]> git.karo-electronics.de Git - karo-tx-linux.git/blob - drivers/char/ipmi/ipmi_si_intf.c
810372c0a22f982121d47beb718669969f36427a
[karo-tx-linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111                                         "ACPI", "SMBIOS", "PCI",
112                                         "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122         /*
123          * Number of times the driver requested a timer while an operation
124          * was in progress.
125          */
126         SI_STAT_short_timeouts = 0,
127
128         /*
129          * Number of times the driver requested a timer while nothing was in
130          * progress.
131          */
132         SI_STAT_long_timeouts,
133
134         /* Number of times the interface was idle while being polled. */
135         SI_STAT_idles,
136
137         /* Number of interrupts the driver handled. */
138         SI_STAT_interrupts,
139
140         /* Number of time the driver got an ATTN from the hardware. */
141         SI_STAT_attentions,
142
143         /* Number of times the driver requested flags from the hardware. */
144         SI_STAT_flag_fetches,
145
146         /* Number of times the hardware didn't follow the state machine. */
147         SI_STAT_hosed_count,
148
149         /* Number of completed messages. */
150         SI_STAT_complete_transactions,
151
152         /* Number of IPMI events received from the hardware. */
153         SI_STAT_events,
154
155         /* Number of watchdog pretimeouts. */
156         SI_STAT_watchdog_pretimeouts,
157
158         /* Number of asynchronous messages received. */
159         SI_STAT_incoming_messages,
160
161
162         /* This *must* remain last, add new values above this. */
163         SI_NUM_STATS
164 };
165
166 struct smi_info {
167         int                    intf_num;
168         ipmi_smi_t             intf;
169         struct si_sm_data      *si_sm;
170         struct si_sm_handlers  *handlers;
171         enum si_type           si_type;
172         spinlock_t             si_lock;
173         struct list_head       xmit_msgs;
174         struct list_head       hp_xmit_msgs;
175         struct ipmi_smi_msg    *curr_msg;
176         enum si_intf_state     si_state;
177
178         /*
179          * Used to handle the various types of I/O that can occur with
180          * IPMI
181          */
182         struct si_sm_io io;
183         int (*io_setup)(struct smi_info *info);
184         void (*io_cleanup)(struct smi_info *info);
185         int (*irq_setup)(struct smi_info *info);
186         void (*irq_cleanup)(struct smi_info *info);
187         unsigned int io_size;
188         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189         void (*addr_source_cleanup)(struct smi_info *info);
190         void *addr_source_data;
191
192         /*
193          * Per-OEM handler, called from handle_flags().  Returns 1
194          * when handle_flags() needs to be re-run or 0 indicating it
195          * set si_state itself.
196          */
197         int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199         /*
200          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201          * is set to hold the flags until we are done handling everything
202          * from the flags.
203          */
204 #define RECEIVE_MSG_AVAIL       0x01
205 #define EVENT_MSG_BUFFER_FULL   0x02
206 #define WDT_PRE_TIMEOUT_INT     0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211                              OEM1_DATA_AVAIL | \
212                              OEM2_DATA_AVAIL)
213         unsigned char       msg_flags;
214
215         /* Does the BMC have an event buffer? */
216         char                has_event_buffer;
217
218         /*
219          * If set to true, this will request events the next time the
220          * state machine is idle.
221          */
222         atomic_t            req_events;
223
224         /*
225          * If true, run the state machine to completion on every send
226          * call.  Generally used after a panic to make sure stuff goes
227          * out.
228          */
229         int                 run_to_completion;
230
231         /* The I/O port of an SI interface. */
232         int                 port;
233
234         /*
235          * The space between start addresses of the two ports.  For
236          * instance, if the first port is 0xca2 and the spacing is 4, then
237          * the second port is 0xca6.
238          */
239         unsigned int        spacing;
240
241         /* zero if no irq; */
242         int                 irq;
243
244         /* The timer for this si. */
245         struct timer_list   si_timer;
246
247         /* The time (in jiffies) the last timeout occurred at. */
248         unsigned long       last_timeout_jiffies;
249
250         /* Used to gracefully stop the timer without race conditions. */
251         atomic_t            stop_operation;
252
253         /*
254          * The driver will disable interrupts when it gets into a
255          * situation where it cannot handle messages due to lack of
256          * memory.  Once that situation clears up, it will re-enable
257          * interrupts.
258          */
259         int interrupt_disabled;
260
261         /* From the get device id response... */
262         struct ipmi_device_id device_id;
263
264         /* Driver model stuff. */
265         struct device *dev;
266         struct platform_device *pdev;
267
268         /*
269          * True if we allocated the device, false if it came from
270          * someplace else (like PCI).
271          */
272         int dev_registered;
273
274         /* Slave address, could be reported from DMI. */
275         unsigned char slave_addr;
276
277         /* Counters and things for the proc filesystem. */
278         atomic_t stats[SI_NUM_STATS];
279
280         struct task_struct *thread;
281
282         struct list_head link;
283         union ipmi_smi_info_union addr_info;
284 };
285
286 #define smi_inc_stat(smi, stat) \
287         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
291 #define SI_MAX_PARMS 4
292
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304
305 static int unload_when_empty = 1;
306
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317
318 static void deliver_recv_msg(struct smi_info *smi_info,
319                              struct ipmi_smi_msg *msg)
320 {
321         /* Deliver the message to the upper layer. */
322         ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327         struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
329         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330                 cCode = IPMI_ERR_UNSPECIFIED;
331         /* else use it as is */
332
333         /* Make it a response */
334         msg->rsp[0] = msg->data[0] | 4;
335         msg->rsp[1] = msg->data[1];
336         msg->rsp[2] = cCode;
337         msg->rsp_size = 3;
338
339         smi_info->curr_msg = NULL;
340         deliver_recv_msg(smi_info, msg);
341 }
342
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345         int              rv;
346         struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348         struct timeval t;
349 #endif
350
351         /* Pick the high priority queue first. */
352         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353                 entry = smi_info->hp_xmit_msgs.next;
354         } else if (!list_empty(&(smi_info->xmit_msgs))) {
355                 entry = smi_info->xmit_msgs.next;
356         }
357
358         if (!entry) {
359                 smi_info->curr_msg = NULL;
360                 rv = SI_SM_IDLE;
361         } else {
362                 int err;
363
364                 list_del(entry);
365                 smi_info->curr_msg = list_entry(entry,
366                                                 struct ipmi_smi_msg,
367                                                 link);
368 #ifdef DEBUG_TIMING
369                 do_gettimeofday(&t);
370                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372                 err = atomic_notifier_call_chain(&xaction_notifier_list,
373                                 0, smi_info);
374                 if (err & NOTIFY_STOP_MASK) {
375                         rv = SI_SM_CALL_WITHOUT_DELAY;
376                         goto out;
377                 }
378                 err = smi_info->handlers->start_transaction(
379                         smi_info->si_sm,
380                         smi_info->curr_msg->data,
381                         smi_info->curr_msg->data_size);
382                 if (err)
383                         return_hosed_msg(smi_info, err);
384
385                 rv = SI_SM_CALL_WITHOUT_DELAY;
386         }
387  out:
388         return rv;
389 }
390
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393         unsigned char msg[2];
394
395         /*
396          * If we are enabling interrupts, we have to tell the
397          * BMC to use them.
398          */
399         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408         unsigned char msg[2];
409
410         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419         unsigned char msg[3];
420
421         /* Make sure the watchdog pre-timeout flag is not set at startup. */
422         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424         msg[2] = WDT_PRE_TIMEOUT_INT;
425
426         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427         smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429
430 /*
431  * When we have a situtaion where we run out of memory and cannot
432  * allocate messages, we just leave them in the BMC and run the system
433  * polled until we can allocate some memory.  Once we have some
434  * memory, we will re-enable the interrupt.
435  */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439                 start_disable_irq(smi_info);
440                 smi_info->interrupt_disabled = 1;
441                 if (!atomic_read(&smi_info->stop_operation))
442                         mod_timer(&smi_info->si_timer,
443                                   jiffies + SI_TIMEOUT_JIFFIES);
444         }
445 }
446
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450                 start_enable_irq(smi_info);
451                 smi_info->interrupt_disabled = 0;
452         }
453 }
454
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459                 /* Watchdog pre-timeout */
460                 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462                 start_clear_flags(smi_info);
463                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466                 /* Messages available. */
467                 smi_info->curr_msg = ipmi_alloc_smi_msg();
468                 if (!smi_info->curr_msg) {
469                         disable_si_irq(smi_info);
470                         smi_info->si_state = SI_NORMAL;
471                         return;
472                 }
473                 enable_si_irq(smi_info);
474
475                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477                 smi_info->curr_msg->data_size = 2;
478
479                 smi_info->handlers->start_transaction(
480                         smi_info->si_sm,
481                         smi_info->curr_msg->data,
482                         smi_info->curr_msg->data_size);
483                 smi_info->si_state = SI_GETTING_MESSAGES;
484         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485                 /* Events available. */
486                 smi_info->curr_msg = ipmi_alloc_smi_msg();
487                 if (!smi_info->curr_msg) {
488                         disable_si_irq(smi_info);
489                         smi_info->si_state = SI_NORMAL;
490                         return;
491                 }
492                 enable_si_irq(smi_info);
493
494                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496                 smi_info->curr_msg->data_size = 2;
497
498                 smi_info->handlers->start_transaction(
499                         smi_info->si_sm,
500                         smi_info->curr_msg->data,
501                         smi_info->curr_msg->data_size);
502                 smi_info->si_state = SI_GETTING_EVENTS;
503         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504                    smi_info->oem_data_avail_handler) {
505                 if (smi_info->oem_data_avail_handler(smi_info))
506                         goto retry;
507         } else
508                 smi_info->si_state = SI_NORMAL;
509 }
510
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513         struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515         struct timeval t;
516
517         do_gettimeofday(&t);
518         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520         switch (smi_info->si_state) {
521         case SI_NORMAL:
522                 if (!smi_info->curr_msg)
523                         break;
524
525                 smi_info->curr_msg->rsp_size
526                         = smi_info->handlers->get_result(
527                                 smi_info->si_sm,
528                                 smi_info->curr_msg->rsp,
529                                 IPMI_MAX_MSG_LENGTH);
530
531                 /*
532                  * Do this here becase deliver_recv_msg() releases the
533                  * lock, and a new message can be put in during the
534                  * time the lock is released.
535                  */
536                 msg = smi_info->curr_msg;
537                 smi_info->curr_msg = NULL;
538                 deliver_recv_msg(smi_info, msg);
539                 break;
540
541         case SI_GETTING_FLAGS:
542         {
543                 unsigned char msg[4];
544                 unsigned int  len;
545
546                 /* We got the flags from the SMI, now handle them. */
547                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548                 if (msg[2] != 0) {
549                         /* Error fetching flags, just give up for now. */
550                         smi_info->si_state = SI_NORMAL;
551                 } else if (len < 4) {
552                         /*
553                          * Hmm, no flags.  That's technically illegal, but
554                          * don't use uninitialized data.
555                          */
556                         smi_info->si_state = SI_NORMAL;
557                 } else {
558                         smi_info->msg_flags = msg[3];
559                         handle_flags(smi_info);
560                 }
561                 break;
562         }
563
564         case SI_CLEARING_FLAGS:
565         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566         {
567                 unsigned char msg[3];
568
569                 /* We cleared the flags. */
570                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571                 if (msg[2] != 0) {
572                         /* Error clearing flags */
573                         dev_warn(smi_info->dev,
574                                  "Error clearing flags: %2.2x\n", msg[2]);
575                 }
576                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577                         start_enable_irq(smi_info);
578                 else
579                         smi_info->si_state = SI_NORMAL;
580                 break;
581         }
582
583         case SI_GETTING_EVENTS:
584         {
585                 smi_info->curr_msg->rsp_size
586                         = smi_info->handlers->get_result(
587                                 smi_info->si_sm,
588                                 smi_info->curr_msg->rsp,
589                                 IPMI_MAX_MSG_LENGTH);
590
591                 /*
592                  * Do this here becase deliver_recv_msg() releases the
593                  * lock, and a new message can be put in during the
594                  * time the lock is released.
595                  */
596                 msg = smi_info->curr_msg;
597                 smi_info->curr_msg = NULL;
598                 if (msg->rsp[2] != 0) {
599                         /* Error getting event, probably done. */
600                         msg->done(msg);
601
602                         /* Take off the event flag. */
603                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604                         handle_flags(smi_info);
605                 } else {
606                         smi_inc_stat(smi_info, events);
607
608                         /*
609                          * Do this before we deliver the message
610                          * because delivering the message releases the
611                          * lock and something else can mess with the
612                          * state.
613                          */
614                         handle_flags(smi_info);
615
616                         deliver_recv_msg(smi_info, msg);
617                 }
618                 break;
619         }
620
621         case SI_GETTING_MESSAGES:
622         {
623                 smi_info->curr_msg->rsp_size
624                         = smi_info->handlers->get_result(
625                                 smi_info->si_sm,
626                                 smi_info->curr_msg->rsp,
627                                 IPMI_MAX_MSG_LENGTH);
628
629                 /*
630                  * Do this here becase deliver_recv_msg() releases the
631                  * lock, and a new message can be put in during the
632                  * time the lock is released.
633                  */
634                 msg = smi_info->curr_msg;
635                 smi_info->curr_msg = NULL;
636                 if (msg->rsp[2] != 0) {
637                         /* Error getting event, probably done. */
638                         msg->done(msg);
639
640                         /* Take off the msg flag. */
641                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642                         handle_flags(smi_info);
643                 } else {
644                         smi_inc_stat(smi_info, incoming_messages);
645
646                         /*
647                          * Do this before we deliver the message
648                          * because delivering the message releases the
649                          * lock and something else can mess with the
650                          * state.
651                          */
652                         handle_flags(smi_info);
653
654                         deliver_recv_msg(smi_info, msg);
655                 }
656                 break;
657         }
658
659         case SI_ENABLE_INTERRUPTS1:
660         {
661                 unsigned char msg[4];
662
663                 /* We got the flags from the SMI, now handle them. */
664                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665                 if (msg[2] != 0) {
666                         dev_warn(smi_info->dev,
667                                  "Couldn't get irq info: %x.\n", msg[2]);
668                         dev_warn(smi_info->dev,
669                                  "Maybe ok, but ipmi might run very slowly.\n");
670                         smi_info->si_state = SI_NORMAL;
671                 } else {
672                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
673                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
674                         msg[2] = (msg[3] |
675                                   IPMI_BMC_RCV_MSG_INTR |
676                                   IPMI_BMC_EVT_MSG_INTR);
677                         smi_info->handlers->start_transaction(
678                                 smi_info->si_sm, msg, 3);
679                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
680                 }
681                 break;
682         }
683
684         case SI_ENABLE_INTERRUPTS2:
685         {
686                 unsigned char msg[4];
687
688                 /* We got the flags from the SMI, now handle them. */
689                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
690                 if (msg[2] != 0) {
691                         dev_warn(smi_info->dev,
692                                  "Couldn't set irq info: %x.\n", msg[2]);
693                         dev_warn(smi_info->dev,
694                                  "Maybe ok, but ipmi might run very slowly.\n");
695                 } else
696                         smi_info->interrupt_disabled = 0;
697                 smi_info->si_state = SI_NORMAL;
698                 break;
699         }
700
701         case SI_DISABLE_INTERRUPTS1:
702         {
703                 unsigned char msg[4];
704
705                 /* We got the flags from the SMI, now handle them. */
706                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
707                 if (msg[2] != 0) {
708                         dev_warn(smi_info->dev, "Could not disable interrupts"
709                                  ", failed get.\n");
710                         smi_info->si_state = SI_NORMAL;
711                 } else {
712                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
713                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
714                         msg[2] = (msg[3] &
715                                   ~(IPMI_BMC_RCV_MSG_INTR |
716                                     IPMI_BMC_EVT_MSG_INTR));
717                         smi_info->handlers->start_transaction(
718                                 smi_info->si_sm, msg, 3);
719                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
720                 }
721                 break;
722         }
723
724         case SI_DISABLE_INTERRUPTS2:
725         {
726                 unsigned char msg[4];
727
728                 /* We got the flags from the SMI, now handle them. */
729                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
730                 if (msg[2] != 0) {
731                         dev_warn(smi_info->dev, "Could not disable interrupts"
732                                  ", failed set.\n");
733                 }
734                 smi_info->si_state = SI_NORMAL;
735                 break;
736         }
737         }
738 }
739
740 /*
741  * Called on timeouts and events.  Timeouts should pass the elapsed
742  * time, interrupts should pass in zero.  Must be called with
743  * si_lock held and interrupts disabled.
744  */
745 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
746                                            int time)
747 {
748         enum si_sm_result si_sm_result;
749
750  restart:
751         /*
752          * There used to be a loop here that waited a little while
753          * (around 25us) before giving up.  That turned out to be
754          * pointless, the minimum delays I was seeing were in the 300us
755          * range, which is far too long to wait in an interrupt.  So
756          * we just run until the state machine tells us something
757          * happened or it needs a delay.
758          */
759         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
760         time = 0;
761         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
762                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
763
764         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
765                 smi_inc_stat(smi_info, complete_transactions);
766
767                 handle_transaction_done(smi_info);
768                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
769         } else if (si_sm_result == SI_SM_HOSED) {
770                 smi_inc_stat(smi_info, hosed_count);
771
772                 /*
773                  * Do the before return_hosed_msg, because that
774                  * releases the lock.
775                  */
776                 smi_info->si_state = SI_NORMAL;
777                 if (smi_info->curr_msg != NULL) {
778                         /*
779                          * If we were handling a user message, format
780                          * a response to send to the upper layer to
781                          * tell it about the error.
782                          */
783                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
784                 }
785                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
786         }
787
788         /*
789          * We prefer handling attn over new messages.  But don't do
790          * this if there is not yet an upper layer to handle anything.
791          */
792         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
793                 unsigned char msg[2];
794
795                 smi_inc_stat(smi_info, attentions);
796
797                 /*
798                  * Got a attn, send down a get message flags to see
799                  * what's causing it.  It would be better to handle
800                  * this in the upper layer, but due to the way
801                  * interrupts work with the SMI, that's not really
802                  * possible.
803                  */
804                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
805                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
806
807                 smi_info->handlers->start_transaction(
808                         smi_info->si_sm, msg, 2);
809                 smi_info->si_state = SI_GETTING_FLAGS;
810                 goto restart;
811         }
812
813         /* If we are currently idle, try to start the next message. */
814         if (si_sm_result == SI_SM_IDLE) {
815                 smi_inc_stat(smi_info, idles);
816
817                 si_sm_result = start_next_msg(smi_info);
818                 if (si_sm_result != SI_SM_IDLE)
819                         goto restart;
820         }
821
822         if ((si_sm_result == SI_SM_IDLE)
823             && (atomic_read(&smi_info->req_events))) {
824                 /*
825                  * We are idle and the upper layer requested that I fetch
826                  * events, so do so.
827                  */
828                 atomic_set(&smi_info->req_events, 0);
829
830                 smi_info->curr_msg = ipmi_alloc_smi_msg();
831                 if (!smi_info->curr_msg)
832                         goto out;
833
834                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
835                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
836                 smi_info->curr_msg->data_size = 2;
837
838                 smi_info->handlers->start_transaction(
839                         smi_info->si_sm,
840                         smi_info->curr_msg->data,
841                         smi_info->curr_msg->data_size);
842                 smi_info->si_state = SI_GETTING_EVENTS;
843                 goto restart;
844         }
845  out:
846         return si_sm_result;
847 }
848
849 static void sender(void                *send_info,
850                    struct ipmi_smi_msg *msg,
851                    int                 priority)
852 {
853         struct smi_info   *smi_info = send_info;
854         enum si_sm_result result;
855         unsigned long     flags;
856 #ifdef DEBUG_TIMING
857         struct timeval    t;
858 #endif
859
860         if (atomic_read(&smi_info->stop_operation)) {
861                 msg->rsp[0] = msg->data[0] | 4;
862                 msg->rsp[1] = msg->data[1];
863                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
864                 msg->rsp_size = 3;
865                 deliver_recv_msg(smi_info, msg);
866                 return;
867         }
868
869 #ifdef DEBUG_TIMING
870         do_gettimeofday(&t);
871         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
872 #endif
873
874         if (smi_info->run_to_completion) {
875                 /*
876                  * If we are running to completion, then throw it in
877                  * the list and run transactions until everything is
878                  * clear.  Priority doesn't matter here.
879                  */
880
881                 /*
882                  * Run to completion means we are single-threaded, no
883                  * need for locks.
884                  */
885                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
886
887                 result = smi_event_handler(smi_info, 0);
888                 while (result != SI_SM_IDLE) {
889                         udelay(SI_SHORT_TIMEOUT_USEC);
890                         result = smi_event_handler(smi_info,
891                                                    SI_SHORT_TIMEOUT_USEC);
892                 }
893                 return;
894         }
895
896         spin_lock_irqsave(&smi_info->si_lock, flags);
897         if (priority > 0)
898                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
899         else
900                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
901
902         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
903                 /*
904                  * last_timeout_jiffies is updated here to avoid
905                  * smi_timeout() handler passing very large time_diff
906                  * value to smi_event_handler() that causes
907                  * the send command to abort.
908                  */
909                 smi_info->last_timeout_jiffies = jiffies;
910
911                 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
912
913                 if (smi_info->thread)
914                         wake_up_process(smi_info->thread);
915
916                 start_next_msg(smi_info);
917                 smi_event_handler(smi_info, 0);
918         }
919         spin_unlock_irqrestore(&smi_info->si_lock, flags);
920 }
921
922 static void set_run_to_completion(void *send_info, int i_run_to_completion)
923 {
924         struct smi_info   *smi_info = send_info;
925         enum si_sm_result result;
926
927         smi_info->run_to_completion = i_run_to_completion;
928         if (i_run_to_completion) {
929                 result = smi_event_handler(smi_info, 0);
930                 while (result != SI_SM_IDLE) {
931                         udelay(SI_SHORT_TIMEOUT_USEC);
932                         result = smi_event_handler(smi_info,
933                                                    SI_SHORT_TIMEOUT_USEC);
934                 }
935         }
936 }
937
938 /*
939  * Use -1 in the nsec value of the busy waiting timespec to tell that
940  * we are spinning in kipmid looking for something and not delaying
941  * between checks
942  */
943 static inline void ipmi_si_set_not_busy(struct timespec *ts)
944 {
945         ts->tv_nsec = -1;
946 }
947 static inline int ipmi_si_is_busy(struct timespec *ts)
948 {
949         return ts->tv_nsec != -1;
950 }
951
952 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
953                                  const struct smi_info *smi_info,
954                                  struct timespec *busy_until)
955 {
956         unsigned int max_busy_us = 0;
957
958         if (smi_info->intf_num < num_max_busy_us)
959                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
960         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
961                 ipmi_si_set_not_busy(busy_until);
962         else if (!ipmi_si_is_busy(busy_until)) {
963                 getnstimeofday(busy_until);
964                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
965         } else {
966                 struct timespec now;
967                 getnstimeofday(&now);
968                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
969                         ipmi_si_set_not_busy(busy_until);
970                         return 0;
971                 }
972         }
973         return 1;
974 }
975
976
977 /*
978  * A busy-waiting loop for speeding up IPMI operation.
979  *
980  * Lousy hardware makes this hard.  This is only enabled for systems
981  * that are not BT and do not have interrupts.  It starts spinning
982  * when an operation is complete or until max_busy tells it to stop
983  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
984  * Documentation/IPMI.txt for details.
985  */
986 static int ipmi_thread(void *data)
987 {
988         struct smi_info *smi_info = data;
989         unsigned long flags;
990         enum si_sm_result smi_result;
991         struct timespec busy_until;
992
993         ipmi_si_set_not_busy(&busy_until);
994         set_user_nice(current, 19);
995         while (!kthread_should_stop()) {
996                 int busy_wait;
997
998                 spin_lock_irqsave(&(smi_info->si_lock), flags);
999                 smi_result = smi_event_handler(smi_info, 0);
1000                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1001                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1002                                                   &busy_until);
1003                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1004                         ; /* do nothing */
1005                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1006                         schedule();
1007                 else if (smi_result == SI_SM_IDLE)
1008                         schedule_timeout_interruptible(100);
1009                 else
1010                         schedule_timeout_interruptible(1);
1011         }
1012         return 0;
1013 }
1014
1015
1016 static void poll(void *send_info)
1017 {
1018         struct smi_info *smi_info = send_info;
1019         unsigned long flags = 0;
1020         int run_to_completion = smi_info->run_to_completion;
1021
1022         /*
1023          * Make sure there is some delay in the poll loop so we can
1024          * drive time forward and timeout things.
1025          */
1026         udelay(10);
1027         if (!run_to_completion)
1028                 spin_lock_irqsave(&smi_info->si_lock, flags);
1029         smi_event_handler(smi_info, 10);
1030         if (!run_to_completion)
1031                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1032 }
1033
1034 static void request_events(void *send_info)
1035 {
1036         struct smi_info *smi_info = send_info;
1037
1038         if (atomic_read(&smi_info->stop_operation) ||
1039                                 !smi_info->has_event_buffer)
1040                 return;
1041
1042         atomic_set(&smi_info->req_events, 1);
1043 }
1044
1045 static int initialized;
1046
1047 static void smi_timeout(unsigned long data)
1048 {
1049         struct smi_info   *smi_info = (struct smi_info *) data;
1050         enum si_sm_result smi_result;
1051         unsigned long     flags;
1052         unsigned long     jiffies_now;
1053         long              time_diff;
1054         long              timeout;
1055 #ifdef DEBUG_TIMING
1056         struct timeval    t;
1057 #endif
1058
1059         spin_lock_irqsave(&(smi_info->si_lock), flags);
1060 #ifdef DEBUG_TIMING
1061         do_gettimeofday(&t);
1062         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1063 #endif
1064         jiffies_now = jiffies;
1065         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1066                      * SI_USEC_PER_JIFFY);
1067         smi_result = smi_event_handler(smi_info, time_diff);
1068
1069         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1070
1071         smi_info->last_timeout_jiffies = jiffies_now;
1072
1073         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1074                 /* Running with interrupts, only do long timeouts. */
1075                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1076                 smi_inc_stat(smi_info, long_timeouts);
1077                 goto do_mod_timer;
1078         }
1079
1080         /*
1081          * If the state machine asks for a short delay, then shorten
1082          * the timer timeout.
1083          */
1084         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1085                 smi_inc_stat(smi_info, short_timeouts);
1086                 timeout = jiffies + 1;
1087         } else {
1088                 smi_inc_stat(smi_info, long_timeouts);
1089                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1090         }
1091
1092  do_mod_timer:
1093         if (smi_result != SI_SM_IDLE)
1094                 mod_timer(&(smi_info->si_timer), timeout);
1095 }
1096
1097 static irqreturn_t si_irq_handler(int irq, void *data)
1098 {
1099         struct smi_info *smi_info = data;
1100         unsigned long   flags;
1101 #ifdef DEBUG_TIMING
1102         struct timeval  t;
1103 #endif
1104
1105         spin_lock_irqsave(&(smi_info->si_lock), flags);
1106
1107         smi_inc_stat(smi_info, interrupts);
1108
1109 #ifdef DEBUG_TIMING
1110         do_gettimeofday(&t);
1111         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1112 #endif
1113         smi_event_handler(smi_info, 0);
1114         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115         return IRQ_HANDLED;
1116 }
1117
1118 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1119 {
1120         struct smi_info *smi_info = data;
1121         /* We need to clear the IRQ flag for the BT interface. */
1122         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1123                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1125         return si_irq_handler(irq, data);
1126 }
1127
1128 static int smi_start_processing(void       *send_info,
1129                                 ipmi_smi_t intf)
1130 {
1131         struct smi_info *new_smi = send_info;
1132         int             enable = 0;
1133
1134         new_smi->intf = intf;
1135
1136         /* Try to claim any interrupts. */
1137         if (new_smi->irq_setup)
1138                 new_smi->irq_setup(new_smi);
1139
1140         /* Set up the timer that drives the interface. */
1141         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1142         new_smi->last_timeout_jiffies = jiffies;
1143         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1144
1145         /*
1146          * Check if the user forcefully enabled the daemon.
1147          */
1148         if (new_smi->intf_num < num_force_kipmid)
1149                 enable = force_kipmid[new_smi->intf_num];
1150         /*
1151          * The BT interface is efficient enough to not need a thread,
1152          * and there is no need for a thread if we have interrupts.
1153          */
1154         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1155                 enable = 1;
1156
1157         if (enable) {
1158                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1159                                               "kipmi%d", new_smi->intf_num);
1160                 if (IS_ERR(new_smi->thread)) {
1161                         dev_notice(new_smi->dev, "Could not start"
1162                                    " kernel thread due to error %ld, only using"
1163                                    " timers to drive the interface\n",
1164                                    PTR_ERR(new_smi->thread));
1165                         new_smi->thread = NULL;
1166                 }
1167         }
1168
1169         return 0;
1170 }
1171
1172 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1173 {
1174         struct smi_info *smi = send_info;
1175
1176         data->addr_src = smi->addr_source;
1177         data->dev = smi->dev;
1178         data->addr_info = smi->addr_info;
1179         get_device(smi->dev);
1180
1181         return 0;
1182 }
1183
1184 static void set_maintenance_mode(void *send_info, int enable)
1185 {
1186         struct smi_info   *smi_info = send_info;
1187
1188         if (!enable)
1189                 atomic_set(&smi_info->req_events, 0);
1190 }
1191
1192 static struct ipmi_smi_handlers handlers = {
1193         .owner                  = THIS_MODULE,
1194         .start_processing       = smi_start_processing,
1195         .get_smi_info           = get_smi_info,
1196         .sender                 = sender,
1197         .request_events         = request_events,
1198         .set_maintenance_mode   = set_maintenance_mode,
1199         .set_run_to_completion  = set_run_to_completion,
1200         .poll                   = poll,
1201 };
1202
1203 /*
1204  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1205  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1206  */
1207
1208 static LIST_HEAD(smi_infos);
1209 static DEFINE_MUTEX(smi_infos_lock);
1210 static int smi_num; /* Used to sequence the SMIs */
1211
1212 #define DEFAULT_REGSPACING      1
1213 #define DEFAULT_REGSIZE         1
1214
1215 #ifdef CONFIG_ACPI
1216 static bool          si_tryacpi = 1;
1217 #endif
1218 #ifdef CONFIG_DMI
1219 static bool          si_trydmi = 1;
1220 #endif
1221 static bool          si_tryplatform = 1;
1222 #ifdef CONFIG_PCI
1223 static bool          si_trypci = 1;
1224 #endif
1225 static bool          si_trydefaults = 1;
1226 static char          *si_type[SI_MAX_PARMS];
1227 #define MAX_SI_TYPE_STR 30
1228 static char          si_type_str[MAX_SI_TYPE_STR];
1229 static unsigned long addrs[SI_MAX_PARMS];
1230 static unsigned int num_addrs;
1231 static unsigned int  ports[SI_MAX_PARMS];
1232 static unsigned int num_ports;
1233 static int           irqs[SI_MAX_PARMS];
1234 static unsigned int num_irqs;
1235 static int           regspacings[SI_MAX_PARMS];
1236 static unsigned int num_regspacings;
1237 static int           regsizes[SI_MAX_PARMS];
1238 static unsigned int num_regsizes;
1239 static int           regshifts[SI_MAX_PARMS];
1240 static unsigned int num_regshifts;
1241 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1242 static unsigned int num_slave_addrs;
1243
1244 #define IPMI_IO_ADDR_SPACE  0
1245 #define IPMI_MEM_ADDR_SPACE 1
1246 static char *addr_space_to_str[] = { "i/o", "mem" };
1247
1248 static int hotmod_handler(const char *val, struct kernel_param *kp);
1249
1250 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1251 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1252                  " Documentation/IPMI.txt in the kernel sources for the"
1253                  " gory details.");
1254
1255 #ifdef CONFIG_ACPI
1256 module_param_named(tryacpi, si_tryacpi, bool, 0);
1257 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1258                  " default scan of the interfaces identified via ACPI");
1259 #endif
1260 #ifdef CONFIG_DMI
1261 module_param_named(trydmi, si_trydmi, bool, 0);
1262 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1263                  " default scan of the interfaces identified via DMI");
1264 #endif
1265 module_param_named(tryplatform, si_tryplatform, bool, 0);
1266 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1267                  " default scan of the interfaces identified via platform"
1268                  " interfaces like openfirmware");
1269 #ifdef CONFIG_PCI
1270 module_param_named(trypci, si_trypci, bool, 0);
1271 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1272                  " default scan of the interfaces identified via pci");
1273 #endif
1274 module_param_named(trydefaults, si_trydefaults, bool, 0);
1275 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1276                  " default scan of the KCS and SMIC interface at the standard"
1277                  " address");
1278 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1279 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1280                  " interface separated by commas.  The types are 'kcs',"
1281                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1282                  " the first interface to kcs and the second to bt");
1283 module_param_array(addrs, ulong, &num_addrs, 0);
1284 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1285                  " addresses separated by commas.  Only use if an interface"
1286                  " is in memory.  Otherwise, set it to zero or leave"
1287                  " it blank.");
1288 module_param_array(ports, uint, &num_ports, 0);
1289 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1290                  " addresses separated by commas.  Only use if an interface"
1291                  " is a port.  Otherwise, set it to zero or leave"
1292                  " it blank.");
1293 module_param_array(irqs, int, &num_irqs, 0);
1294 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1295                  " addresses separated by commas.  Only use if an interface"
1296                  " has an interrupt.  Otherwise, set it to zero or leave"
1297                  " it blank.");
1298 module_param_array(regspacings, int, &num_regspacings, 0);
1299 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1300                  " and each successive register used by the interface.  For"
1301                  " instance, if the start address is 0xca2 and the spacing"
1302                  " is 2, then the second address is at 0xca4.  Defaults"
1303                  " to 1.");
1304 module_param_array(regsizes, int, &num_regsizes, 0);
1305 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1306                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1307                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1308                  " the 8-bit IPMI register has to be read from a larger"
1309                  " register.");
1310 module_param_array(regshifts, int, &num_regshifts, 0);
1311 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1312                  " IPMI register, in bits.  For instance, if the data"
1313                  " is read from a 32-bit word and the IPMI data is in"
1314                  " bit 8-15, then the shift would be 8");
1315 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1316 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1317                  " the controller.  Normally this is 0x20, but can be"
1318                  " overridden by this parm.  This is an array indexed"
1319                  " by interface number.");
1320 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1321 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1322                  " disabled(0).  Normally the IPMI driver auto-detects"
1323                  " this, but the value may be overridden by this parm.");
1324 module_param(unload_when_empty, int, 0);
1325 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1326                  " specified or found, default is 1.  Setting to 0"
1327                  " is useful for hot add of devices using hotmod.");
1328 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1329 MODULE_PARM_DESC(kipmid_max_busy_us,
1330                  "Max time (in microseconds) to busy-wait for IPMI data before"
1331                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1332                  " if kipmid is using up a lot of CPU time.");
1333
1334
1335 static void std_irq_cleanup(struct smi_info *info)
1336 {
1337         if (info->si_type == SI_BT)
1338                 /* Disable the interrupt in the BT interface. */
1339                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1340         free_irq(info->irq, info);
1341 }
1342
1343 static int std_irq_setup(struct smi_info *info)
1344 {
1345         int rv;
1346
1347         if (!info->irq)
1348                 return 0;
1349
1350         if (info->si_type == SI_BT) {
1351                 rv = request_irq(info->irq,
1352                                  si_bt_irq_handler,
1353                                  IRQF_SHARED | IRQF_DISABLED,
1354                                  DEVICE_NAME,
1355                                  info);
1356                 if (!rv)
1357                         /* Enable the interrupt in the BT interface. */
1358                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1359                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1360         } else
1361                 rv = request_irq(info->irq,
1362                                  si_irq_handler,
1363                                  IRQF_SHARED | IRQF_DISABLED,
1364                                  DEVICE_NAME,
1365                                  info);
1366         if (rv) {
1367                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1368                          " running polled\n",
1369                          DEVICE_NAME, info->irq);
1370                 info->irq = 0;
1371         } else {
1372                 info->irq_cleanup = std_irq_cleanup;
1373                 dev_info(info->dev, "Using irq %d\n", info->irq);
1374         }
1375
1376         return rv;
1377 }
1378
1379 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1380 {
1381         unsigned int addr = io->addr_data;
1382
1383         return inb(addr + (offset * io->regspacing));
1384 }
1385
1386 static void port_outb(struct si_sm_io *io, unsigned int offset,
1387                       unsigned char b)
1388 {
1389         unsigned int addr = io->addr_data;
1390
1391         outb(b, addr + (offset * io->regspacing));
1392 }
1393
1394 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1395 {
1396         unsigned int addr = io->addr_data;
1397
1398         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1399 }
1400
1401 static void port_outw(struct si_sm_io *io, unsigned int offset,
1402                       unsigned char b)
1403 {
1404         unsigned int addr = io->addr_data;
1405
1406         outw(b << io->regshift, addr + (offset * io->regspacing));
1407 }
1408
1409 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1410 {
1411         unsigned int addr = io->addr_data;
1412
1413         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1414 }
1415
1416 static void port_outl(struct si_sm_io *io, unsigned int offset,
1417                       unsigned char b)
1418 {
1419         unsigned int addr = io->addr_data;
1420
1421         outl(b << io->regshift, addr+(offset * io->regspacing));
1422 }
1423
1424 static void port_cleanup(struct smi_info *info)
1425 {
1426         unsigned int addr = info->io.addr_data;
1427         int          idx;
1428
1429         if (addr) {
1430                 for (idx = 0; idx < info->io_size; idx++)
1431                         release_region(addr + idx * info->io.regspacing,
1432                                        info->io.regsize);
1433         }
1434 }
1435
1436 static int port_setup(struct smi_info *info)
1437 {
1438         unsigned int addr = info->io.addr_data;
1439         int          idx;
1440
1441         if (!addr)
1442                 return -ENODEV;
1443
1444         info->io_cleanup = port_cleanup;
1445
1446         /*
1447          * Figure out the actual inb/inw/inl/etc routine to use based
1448          * upon the register size.
1449          */
1450         switch (info->io.regsize) {
1451         case 1:
1452                 info->io.inputb = port_inb;
1453                 info->io.outputb = port_outb;
1454                 break;
1455         case 2:
1456                 info->io.inputb = port_inw;
1457                 info->io.outputb = port_outw;
1458                 break;
1459         case 4:
1460                 info->io.inputb = port_inl;
1461                 info->io.outputb = port_outl;
1462                 break;
1463         default:
1464                 dev_warn(info->dev, "Invalid register size: %d\n",
1465                          info->io.regsize);
1466                 return -EINVAL;
1467         }
1468
1469         /*
1470          * Some BIOSes reserve disjoint I/O regions in their ACPI
1471          * tables.  This causes problems when trying to register the
1472          * entire I/O region.  Therefore we must register each I/O
1473          * port separately.
1474          */
1475         for (idx = 0; idx < info->io_size; idx++) {
1476                 if (request_region(addr + idx * info->io.regspacing,
1477                                    info->io.regsize, DEVICE_NAME) == NULL) {
1478                         /* Undo allocations */
1479                         while (idx--) {
1480                                 release_region(addr + idx * info->io.regspacing,
1481                                                info->io.regsize);
1482                         }
1483                         return -EIO;
1484                 }
1485         }
1486         return 0;
1487 }
1488
1489 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1490 {
1491         return readb((io->addr)+(offset * io->regspacing));
1492 }
1493
1494 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1495                      unsigned char b)
1496 {
1497         writeb(b, (io->addr)+(offset * io->regspacing));
1498 }
1499
1500 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1501 {
1502         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503                 & 0xff;
1504 }
1505
1506 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1507                      unsigned char b)
1508 {
1509         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 }
1511
1512 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1513 {
1514         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1515                 & 0xff;
1516 }
1517
1518 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1519                      unsigned char b)
1520 {
1521         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1522 }
1523
1524 #ifdef readq
1525 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1526 {
1527         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1528                 & 0xff;
1529 }
1530
1531 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1532                      unsigned char b)
1533 {
1534         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1535 }
1536 #endif
1537
1538 static void mem_cleanup(struct smi_info *info)
1539 {
1540         unsigned long addr = info->io.addr_data;
1541         int           mapsize;
1542
1543         if (info->io.addr) {
1544                 iounmap(info->io.addr);
1545
1546                 mapsize = ((info->io_size * info->io.regspacing)
1547                            - (info->io.regspacing - info->io.regsize));
1548
1549                 release_mem_region(addr, mapsize);
1550         }
1551 }
1552
1553 static int mem_setup(struct smi_info *info)
1554 {
1555         unsigned long addr = info->io.addr_data;
1556         int           mapsize;
1557
1558         if (!addr)
1559                 return -ENODEV;
1560
1561         info->io_cleanup = mem_cleanup;
1562
1563         /*
1564          * Figure out the actual readb/readw/readl/etc routine to use based
1565          * upon the register size.
1566          */
1567         switch (info->io.regsize) {
1568         case 1:
1569                 info->io.inputb = intf_mem_inb;
1570                 info->io.outputb = intf_mem_outb;
1571                 break;
1572         case 2:
1573                 info->io.inputb = intf_mem_inw;
1574                 info->io.outputb = intf_mem_outw;
1575                 break;
1576         case 4:
1577                 info->io.inputb = intf_mem_inl;
1578                 info->io.outputb = intf_mem_outl;
1579                 break;
1580 #ifdef readq
1581         case 8:
1582                 info->io.inputb = mem_inq;
1583                 info->io.outputb = mem_outq;
1584                 break;
1585 #endif
1586         default:
1587                 dev_warn(info->dev, "Invalid register size: %d\n",
1588                          info->io.regsize);
1589                 return -EINVAL;
1590         }
1591
1592         /*
1593          * Calculate the total amount of memory to claim.  This is an
1594          * unusual looking calculation, but it avoids claiming any
1595          * more memory than it has to.  It will claim everything
1596          * between the first address to the end of the last full
1597          * register.
1598          */
1599         mapsize = ((info->io_size * info->io.regspacing)
1600                    - (info->io.regspacing - info->io.regsize));
1601
1602         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1603                 return -EIO;
1604
1605         info->io.addr = ioremap(addr, mapsize);
1606         if (info->io.addr == NULL) {
1607                 release_mem_region(addr, mapsize);
1608                 return -EIO;
1609         }
1610         return 0;
1611 }
1612
1613 /*
1614  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1615  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1616  * Options are:
1617  *   rsp=<regspacing>
1618  *   rsi=<regsize>
1619  *   rsh=<regshift>
1620  *   irq=<irq>
1621  *   ipmb=<ipmb addr>
1622  */
1623 enum hotmod_op { HM_ADD, HM_REMOVE };
1624 struct hotmod_vals {
1625         char *name;
1626         int  val;
1627 };
1628 static struct hotmod_vals hotmod_ops[] = {
1629         { "add",        HM_ADD },
1630         { "remove",     HM_REMOVE },
1631         { NULL }
1632 };
1633 static struct hotmod_vals hotmod_si[] = {
1634         { "kcs",        SI_KCS },
1635         { "smic",       SI_SMIC },
1636         { "bt",         SI_BT },
1637         { NULL }
1638 };
1639 static struct hotmod_vals hotmod_as[] = {
1640         { "mem",        IPMI_MEM_ADDR_SPACE },
1641         { "i/o",        IPMI_IO_ADDR_SPACE },
1642         { NULL }
1643 };
1644
1645 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1646 {
1647         char *s;
1648         int  i;
1649
1650         s = strchr(*curr, ',');
1651         if (!s) {
1652                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1653                 return -EINVAL;
1654         }
1655         *s = '\0';
1656         s++;
1657         for (i = 0; hotmod_ops[i].name; i++) {
1658                 if (strcmp(*curr, v[i].name) == 0) {
1659                         *val = v[i].val;
1660                         *curr = s;
1661                         return 0;
1662                 }
1663         }
1664
1665         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1666         return -EINVAL;
1667 }
1668
1669 static int check_hotmod_int_op(const char *curr, const char *option,
1670                                const char *name, int *val)
1671 {
1672         char *n;
1673
1674         if (strcmp(curr, name) == 0) {
1675                 if (!option) {
1676                         printk(KERN_WARNING PFX
1677                                "No option given for '%s'\n",
1678                                curr);
1679                         return -EINVAL;
1680                 }
1681                 *val = simple_strtoul(option, &n, 0);
1682                 if ((*n != '\0') || (*option == '\0')) {
1683                         printk(KERN_WARNING PFX
1684                                "Bad option given for '%s'\n",
1685                                curr);
1686                         return -EINVAL;
1687                 }
1688                 return 1;
1689         }
1690         return 0;
1691 }
1692
1693 static struct smi_info *smi_info_alloc(void)
1694 {
1695         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1696
1697         if (info)
1698                 spin_lock_init(&info->si_lock);
1699         return info;
1700 }
1701
1702 static int hotmod_handler(const char *val, struct kernel_param *kp)
1703 {
1704         char *str = kstrdup(val, GFP_KERNEL);
1705         int  rv;
1706         char *next, *curr, *s, *n, *o;
1707         enum hotmod_op op;
1708         enum si_type si_type;
1709         int  addr_space;
1710         unsigned long addr;
1711         int regspacing;
1712         int regsize;
1713         int regshift;
1714         int irq;
1715         int ipmb;
1716         int ival;
1717         int len;
1718         struct smi_info *info;
1719
1720         if (!str)
1721                 return -ENOMEM;
1722
1723         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1724         len = strlen(str);
1725         ival = len - 1;
1726         while ((ival >= 0) && isspace(str[ival])) {
1727                 str[ival] = '\0';
1728                 ival--;
1729         }
1730
1731         for (curr = str; curr; curr = next) {
1732                 regspacing = 1;
1733                 regsize = 1;
1734                 regshift = 0;
1735                 irq = 0;
1736                 ipmb = 0; /* Choose the default if not specified */
1737
1738                 next = strchr(curr, ':');
1739                 if (next) {
1740                         *next = '\0';
1741                         next++;
1742                 }
1743
1744                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1745                 if (rv)
1746                         break;
1747                 op = ival;
1748
1749                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1750                 if (rv)
1751                         break;
1752                 si_type = ival;
1753
1754                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1755                 if (rv)
1756                         break;
1757
1758                 s = strchr(curr, ',');
1759                 if (s) {
1760                         *s = '\0';
1761                         s++;
1762                 }
1763                 addr = simple_strtoul(curr, &n, 0);
1764                 if ((*n != '\0') || (*curr == '\0')) {
1765                         printk(KERN_WARNING PFX "Invalid hotmod address"
1766                                " '%s'\n", curr);
1767                         break;
1768                 }
1769
1770                 while (s) {
1771                         curr = s;
1772                         s = strchr(curr, ',');
1773                         if (s) {
1774                                 *s = '\0';
1775                                 s++;
1776                         }
1777                         o = strchr(curr, '=');
1778                         if (o) {
1779                                 *o = '\0';
1780                                 o++;
1781                         }
1782                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1783                         if (rv < 0)
1784                                 goto out;
1785                         else if (rv)
1786                                 continue;
1787                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1788                         if (rv < 0)
1789                                 goto out;
1790                         else if (rv)
1791                                 continue;
1792                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1793                         if (rv < 0)
1794                                 goto out;
1795                         else if (rv)
1796                                 continue;
1797                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1798                         if (rv < 0)
1799                                 goto out;
1800                         else if (rv)
1801                                 continue;
1802                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1803                         if (rv < 0)
1804                                 goto out;
1805                         else if (rv)
1806                                 continue;
1807
1808                         rv = -EINVAL;
1809                         printk(KERN_WARNING PFX
1810                                "Invalid hotmod option '%s'\n",
1811                                curr);
1812                         goto out;
1813                 }
1814
1815                 if (op == HM_ADD) {
1816                         info = smi_info_alloc();
1817                         if (!info) {
1818                                 rv = -ENOMEM;
1819                                 goto out;
1820                         }
1821
1822                         info->addr_source = SI_HOTMOD;
1823                         info->si_type = si_type;
1824                         info->io.addr_data = addr;
1825                         info->io.addr_type = addr_space;
1826                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1827                                 info->io_setup = mem_setup;
1828                         else
1829                                 info->io_setup = port_setup;
1830
1831                         info->io.addr = NULL;
1832                         info->io.regspacing = regspacing;
1833                         if (!info->io.regspacing)
1834                                 info->io.regspacing = DEFAULT_REGSPACING;
1835                         info->io.regsize = regsize;
1836                         if (!info->io.regsize)
1837                                 info->io.regsize = DEFAULT_REGSPACING;
1838                         info->io.regshift = regshift;
1839                         info->irq = irq;
1840                         if (info->irq)
1841                                 info->irq_setup = std_irq_setup;
1842                         info->slave_addr = ipmb;
1843
1844                         if (!add_smi(info)) {
1845                                 if (try_smi_init(info))
1846                                         cleanup_one_si(info);
1847                         } else {
1848                                 kfree(info);
1849                         }
1850                 } else {
1851                         /* remove */
1852                         struct smi_info *e, *tmp_e;
1853
1854                         mutex_lock(&smi_infos_lock);
1855                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1856                                 if (e->io.addr_type != addr_space)
1857                                         continue;
1858                                 if (e->si_type != si_type)
1859                                         continue;
1860                                 if (e->io.addr_data == addr)
1861                                         cleanup_one_si(e);
1862                         }
1863                         mutex_unlock(&smi_infos_lock);
1864                 }
1865         }
1866         rv = len;
1867  out:
1868         kfree(str);
1869         return rv;
1870 }
1871
1872 static int hardcode_find_bmc(void)
1873 {
1874         int ret = -ENODEV;
1875         int             i;
1876         struct smi_info *info;
1877
1878         for (i = 0; i < SI_MAX_PARMS; i++) {
1879                 if (!ports[i] && !addrs[i])
1880                         continue;
1881
1882                 info = smi_info_alloc();
1883                 if (!info)
1884                         return -ENOMEM;
1885
1886                 info->addr_source = SI_HARDCODED;
1887                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1888
1889                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1890                         info->si_type = SI_KCS;
1891                 } else if (strcmp(si_type[i], "smic") == 0) {
1892                         info->si_type = SI_SMIC;
1893                 } else if (strcmp(si_type[i], "bt") == 0) {
1894                         info->si_type = SI_BT;
1895                 } else {
1896                         printk(KERN_WARNING PFX "Interface type specified "
1897                                "for interface %d, was invalid: %s\n",
1898                                i, si_type[i]);
1899                         kfree(info);
1900                         continue;
1901                 }
1902
1903                 if (ports[i]) {
1904                         /* An I/O port */
1905                         info->io_setup = port_setup;
1906                         info->io.addr_data = ports[i];
1907                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1908                 } else if (addrs[i]) {
1909                         /* A memory port */
1910                         info->io_setup = mem_setup;
1911                         info->io.addr_data = addrs[i];
1912                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1913                 } else {
1914                         printk(KERN_WARNING PFX "Interface type specified "
1915                                "for interface %d, but port and address were "
1916                                "not set or set to zero.\n", i);
1917                         kfree(info);
1918                         continue;
1919                 }
1920
1921                 info->io.addr = NULL;
1922                 info->io.regspacing = regspacings[i];
1923                 if (!info->io.regspacing)
1924                         info->io.regspacing = DEFAULT_REGSPACING;
1925                 info->io.regsize = regsizes[i];
1926                 if (!info->io.regsize)
1927                         info->io.regsize = DEFAULT_REGSPACING;
1928                 info->io.regshift = regshifts[i];
1929                 info->irq = irqs[i];
1930                 if (info->irq)
1931                         info->irq_setup = std_irq_setup;
1932                 info->slave_addr = slave_addrs[i];
1933
1934                 if (!add_smi(info)) {
1935                         if (try_smi_init(info))
1936                                 cleanup_one_si(info);
1937                         ret = 0;
1938                 } else {
1939                         kfree(info);
1940                 }
1941         }
1942         return ret;
1943 }
1944
1945 #ifdef CONFIG_ACPI
1946
1947 #include <linux/acpi.h>
1948
1949 /*
1950  * Once we get an ACPI failure, we don't try any more, because we go
1951  * through the tables sequentially.  Once we don't find a table, there
1952  * are no more.
1953  */
1954 static int acpi_failure;
1955
1956 /* For GPE-type interrupts. */
1957 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1958         u32 gpe_number, void *context)
1959 {
1960         struct smi_info *smi_info = context;
1961         unsigned long   flags;
1962 #ifdef DEBUG_TIMING
1963         struct timeval t;
1964 #endif
1965
1966         spin_lock_irqsave(&(smi_info->si_lock), flags);
1967
1968         smi_inc_stat(smi_info, interrupts);
1969
1970 #ifdef DEBUG_TIMING
1971         do_gettimeofday(&t);
1972         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1973 #endif
1974         smi_event_handler(smi_info, 0);
1975         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1976
1977         return ACPI_INTERRUPT_HANDLED;
1978 }
1979
1980 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1981 {
1982         if (!info->irq)
1983                 return;
1984
1985         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1986 }
1987
1988 static int acpi_gpe_irq_setup(struct smi_info *info)
1989 {
1990         acpi_status status;
1991
1992         if (!info->irq)
1993                 return 0;
1994
1995         /* FIXME - is level triggered right? */
1996         status = acpi_install_gpe_handler(NULL,
1997                                           info->irq,
1998                                           ACPI_GPE_LEVEL_TRIGGERED,
1999                                           &ipmi_acpi_gpe,
2000                                           info);
2001         if (status != AE_OK) {
2002                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2003                          " running polled\n", DEVICE_NAME, info->irq);
2004                 info->irq = 0;
2005                 return -EINVAL;
2006         } else {
2007                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2008                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2009                 return 0;
2010         }
2011 }
2012
2013 /*
2014  * Defined at
2015  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2016  */
2017 struct SPMITable {
2018         s8      Signature[4];
2019         u32     Length;
2020         u8      Revision;
2021         u8      Checksum;
2022         s8      OEMID[6];
2023         s8      OEMTableID[8];
2024         s8      OEMRevision[4];
2025         s8      CreatorID[4];
2026         s8      CreatorRevision[4];
2027         u8      InterfaceType;
2028         u8      IPMIlegacy;
2029         s16     SpecificationRevision;
2030
2031         /*
2032          * Bit 0 - SCI interrupt supported
2033          * Bit 1 - I/O APIC/SAPIC
2034          */
2035         u8      InterruptType;
2036
2037         /*
2038          * If bit 0 of InterruptType is set, then this is the SCI
2039          * interrupt in the GPEx_STS register.
2040          */
2041         u8      GPE;
2042
2043         s16     Reserved;
2044
2045         /*
2046          * If bit 1 of InterruptType is set, then this is the I/O
2047          * APIC/SAPIC interrupt.
2048          */
2049         u32     GlobalSystemInterrupt;
2050
2051         /* The actual register address. */
2052         struct acpi_generic_address addr;
2053
2054         u8      UID[4];
2055
2056         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2057 };
2058
2059 static int try_init_spmi(struct SPMITable *spmi)
2060 {
2061         struct smi_info  *info;
2062
2063         if (spmi->IPMIlegacy != 1) {
2064                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2065                 return -ENODEV;
2066         }
2067
2068         info = smi_info_alloc();
2069         if (!info) {
2070                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2071                 return -ENOMEM;
2072         }
2073
2074         info->addr_source = SI_SPMI;
2075         printk(KERN_INFO PFX "probing via SPMI\n");
2076
2077         /* Figure out the interface type. */
2078         switch (spmi->InterfaceType) {
2079         case 1: /* KCS */
2080                 info->si_type = SI_KCS;
2081                 break;
2082         case 2: /* SMIC */
2083                 info->si_type = SI_SMIC;
2084                 break;
2085         case 3: /* BT */
2086                 info->si_type = SI_BT;
2087                 break;
2088         default:
2089                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2090                        spmi->InterfaceType);
2091                 kfree(info);
2092                 return -EIO;
2093         }
2094
2095         if (spmi->InterruptType & 1) {
2096                 /* We've got a GPE interrupt. */
2097                 info->irq = spmi->GPE;
2098                 info->irq_setup = acpi_gpe_irq_setup;
2099         } else if (spmi->InterruptType & 2) {
2100                 /* We've got an APIC/SAPIC interrupt. */
2101                 info->irq = spmi->GlobalSystemInterrupt;
2102                 info->irq_setup = std_irq_setup;
2103         } else {
2104                 /* Use the default interrupt setting. */
2105                 info->irq = 0;
2106                 info->irq_setup = NULL;
2107         }
2108
2109         if (spmi->addr.bit_width) {
2110                 /* A (hopefully) properly formed register bit width. */
2111                 info->io.regspacing = spmi->addr.bit_width / 8;
2112         } else {
2113                 info->io.regspacing = DEFAULT_REGSPACING;
2114         }
2115         info->io.regsize = info->io.regspacing;
2116         info->io.regshift = spmi->addr.bit_offset;
2117
2118         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2119                 info->io_setup = mem_setup;
2120                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2121         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2122                 info->io_setup = port_setup;
2123                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2124         } else {
2125                 kfree(info);
2126                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2127                 return -EIO;
2128         }
2129         info->io.addr_data = spmi->addr.address;
2130
2131         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2132                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2133                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2134                  info->irq);
2135
2136         if (add_smi(info))
2137                 kfree(info);
2138
2139         return 0;
2140 }
2141
2142 static void spmi_find_bmc(void)
2143 {
2144         acpi_status      status;
2145         struct SPMITable *spmi;
2146         int              i;
2147
2148         if (acpi_disabled)
2149                 return;
2150
2151         if (acpi_failure)
2152                 return;
2153
2154         for (i = 0; ; i++) {
2155                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2156                                         (struct acpi_table_header **)&spmi);
2157                 if (status != AE_OK)
2158                         return;
2159
2160                 try_init_spmi(spmi);
2161         }
2162 }
2163
2164 static int ipmi_pnp_probe(struct pnp_dev *dev,
2165                                     const struct pnp_device_id *dev_id)
2166 {
2167         struct acpi_device *acpi_dev;
2168         struct smi_info *info;
2169         struct resource *res, *res_second;
2170         acpi_handle handle;
2171         acpi_status status;
2172         unsigned long long tmp;
2173
2174         acpi_dev = pnp_acpi_device(dev);
2175         if (!acpi_dev)
2176                 return -ENODEV;
2177
2178         info = smi_info_alloc();
2179         if (!info)
2180                 return -ENOMEM;
2181
2182         info->addr_source = SI_ACPI;
2183         printk(KERN_INFO PFX "probing via ACPI\n");
2184
2185         handle = acpi_dev->handle;
2186         info->addr_info.acpi_info.acpi_handle = handle;
2187
2188         /* _IFT tells us the interface type: KCS, BT, etc */
2189         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2190         if (ACPI_FAILURE(status))
2191                 goto err_free;
2192
2193         switch (tmp) {
2194         case 1:
2195                 info->si_type = SI_KCS;
2196                 break;
2197         case 2:
2198                 info->si_type = SI_SMIC;
2199                 break;
2200         case 3:
2201                 info->si_type = SI_BT;
2202                 break;
2203         default:
2204                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2205                 goto err_free;
2206         }
2207
2208         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2209         if (res) {
2210                 info->io_setup = port_setup;
2211                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2212         } else {
2213                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2214                 if (res) {
2215                         info->io_setup = mem_setup;
2216                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2217                 }
2218         }
2219         if (!res) {
2220                 dev_err(&dev->dev, "no I/O or memory address\n");
2221                 goto err_free;
2222         }
2223         info->io.addr_data = res->start;
2224
2225         info->io.regspacing = DEFAULT_REGSPACING;
2226         res_second = pnp_get_resource(dev,
2227                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2228                                         IORESOURCE_IO : IORESOURCE_MEM,
2229                                1);
2230         if (res_second) {
2231                 if (res_second->start > info->io.addr_data)
2232                         info->io.regspacing = res_second->start - info->io.addr_data;
2233         }
2234         info->io.regsize = DEFAULT_REGSPACING;
2235         info->io.regshift = 0;
2236
2237         /* If _GPE exists, use it; otherwise use standard interrupts */
2238         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2239         if (ACPI_SUCCESS(status)) {
2240                 info->irq = tmp;
2241                 info->irq_setup = acpi_gpe_irq_setup;
2242         } else if (pnp_irq_valid(dev, 0)) {
2243                 info->irq = pnp_irq(dev, 0);
2244                 info->irq_setup = std_irq_setup;
2245         }
2246
2247         info->dev = &dev->dev;
2248         pnp_set_drvdata(dev, info);
2249
2250         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2251                  res, info->io.regsize, info->io.regspacing,
2252                  info->irq);
2253
2254         if (add_smi(info))
2255                 goto err_free;
2256
2257         return 0;
2258
2259 err_free:
2260         kfree(info);
2261         return -EINVAL;
2262 }
2263
2264 static void ipmi_pnp_remove(struct pnp_dev *dev)
2265 {
2266         struct smi_info *info = pnp_get_drvdata(dev);
2267
2268         cleanup_one_si(info);
2269 }
2270
2271 static const struct pnp_device_id pnp_dev_table[] = {
2272         {"IPI0001", 0},
2273         {"", 0},
2274 };
2275
2276 static struct pnp_driver ipmi_pnp_driver = {
2277         .name           = DEVICE_NAME,
2278         .probe          = ipmi_pnp_probe,
2279         .remove         = ipmi_pnp_remove,
2280         .id_table       = pnp_dev_table,
2281 };
2282
2283 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2284 #endif
2285
2286 #ifdef CONFIG_DMI
2287 struct dmi_ipmi_data {
2288         u8              type;
2289         u8              addr_space;
2290         unsigned long   base_addr;
2291         u8              irq;
2292         u8              offset;
2293         u8              slave_addr;
2294 };
2295
2296 static int decode_dmi(const struct dmi_header *dm,
2297                                 struct dmi_ipmi_data *dmi)
2298 {
2299         const u8        *data = (const u8 *)dm;
2300         unsigned long   base_addr;
2301         u8              reg_spacing;
2302         u8              len = dm->length;
2303
2304         dmi->type = data[4];
2305
2306         memcpy(&base_addr, data+8, sizeof(unsigned long));
2307         if (len >= 0x11) {
2308                 if (base_addr & 1) {
2309                         /* I/O */
2310                         base_addr &= 0xFFFE;
2311                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2312                 } else
2313                         /* Memory */
2314                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2315
2316                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2317                    is odd. */
2318                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2319
2320                 dmi->irq = data[0x11];
2321
2322                 /* The top two bits of byte 0x10 hold the register spacing. */
2323                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2324                 switch (reg_spacing) {
2325                 case 0x00: /* Byte boundaries */
2326                     dmi->offset = 1;
2327                     break;
2328                 case 0x01: /* 32-bit boundaries */
2329                     dmi->offset = 4;
2330                     break;
2331                 case 0x02: /* 16-byte boundaries */
2332                     dmi->offset = 16;
2333                     break;
2334                 default:
2335                     /* Some other interface, just ignore it. */
2336                     return -EIO;
2337                 }
2338         } else {
2339                 /* Old DMI spec. */
2340                 /*
2341                  * Note that technically, the lower bit of the base
2342                  * address should be 1 if the address is I/O and 0 if
2343                  * the address is in memory.  So many systems get that
2344                  * wrong (and all that I have seen are I/O) so we just
2345                  * ignore that bit and assume I/O.  Systems that use
2346                  * memory should use the newer spec, anyway.
2347                  */
2348                 dmi->base_addr = base_addr & 0xfffe;
2349                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2350                 dmi->offset = 1;
2351         }
2352
2353         dmi->slave_addr = data[6];
2354
2355         return 0;
2356 }
2357
2358 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2359 {
2360         struct smi_info *info;
2361
2362         info = smi_info_alloc();
2363         if (!info) {
2364                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2365                 return;
2366         }
2367
2368         info->addr_source = SI_SMBIOS;
2369         printk(KERN_INFO PFX "probing via SMBIOS\n");
2370
2371         switch (ipmi_data->type) {
2372         case 0x01: /* KCS */
2373                 info->si_type = SI_KCS;
2374                 break;
2375         case 0x02: /* SMIC */
2376                 info->si_type = SI_SMIC;
2377                 break;
2378         case 0x03: /* BT */
2379                 info->si_type = SI_BT;
2380                 break;
2381         default:
2382                 kfree(info);
2383                 return;
2384         }
2385
2386         switch (ipmi_data->addr_space) {
2387         case IPMI_MEM_ADDR_SPACE:
2388                 info->io_setup = mem_setup;
2389                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2390                 break;
2391
2392         case IPMI_IO_ADDR_SPACE:
2393                 info->io_setup = port_setup;
2394                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2395                 break;
2396
2397         default:
2398                 kfree(info);
2399                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2400                        ipmi_data->addr_space);
2401                 return;
2402         }
2403         info->io.addr_data = ipmi_data->base_addr;
2404
2405         info->io.regspacing = ipmi_data->offset;
2406         if (!info->io.regspacing)
2407                 info->io.regspacing = DEFAULT_REGSPACING;
2408         info->io.regsize = DEFAULT_REGSPACING;
2409         info->io.regshift = 0;
2410
2411         info->slave_addr = ipmi_data->slave_addr;
2412
2413         info->irq = ipmi_data->irq;
2414         if (info->irq)
2415                 info->irq_setup = std_irq_setup;
2416
2417         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2418                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2419                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2420                  info->irq);
2421
2422         if (add_smi(info))
2423                 kfree(info);
2424 }
2425
2426 static void dmi_find_bmc(void)
2427 {
2428         const struct dmi_device *dev = NULL;
2429         struct dmi_ipmi_data data;
2430         int                  rv;
2431
2432         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2433                 memset(&data, 0, sizeof(data));
2434                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2435                                 &data);
2436                 if (!rv)
2437                         try_init_dmi(&data);
2438         }
2439 }
2440 #endif /* CONFIG_DMI */
2441
2442 #ifdef CONFIG_PCI
2443
2444 #define PCI_ERMC_CLASSCODE              0x0C0700
2445 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2446 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2447 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2448 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2449 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2450
2451 #define PCI_HP_VENDOR_ID    0x103C
2452 #define PCI_MMC_DEVICE_ID   0x121A
2453 #define PCI_MMC_ADDR_CW     0x10
2454
2455 static void ipmi_pci_cleanup(struct smi_info *info)
2456 {
2457         struct pci_dev *pdev = info->addr_source_data;
2458
2459         pci_disable_device(pdev);
2460 }
2461
2462 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2463 {
2464         if (info->si_type == SI_KCS) {
2465                 unsigned char   status;
2466                 int             regspacing;
2467
2468                 info->io.regsize = DEFAULT_REGSIZE;
2469                 info->io.regshift = 0;
2470                 info->io_size = 2;
2471                 info->handlers = &kcs_smi_handlers;
2472
2473                 /* detect 1, 4, 16byte spacing */
2474                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2475                         info->io.regspacing = regspacing;
2476                         if (info->io_setup(info)) {
2477                                 dev_err(info->dev,
2478                                         "Could not setup I/O space\n");
2479                                 return DEFAULT_REGSPACING;
2480                         }
2481                         /* write invalid cmd */
2482                         info->io.outputb(&info->io, 1, 0x10);
2483                         /* read status back */
2484                         status = info->io.inputb(&info->io, 1);
2485                         info->io_cleanup(info);
2486                         if (status)
2487                                 return regspacing;
2488                         regspacing *= 4;
2489                 }
2490         }
2491         return DEFAULT_REGSPACING;
2492 }
2493
2494 static int ipmi_pci_probe(struct pci_dev *pdev,
2495                                     const struct pci_device_id *ent)
2496 {
2497         int rv;
2498         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2499         struct smi_info *info;
2500
2501         info = smi_info_alloc();
2502         if (!info)
2503                 return -ENOMEM;
2504
2505         info->addr_source = SI_PCI;
2506         dev_info(&pdev->dev, "probing via PCI");
2507
2508         switch (class_type) {
2509         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2510                 info->si_type = SI_SMIC;
2511                 break;
2512
2513         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2514                 info->si_type = SI_KCS;
2515                 break;
2516
2517         case PCI_ERMC_CLASSCODE_TYPE_BT:
2518                 info->si_type = SI_BT;
2519                 break;
2520
2521         default:
2522                 kfree(info);
2523                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2524                 return -ENOMEM;
2525         }
2526
2527         rv = pci_enable_device(pdev);
2528         if (rv) {
2529                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2530                 kfree(info);
2531                 return rv;
2532         }
2533
2534         info->addr_source_cleanup = ipmi_pci_cleanup;
2535         info->addr_source_data = pdev;
2536
2537         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2538                 info->io_setup = port_setup;
2539                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2540         } else {
2541                 info->io_setup = mem_setup;
2542                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2543         }
2544         info->io.addr_data = pci_resource_start(pdev, 0);
2545
2546         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2547         info->io.regsize = DEFAULT_REGSIZE;
2548         info->io.regshift = 0;
2549
2550         info->irq = pdev->irq;
2551         if (info->irq)
2552                 info->irq_setup = std_irq_setup;
2553
2554         info->dev = &pdev->dev;
2555         pci_set_drvdata(pdev, info);
2556
2557         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2558                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2559                 info->irq);
2560
2561         if (add_smi(info))
2562                 kfree(info);
2563
2564         return 0;
2565 }
2566
2567 static void ipmi_pci_remove(struct pci_dev *pdev)
2568 {
2569         struct smi_info *info = pci_get_drvdata(pdev);
2570         cleanup_one_si(info);
2571 }
2572
2573 static struct pci_device_id ipmi_pci_devices[] = {
2574         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2575         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2576         { 0, }
2577 };
2578 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2579
2580 static struct pci_driver ipmi_pci_driver = {
2581         .name =         DEVICE_NAME,
2582         .id_table =     ipmi_pci_devices,
2583         .probe =        ipmi_pci_probe,
2584         .remove =       ipmi_pci_remove,
2585 };
2586 #endif /* CONFIG_PCI */
2587
2588 static struct of_device_id ipmi_match[];
2589 static int ipmi_probe(struct platform_device *dev)
2590 {
2591 #ifdef CONFIG_OF
2592         const struct of_device_id *match;
2593         struct smi_info *info;
2594         struct resource resource;
2595         const __be32 *regsize, *regspacing, *regshift;
2596         struct device_node *np = dev->dev.of_node;
2597         int ret;
2598         int proplen;
2599
2600         dev_info(&dev->dev, "probing via device tree\n");
2601
2602         match = of_match_device(ipmi_match, &dev->dev);
2603         if (!match)
2604                 return -EINVAL;
2605
2606         ret = of_address_to_resource(np, 0, &resource);
2607         if (ret) {
2608                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2609                 return ret;
2610         }
2611
2612         regsize = of_get_property(np, "reg-size", &proplen);
2613         if (regsize && proplen != 4) {
2614                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2615                 return -EINVAL;
2616         }
2617
2618         regspacing = of_get_property(np, "reg-spacing", &proplen);
2619         if (regspacing && proplen != 4) {
2620                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2621                 return -EINVAL;
2622         }
2623
2624         regshift = of_get_property(np, "reg-shift", &proplen);
2625         if (regshift && proplen != 4) {
2626                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2627                 return -EINVAL;
2628         }
2629
2630         info = smi_info_alloc();
2631
2632         if (!info) {
2633                 dev_err(&dev->dev,
2634                         "could not allocate memory for OF probe\n");
2635                 return -ENOMEM;
2636         }
2637
2638         info->si_type           = (enum si_type) match->data;
2639         info->addr_source       = SI_DEVICETREE;
2640         info->irq_setup         = std_irq_setup;
2641
2642         if (resource.flags & IORESOURCE_IO) {
2643                 info->io_setup          = port_setup;
2644                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2645         } else {
2646                 info->io_setup          = mem_setup;
2647                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2648         }
2649
2650         info->io.addr_data      = resource.start;
2651
2652         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2653         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2654         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2655
2656         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2657         info->dev               = &dev->dev;
2658
2659         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2660                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2661                 info->irq);
2662
2663         dev_set_drvdata(&dev->dev, info);
2664
2665         if (add_smi(info)) {
2666                 kfree(info);
2667                 return -EBUSY;
2668         }
2669 #endif
2670         return 0;
2671 }
2672
2673 static int ipmi_remove(struct platform_device *dev)
2674 {
2675 #ifdef CONFIG_OF
2676         cleanup_one_si(dev_get_drvdata(&dev->dev));
2677 #endif
2678         return 0;
2679 }
2680
2681 static struct of_device_id ipmi_match[] =
2682 {
2683         { .type = "ipmi", .compatible = "ipmi-kcs",
2684           .data = (void *)(unsigned long) SI_KCS },
2685         { .type = "ipmi", .compatible = "ipmi-smic",
2686           .data = (void *)(unsigned long) SI_SMIC },
2687         { .type = "ipmi", .compatible = "ipmi-bt",
2688           .data = (void *)(unsigned long) SI_BT },
2689         {},
2690 };
2691
2692 static struct platform_driver ipmi_driver = {
2693         .driver = {
2694                 .name = DEVICE_NAME,
2695                 .owner = THIS_MODULE,
2696                 .of_match_table = ipmi_match,
2697         },
2698         .probe          = ipmi_probe,
2699         .remove         = ipmi_remove,
2700 };
2701
2702 static int wait_for_msg_done(struct smi_info *smi_info)
2703 {
2704         enum si_sm_result     smi_result;
2705
2706         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2707         for (;;) {
2708                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2709                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2710                         schedule_timeout_uninterruptible(1);
2711                         smi_result = smi_info->handlers->event(
2712                                 smi_info->si_sm, 100);
2713                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2714                         smi_result = smi_info->handlers->event(
2715                                 smi_info->si_sm, 0);
2716                 } else
2717                         break;
2718         }
2719         if (smi_result == SI_SM_HOSED)
2720                 /*
2721                  * We couldn't get the state machine to run, so whatever's at
2722                  * the port is probably not an IPMI SMI interface.
2723                  */
2724                 return -ENODEV;
2725
2726         return 0;
2727 }
2728
2729 static int try_get_dev_id(struct smi_info *smi_info)
2730 {
2731         unsigned char         msg[2];
2732         unsigned char         *resp;
2733         unsigned long         resp_len;
2734         int                   rv = 0;
2735
2736         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2737         if (!resp)
2738                 return -ENOMEM;
2739
2740         /*
2741          * Do a Get Device ID command, since it comes back with some
2742          * useful info.
2743          */
2744         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2745         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2746         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2747
2748         rv = wait_for_msg_done(smi_info);
2749         if (rv)
2750                 goto out;
2751
2752         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2753                                                   resp, IPMI_MAX_MSG_LENGTH);
2754
2755         /* Check and record info from the get device id, in case we need it. */
2756         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2757
2758  out:
2759         kfree(resp);
2760         return rv;
2761 }
2762
2763 static int try_enable_event_buffer(struct smi_info *smi_info)
2764 {
2765         unsigned char         msg[3];
2766         unsigned char         *resp;
2767         unsigned long         resp_len;
2768         int                   rv = 0;
2769
2770         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2771         if (!resp)
2772                 return -ENOMEM;
2773
2774         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2775         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2776         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2777
2778         rv = wait_for_msg_done(smi_info);
2779         if (rv) {
2780                 printk(KERN_WARNING PFX "Error getting response from get"
2781                        " global enables command, the event buffer is not"
2782                        " enabled.\n");
2783                 goto out;
2784         }
2785
2786         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2787                                                   resp, IPMI_MAX_MSG_LENGTH);
2788
2789         if (resp_len < 4 ||
2790                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2791                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2792                         resp[2] != 0) {
2793                 printk(KERN_WARNING PFX "Invalid return from get global"
2794                        " enables command, cannot enable the event buffer.\n");
2795                 rv = -EINVAL;
2796                 goto out;
2797         }
2798
2799         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2800                 /* buffer is already enabled, nothing to do. */
2801                 goto out;
2802
2803         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2804         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2805         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2806         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2807
2808         rv = wait_for_msg_done(smi_info);
2809         if (rv) {
2810                 printk(KERN_WARNING PFX "Error getting response from set"
2811                        " global, enables command, the event buffer is not"
2812                        " enabled.\n");
2813                 goto out;
2814         }
2815
2816         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2817                                                   resp, IPMI_MAX_MSG_LENGTH);
2818
2819         if (resp_len < 3 ||
2820                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2821                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2822                 printk(KERN_WARNING PFX "Invalid return from get global,"
2823                        "enables command, not enable the event buffer.\n");
2824                 rv = -EINVAL;
2825                 goto out;
2826         }
2827
2828         if (resp[2] != 0)
2829                 /*
2830                  * An error when setting the event buffer bit means
2831                  * that the event buffer is not supported.
2832                  */
2833                 rv = -ENOENT;
2834  out:
2835         kfree(resp);
2836         return rv;
2837 }
2838
2839 static int smi_type_proc_show(struct seq_file *m, void *v)
2840 {
2841         struct smi_info *smi = m->private;
2842
2843         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2844 }
2845
2846 static int smi_type_proc_open(struct inode *inode, struct file *file)
2847 {
2848         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2849 }
2850
2851 static const struct file_operations smi_type_proc_ops = {
2852         .open           = smi_type_proc_open,
2853         .read           = seq_read,
2854         .llseek         = seq_lseek,
2855         .release        = single_release,
2856 };
2857
2858 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2859 {
2860         struct smi_info *smi = m->private;
2861
2862         seq_printf(m, "interrupts_enabled:    %d\n",
2863                        smi->irq && !smi->interrupt_disabled);
2864         seq_printf(m, "short_timeouts:        %u\n",
2865                        smi_get_stat(smi, short_timeouts));
2866         seq_printf(m, "long_timeouts:         %u\n",
2867                        smi_get_stat(smi, long_timeouts));
2868         seq_printf(m, "idles:                 %u\n",
2869                        smi_get_stat(smi, idles));
2870         seq_printf(m, "interrupts:            %u\n",
2871                        smi_get_stat(smi, interrupts));
2872         seq_printf(m, "attentions:            %u\n",
2873                        smi_get_stat(smi, attentions));
2874         seq_printf(m, "flag_fetches:          %u\n",
2875                        smi_get_stat(smi, flag_fetches));
2876         seq_printf(m, "hosed_count:           %u\n",
2877                        smi_get_stat(smi, hosed_count));
2878         seq_printf(m, "complete_transactions: %u\n",
2879                        smi_get_stat(smi, complete_transactions));
2880         seq_printf(m, "events:                %u\n",
2881                        smi_get_stat(smi, events));
2882         seq_printf(m, "watchdog_pretimeouts:  %u\n",
2883                        smi_get_stat(smi, watchdog_pretimeouts));
2884         seq_printf(m, "incoming_messages:     %u\n",
2885                        smi_get_stat(smi, incoming_messages));
2886         return 0;
2887 }
2888
2889 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2890 {
2891         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2892 }
2893
2894 static const struct file_operations smi_si_stats_proc_ops = {
2895         .open           = smi_si_stats_proc_open,
2896         .read           = seq_read,
2897         .llseek         = seq_lseek,
2898         .release        = single_release,
2899 };
2900
2901 static int smi_params_proc_show(struct seq_file *m, void *v)
2902 {
2903         struct smi_info *smi = m->private;
2904
2905         return seq_printf(m,
2906                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2907                        si_to_str[smi->si_type],
2908                        addr_space_to_str[smi->io.addr_type],
2909                        smi->io.addr_data,
2910                        smi->io.regspacing,
2911                        smi->io.regsize,
2912                        smi->io.regshift,
2913                        smi->irq,
2914                        smi->slave_addr);
2915 }
2916
2917 static int smi_params_proc_open(struct inode *inode, struct file *file)
2918 {
2919         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2920 }
2921
2922 static const struct file_operations smi_params_proc_ops = {
2923         .open           = smi_params_proc_open,
2924         .read           = seq_read,
2925         .llseek         = seq_lseek,
2926         .release        = single_release,
2927 };
2928
2929 /*
2930  * oem_data_avail_to_receive_msg_avail
2931  * @info - smi_info structure with msg_flags set
2932  *
2933  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2934  * Returns 1 indicating need to re-run handle_flags().
2935  */
2936 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2937 {
2938         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2939                                RECEIVE_MSG_AVAIL);
2940         return 1;
2941 }
2942
2943 /*
2944  * setup_dell_poweredge_oem_data_handler
2945  * @info - smi_info.device_id must be populated
2946  *
2947  * Systems that match, but have firmware version < 1.40 may assert
2948  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2949  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2950  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2951  * as RECEIVE_MSG_AVAIL instead.
2952  *
2953  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2954  * assert the OEM[012] bits, and if it did, the driver would have to
2955  * change to handle that properly, we don't actually check for the
2956  * firmware version.
2957  * Device ID = 0x20                BMC on PowerEdge 8G servers
2958  * Device Revision = 0x80
2959  * Firmware Revision1 = 0x01       BMC version 1.40
2960  * Firmware Revision2 = 0x40       BCD encoded
2961  * IPMI Version = 0x51             IPMI 1.5
2962  * Manufacturer ID = A2 02 00      Dell IANA
2963  *
2964  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2965  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2966  *
2967  */
2968 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2969 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2970 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2971 #define DELL_IANA_MFR_ID 0x0002a2
2972 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2973 {
2974         struct ipmi_device_id *id = &smi_info->device_id;
2975         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2976                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2977                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2978                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2979                         smi_info->oem_data_avail_handler =
2980                                 oem_data_avail_to_receive_msg_avail;
2981                 } else if (ipmi_version_major(id) < 1 ||
2982                            (ipmi_version_major(id) == 1 &&
2983                             ipmi_version_minor(id) < 5)) {
2984                         smi_info->oem_data_avail_handler =
2985                                 oem_data_avail_to_receive_msg_avail;
2986                 }
2987         }
2988 }
2989
2990 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2991 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2992 {
2993         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2994
2995         /* Make it a response */
2996         msg->rsp[0] = msg->data[0] | 4;
2997         msg->rsp[1] = msg->data[1];
2998         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2999         msg->rsp_size = 3;
3000         smi_info->curr_msg = NULL;
3001         deliver_recv_msg(smi_info, msg);
3002 }
3003
3004 /*
3005  * dell_poweredge_bt_xaction_handler
3006  * @info - smi_info.device_id must be populated
3007  *
3008  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3009  * not respond to a Get SDR command if the length of the data
3010  * requested is exactly 0x3A, which leads to command timeouts and no
3011  * data returned.  This intercepts such commands, and causes userspace
3012  * callers to try again with a different-sized buffer, which succeeds.
3013  */
3014
3015 #define STORAGE_NETFN 0x0A
3016 #define STORAGE_CMD_GET_SDR 0x23
3017 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3018                                              unsigned long unused,
3019                                              void *in)
3020 {
3021         struct smi_info *smi_info = in;
3022         unsigned char *data = smi_info->curr_msg->data;
3023         unsigned int size   = smi_info->curr_msg->data_size;
3024         if (size >= 8 &&
3025             (data[0]>>2) == STORAGE_NETFN &&
3026             data[1] == STORAGE_CMD_GET_SDR &&
3027             data[7] == 0x3A) {
3028                 return_hosed_msg_badsize(smi_info);
3029                 return NOTIFY_STOP;
3030         }
3031         return NOTIFY_DONE;
3032 }
3033
3034 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3035         .notifier_call  = dell_poweredge_bt_xaction_handler,
3036 };
3037
3038 /*
3039  * setup_dell_poweredge_bt_xaction_handler
3040  * @info - smi_info.device_id must be filled in already
3041  *
3042  * Fills in smi_info.device_id.start_transaction_pre_hook
3043  * when we know what function to use there.
3044  */
3045 static void
3046 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3047 {
3048         struct ipmi_device_id *id = &smi_info->device_id;
3049         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3050             smi_info->si_type == SI_BT)
3051                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3052 }
3053
3054 /*
3055  * setup_oem_data_handler
3056  * @info - smi_info.device_id must be filled in already
3057  *
3058  * Fills in smi_info.device_id.oem_data_available_handler
3059  * when we know what function to use there.
3060  */
3061
3062 static void setup_oem_data_handler(struct smi_info *smi_info)
3063 {
3064         setup_dell_poweredge_oem_data_handler(smi_info);
3065 }
3066
3067 static void setup_xaction_handlers(struct smi_info *smi_info)
3068 {
3069         setup_dell_poweredge_bt_xaction_handler(smi_info);
3070 }
3071
3072 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3073 {
3074         if (smi_info->intf) {
3075                 /*
3076                  * The timer and thread are only running if the
3077                  * interface has been started up and registered.
3078                  */
3079                 if (smi_info->thread != NULL)
3080                         kthread_stop(smi_info->thread);
3081                 del_timer_sync(&smi_info->si_timer);
3082         }
3083 }
3084
3085 static struct ipmi_default_vals
3086 {
3087         int type;
3088         int port;
3089 } ipmi_defaults[] =
3090 {
3091         { .type = SI_KCS, .port = 0xca2 },
3092         { .type = SI_SMIC, .port = 0xca9 },
3093         { .type = SI_BT, .port = 0xe4 },
3094         { .port = 0 }
3095 };
3096
3097 static void default_find_bmc(void)
3098 {
3099         struct smi_info *info;
3100         int             i;
3101
3102         for (i = 0; ; i++) {
3103                 if (!ipmi_defaults[i].port)
3104                         break;
3105 #ifdef CONFIG_PPC
3106                 if (check_legacy_ioport(ipmi_defaults[i].port))
3107                         continue;
3108 #endif
3109                 info = smi_info_alloc();
3110                 if (!info)
3111                         return;
3112
3113                 info->addr_source = SI_DEFAULT;
3114
3115                 info->si_type = ipmi_defaults[i].type;
3116                 info->io_setup = port_setup;
3117                 info->io.addr_data = ipmi_defaults[i].port;
3118                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3119
3120                 info->io.addr = NULL;
3121                 info->io.regspacing = DEFAULT_REGSPACING;
3122                 info->io.regsize = DEFAULT_REGSPACING;
3123                 info->io.regshift = 0;
3124
3125                 if (add_smi(info) == 0) {
3126                         if ((try_smi_init(info)) == 0) {
3127                                 /* Found one... */
3128                                 printk(KERN_INFO PFX "Found default %s"
3129                                 " state machine at %s address 0x%lx\n",
3130                                 si_to_str[info->si_type],
3131                                 addr_space_to_str[info->io.addr_type],
3132                                 info->io.addr_data);
3133                         } else
3134                                 cleanup_one_si(info);
3135                 } else {
3136                         kfree(info);
3137                 }
3138         }
3139 }
3140
3141 static int is_new_interface(struct smi_info *info)
3142 {
3143         struct smi_info *e;
3144
3145         list_for_each_entry(e, &smi_infos, link) {
3146                 if (e->io.addr_type != info->io.addr_type)
3147                         continue;
3148                 if (e->io.addr_data == info->io.addr_data)
3149                         return 0;
3150         }
3151
3152         return 1;
3153 }
3154
3155 static int add_smi(struct smi_info *new_smi)
3156 {
3157         int rv = 0;
3158
3159         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3160                         ipmi_addr_src_to_str[new_smi->addr_source],
3161                         si_to_str[new_smi->si_type]);
3162         mutex_lock(&smi_infos_lock);
3163         if (!is_new_interface(new_smi)) {
3164                 printk(KERN_CONT " duplicate interface\n");
3165                 rv = -EBUSY;
3166                 goto out_err;
3167         }
3168
3169         printk(KERN_CONT "\n");
3170
3171         /* So we know not to free it unless we have allocated one. */
3172         new_smi->intf = NULL;
3173         new_smi->si_sm = NULL;
3174         new_smi->handlers = NULL;
3175
3176         list_add_tail(&new_smi->link, &smi_infos);
3177
3178 out_err:
3179         mutex_unlock(&smi_infos_lock);
3180         return rv;
3181 }
3182
3183 static int try_smi_init(struct smi_info *new_smi)
3184 {
3185         int rv = 0;
3186         int i;
3187
3188         printk(KERN_INFO PFX "Trying %s-specified %s state"
3189                " machine at %s address 0x%lx, slave address 0x%x,"
3190                " irq %d\n",
3191                ipmi_addr_src_to_str[new_smi->addr_source],
3192                si_to_str[new_smi->si_type],
3193                addr_space_to_str[new_smi->io.addr_type],
3194                new_smi->io.addr_data,
3195                new_smi->slave_addr, new_smi->irq);
3196
3197         switch (new_smi->si_type) {
3198         case SI_KCS:
3199                 new_smi->handlers = &kcs_smi_handlers;
3200                 break;
3201
3202         case SI_SMIC:
3203                 new_smi->handlers = &smic_smi_handlers;
3204                 break;
3205
3206         case SI_BT:
3207                 new_smi->handlers = &bt_smi_handlers;
3208                 break;
3209
3210         default:
3211                 /* No support for anything else yet. */
3212                 rv = -EIO;
3213                 goto out_err;
3214         }
3215
3216         /* Allocate the state machine's data and initialize it. */
3217         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3218         if (!new_smi->si_sm) {
3219                 printk(KERN_ERR PFX
3220                        "Could not allocate state machine memory\n");
3221                 rv = -ENOMEM;
3222                 goto out_err;
3223         }
3224         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3225                                                         &new_smi->io);
3226
3227         /* Now that we know the I/O size, we can set up the I/O. */
3228         rv = new_smi->io_setup(new_smi);
3229         if (rv) {
3230                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3231                 goto out_err;
3232         }
3233
3234         /* Do low-level detection first. */
3235         if (new_smi->handlers->detect(new_smi->si_sm)) {
3236                 if (new_smi->addr_source)
3237                         printk(KERN_INFO PFX "Interface detection failed\n");
3238                 rv = -ENODEV;
3239                 goto out_err;
3240         }
3241
3242         /*
3243          * Attempt a get device id command.  If it fails, we probably
3244          * don't have a BMC here.
3245          */
3246         rv = try_get_dev_id(new_smi);
3247         if (rv) {
3248                 if (new_smi->addr_source)
3249                         printk(KERN_INFO PFX "There appears to be no BMC"
3250                                " at this location\n");
3251                 goto out_err;
3252         }
3253
3254         setup_oem_data_handler(new_smi);
3255         setup_xaction_handlers(new_smi);
3256
3257         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3258         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3259         new_smi->curr_msg = NULL;
3260         atomic_set(&new_smi->req_events, 0);
3261         new_smi->run_to_completion = 0;
3262         for (i = 0; i < SI_NUM_STATS; i++)
3263                 atomic_set(&new_smi->stats[i], 0);
3264
3265         new_smi->interrupt_disabled = 1;
3266         atomic_set(&new_smi->stop_operation, 0);
3267         new_smi->intf_num = smi_num;
3268         smi_num++;
3269
3270         rv = try_enable_event_buffer(new_smi);
3271         if (rv == 0)
3272                 new_smi->has_event_buffer = 1;
3273
3274         /*
3275          * Start clearing the flags before we enable interrupts or the
3276          * timer to avoid racing with the timer.
3277          */
3278         start_clear_flags(new_smi);
3279         /* IRQ is defined to be set when non-zero. */
3280         if (new_smi->irq)
3281                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3282
3283         if (!new_smi->dev) {
3284                 /*
3285                  * If we don't already have a device from something
3286                  * else (like PCI), then register a new one.
3287                  */
3288                 new_smi->pdev = platform_device_alloc("ipmi_si",
3289                                                       new_smi->intf_num);
3290                 if (!new_smi->pdev) {
3291                         printk(KERN_ERR PFX
3292                                "Unable to allocate platform device\n");
3293                         goto out_err;
3294                 }
3295                 new_smi->dev = &new_smi->pdev->dev;
3296                 new_smi->dev->driver = &ipmi_driver.driver;
3297
3298                 rv = platform_device_add(new_smi->pdev);
3299                 if (rv) {
3300                         printk(KERN_ERR PFX
3301                                "Unable to register system interface device:"
3302                                " %d\n",
3303                                rv);
3304                         goto out_err;
3305                 }
3306                 new_smi->dev_registered = 1;
3307         }
3308
3309         rv = ipmi_register_smi(&handlers,
3310                                new_smi,
3311                                &new_smi->device_id,
3312                                new_smi->dev,
3313                                "bmc",
3314                                new_smi->slave_addr);
3315         if (rv) {
3316                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3317                         rv);
3318                 goto out_err_stop_timer;
3319         }
3320
3321         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3322                                      &smi_type_proc_ops,
3323                                      new_smi);
3324         if (rv) {
3325                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3326                 goto out_err_stop_timer;
3327         }
3328
3329         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3330                                      &smi_si_stats_proc_ops,
3331                                      new_smi);
3332         if (rv) {
3333                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3334                 goto out_err_stop_timer;
3335         }
3336
3337         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3338                                      &smi_params_proc_ops,
3339                                      new_smi);
3340         if (rv) {
3341                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3342                 goto out_err_stop_timer;
3343         }
3344
3345         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3346                  si_to_str[new_smi->si_type]);
3347
3348         return 0;
3349
3350  out_err_stop_timer:
3351         atomic_inc(&new_smi->stop_operation);
3352         wait_for_timer_and_thread(new_smi);
3353
3354  out_err:
3355         new_smi->interrupt_disabled = 1;
3356
3357         if (new_smi->intf) {
3358                 ipmi_unregister_smi(new_smi->intf);
3359                 new_smi->intf = NULL;
3360         }
3361
3362         if (new_smi->irq_cleanup) {
3363                 new_smi->irq_cleanup(new_smi);
3364                 new_smi->irq_cleanup = NULL;
3365         }
3366
3367         /*
3368          * Wait until we know that we are out of any interrupt
3369          * handlers might have been running before we freed the
3370          * interrupt.
3371          */
3372         synchronize_sched();
3373
3374         if (new_smi->si_sm) {
3375                 if (new_smi->handlers)
3376                         new_smi->handlers->cleanup(new_smi->si_sm);
3377                 kfree(new_smi->si_sm);
3378                 new_smi->si_sm = NULL;
3379         }
3380         if (new_smi->addr_source_cleanup) {
3381                 new_smi->addr_source_cleanup(new_smi);
3382                 new_smi->addr_source_cleanup = NULL;
3383         }
3384         if (new_smi->io_cleanup) {
3385                 new_smi->io_cleanup(new_smi);
3386                 new_smi->io_cleanup = NULL;
3387         }
3388
3389         if (new_smi->dev_registered) {
3390                 platform_device_unregister(new_smi->pdev);
3391                 new_smi->dev_registered = 0;
3392         }
3393
3394         return rv;
3395 }
3396
3397 static int init_ipmi_si(void)
3398 {
3399         int  i;
3400         char *str;
3401         int  rv;
3402         struct smi_info *e;
3403         enum ipmi_addr_src type = SI_INVALID;
3404
3405         if (initialized)
3406                 return 0;
3407         initialized = 1;
3408
3409         if (si_tryplatform) {
3410                 rv = platform_driver_register(&ipmi_driver);
3411                 if (rv) {
3412                         printk(KERN_ERR PFX "Unable to register "
3413                                "driver: %d\n", rv);
3414                         return rv;
3415                 }
3416         }
3417
3418         /* Parse out the si_type string into its components. */
3419         str = si_type_str;
3420         if (*str != '\0') {
3421                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3422                         si_type[i] = str;
3423                         str = strchr(str, ',');
3424                         if (str) {
3425                                 *str = '\0';
3426                                 str++;
3427                         } else {
3428                                 break;
3429                         }
3430                 }
3431         }
3432
3433         printk(KERN_INFO "IPMI System Interface driver.\n");
3434
3435         /* If the user gave us a device, they presumably want us to use it */
3436         if (!hardcode_find_bmc())
3437                 return 0;
3438
3439 #ifdef CONFIG_PCI
3440         if (si_trypci) {
3441                 rv = pci_register_driver(&ipmi_pci_driver);
3442                 if (rv)
3443                         printk(KERN_ERR PFX "Unable to register "
3444                                "PCI driver: %d\n", rv);
3445                 else
3446                         pci_registered = 1;
3447         }
3448 #endif
3449
3450 #ifdef CONFIG_ACPI
3451         if (si_tryacpi) {
3452                 pnp_register_driver(&ipmi_pnp_driver);
3453                 pnp_registered = 1;
3454         }
3455 #endif
3456
3457 #ifdef CONFIG_DMI
3458         if (si_trydmi)
3459                 dmi_find_bmc();
3460 #endif
3461
3462 #ifdef CONFIG_ACPI
3463         if (si_tryacpi)
3464                 spmi_find_bmc();
3465 #endif
3466
3467         /* We prefer devices with interrupts, but in the case of a machine
3468            with multiple BMCs we assume that there will be several instances
3469            of a given type so if we succeed in registering a type then also
3470            try to register everything else of the same type */
3471
3472         mutex_lock(&smi_infos_lock);
3473         list_for_each_entry(e, &smi_infos, link) {
3474                 /* Try to register a device if it has an IRQ and we either
3475                    haven't successfully registered a device yet or this
3476                    device has the same type as one we successfully registered */
3477                 if (e->irq && (!type || e->addr_source == type)) {
3478                         if (!try_smi_init(e)) {
3479                                 type = e->addr_source;
3480                         }
3481                 }
3482         }
3483
3484         /* type will only have been set if we successfully registered an si */
3485         if (type) {
3486                 mutex_unlock(&smi_infos_lock);
3487                 return 0;
3488         }
3489
3490         /* Fall back to the preferred device */
3491
3492         list_for_each_entry(e, &smi_infos, link) {
3493                 if (!e->irq && (!type || e->addr_source == type)) {
3494                         if (!try_smi_init(e)) {
3495                                 type = e->addr_source;
3496                         }
3497                 }
3498         }
3499         mutex_unlock(&smi_infos_lock);
3500
3501         if (type)
3502                 return 0;
3503
3504         if (si_trydefaults) {
3505                 mutex_lock(&smi_infos_lock);
3506                 if (list_empty(&smi_infos)) {
3507                         /* No BMC was found, try defaults. */
3508                         mutex_unlock(&smi_infos_lock);
3509                         default_find_bmc();
3510                 } else
3511                         mutex_unlock(&smi_infos_lock);
3512         }
3513
3514         mutex_lock(&smi_infos_lock);
3515         if (unload_when_empty && list_empty(&smi_infos)) {
3516                 mutex_unlock(&smi_infos_lock);
3517                 cleanup_ipmi_si();
3518                 printk(KERN_WARNING PFX
3519                        "Unable to find any System Interface(s)\n");
3520                 return -ENODEV;
3521         } else {
3522                 mutex_unlock(&smi_infos_lock);
3523                 return 0;
3524         }
3525 }
3526 module_init(init_ipmi_si);
3527
3528 static void cleanup_one_si(struct smi_info *to_clean)
3529 {
3530         int           rv = 0;
3531         unsigned long flags;
3532
3533         if (!to_clean)
3534                 return;
3535
3536         list_del(&to_clean->link);
3537
3538         /* Tell the driver that we are shutting down. */
3539         atomic_inc(&to_clean->stop_operation);
3540
3541         /*
3542          * Make sure the timer and thread are stopped and will not run
3543          * again.
3544          */
3545         wait_for_timer_and_thread(to_clean);
3546
3547         /*
3548          * Timeouts are stopped, now make sure the interrupts are off
3549          * for the device.  A little tricky with locks to make sure
3550          * there are no races.
3551          */
3552         spin_lock_irqsave(&to_clean->si_lock, flags);
3553         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3554                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3555                 poll(to_clean);
3556                 schedule_timeout_uninterruptible(1);
3557                 spin_lock_irqsave(&to_clean->si_lock, flags);
3558         }
3559         disable_si_irq(to_clean);
3560         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3561         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3562                 poll(to_clean);
3563                 schedule_timeout_uninterruptible(1);
3564         }
3565
3566         /* Clean up interrupts and make sure that everything is done. */
3567         if (to_clean->irq_cleanup)
3568                 to_clean->irq_cleanup(to_clean);
3569         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3570                 poll(to_clean);
3571                 schedule_timeout_uninterruptible(1);
3572         }
3573
3574         if (to_clean->intf)
3575                 rv = ipmi_unregister_smi(to_clean->intf);
3576
3577         if (rv) {
3578                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3579                        rv);
3580         }
3581
3582         if (to_clean->handlers)
3583                 to_clean->handlers->cleanup(to_clean->si_sm);
3584
3585         kfree(to_clean->si_sm);
3586
3587         if (to_clean->addr_source_cleanup)
3588                 to_clean->addr_source_cleanup(to_clean);
3589         if (to_clean->io_cleanup)
3590                 to_clean->io_cleanup(to_clean);
3591
3592         if (to_clean->dev_registered)
3593                 platform_device_unregister(to_clean->pdev);
3594
3595         kfree(to_clean);
3596 }
3597
3598 static void cleanup_ipmi_si(void)
3599 {
3600         struct smi_info *e, *tmp_e;
3601
3602         if (!initialized)
3603                 return;
3604
3605 #ifdef CONFIG_PCI
3606         if (pci_registered)
3607                 pci_unregister_driver(&ipmi_pci_driver);
3608 #endif
3609 #ifdef CONFIG_ACPI
3610         if (pnp_registered)
3611                 pnp_unregister_driver(&ipmi_pnp_driver);
3612 #endif
3613
3614         platform_driver_unregister(&ipmi_driver);
3615
3616         mutex_lock(&smi_infos_lock);
3617         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3618                 cleanup_one_si(e);
3619         mutex_unlock(&smi_infos_lock);
3620 }
3621 module_exit(cleanup_ipmi_si);
3622
3623 MODULE_LICENSE("GPL");
3624 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3625 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3626                    " system interfaces.");