successfully received.
821          *
822          * When the event processing receives the notification, then the
823          * STATE_DOWNLOADING flag will be cleared.
824          *
825          * The firmware loading should not take longer than 5 seconds
826          * and thus just timeout if that happens and fail the setup
827          * of this device.
828          */
829         err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
830                                   TASK_INTERRUPTIBLE,
831                                   msecs_to_jiffies(5000));
832         if (err == -EINTR) {
833                 bt_dev_err(hdev, "Firmware loading interrupted");
834                 err = -EINTR;
835                 goto done;
836         }
837
838         if (err) {
839                 bt_dev_err(hdev, "Firmware loading timeout");
840                 err = -ETIMEDOUT;
841                 goto done;
842         }
843
844         if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
845                 bt_dev_err(hdev, "Firmware loading failed");
846                 err = -ENOEXEC;
847                 goto done;
848         }
849
850         rettime = ktime_get();
851         delta = ktime_sub(rettime, calltime);
852         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
853
854         bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
855
856 done:
857         release_firmware(fw);
858
859         if (err < 0)
860                 return err;
861
862         /* We need to restore the default speed before Intel reset */
863         if (speed_change) {
864                 err = intel_set_baudrate(hu, init_speed);
865                 if (err)
866                         return err;
867         }
868
869         calltime = ktime_get();
870
871         set_bit(STATE_BOOTING, &intel->flags);
872
873         skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
874                              HCI_CMD_TIMEOUT);
875         if (IS_ERR(skb))
876                 return PTR_ERR(skb);
877
878         kfree_skb(skb);
879
880         /* The bootloader will not indicate when the device is ready. This
881          * is done by the operational firmware sending bootup notification.
882          *
883          * Booting into operational firmware should not take longer than
884          * 1 second. However if that happens, then just fail the setup
885          * since something went wrong.
886          */
887         bt_dev_info(hdev, "Waiting for device to boot");
888
889         err = intel_wait_booting(hu);
890         if (err)
891                 return err;
892
893         clear_bit(STATE_BOOTING, &intel->flags);
894
895         rettime = ktime_get();
896         delta = ktime_sub(rettime, calltime);
897         duration = (unsigned long long) ktime_to_ns(delta) >> 10;
898
899         bt_dev_info(hdev, "Device booted in %llu usecs", duration);
900
901         /* Enable LPM if matching pdev with wakeup enabled, set TX active
902          * until further LPM TX notification.
903          */
904         mutex_lock(&intel_device_list_lock);
905         list_for_each(p, &intel_device_list) {
906                 struct intel_device *dev = list_entry(p, struct intel_device,
907                                                       list);
908                 if (!hu->tty->dev)
909                         break;
910                 if (hu->tty->dev->parent == dev->pdev->dev.parent) {
911                         if (device_may_wakeup(&dev->pdev->dev)) {
912                                 set_bit(STATE_LPM_ENABLED, &intel->flags);
913                                 set_bit(STATE_TX_ACTIVE, &intel->flags);
914                         }
915                         break;
916                 }
917         }
918         mutex_unlock(&intel_device_list_lock);
919
920         /* Ignore errors, device can work without DDC parameters */
921         btintel_load_ddc_config(hdev, fwname);
922
923         skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
924         if (IS_ERR(skb))
925                 return PTR_ERR(skb);
926         kfree_skb(skb);
927
928         if (speed_change) {
929                 err = intel_set_baudrate(hu, oper_speed);
930                 if (err)
931                         return err;
932         }
933
934         bt_dev_info(hdev, "Setup complete");
935
936         clear_bit(STATE_BOOTLOADER, &intel->flags);
937
938         return 0;
939 }
940
941 static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
942 {
943         struct hci_uart *hu = hci_get_drvdata(hdev);
944         struct intel_data *intel = hu->priv;
945         struct hci_event_hdr *hdr;
946
947         if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
948             !test_bit(STATE_BOOTING, &intel->flags))
949                 goto recv;
950
951         hdr = (void *)skb->data;
952
953         /* When the firmware loading completes the device sends
954          * out a vendor specific event indicating the result of
955          * the firmware loading.
956          */
957         if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
958             skb->data[2] == 0x06) {
959                 if (skb->data[3] != 0x00)
960                         set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
961
962                 if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
963                     test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
964                         smp_mb__after_atomic();
965                         wake_up_bit(&intel->flags, STATE_DOWNLOADING);
966                 }
967
968         /* When switching to the operational firmware the device
969          * sends a vendor specific event indicating that the bootup
970          * completed.
971          */
972         } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
973                    skb->data[2] == 0x02) {
974                 if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
975                         smp_mb__after_atomic();
976                         wake_up_bit(&intel->flags, STATE_BOOTING);
977                 }
978         }
979 recv:
980         return hci_recv_frame(hdev, skb);
981 }
982
983 static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
984 {
985         struct hci_uart *hu = hci_get_drvdata(hdev);
986         struct intel_data *intel = hu->priv;
987
988         bt_dev_dbg(hdev, "TX idle notification (%d)", value);
989
990         if (value) {
991                 set_bit(STATE_TX_ACTIVE, &intel->flags);
992                 schedule_work(&intel->busy_work);
993         } else {
994                 clear_bit(STATE_TX_ACTIVE, &intel->flags);
995         }
996 }
997
998 static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
999 {
1000         struct hci_lpm_pkt *lpm = (void *)skb->data;
1001         struct hci_uart *hu = hci_get_drvdata(hdev);
1002         struct intel_data *intel = hu->priv;
1003
1004         switch (lpm->opcode) {
1005         case LPM_OP_TX_NOTIFY:
1006                 if (lpm->dlen < 1) {
1007                         bt_dev_err(hu->hdev, "Invalid LPM notification packet");
1008                         break;
1009                 }
1010                 intel_recv_lpm_notify(hdev, lpm->data[0]);
1011                 break;
1012         case LPM_OP_SUSPEND_ACK:
1013                 set_bit(STATE_SUSPENDED, &intel->flags);
1014                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1015                         smp_mb__after_atomic();
1016                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1017                 }
1018                 break;
1019         case LPM_OP_RESUME_ACK:
1020                 clear_bit(STATE_SUSPENDED, &intel->flags);
1021                 if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
1022                         smp_mb__after_atomic();
1023                         wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
1024                 }
1025                 break;
1026         default:
1027                 bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
1028                 break;
1029         }
1030
1031         kfree_skb(skb);
1032
1033         return 0;
1034 }
1035
1036 #define INTEL_RECV_LPM \
1037         .type = HCI_LPM_PKT, \
1038         .hlen = HCI_LPM_HDR_SIZE, \
1039         .loff = 1, \
1040         .lsize = 1, \
1041         .maxlen = HCI_LPM_MAX_SIZE
1042
1043 static const struct h4_recv_pkt intel_recv_pkts[] = {
1044         { H4_RECV_ACL,    .recv = hci_recv_frame   },
1045         { H4_RECV_SCO,    .recv = hci_recv_frame   },
1046         { H4_RECV_EVENT,  .recv = intel_recv_event },
1047         { INTEL_RECV_LPM, .recv = intel_recv_lpm   },
1048 };
1049
1050 static int intel_recv(struct hci_uart *hu, const void *data, int count)
1051 {
1052         struct intel_data *intel = hu->priv;
1053
1054         if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1055                 return -EUNATCH;
1056
1057         intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
1058                                     intel_recv_pkts,
1059                                     ARRAY_SIZE(intel_recv_pkts));
1060         if (IS_ERR(intel->rx_skb)) {
1061                 int err = PTR_ERR(intel->rx_skb);
1062                 bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1063                 intel->rx_skb = NULL;
1064                 return err;
1065         }
1066
1067         return count;
1068 }
1069
1070 static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
1071 {
1072         struct intel_data *intel = hu->priv;
1073         struct list_head *p;
1074
1075         BT_DBG("hu %p skb %p", hu, skb);
1076
1077         if (!hu->tty->dev)
1078                 goto out_enqueue;
1079
1080         /* Be sure our controller is resumed and potential LPM transaction
1081          * completed before enqueuing any packet.
1082          */
1083         mutex_lock(&intel_device_list_lock);
1084         list_for_each(p, &intel_device_list) {
1085                 struct intel_device *idev = list_entry(p, struct intel_device,
1086                                                        list);
1087
1088                 if (hu->tty->dev->parent == idev->pdev->dev.parent) {
1089                         pm_runtime_get_sync(&idev->pdev->dev);
1090                         pm_runtime_mark_last_busy(&idev->pdev->dev);
1091                         pm_runtime_put_autosuspend(&idev->pdev->dev);
1092                         break;
1093                 }
1094         }
1095         mutex_unlock(&intel_device_list_lock);
1096 out_enqueue:
1097         skb_queue_tail(&intel->txq, skb);
1098
1099         return 0;
1100 }
1101
1102 static struct sk_buff *intel_dequeue(struct hci_uart *hu)
1103 {
1104         struct intel_data *intel = hu->priv;
1105         struct sk_buff *skb;
1106
1107         skb = skb_dequeue(&intel->txq);
1108         if (!skb)
1109                 return skb;
1110
1111         if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
1112             (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
1113                 struct hci_command_hdr *cmd = (void *)skb->data;
1114                 __u16 opcode = le16_to_cpu(cmd->opcode);
1115
1116                 /* When the 0xfc01 command is issued to boot into
1117                  * the operational firmware, it will actually not
1118                  * send a command complete event. To keep the flow
1119                  * control working inject that event here.
1120                  */
1121                 if (opcode == 0xfc01)
1122                         inject_cmd_complete(hu->hdev, opcode);
1123         }
1124
1125         /* Prepend skb with frame type */
1126         memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
1127
1128         return skb;
1129 }
1130
1131 static const struct hci_uart_proto intel_proto = {
1132         .id             = HCI_UART_INTEL,
1133         .name           = "Intel",
1134         .manufacturer   = 2,
1135         .init_speed     = 115200,
1136         .oper_speed     = 3000000,
1137         .open           = intel_open,
1138         .close          = intel_close,
1139         .flush          = intel_flush,
1140         .setup          = intel_setup,
1141         .set_baudrate   = intel_set_baudrate,
1142         .recv           = intel_recv,
1143         .enqueue        = intel_enqueue,
1144         .dequeue        = intel_dequeue,
1145 };
1146
1147 #ifdef CONFIG_ACPI
1148 static const struct acpi_device_id intel_acpi_match[] = {
1149         { "INT33E1", 0 },
1150         { },
1151 };
1152 MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
1153 #endif
1154
1155 #ifdef CONFIG_PM
1156 static int intel_suspend_device(struct device *dev)
1157 {
1158         struct intel_device *idev = dev_get_drvdata(dev);
1159
1160         mutex_lock(&idev->hu_lock);
1161         if (idev->hu)
1162                 intel_lpm_suspend(idev->hu);
1163         mutex_unlock(&idev->hu_lock);
1164
1165         return 0;
1166 }
1167
1168 static int intel_resume_device(struct device *dev)
1169 {
1170         struct intel_device *idev = dev_get_drvdata(dev);
1171
1172         mutex_lock(&idev->hu_lock);
1173         if (idev->hu)
1174                 intel_lpm_resume(idev->hu);
1175         mutex_unlock(&idev->hu_lock);
1176
1177         return 0;
1178 }
1179 #endif
1180
1181 #ifdef CONFIG_PM_SLEEP
1182 static int intel_suspend(struct device *dev)
1183 {
1184         struct intel_device *idev = dev_get_drvdata(dev);
1185
1186         if (device_may_wakeup(dev))
1187                 enable_irq_wake(idev->irq);
1188
1189         return intel_suspend_device(dev);
1190 }
1191
1192 static int intel_resume(struct device *dev)
1193 {
1194         struct intel_device *idev = dev_get_drvdata(dev);
1195
1196         if (device_may_wakeup(dev))
1197                 disable_irq_wake(idev->irq);
1198
1199         return intel_resume_device(dev);
1200 }
1201 #endif
1202
1203 static const struct dev_pm_ops intel_pm_ops = {
1204         SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
1205         SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
1206 };
1207
1208 static int intel_probe(struct platform_device *pdev)
1209 {
1210         struct intel_device *idev;
1211
1212         idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
1213         if (!idev)
1214                 return -ENOMEM;
1215
1216         mutex_init(&idev->hu_lock);
1217
1218         idev->pdev = pdev;
1219
1220         idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
1221         if (IS_ERR(idev->reset)) {
1222                 dev_err(&pdev->dev, "Unable to retrieve gpio\n");
1223                 return PTR_ERR(idev->reset);
1224         }
1225
1226         idev->irq = platform_get_irq(pdev, 0);
1227         if (idev->irq < 0) {
1228                 struct gpio_desc *host_wake;
1229
1230                 dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
1231
1232                 host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
1233                 if (IS_ERR(host_wake)) {
1234                         dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
1235                         goto no_irq;
1236                 }
1237
1238                 idev->irq = gpiod_to_irq(host_wake);
1239                 if (idev->irq < 0) {
1240                         dev_err(&pdev->dev, "No corresponding irq for gpio\n");
1241                         goto no_irq;
1242                 }
1243         }
1244
1245         /* Only enable wake-up/irq when controller is powered */
1246         device_set_wakeup_capable(&pdev->dev, true);
1247         device_wakeup_disable(&pdev->dev);
1248
1249 no_irq:
1250         platform_set_drvdata(pdev, idev);
1251
1252         /* Place this instance on the device list */
1253         mutex_lock(&intel_device_list_lock);
1254         list_add_tail(&idev->list, &intel_device_list);
1255         mutex_unlock(&intel_device_list_lock);
1256
1257         dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
1258                  desc_to_gpio(idev->reset), idev->irq);
1259
1260         return 0;
1261 }
1262
1263 static int intel_remove(struct platform_device *pdev)
1264 {
1265         struct intel_device *idev = platform_get_drvdata(pdev);
1266
1267         device_wakeup_disable(&pdev->dev);
1268
1269         mutex_lock(&intel_device_list_lock);
1270         list_del(&idev->list);
1271         mutex_unlock(&intel_device_list_lock);
1272
1273         dev_info(&pdev->dev, "unregistered.\n");
1274
1275         return 0;
1276 }
1277
1278 static struct platform_driver intel_driver = {
1279         .probe = intel_probe,
1280         .remove = intel_remove,
1281         .driver = {
1282                 .name = "hci_intel",
1283                 .acpi_match_table = ACPI_PTR(intel_acpi_match),
1284                 .pm = &intel_pm_ops,
1285         },
1286 };
1287
1288 int __init intel_init(void)
1289 {
1290         platform_driver_register(&intel_driver);
1291
1292         return hci_uart_register_proto(&intel_proto);
1293 }
1294
1295 int __exit intel_deinit(void)
1296 {
1297         platform_driver_unregister(&intel_driver);
1298
1299         return hci_uart_unregister_proto(&intel_proto);
1300 }